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We study light absorption by weakly rough metal surfaces with the roughness amplitude and correlation
length smaller than the skin depth in metal. We develop a systematic perturbative approach for calculation of
the absorptance in such systems and find that roughness-related absorptance variations are determined by an
interplay between several system parameters which can result, in particular, in a greater absorption for smaller
roughness amplitudes. We show that, for small-scale roughness, the absorptance variations are mainly caused by
roughness-induced increase in effective volume of the surface layer, in which the incident light is predominantly
absorbed. We argue that such absorptance fluctuations between different samples, even though not related to any
electron scattering processes, can appear as sample-to-sample variations of the Drude scattering rate reported in
recent measurements of the metal dielectric function.
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I. INTRODUCTION

Roughness is a property of materials that persists even for
the best prepared samples. Numerous papers are devoted to
the scattering of electromagnetic waves from rough surfaces
and its applications (see [1] for a recent review). It is well
understood [2–8] that, if the characteristic size of roughness
parameters is comparable with the wavelength of incident
light λ, the multiple scattering from surface imperfections can
lead to a diffuse angular distribution of scattered light and
to various other effects such as enhanced backscattering and
weak localization [9–13]. In the opposite case of weak rough-
ness, when the characteristic roughness size is much smaller
than the wavelength, the diffuse component of scattered light
is suppressed and incident light is predominantly specularly
reflected from the metal surface.

While the reflection and scattering from rough metal sur-
faces have been extensively studied, much less attention was
paid to the effect of roughness on the absorption of electro-
magnetic waves in the metal [14]. However, this is an issue
of considerable importance since even a weak roughness can
substantially affect the measurements of the metal dielec-
tric function, especially of its imaginary part [15]. Precise
knowledge of the dielectric function is crucial, e.g., for under-
standing the electronic structure of metals, chemical bonding,
and optical properties [16–21]. The dielectric function also
determines many important parameters in plasmonics [22],
such as surface plasmon propagation length, plasmon radia-
tion rate, and nonradiative losses [23–25].

Early works on absorption of electromagnetic waves in
rough metals were focused on the absorption enhance-
ment due to excitation of plasmon polaritons on rough
surfaces [26–34]. The experimental paper [35] confirmed
the dominance of plasmon polaritons for absorption in sil-
ver films for relatively short wavelengths λ < 400 nm and

large-scale roughness with the root mean square (rms) am-
plitude δ and correlation length a exceeding 100 nm. These
findings were later supported by numerical calculations as
well [36]. However, for a weak roughness case (δ < 15 nm),
the experiment [35] reported a discrepancy between the ab-
sorptance A calculated as A = 1 − R, where R is the measured
total reflectance from the rough metal surface, and the ab-
sorptance A that is measured directly using photothermal
deflection spectroscopy [37]. Notably, no such discrepancy
was reported for large-scale roughness characterized by a
much stronger absorption.

The purpose of this paper is to develop a consistent per-
turbative approach to light absorption by weakly rough metal
surfaces characterized by Gaussian random profile function
h with rms amplitude δ and correlation length a. In contrast
to the light scattering problem, here the relevant lengthscale
that characterizes the incident light is the metal skin depth d ,
which, in the frequency region we consider, is much smaller
(by a factor of 20–50) than the light wavelength λ. Accord-
ingly, all three length scales δ, a, and d are assumed to be
much smaller than the wavelength λ, and so, the absorption
is governed by three dimensionless parameters δ/a, δ/d , and
a/d . By “weakly rough” surface we imply that the first two
parameters are small but the last one can be arbitrary, so
that the perturbation expansion we employ is carried up to
the order δ2 and the final expressions for the absorptance are
evaluated numerically. As we show in this paper, the interplay
between these parameters is highly nontrivial and, in partic-
ular, can lead to a nonmonotonic absorptance dependence on
the roughness amplitude δ reported in the experiment [35].
We also obtain analytic expressions for small-scale roughness
when the third parameter is small as well.

