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Presently, the unusual quantum phenomena recently discovered in intrinsic antiferromagnetic topological
insulators are far from being fully understood. Motivated by recent controversial ARPES results on the MnBi2Te4

family compounds, we theoretically study the underlying physics of spectral properties of such materials.
By using a continual model, we address the issue of the topological surface fermions which simultaneously
experience an exchange field of a regular antiferromagnetic alignment and a surface electrostatic potential. The
emergent net exchange field acting on the surface state is shown to depend on the surface potential strength,
of which variation could be associated with concentration fluctuations of antisite and other defects that are
inevitably present in MnBi2Te4 material. In this scenario, we discuss the possible microscopic mechanism for
change of both size and sign of the surface exchange gap from sample to sample. Furthermore, we provide a
natural explanation for the appearance of a finite density of states inside the exchange gap in the case of strong
fluctuations in the surface potential. Thus, our results allow for a unified interpretation of various spectroscopic
measurements on intrinsic antiferromagnetic topological insulators.
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I. INTRODUCTION

In the past few years, an interplay between topological
band structure and magnetic order has become one of the
priorities in contemporary condensed matter physics, see, e.g.,
Ref. [1] and references therein. Such an interplay can give
rise to outstanding phenomena including quantum anomalous
Hall effect (QAHE) [2] and an axion insulator state [3–5].
In Cr- and/or V-doped films of three-dimensional (3D) topo-
logical insulator (TI) (Bi,Sb)2Te3, the QAHE has taken place
at very low temperatures below T ≈ 30 mK due to nonuni-
form distribution of dopants and, hence, magnetization [2].
The TI heterostructure engineering, in which magnetic Cr
ions are doped into selective quintuple layers (QLs) of the
(Bi,Sb)2Te3 film, has enabled us to elevate the temperature
of quantized Hall conductivity up to ∼2 K [6–8]. Besides
the magnetic doping, a magnetic proximity effect [9] and
a magnetic extension of the TI surface [10] were proposed
to achieve an efficient time-reversal symmetry breaking. At
the time, Mong et al. [11] proposed the existence of 3D TIs
with an intrinsic antiferromagnetic (AFM) order. The AFM TI
possesses both broken time-reversal � and translational T1/2

symmetries but preserves the combination S = �T1/2 [11].
The recent identification of van der Waals (vdW) compound
MnBi2Te4 [12–15] and its derivatives MnBi2Te4(Bi2Te3)n

[16,17] as belonging to 3D TIs with out-of-plane AFM order
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of the A type has sparked off a fresh wave of explorations in
the quantum materials area. In MnBi2Te4 flakes with an odd
number of septuple layers (SLs), a spontaneous (i.e., under
zero external magnetic field) QAHE was observed at T =
1.4 K, and a robust transverse conductivity plateau of ∼=e2/h
was obtained at T = 6.5 K upon increasing perpendicular
external magnetic field up to moderate value 7.6 Tesla [14]. In
MnBi2Te4 samples with an even number of SLs, a magnetic-
field-driven topological phase transition between an axion
insulator state and QAHE was found [15]. Ge et al. reported
the experimental observation in MnBi2Te4 eight-SL films of
a nearly quantized Hall resistance plateau (without Landau
levels) surviving above the Néel temperature up to 45 K [18].
The underlying microscopic mechanisms behind the uncon-
ventional properties of the MnBi2Te4 family materials are still
not well understood and remain a debated subject [19,20].

The topologically protected surface states are the ones
responsible for providing quantum transport in magnetic 3D
TIs [21–25]. The spectral properties of the surface states
in the MnBi2Te4 family, despite the significant experimen-
tal and theoretical advances, are still a debated matter. In
theory, the combined S symmetry is broken at the ferromag-
netic (FM) surface of AFM TI, therefore an exchange gap
arises in the Dirac-cone-like dispersion of the surface state
[11]. The first-principles calculations for the ideal (0001)
surface of the AFM TI MnBi2Te4 predict the sizable gap,
which may attain to 88 meV [12,26,27]. Indeed, a number of
angle-resolved photoemission spectroscopy (ARPES) studies
of the MnBi2Te4 single crystals below the Néel temperature
TN ≈ 24 K confirmed the predicted gap opening in the Dirac
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electron spectrum at the (0001) surface, estimated at tens
of meVs [12,28–31]. The photoemission measurements, con-
ducted out for different MnBi2Te4 samples grown by two
chemist groups showed that the gap size is ranging from
relatively small ∼15 meV to large size ∼65 meV [32]. Re-
markably, using the laser-ARPES technique, Shikin et al.
observed both a large energy gap ∼60 meV and a reduced one
�20 meV for distinct areas within the same (0001) surface
[33]. However, some other groups after having carried out
the high-resolution ARPES investigations have arrived at an
alternative conclusion related to the behavior of the surface
states in MnBi2Te4 featuring a gapless character [34–39].

According to Refs. [34,36,37,40,41], the reason for the
vanishing gap in the ARPES surface spectrum of AFM TI
MnBi2Te4 lies in a reorientation of the surface Mn mag-
netic moments from the out-of-plane direction to the basic
plane or a strong suppression of the magnetic ordering in the
uppermost SL. However, having conducted static and time-
resolved ARPES with full polarization control of MnBi2Te4,
Nevola et al. [38] reached the conclusion that the magnetic
order is retained at the (0001) surface. The magnetic force
microscopy study [42] also provided evidence that the robust
uniaxial A-type order persists to the top surface layers in
MnBi2Te4. The data obtained from x-ray magnetic circular
dichroism measurements [12,33] do not point to the mag-
netization change at the MnBi2Te4 surface either. Thus, the
assumptions on the possible surface magnetization relaxation
[34,36] are inconsistent with the experimental facts for the
prototypical intrinsic AFM TI [12,33,38,42].

In searching for the nature of the driving force for the
gap modulation in the surface state spectrum in MnBi2Te4,
attention has been drawn to the factors which are not di-
rectly linked solely to the magnetic order. For example, the
scanning tunneling microscopy and x-ray diffraction exper-
iments [30,43,44] showed that native antisite cation defects
BiMn (Bi at Mn site) and MnBi (Mn at the Bi site) as well
as BiTe antisites (Bi atoms at the Te sites) and Te vacancies
in enough high concentrations are always presented in the
MnBi2Te4 crystal samples. The redistribution of the charge
density near the (0001) surface caused by random spatial
fluctuations of the antisite defects in MnBi2Te4 results in
local density of states near the Fermi level, as observed by
scanning tunneling spectroscopy [43]. The scanning tunneling
microscopy and spectroscopy revealed that MnBi2Te4 usually
contains a few percent of MnBi and BiMn antisite defects,
while the average density of BiTe defects is several tenths of
a percent [30,43–45], although Ref. [46] exhibits that, in thin
film MnBi2Te4, the defective areas with high local concen-
trations of MnBi (∼9%) are adjacent to defect-free areas. It
should also be borne in mind that the as-grown bulk MnBi2Te4

samples are usually heavily degenerate n-type semiconduc-
tors, with the Fermi level located inside the conduction band
[12,34,36,43,47]. The BiMn antisite is the most common n-
type dopant [48].

Apart from the point defects, the MnBi2Te4 surface can
contain other structural imperfections such as unavoidable
steps, deformations, or relaxations. Moreover, the scan-
ning transmission electron microscopy in few-SL exfoliated
MnBi2Te4 samples [49] observed a surface disintegration,
where the topmost SL stratifies into a Mn-doped Bi2Te3 QL
and a MnxBiyTe double layer.

The density functional theory (DFT) studies of the surface
spectra of AFM TIs recently done in Refs. [32,33,44] took
into account a deviation of the MnBi2Te4 crystal structure
from the ideal one that is brought on by the presence of the
above-mentioned intrinsic defects. As these DFT calculations
demonstrate, the gap size of the topological surface states is
determined by the redistribution of the electron density near
the (0001) surface, albeit the source and character of the re-
distribution may be different. In Ref. [33], the Mn-Bi antisite
defects and mechanical cleavage distortions are suggested to
tend to cause interblock vdW spacing expansion, which is
accompanied by a relocation of the surface state toward the
second SL block; as a consequence, the gap is reduced pro-
portionally to the net exchange field (NEF) felt by the surface
electron. The authors of Ref. [32] introduced in their DFT
calculations an uncompensated surface charge, which can re-
flect the presence of the Mn-Bi antisite defects in the surface
region. They described the structure of the surface state in
both real and momentum space as a function of magnitude and
sign of the surface charge. The simulations [44] showed the
gap can be strongly reduced because the probability density
of the topological surface state is predominantly localized
near the Bi layers that contain the MnBi magnetic moments
oppositely directed with respect to the Mn layer moments.

In this paper, we propose an analytical approach that
provides an explanation for the ambiguous behavior of the
topological surface states in intrinsic AFM TIs like the pro-
totypical compound MnBi2Te4. We use a rather simple model
based on the incorporation of an effective surface potential
(ESP), which is a driving force for the surface electron struc-
ture modification. Our scenario makes it possible to reproduce
both gapped and gapless surface spectra depending on the
ESP character under the assumption that the AFM order is
persistent near the surface. Moreover, our theoretical formal-
ism highlights the role of electrostatic inhomogeneity, which
can be linked to random spatial distribution of the anti-site
defects among the Mn and Bi sub-lattices and other defects, in
understanding the gapless surface states of the intrinsic AFM
TIs.

