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SU(2) gauge theory of the pseudogap phase in the two-dimensional Hubbard model
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We present a SU(2) gauge theory of fluctuating magnetic order in the two-dimensional Hubbard model. The
theory is based on a fractionalization of electrons in fermionic chargons and bosonic spinons. The chargons
undergo Néel or spiral magnetic order below a density-dependent transition temperature T ∗. Fluctuations of the
spin orientation are described by a nonlinear sigma model obtained from a gradient expansion of the spinon
action. The spin stiffnesses are computed from a renormalization group improved random phase approximation.
Our approximations are designed for moderate, not for strong, Hubbard interactions. The stiffnesses are strongly
doping dependent with discontinuities at half-filling and a pronounced electron-hole asymmetry. The spinon
fluctuations prevent magnetic long-range order of the electrons at any finite temperature. The phase with
magnetic chargon order shares characteristic features with the pseudogap regime in high-Tc cuprates: a strong
reduction of charge carrier density, a spin gap, and Fermi arcs. A substantial fraction of the pseudogap regime
exhibits electronic nematicity.
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I. INTRODUCTION

Aside from their exceptionally high transition temperatures
for superconductivity, a peculiar and fairly universal feature
of hole-doped cuprate superconductors is their pseudogap be-
havior for temperatures above Tc, observed in a broad doping
range from the underdoped into the optimally doped regime
[1,2]. The pseudogap behavior sets in at a temperature T ∗
which is much higher than Tc in the underdoped regime, and
merges with Tc near optimal doping. It is characterized by a
spin gap, a reduction of the charge carrier concentration, a
suppression of the electronic density of states, a gap for single-
particle excitations in the antinodal region of the Brillouin
zone, and a reconstructed Fermi surface which in photoemis-
sion looks like Fermi arcs. It is also associated with a tendency
to electronic nematicity, where the electronic state breaks the
tetragonal symmetry of the crystal. Suppressing superconduc-
tivity by high magnetic fields, the pseudogap regime extends
into the region which in the absence of magnetic fields is
superconducting: for doping concentrations as high as about
20% [2].

There is convincing numerical evidence for pseudogap be-
havior in the strongly interacting two-dimensional Hubbard
model, in particular from quantum cluster calculations [3]. An
unbiased “fluctuation diagnostics” [4] of the contributions to
the self-energy has revealed that the pseudogap is generated
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predominantly by antiferromagnetic fluctuations, that is, by
spin fluctuations with wave vectors at or near (π, π ).

While the guidance provided by numerical results is clearly
very valuable, a deeper understanding of the pseudogap phe-
nomenon and data with a higher momentum resolution remain
desirable. The momentum resolution of the self-energy and of
other momentum-dependent quantities is limited in all cluster
methods since the computational effort grows exponentially
with the cluster size. Also long-range correlations (in real
space) beyond the cluster size cannot be captured. The same
limitations hold of course for direct numerical simulations of
finite systems.

In this situation approximate analytic theories can provide
further insights, especially concerning long-range correlations
and the fine structure in momentum space. Early theories of
the pseudogap phenomenon were based on weak-coupling
diagrammatic perturbation expansions, most notably Moriya’s
renormalized theory [5] and the two-particle self-consistent
theory by Vilk and Tremblay [6]. The Mermin-Wagner the-
orem on the absence of spin symmetry breaking at finite
temperatures is respected in these theories, but the pseudogap
seems to develop only for fairly large magnetic correlation
lengths, while the numerical data show that strong short-
ranged correlations are sufficient.

More recently it was shown by Sachdev, Scheurer, and
coworkers that many features of the pseudogap behavior ob-
served in cuprates can be captured by a SU(2) gauge theory
[7–11]. This approach is based on a fractionalization of the
electron into a fermionic “chargon” with a pseudospin degree
of freedom and a charge neutral “spinon.” The latter is a SU(2)
matrix providing a space- and time-dependent local reference
frame [12]. The local spin rotations can be parametrized by a
SU(2) gauge field, and the fractionalization leads to a gauge
redundancy. One can then consider states where the chargons
exhibit some sort of magnetic order (for example, Néel or
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spiral), while the spinon fluctuations prevent symmetry
breaking and magnetic long-range order of the physical spin-
carrying electrons [13–15]. Quantities involving only charge
degrees of freedom behave essentially as in a conventional
magnetically ordered state, and the Fermi surface gets cor-
respondingly reconstructed. While long-range order is absent,
at least at finite temperatures, the electrons are subject to a
“topological” order in the sense that smoothly varying local
spin rotations can map the fluctuating spin configurations to an
ordered pattern, that is, there is no proliferation of topological
defects [11].