A serious limitation of the perturbative approach to such
systems is that a small variation of air-metal interface pro-
file function h results in abrupt and significant change in
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FIG. 1. Schematic view of the electromagnetic wave incident
normally to the rough air-metal interface. Dotted lines indicate the
lower boundary of the surface layer, separated by skin depth d from
the interface (rough or smooth), in which light is predominantly
absorbed.

the electric field distribution due to very large difference in
magnitude between the air and metal permittivities [38]. We
address this issue by extending the boundary conditions for
unperturbed fields to the actual surface profile, and show
that the accurate treatment of this problem significantly re-
duces the first-order absorptance corrections, which otherwise
are excessively large. Furthermore, we find that, for small-
scale roughness (a/d � 1), the main roughness-related effect
comes from increase in effective volume of the surface layer,
in which the incident light is predominantly absorbed, rather
than from light scattering from surface imperfections. In this
regime, the absorptance variation relative to smooth-surface
absorptance is estimated as �A ∝ δ2/a2, which can fluctu-
ate substantially between different samples characterized by
small δ but larger spread of a. We argue that such absorp-
tance fluctuations can appear as sample-to-sample variations
of the Drude scattering rate, reported in recent measure-
ments of the complex dielectric function [15], even though
they are not related to any electron scattering processes in
metals.

The paper is organized as follows. In Sec. II, we set out
our perturbation approach to the absorption by weakly rough
metal surfaces. In Sec. III, we calculate various contributions
to the absorptance and derive the asymptotic expressions for
the case of small-scale roughness. In Sec. IV, we discuss the
results of our numerical calculations for silver films, and in
Sec. V we present our concluding remarks.

II. PERTURBATION APPROACH TO LIGHT ABSORPTION
BY WEAKLY ROUGH SURFACES

We consider a monochromatic electric field polarized
along the y axis that is incident normally upon the metal
occupying infinite region z < h(y) (see Fig. 1). We consider
here the one-dimensional roughness case as it captures the
essential features of weakly rough metals [1], and assume
that h(y) is a Gaussian random field with zero average, i.e.,
〈h(y)〉 = 0, and correlation function

W (|y − y′|) = 〈h(y)h(y′)〉 = δ2e−(y−y′ )2/2a2
. (1)

Here, δ is the roughness rms amplitude and a is its correlation
length, both of which are assumed to be much smaller than
the incident light wavelength λ.

The fields above and below the air-metal interface are
determined by the Maxwell equations

∇ × E = ik0B, ∇2E − ∇(∇ · E) + k2
0ε(r, ω)E = 0, (2)

where k0 = ω/c is the wave vector in the air, ω is the wave
frequency, and the system dielectric permittivity ε(r, ω) has
the form

ε(r, ω) = �[z − h(y)] + ε(ω)�[h(y) − z]

≈ ε0(z, ω) + ε1(r, ω). (3)

Here,

ε0(z, ω) =
{

1, for z > 0
ε(ω), for z < 0 (4)

is the permittivity for a smooth metal-air interface which, in
the following, we refer to as the reference system,

ε1(r, ω) = [ε(ω) − 1]δ(z)h(y) (5)

is the perturbation due to small variations of h, δ(z) is the
Dirac delta function, and ε(ω) = ε′(ω) + iε′′(ω) is the metal
dielectric function.

We decompose the electric field as E = E0 + Es, where
E0 is the reference field and Es is the scattered field due to
surface roughness. These satisfy the equations (suppressing,
for brevity, the ω dependence)

∇2E0 − ∇(∇ · E0) + k2
0ε0(z)E0 = 0, (6)

and

∇2Es − ∇(∇ · Es) + k2
0ε(r)Es = −k2

0ε1(r)E0. (7)