The rest of the paper is organized as follows. In Sec. II,
we formulate the conceptional idea and design a theoretical
model for the surface states of AFM TI, which are driven by
ESP. In Sec. III, we show analytically how the size and sign
of the exchange gap in the surface fermions dispersion are
determined by the spatially uniform ESP strength. Section IV
is dedicated to an estimation of the surface density of states
under a weak electrostatic disorder. Section V deals with the
bound in-gap states occurring at domain walls of exchange
fields that are generated by inhomogeneous ESP. In Sec. VI,
we analyze the averaged spectral properties inherent to the
AFM TI surface subjected to strong electrostatic disorder.
Finally, in Sec. VII, we discuss our results in light of the
ARPES experimental data and draw conclusions.

II. CONTINUAL MODEL OF THE TOPOLOGICAL
SURFACE STATES IN INTRINSIC AFM TI

The ternary compounds of the MnBi2Te4 family with gen-
eral chemical formula MPn2Ch4, where Pn = (Sb, Bi) and
Ch = (Se, Te), crystallize in a tetradymite-type crystal
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structure built of the SL blocks stacked along the ez direction
and linked to each other through the weak vdW forces. Every
such SL block can be viewed as a sequence of covalently
bonded atomic layers Ch1 − Pn1 − Ch2 − M − Ch3 − Pn2 −
Ch4, in which a central layer consists of 3d transition-metal
atoms M = (Mn, V, Cr). The topological electron properties
of MPn2Ch4 are mainly dominated by four states around the
Fermi level: the bonding states composed of the pz orbitals
of atoms in the cation layers Pn1 and Pn2, |Pn+ ↑ (↓)〉, and
the antibonding states composed of the pz orbitals of atoms
in the chalcogen layers Ch1 and Ch4, |Ch− ↑ (↓)〉, where
indices +/− and ↑ / ↓ denote the parity and spin projec-
tion onto the quantization axis ez, respectively [27]. These
low-energy states form the minimal basis u� = {|Pn+↑〉,
|Ch−↑〉, |Pn+ ↓〉, |Ch− ↓〉} suitable for the construction of
the 3D k · p Hamiltonian of the system near the � point
of the Brillouin zone as an expansion in the powers of the
momentum k = (kx, ky, kz ):

HT (k) = (� − Bk2)τz ⊗ σ0 + Aτx ⊗ (σ · k). (1)

Here 2� is an energy band gap at k = 0, B describes a band
curvature, A is a matrix element of the velocity operator, σα

and τβ (α, β = 0, x, y, z) denote the Pauli matrices in the spin
and orbital space, respectively, and k = |k|. To simplify the
analysis, the Hamiltonian Eq. (1) is assumed to be is isotropic
in k and particle-hole symmetric. The condition �B > 0 re-
flects the inverted order in energy of the basis states around
k = 0 due to strong spin-orbit coupling, as in the MnBi2Te4

bulk. Note that HT (k) Eq. (1) is a conventional k · p Hamilto-
nian of a nonmagnetic 3D TI [27].

The 3d states of the M atoms are usually far away from the
energy of pz states and have a large exchange splitting of the
order of a few eV [26]. The magnetic moments localized at
these atoms are expected to align in parallel within single SL
block thanks to the M-Ch-M superexchange interaction medi-
ated by chalcogen ions in adjacent layers Ch2 and Ch3 [27].
The interaction between the magnetic moments of neighbor-
ing SLs being transmitted via the long atomic chain crossing
a vdW interval, M − Ch3 − Pn2 − Ch4||Ch1 − Pn1 − Ch2 −
M, is relatively weak. The above exchange interactions may
lead to the appearance of the long-rang magnetic order. For
example, in the bulk MnBi2Te4 below 25 K, there exists an
AFM phase of the A type with easy axis pointing along the ez

direction.
Taking into account that the topological band states are

mainly formed by the orbitals of atoms in the layers Ch1,
Pn1, Pn2, Ch4, while the orbitals of atoms in the layers Ch2,
M, Ch3 are responsible for the magnetic ordering, the system
can be viewed as a periodic AFM texture embedded into a
3D TI host. Therefore, the bulk Hamiltonian for a AFM TI
can be given just by adding perturbative exchange term Hex to
Eq. (1), which can be written down in the basis u� as Hex(z) =
diag{J1, J2,−J1,−J2}m f (z). In the following discussion, we
restrict ourselves to the case when the 3d-atom moments
are perpendicular to the layer plane, m = ezm. The effective
exchange integrals J1 and J2 are related to the states |Pn+ ↑
(↓)〉 and |Ch− ↑ (↓)〉, respectively; generally speaking, J1 �=
J2. The off-diagonal matrix elements in Hex are negligibly
small. In the ground state, the alternation of the magnetization

distribution m f (z) along the out-of-plane axis can be de-
scribed by the periodic function f (z) = f (A)(z) = f (A)(z +
2cn) (n = 0,±1,±2, . . .) and f (A)(z ± c) = − f (A)(z). In ad-
dition, we put the condition 1

c |
∫
〈SL〉 f (z)dz| = 1, where the

integration is performed over the SL block height c. The
magnetic texture of the MnBi2Te4-like material is sensitive
to an external field H. So, under relatively weak field H‖ez,
applied normal to the basal plane, it undergoes the spin-flop
transition to a fully polarized FM phase [12,45,50], then
one takes f (z) = f (F )(z) with f (F )(z) = f (F )(z + cn) (n =
0,±1,±2, . . .).

The surface properties of the intrinsic AFM TI are in the
focus of our paper. An electron density redistribution arises
near the boundary of a perfect semiconductor. In the real com-
pound MnBi2Te4, a spatially inhomogeneous electron density
is an unavoidable consequence of concentration fluctuations
of charged defects such as the antisites BiMn and MnBi in
a sample [30,43,44]. A similar situation might also be the
case for other compounds MPn2Ch4. As a result of cleavage,
the regions of uncompensated positive and/or negative charge
can occur at the emergent (0001) surface due to the Mn-Bi
intermixing (as well as the Te vacancies and other defects),
whereas the sample remains electrically neutral on average.
The long-range Coulomb interaction is implied to be included
in the consideration, thereat note that the screening effects
are different in the bulk and at the surface. The mentioned
factors result in perturbation of topmost layers of the truncated
crystal, thereby providing input into the random potential
VS (r) affecting the electronic structure at the AFM TI sur-
face. The electrostatic modification of the near-surface region
can phenomenologically be incorporated into the model via
the term HS = VS − VB, which is defined as the difference
between the surface potential VS and the bulk potential VB

expressed in the basis u� [51]. Thereafter, we refer to HS as
an ESP. We consider a semi-infinite slab of 3D material, such
as MnBi2Te4 (MPn2Ch4), occupying the region z > 0. The
material boundary located at z = 0 is suggested to be perfectly
flat and coincident with the (0001) surface terminated by the
layer Ch1. All in all, the full electron energy functional of the
semi-infinite 3D AFM TI reads

	 =
∫

z�0
dr�+(r)[HT (−i
) + Hex(z) + HS (r)]�(r), (2)

where �(r) is the spinor envelope function (EF), � =
(θ↑

1 , θ
↑
2 , θ

↓
1 , θ

↓
2 )t , the superscript t denotes the transpose op-

eration, r = (x, y, z).
We assume that ESP is confined near the surface at short

length ∼d . As long as the EF spatial variation in the direc-
tion ez is sufficiently slow on the scale d , one can adopt a
local approximation, HS (r) = U (x, y)dδ(z), for an analytic
calculation. Furthermore, we consider the antisite defects as
a major contributor to ESP and the contribution is of an elec-
trostatic nature. Therefore, the ESP matrix can be expressed
in the diagonal form: U = diag{U1,U2,U1,U2}. The compo-
nents U1,2(x, y) describe the EPS long-range lateral landscape
related to the concentration fluctuations of the antisite defects
along the surface plane (x, y) at the distances much longer that
the atomic spacing.
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III. HOMOGENEOUS ESP APPROXIMATION

The functional Eq. (2) determined about the � point allows
describing the low-energy long-wavelength properties of the
system near the surface. We begin by considering the effect of
the homogeneous ESP, when U (x, y) = const, on the surface
state of intrinsic AFM TI. In this case, the surface displays
translation symmetry, hence, the in-plane momentum κ =
(kx, ky) is a good quantum number. The variational procedure
for the energy functional (2) leads to the equations for EF in
the half-space z > 0:

[HT (κ,−i∂z ) + Hex(z) − IE ]�(κ, z) = 0, (3)[
δHT (κ,−i∂z )

δ(−i∂z )
− 2dU

]
�(κ, z)|z=0 = 0, (4)

where ∂z = ∂/∂z, I is a unit 4 × 4 matrix. We look for the
eigenstate of the boundary problem (3)-(4), for which EF
vanishes apart from the surface, �(κ, z → ∞) = 0, and the
eigenvalue lies within the bulk gap, |E (κ)| < �. The surface
perturbation HS does not affect the inverted bulk gap that
guaranties the surface state existence, however, the charac-
teristics of a such state can be significantly altered with the
varying boundary conditions. In our approach, the natural
boundary conditions Eq. (4), imposed on the EF at the surface,
contain ESP U [23,51,52]. Note that the application of the
open boundary condition with EF vanishing at the surface
cannot provide a simulation of either the electrostatic surface
effect or the magnetic proximity effect at an interface [25].