In this paper we formulate a SU(2) gauge theory for
the fluctuating antiferromagnet in a way that allows us to
compute, in a decent approximation for moderate Hubbard
interactions, effective low-energy parameters and physical
quantities as a function of the microscopic model parameters.
The chargon order parameter is computed from a renormal-
ized mean-field theory [16] which takes high-energy (above
T ∗) spin, charge, and pairing fluctuations into account on
equal footing. We allow for Néel and planar spiral order with
generally incommensurate ordering wave vectors. The spinon
dynamics is described by a nonlinear sigma model (NLσM).
The parameters of the NLσM, that is, the spin stiffnesses, are
computed from a renormalized random phase approximation
(RPA) for the SU(2) gauge field response of the chargons
[17], and the ultraviolet cutoff is estimated via the magnetic
coherence length. The NLσM is evaluated in a large-N ex-
pansion. Applying the general theory to the Hubbard model
with next- and next-nearest-neighbor hopping at a moderate
interaction strength (about half-bandwidth), we obtain a broad
finite-temperature pseudogap regime on the hole-doped side
and a narrower pseudogap region for electron doping. Ne-
matic order is present at sufficiently low temperatures for hole
doping, but not for electron doping. There is no magnetic
long-range order at T > 0, in agreement with the Mermin-
Wagner theorem, and the spin excitations are gapped. The
spinon quantum fluctuations are not strong enough to destroy
magnetic long-range order in the ground state, except possibly
near the edge of the pseudogap regime at large hole doping.
In the hole-doped pseudogap regime, the Fermi surfaces ex-
tracted from the single-particle spectral function have the form
of hole pocket boundaries with a truncated back side. Their
topology is thus the same as for the experimentally observed
Fermi arcs.

We note that the SU(2) gauge theory described above is
not related to the SU(2) gauge theory for doped Mott insula-
tors developed by Wen and Lee [18,19]. In the latter theory,
the SU(2) symmetry originates from a nondouble occupancy
constraint at strong coupling, and it leaves the spin operators
invariant.

The paper is structured as follows. In Sec. II we derive the
general structure of the SU(2) gauge theory for the pseudogap
phase with Néel or spiral order in the chargon sector. In
Sec. III we describe how we compute the parameters of the
gauge theory, in particular the spin stiffnesses, from the under-
lying microscopic model. Section IV deals with the solution
of the nonlinear sigma model for the spinon fluctuations in a
large-N expansion. Results for the two-dimensional Hubbard
model are presented in Sec. V. We conclude with a summary
and a final discussion of our theory in Sec. VI.

II. SU(2) GAUGE THEORY

A. Fractionalizing the electron field

We consider the Hubbard model on a square lattice with
units of length such that the lattice spacing is one. The Hub-
bard action in imaginary time reads as

S[c, c∗] =
∫ β

0
dτ

{ ∑
j, j′,σ

c∗
jσ [(∂τ − μ)δ j j′ + t j j′ ]c j′σ

+ U
∑

j

n j↑n j↓

}
, (1)

where c jσ = c jσ (τ ) and c∗
jσ = c∗

jσ (τ ) are Grassmann fields
corresponding to the annihilation and creation, respectively, of
an electron with spin orientation σ at site j, and n jσ = c∗

jσ c jσ .
The chemical potential is denoted by μ, and U > 0 is the
strength of the (repulsive) Hubbard interaction. To simplify
the notation, we write the dependence of the fields on the
imaginary time τ only if needed for clarity.

The action in (1) is invariant under global SU(2) rotations
acting on the Grassmann fields as

c j → Uc j, c∗
j → c∗

j U†, (2)

where c j and c∗
j are two-component spinors composed from

c jσ and c∗
jσ , respectively, while U is a SU(2) matrix acting in

spin space.
To separate collective spin fluctuations from the charge

degrees of freedom, we fractionalize the electronic fields as
[12–15]

c j = Rj ψ j, c∗
j = ψ∗

j R†
j , (3)

where Rj ∈ SU(2), to which we refer as “spinon,” is composed
of bosonic fields, and the components ψ js of the “chargon”
spinor ψ j are fermionic. According to (2) and (3) the spinons
transform under the global SU(2) spin rotation by a left
matrix multiplication, while the chargons are left invariant.
Conversely, a U(1) charge transformation acts only on ψ j ,
leaving Rj unaffected. We have therefore separated the spin
degrees of freedom of the physical electrons, now encoded in
the spinons, from their charge, carried by the chargons. The
transformation in Eq. (3) introduces a redundant SU(2) gauge
symmetry, acting as

ψ j → V j ψ j, ψ∗
j → ψ∗

j V†
j , (4a)

Rj → Rj V†
j , R†

j → V j R†
j , (4b)

with V j ∈ SU(2). Hence, the components ψ js of ψ j carry a
SU(2) gauge index s, while the components Rj,σ s of Rj have
two indices, the first one (σ ) corresponding to the global
SU(2) symmetry, and the second one (s) to SU(2) gauge
transformations.