The scattered fields can be obtained in a standard manner
using the dyadic Green’s functions defined as [32,40],[

k2
0ε0(z) − ∇∇ + ∇2 + k2

0ε1(r)
]
D(r, r′) = 4πδ(r − r′) (8)

where perturbation expansion over ε1 is implied.
The reference field E0 can be chosen as the sum of inci-

dent and reflected plane waves in the air and a transmitted
plane wave in the metal for a system with a smooth air-metal
interface. However, this is not a good choice for the lowest
order of perturbation expansion because, due to the large
value of metal permittivity for optical and infrared frequen-
cies (|ε′ | 	 1), even a small change in the air-metal interface
position leads to abrupt and significant field variations [38]. To
avoid this issue, in the case of weak roughness, we can modify
the reference field by extending it up to the actual interface:

Ẽ0y(r) =
{

e−ik0z − reik0z, for z > h(y),
teik−z, for z < h(y),

(9)

where k− = −k0
√

ε (the negative sign ensures that the trans-
mitted wave decays into metal). Note that Ẽ0x = Ẽ0z = 0 for
our choice of polarization. Here, the incident wave amplitude
Einc is taken to be unity, while r and t are the standard
Fresnel coefficients of reflection and transmission for normal
incidence:

r =
√

ε − 1√
ε + 1

, t = 2√
ε + 1

. (10)

Accordingly, the field decomposition now has the form
E = Ẽ0 + Ẽs, where the modified scattered field is expressed
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through the dyadic Green’s function D(r, r′) as

Ẽs(r) = − k2
0

4π

∫
dr′D(r, r′)Ẽ0(r′)ε̃1(r′). (11)

Here, ε̃1(r) = (ε − 1)δ[z − h(y)]h(y) is the modified pertur-
bation obtained from Eq. (5) by the replacement z → z − h(y)
in the δ function in order to make it consistent with the
extended boundary conditions (9). Note that, while ε̃1(r) and
ε1(r) coincide in the first order, the accurate choice of refer-
ence field leads to a significant reduction of excessively large
first-order correction to the absorptance, as we show later in
this paper.

For a monochromatic wave with frequency ω, the power
absorbed in a metal is given by [39]

Q = ω

8π
ε′′

∫
dV |E|2, (12)

where integration is carried out over the metal volume. The
absorptance A is obtained by normalizing Q by the incident
energy flux Qinc = c|Einc|2S0/8π , where S0 = LxLy is the nor-
malization area. Using the above field decomposition, the
absorptance averaged over the roughness configurations takes
the form

A =
〈
ε′′k0

S0

∫
dV[|Ẽ0|2 + 2Re(Ẽ∗

0 · Ẽs) + |Ẽs|2]

〉
. (13)

Below we evaluate all contributions to Eq. (13) perturbatively,
i.e., up to the order δ2. Specifically, we assume that the di-
mensionless parameters δ/λ, δ/d , and δ/a are small, but no
restriction is imposed on the parameter a/d in the general
expressions derived in the next section. In addition, we present
below the analytical expressions in the asymptotic regime
a/d � 1, which are valid for the metal films with small-scale
roughness.

III. CALCULATION OF THE ABSORPTANCE

A. Reference field contribution

We start with the first term in Eq. (13) describing the
reference field contribution:

Ar = ε′′k0

S0

〈∫
dV |Ẽ0|2

〉
. (14)

The integration over the metal volume can be decomposed as∫
dV = ∫

dz
∫

dS, where dS = dxdy
√

1 + h′2 is the differ-
ential area of the surface with a z = h(y) profile. Taking into
account the extended boundary conditions Eq. (9) and using
Eq. (10), we have

Ar = ε′′k0|t |2
S0

〈∫
dxdy

√
1 + h′2(y)

∫ h

−∞
dze−2κk0z

〉
, (15)

where we adopted the standard notation
√

ε = n + iκ for the
complex refraction index. Integrating over z and expanding
the integrand over h and h′, we obtain