To solve the problem, we resort to the formalism [24,53]
that allows us to reduce the 3D model of the semi-infinite
AFM TI (2) to a two-dimensional (2D) effective Hamiltonian
H2D(κ). To this end, we in fact perform the perturbation proce-
dure in the small parameters (| J1,2m

�
|, |Aκ

�
|, Bκ2

�
)  1. In zeroth

approximation (at κ = 0 and Hex = 0), Eqs. (3) and (4) may
be solved exactly. Although we can determine the ESP matrix
in the most general case, without loss of generality, we focus
our discussion on a particular case U1 = −U2 = U , when the
solution acquires remarkably simple form. The straightfor-
ward calculations lead to the eigenvalue E0 = 0 and the spinor
EF �0(z) = (1, i, 1,−i)tθ0(z), where

θ0(z) = D[exp(−q1z) + γ exp(−q2z)], (5)

D is a normalization constant satisfying the condition
2

∫ ∞
0 dz θ2(z) = 1, γ =

√
λ−1−Ũ√
λ−1+Ũ

, Ũ = dq0
U
�

, hereafter the
superscript ∼ indicates dimensionless variables. It should be
noted that the penetration lengths of the topological surface
state Eq. (5) ∼q−1

1,2 are determined only by the parameters of

the 3D Hamiltonian Eq. (1): q1,2 = q0[
√

λ ± √
λ − 1], q0 =√

�
B , λ = A2

4B�
. Throughout the paper, for the sake of certainty,

the case λ > 1 is adopted. Equation (5) describes the effect of
ESP of arbitrary strength U on the EF spatial behavior. Indeed,
with increasing ESP strength, the EF profile Eq. (5) evolves
gradually from the sum of the exponents at U = 0 to the dif-
ference between the exponents as |Ũ | � 1. Correspondingly,
while at the weak ESP, |Ũ | � 1, EF is mostly localized near
the surface, it shifts toward the bulk as the strength |Ũ | grows.
In the case of the strong ESP, |Ũ | � 1, the gravity center of
the state is placed at the distance c ∼ q−1

0 from the surface.

To clearly demonstrate these trends, we depict in Fig. 1 the
profile of the square of normalized EF of the surface state for
several values Ũ .

One can construct the orthonormal basis from two spinors
�↑(z) = (1, i, 0, 0)tθ0(z) and �↓(z) = (0, 0, 1,−i)tθ0(z); in-
deed 〈�↑|�↑〉 = 〈�↓|�↓〉 = 1 and 〈�↑|�↓〉 = 0. Within the
frame of this basis, we derive the 2D effective Hamiltonian:

H2D(κ) = A(kxσy − kyσx ) + 
σz, (6)


 = J1 + J2

2
mQ = 
0Q, (7)

Q = 2
∫ ∞

0
dz θ2

0 (z) f (z). (8)

The lack of terms quadratic in momentum κ in Eq. (6)
is attributable to the condition U1 = −U2, under which the
particle-hole symmetry remains. Equations (6)–(8) demon-
strate that the spin degree of freedom of the surface fermion
experiences the NEF 
. The latter represents a direct mea-
sure of the uncompensated magnetization gathered over the
near-surface region of AFM TI in accordance with the dis-
tribution f (z) and proportional to the probability electron
density therein ∼θ2

0 (z) Eq. (5). The spectrum of the Hamil-
tonian Eq. (6) has a form of the gapped 2D Dirac cone
E (κ) = ±√

A2κ2 + 
2. Hence, we analytically find that the
exchange gapping of the surface state being proportional to
NEF is sensitive to the variation of ESP. It is an important
result of the paper.

Let us consider how the mechanism of the modification of
the surface electron structure works on the simple example,
where EF θ0(z) is given by Eq. (5), whereas the magnetization
distribution f (z) in the semi-infinite AFM TI is presented as

f (A)(z) = c
∞∑

n=0

(−1)nδ

[
z −

(
n + 1

2

)
c

]
(9)

for the A-type AFM order in the ground state and

f (F )(z) = c
∞∑

n=0

δ

[
z −

(
n + 1

2

)
c

]
(10)

for the metastable FM order realized under external magnetic
field, where δ(z) is the delta function. The magnetization in
Eqs. (9) and (10) is assumed to be concentrated in the middle
of each structural SL block. Correspondingly, we obtain the
explicit relations

Q(A) = cD2

[
1

cosh(q1c)
+ 2γ

cosh
( q1+q2

2 c
) + γ 2

cosh (q2c)

]
,

(11)

Q(F ) = cD2

[
1

sinh(q1c)
+ 2γ

sinh
( q1+q2

2 c
) + γ 2

sinh (q2c)

]
,

(12)

where D2 = [ 1
q1

+ 4γ

q1+q2
+ γ 2

q2
]−1. Thus, the integral depen-

dence of the Q factor Eq. (8) on the product θ2
0 (z) f (z) is

parameterized by means of the ESP strength U and the crystal
lattice period c. It is convenient to compare the period c with
the length at which the surface state penetrates into the bulk;
therefore, we use below the dimensionless period c̃ = cq0.
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FIG. 1. Evolution of the spatial profile of the envelope function square Eq. (5) versus the effective surface potential strength, z̃ = zq0. The
band structure parameter is λ = 2.

In the case of the A-type AFM order, the Q factor as a
function of c̃ decays exponentially at c̃ � 1 and vanishes as
c̃ → 0. The dependence Q(A)(Ũ , c̃) has a complicated charac-
ter in the region of relatively small and intermediate period
c, i.e., c̃ � 1. This is the most relevant in the context of
our consideration because the surface state can be extended
to the second-third SL [32,33,44]. In Fig. 2, the Q factor
Q(A)(Ũ , c̃) is plotted as a function of the strength Ũ at the
different periods c̃ for fixed value of the parameter λ. The
Q factor is saturated at the large strength |Ũ |. The saturation

FIG. 2. The image of the Q factor Q(A)(Ũ , c̃) is plotted
as a function of the ESP strength Ũ for different periods
c̃ (= 0.5; 1.0; 1.5; 2.0) and fixed value of the parameter λ = 2.

level Q(A)(|Ũ | → ∞) = Q(A)
∞ depends on c̃ and λ (see Fig. 3)

and attains a maximum at c̃ � 3. However, the Q factor Q(A)
∞

is negative in the region 0 < c̃ < c̃0, where the parameter c̃0

satisfies the equation sinh2(̃c
√

λ) = cosh(̃c
√

λ − 1). In turn,
Fig. 2 provides the small-scale picture for Q(A)(Ũ , c̃) with
much higher resolution at small or moderate values of |Ũ |.
As can be seen in Fig. 2, when c̃ > c̃0, the Q factor is reduced
considerably compared to the saturation level Q(A)

∞ near Ũ � 1
and can even make it negative. In contrast, when c̃ < c̃0, the
Q factor reaches a peak about Ũ ∼ 1.

FIG. 3. The dependence of the saturation level of the Q factor
Q(A)

∞ on period c̃ at different values λ (= 1.1; 2.0; 3.0).
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FIG. 4. The topological diagram for the AFM TI surface in the
terms of the closing and reopening of the exchange gap in the sur-
face spectrum on the parametric plane (Ũ , c̃). The regions with the
positive and negative gaps are separated from each other by the lines
Ũ± (̃c) depicted in color at different values of the parameters λ = 1.1
(black), 1.5 (red), 2.0 (blue), 2.5 (green).