We now rewrite the Hubbard action in terms of the spinon
and chargon fields. The quadratic part of (1) can be expressed
as [14]

S0[ψ,ψ∗, R] =
∫ β

0
dτ

{∑
j

ψ∗
j [∂τ − μ − A0, j]ψ j

+
∑
j, j′

t j j′ ψ
∗
j e−r j j′ ·(∇−iA j ) ψ j

}
, (5)
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where we have introduced a SU(2) gauge field, defined as

Aμ, j = (A0, j, A j ) = iR†
j∂μRj, (6)

with ∂μ = (i∂τ ,∇). Here, the nabla operator ∇ is defined as
generator of translations on the lattice, that is, e−r j j′ ·∇ with
r j j′ = r j − r j′ is the translation operator from site j to site j′.

To rewrite the interacting part in (1), we use the decompo-
sition [12,14,20]

n j↑n j↓ = 1
4 (n j )

2 − 1
4 (c∗

j �σ · 	̂ j c j )
2, (7)

where n j = n j,↑ + n j,↓ is the charge density operator, �σ =
(σ 1, σ 2, σ 3) are the Pauli matrices, and 	̂ j is an arbitrary
time- and site-dependent unit vector. Inserting the decom-
position (3), the interaction term of the Hubbard action can
therefore be written as

Sint[ψ,ψ∗, R] =
∫ β

0
dτ U

∑
j

[
1

4

(
nψ

j

)2 − 1

4

(�Sψ
j · 	̂R

j

)2
]
,

(8)

where nψ
j = ψ∗

j ψ j is the chargon density operator, �Sψ
j =

1
2ψ∗

j �σψ j is the chargon spin operator, and 	̂R
j is a unit vector

obtained by rotating 	̂ j as

�σ · 	̂R
j = R†

j �σ · 	̂ j R j . (9)

Using (7) again, we obtain

Sint[ψ,ψ∗, R] =
∫ β

0
dτ U

∑
j

nψ

j↑nψ

j↓, (10)

with nψ
js = ψ∗

jsψ js. Therefore, the final form of the action S =
S0 + Sint is nothing but the Hubbard model action where the
physical electrons have been replaced by chargons coupled to
a SU(2) gauge field.

Since the chargons do not carry the physical spin degree
of freedom, a global breaking of their SU(2) gauge symmetry
(〈�Sψ

j 〉 �= 0) does not necessarily imply long-range order for
the electrons. The matrices Rj describe directional fluctua-
tions of the order parameter 〈�S j〉, where, at low temperatures,
the most important ones vary slowly in space and time.

B. Nonlinear sigma model

We now derive a low-energy effective action for the spinon
fields Rj by integrating out the chargons,

e−Seff [R] =
∫
Dψ Dψ∗ e−S[ψ,ψ∗,R]. (11)

Since the action S is quartic in the fermionic fields, the func-
tional integral must be carried out by means of an approximate
method. In previous works [12–14] a Hubbard-Stratonovich
transformation has been applied to decouple the chargon in-
teraction, together with a saddle-point approximation on the
auxiliary bosonic (Higgs) field. We will employ an improved
approximation based on the functional renormalization group
[21], which we describe in Sec. III.

The effective action for the spinons can be obtained by
computing the response functions of the chargons to a fic-
titious SU(2) gauge field. Since we assign only low-energy

long-wavelength fluctuations to the spinons in the decompo-
sition (3), the spinon field Rj is slowly varying in space and
time. Hence, we can perform a gradient expansion. To second
order in the gradient ∂μRj , the effective action Seff [R] has the
general form

Seff [R] =
∫
T

dx

[
Ba

μAa
μ(x) + 1

2
J ab

μνAa
μ(x)Ab

ν (x)

]
, (12)

where x = (τ, r) combines imaginary-time and space coordi-
nates, T = [0, β] × R2 is the integration region, and repeated
indices are summed. We have expanded the gauge field Aμ in
terms of the SU(2) generators,