Ar = A0

S0

∫
dxdy

[
1 + 〈h′2(y)〉

2
+ 2〈h2(y)〉

d2

]
, (16)

where A0 = ε′′|t |2/2κ is the absorptance for a smooth metal
surface and d = (k0κ )−1 is skin depth in the metal. Averaging

over roughness configurations as 〈h2(y)〉 = δ2 and 〈h′2(y)〉 =
δ2/a2, we finally obtain

Ar = A0

(
1 + δ2

2a2
+ 2δ2

d2

)
. (17)

In the case of small-scale roughness, a � d , the last term is
small, and the absorptance variations are determined solely by
the roughness parameters: �Ar/A0 ≈ δ2/2a2. This contribu-
tion originates from roughness-induced increase in effective
volume of the region, in which the incident light is predom-
inantly absorbed. This region can be visualized as a surface
layer of thickness d that is measured from the actual surface
profile, as opposed to a layer of the same thickness but with
smooth boundaries (see Fig. 1).

B. Interference term contribution

Consider now the second term in Eq. (13) describing inter-
ference between the reference and scattered fields:

Ai = ε′′k0

S0
2Re

〈∫
dV Ẽ∗

0 · Ẽs

〉
, (18)

where Ẽs is given by Eq. (11). Up to the order h2, we can
present the scattered field as a sum of two terms, Ẽs = Ẽ(1)

s +
Ẽ(2)

s , corresponding, respectively, to the lowest- and first-order
perturbation expansion of the Green’s function D in Eq. (11).
Accordingly, this contribution to the absorptance can also be
split as Ai = Ai1 + Ai2.

We start with the first contribution obtained by inserting
into Eq. (11) the unperturbed Green’s function D0 obtained
by setting ε1 = 0 in Eq. (8). One might be tempted to think
that since Ẽ(1)

s ∼ h, the corresponding absorptance Ai1 would
vanish after performing averaging over the roughness config-
urations. However, as we show below, the extended boundary
conditions Eq. (9) for the modified reference field Ẽ0 lead
to a negative contribution to the absorptance which balances
out the excessive absorption increase due to scattered field
penetration into the metal.

To evaluate the average C1 = 〈∫ dV Ẽ∗
0 · Ẽ(1)

s 〉, we intro-
duce two-dimensional Fourier transform of the unperturbed
Green’s function as

D0(ρ − ρ′, z, z′) =
∫

dq
(2π )2

d(q, z, z′)eiq·(ρ−ρ′ ), (19)

where ρ is a two-dimensional position vector in the xy plane
and d(q, z, z′) is a matrix function in coordinate space (see
below). Employing this expression in Eq. (11), we present C1

in the form

C1 = −k2
0 |t |2
4π

(ε − 1)
∫

dρdρ′
∫

dq
(2π )2

eiq·(ρ−ρ′ )

×
〈∫ h

−∞
dzdyy[q, z, h(y′)]e−ik∗

−zh(y′)
〉
. (20)

The matrix function d(q, z, z′) can be presented as [32]
d(q, z, z′) = S−1g(q, z, z′)S, where the matrix function
g(q, z, z′) is tabulated in [32,40], while 3 × 3 matrix S has the
following elements: Sxx = Syy = qx/q, Szz = 1, Sxy = −Syx =
qy/q, and Sxz = Szx = Syz = Szy = 0. For normal incidence
and one-dimensional roughness profile function h(y), the ρ
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integration in Eq. (20) sets qx = 0, and we obtain

dyy(q, z, z′) = −2π ik1

εk2
0

[
k1 + εk

k1 − εk
eik1(z+z′ ) − e−ik1|z−z′ |

]
, (21)

where the points z and z′ are assumed inside the metal, and

k(q) =
{(

k2
0 − q2

)1/2
, q < ω/c

i
(
q2 − k2

0

)1/2
, q > ω/c

,

k1(q) = −(
εk2

0 − q2
)1/2

. (22)

Inserting Eq. (21) into Eq. (20) and integrating over z, we
obtain

C1 = −|t |2
2ε

(ε − 1)
∫

dρ

∫
dq

2π

〈
k1

k∗− − k1
ei(k1−k∗

− )h(y)