Under changing strength of SP, the Q factor Q(A)(Ũ , c̃)
and, as a consequence, the exchange gap in the surface
state spectrum 
(A)(Ũ , c̃) = 
0Q(A)(Ũ , c̃) not only vary in
the size in a wide range but also invert the sign. Figure 4
presents the model diagram in the space of the parameters
(Ũ , c̃), which depicts the sectors of the positive and negative

(A)(Ũ , c̃). These sectors are delimited from each other by
the continuous lines Ũ± (̃c), where Ũ± (̃c) are two real roots
of the equation Q(A)(Ũ , c̃) = 0. The transition across the line
Ũ± (̃c) is accompanied by the closing and reopening of the
exchange gap. When c̃ < c̃0, the sector with the positive gap
falls within the interval Ũ+ > Ũ > Ũ−. Correspondingly, at
Ũ > Ũ+ or Ũ < Ũ−, the gap is of the negative sign, when
the NEF is aligned antiparallel to the magnetization of the
upmost SL. In particular, if |Ũ | � 1, the location of two
regions with the negative gap on the plane (Ũ , c̃) is de-
scribed by the inequalities 2

|Ũ | < c̃ < c̃0 + β(λ)
Ũ

, where βλ is
a positive quantity of the order of unity, an explicit form of
which is omitted here owing to the cumbersomeness. On the
other hand, when c̃ � 1, the region with 
(A)(Ũ , c̃) < 0 is
confined within the interval Ũ+ > Ũ > Ũ−, where Ũ± (̃c) =√

λ − 1[1 + 2 exp(−c̃
√

λ − 1) ± 2 exp(−c̃
√

λ)].
The main physical reason of a such nontrivial behavior

NEF felt by the surface state goes back to the variation
of the EF square profile θ2

0 (z), Eq. (5), versus the ESP
strength. The ESP tends to push the surface state inward
the bulk on the distance z = zmax. Provided that ESP is
sufficiently weak, the surface state is mostly placed close
to the surface, i.e., within the outermost SL at 1

2 c ≈ zmax,
therefore NEF is positive, 
(A) > 0. However, at |Ũ | � 1,
the gravity center of the density θ2

0 (z) is remarkably displaced
away off the surface, as seen in Fig. 1. If one assumes that
3
2 c ≈ zmax, NEF is certainly contributed by the second SL,
the magnetization of which is opposite to that of the first SL,
hence NEF is negative, 
(A) < 0. Indeed, by comparing the

dependence zmax(λ, |Ũ | → ∞) = ln(
√

λ+√
λ−1)

q0
√

λ−1
with that

FIG. 5. The large-scale image of the Q factor Q(F)(Ũ , c̃) is plot-
ted as a function of the ESP strength Ũ at the different periods c̃
(= 0.5; 1.0; 1.5; 2.0; 2.5) for fixed values of the parameter λ = 2.

c0(λ), it is clear that the location of the gravity center of
θ2

0 (z) in the middle of the second SL corresponds to a deep
interior of the regions with 
(A) < 0 on the diagram in Fig. 4,
roughly speaking, about c ≈ 1

2 c0. When the ESP strength
has a moderate value and positive sign, Ũ >

√
λ − 1, the EF

becomes zero, θ0(z0) = 0, at z0 = ln |γ |
2q0

√
λ−1

(Fig. 1). One can
choose the ESP strength in such a way that the probability
density θ2

0 (z) decays near 1
2 c (i.e., 1

2 c ≈ zmin), then the
contribution from the first SL is almost reduced, and NEF
may be negative even if c̃ � c̃0. Otherwise, for large c, the
sign of NEF 
(A) coincides with the magnetization sign in the
first SL. Thus, the reversal in the surface exchange gap sign
under ESP is a very important feature of the intrinsic AFM TI
in the ground state.

In the case of the FM inter-SL alignment, the NEF expec-
tation value 
(F )(Ũ , c̃) = 
0Q(F )(Ũ , c̃) is always positive.
Shown in Fig. 5 is the Q factor Q(F )(Ũ , c̃) as a function of
the strength Ũ at the different periods c̃ for a fixed value of
the parameter λ. One sees that the Q-factor is saturated at
the large ESP strength |Ũ | � 1 and declines in the vicinity
Ũ ≈ √

λ − 1 compared to the saturation level Q(F )
∞ . The sat-

uration level Q(F )
∞ = Q(F )(|Ũ | → ∞) depends on c̃ and λ. It

attains a maximum at c̃ ≈ 2.5 and decays drastically at c̃ � 1.
The overall behavior of Q(F )(Ũ , c̃) seems to be similar to that
of Q(A)(Ũ , c̃); furthermore, at c̃ > 1 the difference between
the NEF expectation values 
(F )(Ũ , c̃) and 
(A)(Ũ , c̃) do not
exceed 10–15%, though at small c̃ they display very distinct
trends: the level Q(A)

∞ decreases drastically and even changes
its sign at c̃ � 1 (Fig. 3), while the level Q(F )

∞ approaches unit
if c̃ → 0 (Fig. 5).

IV. SURFACE DENSITY OF STATES UNDER A WEAK
ESP DISORDER

Electrostatic perturbation of the surface states, being
caused by random distribution of the charged antisite
and other defects on the intrinsic AFM TI surface, can
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significantly changes from one sample to another and is
even able to vary appreciably along the same sample sur-
face. Having described in the previous section the mechanism
underlying the exchange gap modulation under the assump-
tion that ESP is uniform along the surface plane (x, y),
raises a question about how fluctuations in the ESP strength
drive spectral properties of the topological surface states. In
macroscopic measurements, the observable characteristics are
normally averaged over the sample in convoluted way. For the
moment, we restrict ourselves to an analysis of the surface
density of states (DOS). To this end, assuming a weak disorder
of the antisite defects, we estimate the dependence of DOS on
ESP under relatively small fluctuations of the strength U .

Within our model, in the situation of an high-quality sam-
ples associated with the uniform ESP strength U along the
whole surface, the emergent NEF opens the gap in the dis-
persion law E (κ) = ±√

A2κ2 + 
2, thus leading to 2D DOS

N2D(E |U ) = a2|E |
2πA2

h(|E | − |
(U )|), (13)

where the gap size 2
(U ) follows the strength U in accor-
dance with Eqs. (7), (8), (11), and (12), a is the surface
lattice constant, h(E ) is the Heaviside function. Therefore,
in the case of weakly fluctuating ESP, the averaged DOS
is composed of different partial N2D(E |U ) Eq. (13) ac-
cordingly to their statistic weight P(U ), i.e. 〈N2D(E )〉 =∫

dUP(U )N2D(E |U ). In such simple manner of averaging,
one can estimate a fluctuation-induced smearing of the band-
edges. To this end, we define the strength fluctuation distribu-
tion via the Gaussian function P(U ) = 1√

2πW
exp[− (U−U0 )2

2W 2 ]
assuming that mean-squared fluctuations ∼W are small as
compared with the characteristic scale of U in which the
Q-factor varies profoundly, in other words, W  |U±|. In

this case, the behavior of 〈N2D(E )〉 is directly related to the
location of the mean strength U0.

Of primary interest for us is the parameter region c̃ < c̃0,
where the typical dependence Q(A)(Ũ , c̃) is exemplified by
the curve at c̃ = 0.5 in Figs. 2(a) and 2(b). For the large
strength |U0|, the Q factor changes weakly. In such a case, the
averaged DOS is expressed by the form of Eq. (13) in which

 = 
0Q(A)

∞ . On the other hand, in the region of the moderate
values of ESP, U− < U0 < U+, the Q-factor changes drasti-
cally. It is clear that as long as |E | > 
max (
max = 
0Q(A)

max),
the averaged DOS repeats the linear part of the energy depen-
dence of Eq. (13). In turn, at |E | � 
max, the averaged DOS
is given by

〈N2D(E )〉 ≈ a2
max

2πA2

[
1 − 1

2
erf

(
U1 − U0√

2W

)
+ 1

2
erf

(
U2 − U0√

2W

)]
, (14)

where the functions U1,2(E ) are the solutions of the quadratic
equation 
(U ) = 
0Q(A)(U ) = E , U1 > U2; also, the quan-
tity U0 is suggested to be well inside the interval (U−,U+);
erf (α) is the Gauss error function. Under the stipulation that
c̃  1, the Q factor attains the maximum Q(A)

max = 2
√

λ̃c at
Ũ = Ũmax = √

λ, then the solutions of the equation 
(U ) =
E take the simple form Ũ1,2 = √

λ ±
√

1 − Ẽ
2
√

λ̃c
, Ẽ = E


0
.

This simplification yields the more apparent expression for
the DOS:

〈N2D(E )〉 ≈ a2
max

2πA2

(
1 −

√
2√

πW̃

√
1 − Ẽ

2
√

λ̃c

)
, (15)

if the mean strength U0 is close to Umax, i.e., |U0 − Umax| 
W , or

〈N2D(E )〉 ≈ a2
max

2πA2
×

[
1 − 1√

2πW̃
exp

(
−

(√
λ − Ũ0√

2W̃

)2)√
1 − Ẽ

2
√

λ̃c

]
, (16)

in the opposite case.
Given that the mean strength U0 is close to one of two the critical values U− or U+, where the Q factor behaves as 
0Q(A) =

α±(U − U±), α± = 
0
dQ(A)

dU |U=U± , α− > 0, α+ < 0, one obtains

〈N2D(E )〉 ≈ a2|E |
4πA2

[
erf

(
U− − U0 + |E |

α−√
2W

)
−erf

(
U− − U0 − |E |

α−√
2W

)]
, (17)

which is valid at |E |  
0|Q(A)
∞ |. Hence, DOS falls to zero as

E2 near a surface Dirac point. Indeed, if the mean strength U0

is close to U±, i.e. |U0 − U±|  W , Eq. (17) reduces to

〈N2D(E )〉 ≈ a2E2

√
2π3|α±|W A2

. (18)

In the opposite case, when |U0 − U±| � W , one arrives at

〈N2D(E )〉 ≈ a2E2

2
√

2π3|α±|W A2
exp

[
−

(
U± − U0√

2W

)2]
. (19)

Provided above is the rough estimation of possible behavior
of the disorder-averaged DOS 〈N2D(E )〉, which specifically
depends on the location of U within narrow window for some
partial cases. However, the scheme outlined above is too sim-
ple to provide a full picture of the fermion states under the
stipulation that ESP is no longer spatially uniform through out
the sample surface.