Aμ(x) = Aa
μ(x) σ a/2, (13)

with a running from 1 to 3. In line with the gradient expansion,
the gauge field is now defined over a continuous space-time.
The coefficients in (12) do not depend on x and are given by

Ba
μ = 1

2

∑
j, j′

γ (1)
μ ( j, j′)〈ψ∗

j (0)σ aψ j′ (0)〉, (14)

J ab
μν = −1

4

∑
j, j′

∑
l,l ′

γ (1)
μ ( j, j′)γ (1)

ν (l, l ′)

×
∫ β

0
dτ 〈(ψ∗

j (τ )σ aψ j′ (τ ))(ψ∗
l (0)σ bψl ′ (0))〉c

+ 1

4

∑
j, j′

γ (2)
μν ( j, j′)〈ψ∗

j (0)ψ j′ (0)〉 δab, (15)

where 〈. . . 〉 (〈. . . 〉c) denotes the (connected) average with
respect to the chargon Hubbard action (without gauge field).
The first- and second-order current vertices have been defined
as

γ (1)( j, j′) = (δ j j′ , i x j j′ t j j′ , i y j j′ t j j′ ), (16a)

γ (2)( j, j′) = −
⎛⎝0 0 0

0 x j j′x j j′ t j j′ x j j′y j j′ t j j′

0 y j j′x j j′ t j j′ y j j′y j j′ t j j′

⎞⎠, (16b)

where x j j′ and y j j′ are the x and y components, respectively,
of r j j′ = r j − r j′ .

In Appendix A we will see that the linear term in (12) van-
ishes. We therefore consider only the quadratic contribution
to the effective action. Defining the adjoint representation R
of the SU(2) rotation R via

R† σ aR = Rabσ b, (17)

we obtain the nonlinear sigma model (NLσM) action for the
directional fluctuations (see Appendix B)

SNLσM[R] =
∫
T

dx
1

2
Tr[Pμν (∂μRT )(∂νR)], (18)

where Pμν = 1
2 Tr[Jμν]1 − Jμν .

The structure of the matrices Jμν and Pμν depends on the
magnetically ordered chargon state. In the trivial case 〈�Sψ

j 〉 =
0 all the stiffnesses vanish and no meaningful low-energy
theory for R can be derived. A well-defined low-energy theory
emerges, for example, when Néel antiferromagnetic order is
realized in the chargon sector, that is,〈�Sψ

j

〉 ∝ (−1)r j û, (19)
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where û is an arbitrary fixed unit vector. Choosing û = ê1 =
(1, 0, 0), the spin stiffness matrix in the Néel state has the
form

Jμν =
⎛⎝0 0 0

0 Jμν 0
0 0 Jμν

⎞⎠, (20)

with (Jμν ) = diag(−Z, J, J ). In this case the effective theory
reduces to the well-known O(3)/O(2)  S2 nonlinear sigma
model [22,23]

SNLσM = 1

2

∫
T

dx (Z|∂τ 	̂|2 + J| �∇	̂|2), (21)

where 	̂a = Ra1 and |	̂|2 = 1.
Another possibility is planar spiral magnetic ordering of

the chargons,〈�Sψ
j

〉 ∝ cos(Q · r j )û1 + sin(Q · r j )û2, (22)

where Q is a fixed wave vector as obtained by minimizing the
chargon free energy, while û1 and û2 are two arbitrary mu-
tually orthogonal unit vectors. The special case Q = (π, π )
corresponds to the Néel state. Fixing û1 to ê1 and û2 to
ê2 ≡ (0, 1, 0), the spin stiffness matrix assumes the form

Jμν =
⎛⎝J⊥

μν 0 0
0 J⊥

μν 0
0 0 J�

μν

⎞⎠, (23)

where

(
Ja
μν

) =
⎛⎝−Za 0 0

0 Ja
xx Ja

xy
0 Ja

yx Ja
yy

⎞⎠ (24)

for a ∈ {⊥,�}. In this case, the effective action maintains
its general form (18) and it describes the O(3)×O(2)/O(2)
symmetric NLσM, which has been previously studied in the
context of geometrically frustrated antiferromagnets [24–28].
This theory has three independent degrees of freedom, cor-
responding to one in-plane and two out-of-plane Goldstone
modes.