×
∫

dy′
[

k1 + εk

k1 − εk
eik1h(y′ ) − e−ik1h(y′ )

]
eiq(y−y′ )h(y′)

〉
,

(23)

where q ≡ qy. Expanding Eq. (23) over h, performing av-
eraging over roughness configurations, and then calculating
the integrals, the result can be presented in the form
C1 = C(1)

1 + C(2)
1 , where

C(1)
1 = −|t |2(ε − 1)S0

∫
dq

2π

k(q)k1(q)W (q)

i[k1(q) − εk(q)]
(24)

and

C(2)
1 = − i|t |2S0

ε

(ε − 1)k3
1 (q = 0)W (y = 0)

[k∗− − k1(0)][k1(0) − εk(0)]
. (25)

Here, W (q) = δ2a
√

2πe−q2a2/2 is the Fourier transform of
correlation function W (y) and W (y = 0) = δ2. Note that C(1)

1
originates from the averaging of two profile functions at dif-
ferent points, W (y) = 〈h(y)h(y′)〉, when the first exponent
in Eq. (23) is expanded up to the first order in h(y), while
C(2)

1 involves averaging of two profile functions at coinciding
points, W (y = 0) = 〈h(y)h(y)〉, when the exponents in the
square brackets are expanded.

Let us first estimate C(2)
1 . Substituting k(0) and k1(0) from

Eq. (22) into Eq. (25), we find

C(2)
1 = −|t |2δ2k0

2κ
S0

ε − 1√
ε + 1

. (26)

It is easy to check that, in the optical and infrared spectral
domain (i.e., |ε′| 	 1), the corresponding absorptance contri-
bution is A(2)

i1 = (ε′′k0/S0)2ReC(2)
1 ≈ 2A0δ

2k2
0 , and, hence, it

is suppressed by the small factor |ε′|−1 as compared to the last
term in Eq. (17). Therefore, this contribution can be neglected.

Turning to C(1)
1 , we introduce the dimensionless variable

x = qa in the integral and write

C(1)
1 = −2|t |2δ2

a
S0(ε − 1)I (β ), (27)

where

I (β ) =
∫ ∞

0

dx

i
√

2π

√
(β2 − x2)(εβ2 − x2)e−x2/2√
εβ2 − x2 + ε

√
β2 − x2

(28)

and β = k0a. In this way, we obtain the first interference
contribution to the absorptance as

Ai1 = 2ε′′k0

S0
ReC1 = −A0

8δ2

da
Re[(ε − 1)I (β )]. (29)

In the case of small-scale roughness a � d , the integral can be
evaluated at β = 0, yielding I (0) = 1/

√
2π (ε + 1). Finally,

in the frequency domain |ε′| 	 1, we obtain the asymptotic
expression

Ai1 ≈ −A0
8δ2

√
2πda

, (30)

which has a negative sign.
Turning now to the second interference contribution Ai2,

we expand the Green’s function D, defined by Eq. (8), to the
first order in h, and present the second-order scattered field in
Eq. (11) as

Ẽ(2)
s =

(
k2

0

4π

)2 ∫
dr′dr′′D0(r, r′)ε1(r′)

× D0(r′, r′′)ε1(r′′)E0(r′′), (31)

where, in the order h2, the modified reference field and pertur-
bation can be replaced by the original ones. Evaluating Ai2 in
a similar manner, we obtain

Ai2 = A0
4δ2

ad
Re

[
(ε − 1)2I (β )

iκ (
√

ε + 1)

]
. (32)

For small-scale roughness case a � d , we can use I (0) =
1/

√
2π (ε + 1), and then, for |ε′| 	 1, we obtain the asymp-

totic expression for this contribution as

Ai2 ≈ A0
4δ2

√
2πda

. (33)

Finally, the full interference contribution Ai = Ai1 + Ai2 is
still negative and, for small-scale roughness, has the asymp-
totic form