V. INHOMOGENEOUS ESP APPROXIMATION: NEF
DOMAIN WALLS AND BOUND STATES

Above we have established the coupling of NEF

(A,F )(U ) = 
0Q(A,F )(U ) with the ESP strength U , which

205301-7



MEN’SHOV, SHVETS, AND CHULKOV PHYSICAL REVIEW B 106, 205301 (2022)

allows us assess the surface states gapping in an ideally uni-
form AFM TI sample. Now we turn to the question about the
response of the topological surface state to an inhomogeneous
electrostatic perturbation. The latter is associated with the an-
tisite concentration fluctuations, and the ESP strength U (x, y)
is supposed to be rather smooth at the mean distance between
the charged defects. Within our continual approach, the sur-
face fermions experience NEF 
(A,F )(x, y) that is induced
by the large-scale inhomogeneous ESP: U (x, y) → 
(x, y).
It is notable that, in the AFM ground state, the gap function

(A)(x, y) can change along the surface plane (x, y) both in
magnitude and in sign. Further we focus on this case and
omit the upper index, i.e., 
(A) = 
. In depending on the ESP
variation U (x, y), the regions with positive, 
(x, y) > 0, and
negative, 
(x, y) < 0, NEF exist at the surface. Between such
regions, there appears a boundary of a peculiar type that we
call NEF domain wall (DW).

Let us take a look at a particular one-dimensional (1D) ESP
configuration, wherein the strength U (x, y) = U (x) varies
monotonically from U (x → −∞) = UL to U (x → ∞) = UR

passing through the critical value U+ or U−. Such a type
of ESP creates NEF DW separating two insulating do-
mains with opposite signs of the gap 
(x → −∞) = 
L and

(x → ∞) = 
R, sgn(
R
L ) < 0, where values UR,L are
mapped to ones 
R,L via Eqs. (7) and (11). The gap vanishes
at the border line x = x0, 
(x0) = 0, where U (x0) = U±. It
means that the surface Dirac fermion experiences a positive
gapping on one side of the border, and a negative gapping
on another side of the border. Since the fermion perceives
NEF DW as a topological border between regions possessing
distinct topological indices, a bound state is expected to occur
at NEF DW.

To demonstrate that, taking into account the presence of
a spatially dependent NEF term we rewrite the Hamiltonian
Eq. (6) in a quasiclassical approximation as

H2D(x, ky) = A

(
−iσy

∂

∂x
− kyσx

)
+ 
(x)σz. (20)

Although the precise configuration of the inhomogeneous
NEF is not known a priori, without loss of generality, we
choose the spatial texture of a single DW in the following
form:


(x) = 
R + 
L

2
+ 
R − 
L

2
tanh(υx), (21)

where 
R > 0 and 
L < 0. The NEF within the upward
and downward domain regions is rather uniform and changes
gradually on the scale ∼υ−1 in the vicinity x0. The NEF DW
border runs along the ey axis. The momentum ky is a good
quantum number playing the role of a parameter.

We effectively deal with a 1D quantum problem and look
for the low-energy bound state F (0)(x, ky) satisfying the equa-
tion H2D(x, ky)F (x, ky) = ω(ky)F (x, ky) under the condition
F (|x| → ∞, ky) = 0. This problem with the gap function
Eq. (21) is exactly integrable. A straightforward calculation
gives the EF spinor

F (0)(x, ky) = C

(
1

−1

)
exp

(
−
R + 
L

2A
x

)
× [cosh(υx)]−


R−
L
2Aυ , (22)

where C is a normalized constant. The corresponding energy
eigenvalue has a linear form ω

(0)
+ (ky) = Aky, which crosses

the exchange gaps related to both the right domain, 2
R, and
the left one, 2|
L|. The fermion of Eq. (22) with a chirality
σ = + moves with velocity A along NEF DW, according to
the spin-momentum locking rule. The EF Eq. (22) exponen-
tially decays with distance from the wall as ∼ exp(−
R

A x)
for x > 0 and ∼ exp(−
L

A x) for x < 0. One can easily write
down EF for the state bound to NEF DW of opposite ori-
entation, when 
(x) changes sign from positive to negative
with increasing coordinate x. In this case, one obtains a
state with opposite chirality σ = − and opposite velocity
ω

(0)
− (ky) = −Aky.

In addition to the 1D gapless chiral state, NEF DW
can carry 1D ordinary doubly degenerate states with

a gapped spectrum ω(n)(ky) = ±
√

[ω(n)(0)]2 + A2k2
y , n =

1, 2, 3, . . ., which are similar to Volkov&Pankratov states
[54]. These states emerge within the exchange gap,
|ω(n)(0)| < min{
R, |
L|}, when the gap function is suf-
ficiently smooth at the EF spatial extension, i.e., υ−1 >

2A

R+|
L | . And their number is determined by the condition

n < N = |
R−
L |
2Aυ

(1 −
√

|
R+
L |
|
R−
L | ). The explicit dependence of

the nth energy level ω(n)(0) on the model parameters 
R,L,
υ, and A is analyzed in Ref. [55]. At sharp NEF DW, when
υ−1 < 2A


R+|
L | , only the topological chiral state with n = 0
appears. A smoother NEF DW hosts more bound states. In
the limiting case υ−1 � 2A


R+|
L | and, consequently, N → ∞
the discrete spectral curves ω(n)(ky) tend to fill the whole
exchange gap.

Thus, the energy spectrum of the surface AFM TI, con-
taining a sufficiently smooth single NEF DW, is represented
by not only the 1D chiral state with the linear dispersion
ω(0)(ky) = Aky but also the 1D gapped branches ω(n)(ky) in-
side the exchange gap. Then, the contribution of all the 1D
states to the in-gap DOS is given by

N1D(E ) = a

2πA
+ a|E |

πA

∑
1�n�N

h(E2 − [ω(n)(0)]
2)√

E2 − [ω(n)(0)]2
. (23)

It should be emphasized that the topologically protected
bound chiral state Eq. (22) is not much affected by the
NEF DW shape as long as the constraint 
(x → ∞)
(x →
−∞) < 0 is satisfied. In other words, this state is robust
against local deformations of the gap function spatial profile

(x) in the context of supersymmetric quantum mechanics
[56]. It demonstrates the linear dispersion relation ω

(0)
± (ky) =

±Aky and makes always a constant contribution N (0)
1D (E ) =

a
2πA to DOS [the first term on the right-hand side of Eq. (23)],
which only depends on the bulk spectrum parameter A. On the
other hand, due to the dependence of the level ω(n)(0) on the
model parameters such as 
R,L and υ, the 1D gapped states
ω(n)(ky) and their contribution to DOS [the last term on the
right-hand side of Eq. (23)] are highly susceptible to the effect
of local variation of the gap function 
(x).

Given that the NEF domains have a finite spatial scale,
one may find delicate features of the electron spectrum in-
herent to the multi-DW situation. Consider, for example, the
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configuration of two parallel running NEF DWs of type of
Eq. (22) and a domain region of the width l situated in be-
tween. The width l is defined as the distance between the
positions where the gap function vanishes, while NEF is equal
to 
(x) = 
S inside the domain region. Naturally, one sug-
gests that l � { A


S
; 1

υ
}. The double-DW configuration hosts a

pair of the 1D bound states of kind of F (0) (22) with opposite
chiralities. An indirect coupling between these states with n =
0 appears due to virtual excitations through the 2D band/s

E (κ) = ±
√

A2κ2 + 
2
S . As a result, the tiny minigap opens at

the � point in the spectrum, ω
(0)
± (ky) = ±Aky → 	

(0)
± (ky) =

±
√

η2 + A2k2
y . The minigap size 2|η| can be shown to decay

exponentially with increasing the inter-DW distance in such a
way that |η| ≈ |
S| exp(−|
S |

A l ) when υ−1 < A
|
S | . In the case

of the smooth NEF DWs, the gap decaying may be evaluated
as |η| ∼ exp[−|
S |

A (l − �

υ
)], where � is within the interval

1 < � < 2. At the same time, the 1D gapped states with n � 1
are split in energy, ω(n)(0) → ω(n)(0) ± ς , where ς is of the
same order of magnitude as |η|.

Another issue specific to NEF DW is that the border
U (x, y) = U± or 
(x, y) = 0, is not generally described with
a straight line. Nevertheless, in the vicinity of the border
with a big curvature radius R, one can introduce curvilinear
coordinates, (x, y) → (ξ, ζ ), longitudinal ξ , and transversal ζ

(normal to the border). Then, in a zero order in { 1
υR , A

|
R,L |R } 
1, one can the profile Eq. (21) as a gap function 
(ζ ). Cor-
respondingly, the low-energy bound states are approximated
by 1D EFs F (n)(ζ , kξ ), localized about the border 
(ζ ) = 0,
and the dispersion relations ω(n)(kξ ), kξ being a momentum
associated with the coordinate ξ .