Ai ≈ −A0
4δ2

√
2πda

. (34)

C. Scattering term contribution

Consider now the scattered field contribution to the absorp-
tance which we present in the form

As = ε′′k0

S0

〈∫
dV

(|Ẽsx|2 + |Ẽsy|2 + |Ẽsz|2
)〉

. (35)

After evaluating each term in the way outlined in the previous
section, the result can be presented as

As = A0
2δ2

ad
|ε − 1|2[Ix(β ) + Iy(β ) + Iz(β )], (36)

where

Ix(β ) =
∫ ∞

0

dx√
2π

|β2 − x2|
|Im

√
εβ2 − x2|

× x2e−x2/2

|
√

εβ2 − x2 + ε
√

β2 − x2|2 , (37)
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Iy(β ) =
∫ ∞

0

dx√
2π

|β2 − x2|
|Im

√
εβ2 − x2|

× |εβ2 − x2|e−x2/2

|
√

εβ2 − x2 + ε
√

β2 − x2|2 , (38)

and Iz(β ) = Ix(β ). In the small-scale roughness case a � d ,
using Ix(0) = Iy(0) = Iz(0) = 1/

√
2π |ε + 1|2, we obtain the

asymptotic (|ε′| 	 1) expression

As ≈ A0
6δ2

√
2πda

. (39)

Finally, the full absorptance is obtained by summing up all
contributions: A = Ar + Ai + As. The small-scale roughness
asymptotic expression is obtained by collecting the corre-
sponding terms from Eqs. (17), (34), and (39):

A ≈ A0

(
1 + δ2

2a2
+ 2δ2

√
2πda

+ 2δ2

d2

)
. (40)

Concluding this section, we note that the accurate choice of
reference field (9) ensures the small magnitude of first-order
correction to the absorptance in the weak roughness case.
Specifically, had we chosen the standard, rather than extended,
boundary conditions for reference fields, the third term in
Eq. (40) would have increased fivefold, signaling a poor
choice of basis set for the perturbation expansion. Although
the overall absorptance increases, relative to smooth-surface
absorptance, by the amount ∝ δ2, its precise behavior is de-
termined by the interplay between two scales—the skin depth
d and correlation length a, as we discuss in the next section.
Finally, note that general expressions Eqs. (17), (29), (32),
and (36), used in the numerical calculations below, are accu-
rate up to the order δ2 with no other conditions, and therefore
can be used for dielectric materials as well. However, the
analytical expression Eq. (40), obtained in the limit a � d ,
is only accurate for metals in the frequency region |ε′| 	 1.

IV. NUMERICAL RESULTS AND DISCUSSION

Below we present the results of numerical calculations of
absorptance for weakly rough opaque silver films. The rough-
ness parameters were chosen in the range δ � d and a � d ,
while the experimental dielectric function of silver was used
in all calculations [24,41]. The wavelength interval is chosen
from λ = 600 to 1500 nm in order to avoid the influence of
surface plasmon (λ ≈ 350 nm in silver) and of interband tran-
sitions, both of which lead to enhanced absorption not directly
related to roughness. In this interval, the skin depth in silver
is d ≈ 25 nm and weakly depends on the wavelength [15].
All numerical calculations were carried out using the full
expression for absorptance A, while the small-scale roughness
asymptotic expression (40) is used to discuss qualitative fea-
tures of obtained results.

In Fig. 2, we show the calculated absorptance for several
values of δ and a at a fixed ratio δ/a = 1/3. In this case,
the second term in Eq. (40) is unchanged for all curves. The
overall scale of calculated absorptance is consistent with the
results reported in the experiment [35], indicating that, in this
frequency range, about 99% of incident light is reflected back.
We note that for the lowest curve (a = 6 nm), the absorptance

FIG. 2. Calculated absorptance at several values of roughness
amplitude δ plotted against incident light wavelength for fixed ratio
δ/a = 1/3.

is nearly constant for λ > 1000 nm, consistent with weak
frequency dependence of smooth-surface absorptance in the
Drude regime: A0 ∼ γ /ωp, where γ and ωp are the Drude
scattering rate and plasma frequency, respectively (see below).
At the same time, the curves calculated for larger values of
correlation length a exhibit enhanced absorptance at shorter
wavelength due to roughness-assisted excitation surface plas-
mon polaritons [1].

In Fig. 3, we show the calculated absorptance and re-
flectance for several values of δ and different ratios δ/a. A
striking feature in the long-wavelength spectral region, where
the absorptance variations are primarily dominated by rough-
ness effects, is a larger absorptance for roughness amplitude
δ = 2 nm as compared to that for δ = 5 nm but smaller ratio
δ/a [see Fig. 3(a)]. This surprising behavior can be under-
stood, using the small-scale roughness asymptotics (40), in
terms of competition between the second and third terms: the
absorptance for parameter ratios δ/a = 0.5 and δ/d = 0.08
(solid curve) is larger than that for δ/a = 0.2 and δ/d = 0.2
(dashed curve) even though, in the latter case, the roughness
amplitude δ is greater. At the same time, for shorter wave-
lengths, the absorptance curve for a = 25 nm increases faster,
as discussed above, and overtakes the a = 4 nm absorptance
curve at λ ≈ 870 nm. Note that even for the ratio δ/a = 0.5,
all roughness-induced corrections in Eq. (40) are still small. A
similar reversal of order takes place for calculated reflectance
R = 1 − A, as shown in Fig. 3(b). Such a reversal of order was
reported in the absorption experiment [35], albeit for larger
roughness.

The above results indicate that, from the absorption per-
spective, the relevant parameter characterizing small-scale
roughness is the ratio δ/a rather than the magnitude of δ

relative to skin depth d or wavelength λ. As discussed in
Sec. III A, this parameter characterizes increase in effective
volume of the surface layer, in which the incident light is
predominantly absorbed, but it does not appear, to the best
of our knowledge, in direct calculations of the reflection coef-
ficient for rough metal surfaces [8]. Note that the reflectance
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FIG. 3. Calculated absorptance (a) and reflectance (b) at sev-
eral values of roughness amplitude δ plotted against incident light
wavelength for different ratios δ/a. In the long-wavelength domain,
the absorptance curves undergo reversal of order implying a larger
absorption for smaller δ.

evaluated as R = 1 − A, shown in Fig. 3, represents the total
reflection, including the nonspecular one, which is difficult
to evaluate accurately for the weak roughness case. At the
same time, in the absorptance calculation, the parameter δ/a
appears very naturally and, in fact, provides the dominant
contribution for small-scale roughness. We stress that this
contribution describes a “geometric” effect, as illustrated in
Fig. 1, and, therefore, it persists for any wavelength. To illus-
trate this point, in Fig. 4 we plot the absorptance dependence
on correlation length a for a small roughness amplitude δ = 2
nm and two wavelength values λ = 800 and 1200 nm. For
comparison, we also plot, by dotted lines, the corresponding
asymptotics (40) which show reasonably good agreements,
especially for small a. While for a > 10 nm (δ/a < 0.2) the
absorptance changes only weakly, for smaller a it sharply rises
in both cases, increasing by about 50% for a ∼ δ.

The high sensitivity of the absorptance A to roughness
parameters implies that its relative variation �A/A0 can

FIG. 4. Calculated absorptance at a small value of roughness am-
plitude δ = 2 nm plotted against the correlation length a for incident
light wavelengths λ = 800 and 1200 nm. Dotted lines represent the
small-scale roughness asymptotics calculated using Eq. (40).