VI. SURFACE SPECTRAL PROPERTIES UNDER
A STRONG ESP DISORDER

For a realistic AFM TI material, where disorder in spa-
tial distribution of the antisite and other defects can play
an essential role, the question arises of how a disorder af-
fects the surface spectral properties. At large scale level,
an electrostatic potential of the imperfect surface could be
represented as a random mixture of different spatial regions
extending ∼Li, within which the ESP strength U ≈ Ui is
rather uniform, i being the region’s index. If these regions
are sufficiently broad compared with the localization length,
Li � A

|
i| , the surface band structure can roughly be presented

as a superposition of the spectra Ei(κ) = ±
√

A2κ2 + 
2(Ui )
that stem from the domains with the corresponding net ex-
change energy 
(Ui ). The averaging over the ensemble of
all realizations {Ui} yields the surface spectrum with the ex-
change gap ∼2

√
〈
2(Ui )〉, the energy edges of which are

smeared due to the potential disorder. The edge smearing
may be estimated from Eqs. (14)–(16) and (17)–(19) for
〈N2D(E )〉, given that the strength Ui is implied to fluctuate
within the narrow energy interval ∼Wi. Such a spectral pic-
ture is appropriate to the case of a weak disorder when the
potential defects are pretty homogeneously distributed on the
surface.

On a more detailed level, the electron topological state
and magnetic texture on the surface of intrinsic AFM TI are
intimately related, which can be manifested in strikingly
various spectral behavior depending on a type of quenched
disorder associated with random ESP U (x, y). Under strong
fluctuations of ESP, the NEF DWs come into play. As shown
above, the boundary between regions with opposite NEF al-
ways harbors fermion state with the linear dispersion inside
the gap. In a multi-domain situation, such boundaries get
pinned at the zero-gap contours 
(x, y) = 0, along which
the conditions U (x, y) = U+ or U (x, y) = U− are satisfied.
The NEF DW scale ∼υ−1 may significantly vary, formally,
from zero (a sharp DW) to infinity (a extended DW). The
averaging over a manifold of possible ESP configurations
{U (x, y)} entails that the surface restores spatial uniformity
and azimuthal symmetry in the (x, y) plane on macroscopic
scale significantly exceeding Li. The averaged spectral density
is expected to display a near perfect 2D conelike band, ±ϒκ ,
ϒ � A, at least near the Dirac point. Intuitively, such a low-
energy gapless spectral image can be viewed as composed
from the partial energy branches, ω(0)(kξ ) = ±Akξ , of the
1D topologically robust states of kind of F (0)(x, kξ ) Eq. (22)
hosted by single NEF DWs running along different azimuthal
directions. In this context, the 2D conelike band could be re-
garded as a topological protected one. The relation ±ϒκ does
not make sense of a dispersion law as a functional relation
between excitation energy and momentum, since the latter is
not a good quantum number and the corresponding state is
not a steady one owing to absence of a long-range order at the
surface. Moreover, the essential spectral feature like ±ϒκ is
found to be noticeable only at a sufficiently high density of
NEF DWs.

In the multidomain situation, the surface in-gap DOS is
only contributed by the low-energy gapless states ω(0)(kξ ) =
±Akξ , induced by NEF DWs, when the latter occupy only
a small fraction of the surface, i.e. υ−1 < 2A


R+|
L | . When
the NEF DW texture is smoothed, the energetically lower-
lying excitations with linear dispersion are complemented
by the higher-lying ones stemmed from the gapped states
ω(n)(kξ ), n = 1, 2, 3, . . ., appearing under υ−1 > 2A


R+|
L | .
The NEF fluctuations can cause a crucial broadening of the
singularities in DOS at |E | = ω(n)(0) in Eq. (23) (the second
term on the right-hand side), because the band edges ω(n)(kξ )
are directly affected by the NEF DW texture details.

The 1D bound states originated from neighboring NEF
DWs affect each other, which contributes to a gapping, ∼2|η|,
of the low-energy electron excitations near the � point. The
coupling between these states is enhanced as NEF DWs get
less spatially separated. When the characteristic lengths υ−1,
A
|
| and l appear to be comparable to each other, the quasi-1D
bound states overlap substantially, and the surface spectrum
becomes structureless.

We have restricted the discussion to the case with U1 =
−U2. By the way, when U1 �= −U2, the surface bands are
shifted in energy by E0(U1,U2) and the particle-hole symme-
try is broken [25,51]. Hence, in the presence of disorder, the
gap size in the surface spectrum is expected to be reduced
effectively due to fluctuations of E0(U1,U2).
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When an external magnetic field, applied normally to the
surface, drives the interlayer magnetic coupling from AFM to
FM, the band edges get clearer, the exchange gap increases up
to value 2
(F )(Ũ , c̃) = 2
0Q(F )(Ũ , c̃) and the in-gap states
disappear along with NEF DWs.

VII. DISCUSSION AND CONCLUSION

The approach developed above to explain in a consistent
manner the surface electron properties of intrinsic AFM TIs
of the MnBi2Te4 like family is conceptually built on the five
major ideas. First, we postulate that a regular magnetic order
of the A-type with uniform magnetization in each SL and
AFM coupling between neighboring SLs is persistent up to
the surface of the material. This thesis has empirical support
[37,42]. Second, the penetration depth of the topological state
beneath the AFM TI (0001) surface is comparable with the
long range magnetic order period. For that reason, the emer-
gent NEF can be highly sensitive to potential perturbations.
In the prototypical AFM TI MnBi2Te4, the perturbation is
naturally caused by the native MnBi and BiMn antisite defects
and the Te vacancies. Third, to design an impact of the charge
defects upon the surface fermions, we incorporate ESP into
the model calculations. Fourth, we argue analytically that
the ESP strength drives NEF and, thereby, show how the
electrostatic mechanism of the exchange gap modulation in
the surface fermions dispersion works at a microscopic level.
Fifth, it is found that NEF can change its sign as one varies
the ESP strength. In such a case, NEF DWs on the surface
plane engender 1D states with the linear dispersion that span
the exchange gap.

We have conducted a proof-of-concept study of the above
proposals and understood the genesis of the spectral features
of the intrinsic AFM TI surface, which reflects profound in-
terplay of the topological electronic states, magnetic order and
electrostatic effects. On the one hand, the significant variation
in the measured surface gap size from one sample to another
[32] can be reasonably ascribed to the NEF evolution under
the ESP strength. On the other hand, a gapless behavior of
the surface states found in ARPES observations [34–39] can
be closely tied to the 1D states originated from NEF DWs as
long as strong electrostatic gradient exists along the surface.
Our theoretical findings provide guidance to qualitatively clar-
ify the origin of the spectroscopic peculiarities. The ARPES
experimental data give a spectral image spatially averaged
over the light spot of a micron scale. In our theory context,
this image is formed mainly by the surface states which are
hosted on the dominating NEF configurations 
(x, y). For
example, as ESP fluctuates slowly on a micron scale with a
small deviation from a mean value U0, the surface spectrum
is expected to show the clear energy gap ∼|2
(U0)| with
the weak broadening of its edges. This is consistent with the
observation in the ARPES measurements [12,28–31], where
the good quality MnBi2Te4 samples were used. Otherwise,
when the sample surface undergoes the strong disorder, so the
ESP strength |Ũ (x, y)| varies much over the lateral correlation
length comparable or smaller than ∼10 − 100 nm, the dense
network of NEF DWs occurs at the surface. In this case,
the spectrum exhibits a finite DOS inside the exchange gap

with blurred energy edges. In fact, the gapless spectral fea-
tures were observed in high-resolution ARPES measurements
[34–39]. We propose that the observed conelike dispersion
could be due to strong disorder of the cation intermixing in
the MnBi2Te4 specimens under studies. Furthermore, when
the ESP strength varies in a wide range, but the correlation
length is more than ∼100 nm, the density of NEF DWs
is too low to give any appreciable in-gap DOS. In such a
situation, the domain regions with large positive NEF and
small negative NEF contribute to the spectrum that displays
a two-gap structure. Such an unusual feature in the ARPES
image was witnessed by the authors of Ref. [33]. So, consider-
ing several different potential landscapes, we disentangle the
possible spectroscopic regimes, which can be treated in terms
of the NEF DWs density. Applying the external perpendicular
magnetic field sufficient to align the moments in parallel, one
can see solely the gapped spectrum with the enlarged gap,
which size is not much dependent on the ESP strength and
spatial disorder.

Thus, we unveil the underlying scenario behind shaping
the surface electron structure in AFM TIs, which is based on
the key role of the surface electrostatic effects. It is natural
to associate these effects with the native antisite defects and
other imperfections, the concentration and spatial distribution
of which depend upon the fabrication conditions. Thereby, the
proposed scenario not only reconciles the apparent disagree-
ment between the rigid AFM order and the gapless spectrum
but also successfully resolves the contradictions between the
spectroscopic data on MnBi2Te4 obtained by different experi-
mental groups.