fluctuate substantially between samples characterized by sim-
ilar roughness amplitudes δ but larger variations of the
correlation length a. In fact, such fluctuations can appear as
variations of the Drude scattering rate γ , which were re-
ported in high-precision ellipsometry measurements of the
silver dielectric function [15]. Indeed, in the Drude regime,
we have ε′′ ≈ ω2

pγ /ω3, κ ≈ ωp/ω, and |t |2 ≈ 4/κ2, so that
the smooth-surface absorptance can be estimated as A0 =
ε′′|t |2/2κ ≈ 2γ /ωp. In this regime, we can present the rough-
surface absorptance as A = 2γeff/ωp, where the effective
scattering rate γeff has the form γeff = γ (1 + �A/A0). We
then find that the apparent fluctuations of Drude scattering rate
�γ = γeff − γ are simply given by those of absorptance, i.e.,

�γ

γ
= �A

A0
≈ δ2

2a2
+ 2δ2

√
2πda

+ 2δ2

d2
, (41)

where, in the Drude regime, we used the asymptotic expres-
sion (40). In Fig. 5, we plot the wavelength dependence of
�A/A0 calculated for small roughness amplitude δ = 2 nm
and several values of a. In the long-wavelength spectral region
λ > 1000 nm, the absorptance variations are nearly constant
and could indeed appear as fluctuations of γ , even though
they are not caused by any electron scattering processes in
metals. For the parameters chosen, such fluctuations can reach
up to 10% depending on the ratio δ/a, which is comparable
to the reported experimental values [15]. Note finally that
the increase of �A/A0 for shorter wavelengths, which was
discussed above, here appears as “non-Drude” behavior of γeff

that can be more or less pronounced for samples with differ-
ent roughness parameters, also consistent with the reported
behavior of ε′′ in this frequency domain [15].

V. CONCLUSIONS

In summary, we developed a perturbative approach for
absorption of light in weakly rough opaque metal films char-
acterized by a Gaussian surface profile with rms amplitude
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FIG. 5. Calculated absorptance fluctuations at a small value of
roughness amplitude δ = 2 nm shown for several values of correla-
tion length a.

δ and correlation length a that are smaller than skin depth
d in the metal. We have shown that, in such systems, the
accurate choice of boundary conditions for unperturbed fields
allows one to obtain the first-order roughness corrections
to the absorptance A which otherwise would be excessively
large. We demonstrated that roughness-related absorptance
variations �A are determined by the interplay between a
and d which, in particular, can result in a larger absorp-
tion for smaller roughness amplitudes. We found that, for
a small-scale roughness (a � d), the dominant contribution
to �A comes from roughness-related increase in effective
volume of the surface layer, in which the incident light is pre-
dominantly absorbed, rather than from light scattering from
surface imperfections. Accordingly, �A/A0 ∼ δ2/a2 is nearly

independent of the incident light wavelength and can fluctu-
ate substantially between different samples characterized by
small rms amplitudes δ but larger spread in a. We argued that
such fluctuations, while not related to any electron scattering
processes, can appear as sample-to-sample variations of the
Drude scattering rate which could explain uncertainties in the
imaginary part of the metal dielectric function reported in
recent high-precision ellipsometry measurements [15].

Although we considered here the simplest case of nor-
mal incidence and one-dimensional roughness profile, it is
straightforward to extend our approach to any incidence angle
and polarization or to a two-dimensional roughness profile.
The different incidence angles would mainly affect the Fres-
nel coefficient t that defines the smooth-surface absorptance
A0, while for κ 	 1, the skin depth d in the metal changes
only weakly. For two-dimensional roughness, characterized
by surface profile function h(x, y), the effective volume of the
surface layer, in which the incident light is predominantly ab-
sorbed, increases relative to that in the one-dimensional case.
In fact, the first term in Eq. (40) now doubles in magnitude,
which implies more pronounced sample-to-sample apparent
fluctuations of the Drude scattering rates [15]. To the best of
our knowledge, such fluctuations have not been previously
described in direct calculations of the reflectance coefficient
from rough metal surfaces, but here they emerge naturally
when evaluating the absorptance. Note, finally, that the ap-
proach developed in this paper can also be used for other
roughness-related problems [42,43], as well as for describing
absorption in lossy dielectric materials [44].
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