The crystal structure of natural vdW superlattice MnBi4Te7

contains the magnetic SLs of MnBi2Te4 alternating with the
nonmagnetic QLs of Bi2Te3. A number of ARPES studies
of compound MnBi4Te7 [17,41,47,57–59] have identified the
topological surface states on the two terminations: a gap state
on the QL termination and a gapless Dirac-cone state on the
SL termination. One can explain this behavior by suggesting
that the QL and SL differ from each other in type and con-
centration of intrinsic point defects. Within our approach, it
means that the QL termination and the SL termination have
distinct ESPs. The MnBi4Te7 surface, most likely, is subjected
to greater electrostatic modification on the SL termination
than on the QL one. Hence, the exchange gap on the SL
(magnetic) termination can be either significantly reduced due
to the strong ESP, which shifts the gravity center of the surface
state into the QL beneath or spanned due to the 1D states
living at NEF DWs. At the same time, the exchange gap on the
QL (nonmagnetic) termination can acquire finite size owing to
a penetration of the surface state EF tail into the SL beneath.
We expect that the presented concept can be readily extended
to all family MnBi2Te4(Bi2Te3)n.

We expect that the presented concept can be
readily extended to the superlatticelike magnetic TIs
MnBi2Te4(Bi2Te3)n. In these systems, with increasing the
inserted Bi2Te3 spacer thickness, the interlayer superexchange
coupling is reduced significantly or switches from an AFM
type to a FM one [60,61]. To estimate the surface exchange
gap in the compounds MnBi2Te4(Bi2Te3)n, one can apply
Eqs. (11) and (12) for Q factors Q(A)(U, c) and Q(F )(U, c), in
which c is the superlattice period.
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The unique feature of the AFM TIs found within our min-
imal theoretical model is the presence of NEF DWs produced
by the SP gradient. It should be emphasized that the origin of
NEF DWs is essentially different from that of magnetic DWs,
which either appear in the usual manner due to imperfections
in bulk magnetic materials or come from atomic steps on
rough surface of AFM material. Such magnetic DWs were
found in MnBi2Te4 [42] and, as theoretically predicted in
Refs. [62,63], they can also host 1D bound states. However,
the distance between the neighboring magnetic DWs at the
surface of MnBi2Te4 is of the order of 1 − 10 μm [42], which
excludes the manifestation of the corresponding bound states
in spectroscopy.

The strengths U1 and U2 encode the ESP felt by sur-
face electrons characterized by the orbitals |Pn + σ 〉 and
|Ch − σ 〉, respectively. In general case, near the �̄ point, the
surface spectrum can be written in the form E (κ) = E0 ±√

A2κ2 + 
2. Given that the Hamiltonian (1) is particle-hole
symmetric, the energy shift of the surface bands E0(U1,U2)
appears under the condition U1 + U2 �= 0, for example, in the
weak ESP case one has E0 = 2q0d

1+λ
(U1 + U2). [25,51] In turn,

the gap size is mainly determined by the difference U1 − U2,
i.e., by the difference of the contributions stemming from the
orbitals |Pn + σ 〉 and |Ch − σ 〉, which has been demonstrated
by Eqs. (5)–(8) and (11) and (12). In this sense, the ESP matrix
elements match up the antisite and other defects presented in
subsurface layers of the material. Without loss of the gener-
ality of the results, we restrict ourselves to the case of U1 =
−U2 = U , when particle-hole symmetry keeping significantly
facilitates the calculations.

To evaluate the ESP strength U , we can use the DFT calcu-
lation [32] which shows that the gap drops from ∼80 meV to
almost zero when the surface potential gradient dU

dz is changed
from 0.3 eV

Å to −0.5 eV
Å .

The authors of Ref. [64] proposed a scenario for the
surface state gapping in the self-doped n-type MnBi2Te4,
which is distinct from the above mentioned mechanisms
[32,33,44]. They suppose that the gain from the elec-
tron energy lowering caused by the exchange gap clos-
ing can overcome the energy cost of the magnetic order

deformation of DW type between the out-of-plane align-
ment in the bulk to the in-plane alignment at the surface.
However, first, this assumption is not supported by the
experimental observation of the robust AFM order up to
the surface [42]. Second, in known ARPES measurements,
there have not been any signs of the in-plane magneti-
zation at the upmost SLs of MnBi2Te4 samples such as
the Dirac cone shifting from the �̄ point. In our the-
ory, the magnetization reconfiguration near the surface of
AFM TI could be treated as the NEF modulation in-
duced by the ESP without resorting to idea of the AFM
order deformation. To study the doping effects on the
delicate interplay between magnetism and topology in in-
trinsic AFM TIs, within the analytical approach, the EF
spatial distribution �(r) and the exchange gap 2
 must
be calculated in self-consistent manner under the given
electron concentration. Furthermore, besides the superex-
change interaction between magnetic moments, one needs
to take into account the RKKY coupling mediated by free
carriers.

In summary, we proposed the analytical approach for the
underlying microscopic scenario behind the complex behavior
of topological surface states of AFM TIs observed by photo-
electron spectroscopy in MnBi2Te4. We specifically stress the
key role played by the electrostatic surface potential which
determines the value and sign of the exchange energy of the
surface fermions. Within the model framework, we discuss the
possible mechanisms driving the exchange gap size as well as
origin of the in-gap states. The obtained results deepen our
understanding of an interplay of band topology and magnetic
ordering.
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Mandal, J. Růžička, A. Ney, H. Steiner, V. V. Volobuev, H.
Groiß et al., Nature (London) 576, 423 (2019).

[17] I. I. Klimovskikh, M. M. Otrokov, D. Estyunin, S. V. Eremeev,
S. O. Filnov, A. Koroleva, E. Shevchenko, V. Voroshnin, A. G.
Rybkin, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann et al., npj
Quantum Mater. 5, 54 (2020).

[18] J. Ge, Y. Liu, J. Li, H. Li, T. Luo, Y. Wu, Y. Xu, and J. Wang,
Natl. Sci. Rev. 7, 1280 (2020).

[19] K. He and Q.-K. Xue, SPIN 09, 1940016 (2019).
[20] P. Wang, J. Ge, J. Li, Y. Liu, Y. Xu, and J. Wang, Innovation 2,

100098 (2021).
[21] C.-Z. Chang and M. Li, J. Phys.: Condens. Matter 28, 123002

(2016).
[22] X. Kou, Y. Fan, M. Lang, P. Upadhyaya, and K. L. Wang, Solid

State Commun. 215-216, 34 (2015).
[23] V. N. Men’shov, I. A. Shvets, and E. V. Chulkov, JETP Lett.

110, 771 (2019).
[24] V. N. Men’shov, I. A. Shvets, V. V. Tugushev, and E. V.

Chulkov, Phys. Rev. B 96, 075302 (2017).
[25] V. N. Men’shov, I. A. Shvets, and E. V. Chulkov, Phys. Rev. B

99, 115301 (2019).
[26] J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He, W.

Duan, and Y. Xu, Sci. Adv. 5, eaaw5685 (2019).
[27] D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, and J. Wang,

Phys. Rev. Lett. 122, 206401 (2019).
[28] R. Vidal, H. Bentmann, T. Peixoto, A. Zeugner, S. Moser, C.-H.

Min, S. Schatz, K. Kißner, M. Ünzelmann, C. Fornari et al.,
Phys. Rev. B 100, 121104(R) (2019).

[29] S. H. Lee, Y. Zhu, Y. Wang, L. Miao, T. Pillsbury, H. Yi, S.
Kempinger, J. Hu, C. A. Heikes, P. Quarterman et al., Phys.
Rev. Res. 1, 012011(R) (2019).

[30] A. Zeugner, F. Nietschke, A. U. Wolter, S. Gaß, R. C. Vidal,
T. R. Peixoto, D. Pohl, C. Damm, A. Lubk, R. Hentrich et al.,
Chem. Mater. 31, 2795 (2019).

[31] D. A. Estyunin, I. I. Klimovskikh, A. M. Shikin, E. F. Schwier,
M. M. Otrokov, A. Kimura, S. Kumar, S. O. Filnov, Z. S. Aliev,
M. B. Babanly et al., APL Mater. 8, 021105 (2020).

[32] A. M. Shikin, D. A. Estyunin, N. L. Zaitsev, D. Glazkova,
I. I. Klimovskikh, S. O. Filnov, A. G. Rybkin, E. F. Schwier,
S. Kumar, A. Kimura et al., Phys. Rev. B 104, 115168
(2021).

[33] A. M. Shikin, D. A. Estyunin, I. I. Klimovskikh, S. O.
Filnov, E. F. Schwier, S. Kumar, K. Miyamoto, T. Okuda,
A. Kimura, K. Kuroda et al., Sci. Rep. 10, 13226
(2020).

[34] Y.-J. Hao, P. Liu, Y. Feng, X.-M. Ma, E. F. Schwier, M. Arita, S.
Kumar, C. Hu, M. Zeng, Y. Wang et al., Phys. Rev. X 9, 041038
(2019).

[35] H. Li, S.-Y. Gao, S.-F. Duan, Y.-F. Xu, K.-J. Zhu, S.-J. Tian,
J.-C. Gao, W.-H. Fan, Z.-C. Rao, J.-R. Huang et al., Phys. Rev.
X 9, 041039 (2019).

[36] Y. Chen, L. Xu, J. Li, Y. Li, H. Wang, C. Zhang, H. Li, Y. Wu,
A. Liang, C. Chen et al., Phys. Rev. X 9, 041040 (2019).

[37] P. Swatek, Y. Wu, L.-L. Wang, K. Lee, B. Schrunk, J. Yan, and
A. Kaminski, Phys. Rev. B 101, 161109(R) (2020).

[38] D. Nevola, H. X. Li, J.-Q. Yan, R. G. Moore, H.-N. Lee,
H. Miao, and P. D. Johnson, Phys. Rev. Lett. 125, 117205
(2020).

[39] C. Yan, S. Fernandez-Mulligan, R. Mei, S. H. Lee, N. Protic, R.
Fukumori, B. Yan, C. Liu, Z. Mao, and S. Yang, Phys. Rev. B
104, L041102 (2021).

[40] B. Chen, F. Fei, D. Zhang, B. Zhang, W. Liu, S. Zhang, P.
Wang, B. Wei, Y. Zhang, Z. Zuo et al., Nat. Commun. 10, 4469
(2019).

[41] Y. Hu, L. Xu, M. Shi, A. Luo, S. Peng, Z. Wang, J. Ying,
T. Wu, Z. Liu, C. Zhang et al., Phys. Rev. B 101, 161113(R)
(2020).

[42] P. M. Sass, J. Kim, D. Vanderbilt, J. Yan, and W. Wu, Phys. Rev.
Lett. 125, 037201 (2020).

[43] Y. Yuan, X. Wang, H. Li, J. Li, Y. Ji, Z. Hao, Y. Wu, K. He, Y.
Wang, Y. Xu et al., Nano Lett. 20, 3271 (2020).

[44] M. Garnica, M. M. Otrokov, P. C. Aguilar, I. I. Klimovskikh,
D. Estyunin, Z. S. Aliev, I. R. Amiraslanov, N. A. Abdullayev,
V. N. Zverev, M. B. Babanly et al., npj Quantum Mater. 7, 7
(2022).

[45] J.-Q. Yan, Q. Zhang, T. Heitmann, Z. Huang, K. Y. Chen, J.-G.
Cheng, W. Wu, D. Vaknin, B. C. Sales, and R. J. McQueeney,
Phys. Rev. Mater. 3, 064202 (2019).

[46] M. Liu, C. Lei, H. Kim, Y. Li, L. Frammolino, J. Yan, A.
H. Macdonald, and C.-K. Shih, PNAS 119, e2207681119
(2022).

[47] X. Wu, J. Li, X.-M. Ma, Y. Zhang, Y. Liu, C.-S. Zhou, J. Shao,
Q. Wang, Y.-J. Hao, Y. Feng et al., Phys. Rev. X 10, 031013
(2020).

[48] M.-H. Du, J. Yan, V. R. Cooper, and M. Eisenbach, Adv. Funct.
Mater. 31, 2006516 (2021).

[49] F. Hou, Q. Yao, C.-S. Zhou, X.-M. Ma, M. Han, Y.-J. Hao,
X. Wu, Y. Zhang, H. Sun, C. Liu et al., ACS Nano 14, 11262
(2020).

[50] A. Tan, V. Labracherie, N. Kunchur, A. U. B. Wolter, J.
Cornejo, J. Dufouleur, B. Büchner, A. Isaeva, and R. Giraud,
Phys. Rev. Lett. 124, 197201 (2020).

[51] V. N. Men’shov, V. V. Tugushev, T. V. Menshchikova, S. V.
Eremeev, P. M. Echenique, and E. V. Chulkov, J. Phys.:
Condens. Matter 26, 485003 (2014).

[52] V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett.
97, 258 (2013).

[53] V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, JETP Lett.
104, 453 (2016).

[54] B. A. Volkov and O. A. Pankratov, Sov. J. Exp. Theor. Phys.
Lett. 42, 178 (1985).

[55] S. Tchoumakov, V. Jouffrey, A. Inhofer, E. Bocquillon, B.
Plaçais, D. Carpentier, and M. Goerbig, Phys. Rev. B 96,
201302(R) (2017).

[56] F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep. 251, 267
(1995).

[57] C. Hu, K. N. Gordon, P. Liu, J. Liu, X. Zhou, P. Hao,
D. Narayan, E. Emmanouilidou, H. Sun, Y. Liu et al., Nat.
Commun. 11, 97 (2020).

[58] K. N. Gordon, H. Sun, C. Hu, A. G. Linn, H. Li, Y. Liu, P. Liu,
S. Mackey, Q. Liu, N. Ni et al., arXiv:1910.13943.

205301-12

https://doi.org/10.1103/PhysRevLett.122.107202
https://doi.org/10.1126/science.aax8156
https://doi.org/10.1038/s41563-019-0573-3
https://doi.org/10.1038/s41586-019-1826-7
https://doi.org/10.1038/s41535-020-00255-9
https://doi.org/10.1093/nsr/nwaa089
https://doi.org/10.1142/S2010324719400162
https://doi.org/10.1016/j.xinn.2021.100098
https://doi.org/10.1088/0953-8984/28/12/123002
https://doi.org/10.1016/j.ssc.2014.10.022
https://doi.org/10.1134/S002136401924007X
https://doi.org/10.1103/PhysRevB.96.075302
https://doi.org/10.1103/PhysRevB.99.115301
https://doi.org/10.1126/sciadv.aaw5685
https://doi.org/10.1103/PhysRevLett.122.206401
https://doi.org/10.1103/PhysRevB.100.121104
https://doi.org/10.1103/PhysRevResearch.1.012011
https://doi.org/10.1021/acs.chemmater.8b05017
https://doi.org/10.1063/1.5142846
https://doi.org/10.1103/PhysRevB.104.115168
https://doi.org/10.1038/s41598-020-70089-9
https://doi.org/10.1103/PhysRevX.9.041038
https://doi.org/10.1103/PhysRevX.9.041039
https://doi.org/10.1103/PhysRevX.9.041040
https://doi.org/10.1103/PhysRevB.101.161109
https://doi.org/10.1103/PhysRevLett.125.117205
https://doi.org/10.1103/PhysRevB.104.L041102
https://doi.org/10.1038/s41467-019-12485-y
https://doi.org/10.1103/PhysRevB.101.161113
https://doi.org/10.1103/PhysRevLett.125.037201
https://doi.org/10.1021/acs.nanolett.0c00031
https://doi.org/10.1038/s41535-021-00414-6
https://doi.org/10.1103/PhysRevMaterials.3.064202
https://doi.org/10.1073/pnas.2207681119
https://doi.org/10.1103/PhysRevX.10.031013
https://doi.org/10.1002/adfm.202006516
https://doi.org/10.1021/acsnano.0c03149
https://doi.org/10.1103/PhysRevLett.124.197201
https://doi.org/10.1088/0953-8984/26/48/485003
https://doi.org/10.1134/S0021364013050093
https://doi.org/10.1134/S0021364016190012
https://doi.org/10.1103/PhysRevB.96.201302
https://doi.org/10.1016/0370-1573(94)00080-M
https://doi.org/10.1038/s41467-019-13814-x
http://arxiv.org/abs/arXiv:1910.13943


TOWARDS COMPREHENSION OF THE SURFACE STATE … PHYSICAL REVIEW B 106, 205301 (2022)

[59] N. H. Jo, L.-L. Wang, R.-J. Slager, J. Yan, Y. Wu, K. Lee, B.
Schrunk, A. Vishwanath, and A. Kaminski, Phys. Rev. B 102,
045130 (2020).

[60] H. Sun, B. Xia, Z. Chen, Y. Zhang, P. Liu, Q. Yao, H. Tang,
Y. Zhao, H. Xu, and Q. Liu, Phys. Rev. Lett. 123, 096401
(2019).

[61] H. Deng, Z. Chen, A. Wolos, M. Konczykowski, K.
Sobczak, J. Sitnicka, I. V. Fedorchenko, J. Borysiuk, T.

Heider, L. Plucinski, K. Park et al., Nat. Phys. 17, 36
(2021).

[62] V. N. Men’shov, I. P. Rusinov, and E. V. Chulkov, JETP Lett.
114, 699 (2021).

[63] I. P. Rusinov, V. N. Men’shov, and E. V. Chulkov, Phys. Rev. B
104, 035411 (2021).

[64] W. Chen, Y. Zhao, Q. Yao, J. Zhang, and Q. Liu, Phys. Rev. B
103, L201102 (2021).

205301-13

https://doi.org/10.1103/PhysRevB.102.045130
https://doi.org/10.1103/PhysRevLett.123.096401
https://doi.org/10.1038/s41567-020-0998-2
https://doi.org/10.1134/S0021364021230107
https://doi.org/10.1103/PhysRevB.104.035411
https://doi.org/10.1103/PhysRevB.103.L201102