In the following we will restrict the magnetic order-
ing pattern of the chargons to Néel or planar spiral order.
Néel or spiral antiferromagnetism has been found in the
two-dimensional Hubbard model over broad regions of the
parameter space by several approximate methods, such as
Hartree-Fock [29], slave-boson mean-field theory [30], expan-
sion in the hole density [31], moderate coupling fRG [32], and
dynamical mean-field theory [33,34]. In our theory the mean-
field order applies only to the chargons, while the physical
electrons are subject to order-parameter fluctuations.

III. COMPUTATION OF PARAMETERS

In this section, we describe how we evaluate the chargon
integral in Eq. (11) to compute the magnetic order parameter
and the stiffness matrix Jμν . The advantage of the way we
formulated our theory in Sec. II is that it allows arbitrary
approximations on the chargon action. One can employ var-
ious techniques to obtain the order parameter and the spin
stiffnesses in the magnetically ordered phase. We use a renor-
malized mean-field (MF) approach with effective interactions

obtained from a functional renormalization group (fRG) flow.
In the following we briefly describe our approximation of the
(exact) fRG flow, and we refer to Refs. [21,35,36] for the fRG,
and to Refs. [16,32,37,38] for the fRG+MF method.

A. Symmetric regime

We evaluate the chargon functional integral by using an
fRG flow equation [21,35,36], choosing the temperature T
as flow parameter [39]. Temperature can be used as a flow
parameter after rescaling the chargon fields as ψ j → T

3
4 ψ j ,

and defining a rescaled bare Green’s function GT
0 (k, iνn) =

T
1
2 /(iνn − εk + μ), where νn = (2n + 1)πT is the fermionic

Matsubara frequency, and εk is the Fourier transform of the
hopping matrix in (1).

We approximate the exact fRG flow by a second-order
(one-loop) flow of the two-particle vertex V T , discarding
self-energy feedback and contributions from the three-particle
vertex [21]. In a SU(2) invariant system the two-particle vertex
has the spin structure

V T
σ1σ2σ3σ4

(k1, k2, k3, k4) =V T (k1, k2, k3, k4) δσ1σ3 δσ2σ4

− V T (k2, k1, k3, k4) δσ1σ4 δσ2σ3 ,

where kα = (kα, iναn) are combined momentum and fre-
quency variables. Translation invariance imposes momentum
conservation so that k1 + k2 = k3 + k4. We perform a static
approximation, that is, we neglect the frequency dependency
of the vertex. To parametrize the momentum dependence, we
use the channel decomposition [40–43]

V T (k1, k2, k3, k4) = U − φ
p,T
k1−k2

2 ,
k3−k4

2

(k1 + k2)

+φm,T
k1+k4

2 ,
k2+k3

2

(k2 − k3)

+ 1

2
φm,T

k1+k3
2 ,

k2+k4
2

(k3 − k1)

− 1

2
φc,T

k1+k3
2 ,

k2+k4
2

(k3 − k1), (25)

where the functions φp,T , φm,T , and φc,T capture fluctuations
in the pairing, magnetic, and charge channel, respectively. The
dependencies of these functions on the linear combination
of momenta in the brackets are typically much stronger than
those in the subscripts. Hence, we expand the latter depen-
dencies in form factors [40,44], keeping only the lowest-order
s-wave, extended s-wave, p-wave, and d-wave contributions.

We run the fRG flow from the initial temperature Tini = ∞,
at which V Tini = U , down to a critical temperature T ∗ at V T

diverges, signaling the onset of spontaneous symmetry break-
ing (SSB). If the divergence of the vertex is due to φm,T , the
chargons develop some kind of magnetic order.

B. Order parameter

In the magnetic phase, that is, for T < T ∗, we assume an
order parameter of the form 〈ψ∗

k,↑ψk+Q,↓〉, which corresponds
to Néel antiferromagnetism if Q = (π, π ), and to spiral order
otherwise.

For T < T ∗ we simplify the flow equations by decou-
pling the three channels φp,T , φm,T , and φc,T . The flow
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equations can then be formally integrated, and the formation
of an order parameter can be easily taken into account [16].
We focus on magnetic order and ignore the pairing instability
to analyze the nonsuperconducting “normal” state. In the mag-
netic channel one thus obtains the magnetic gap equation [32]

�k =
∫

k′
V̄ m

k,k′ (Q)
f (E−

k′ ) − f (E+
k′ )

E+
k′ − E−

k′
�k′ , (26)

where f (x) = (ex/T + 1)−1 is the Fermi function,
∫

k is a

shorthand notation for
∫

d2k
(2π )2 , and E±

k are the quasiparticle
dispersions

E±
k = εk + εk+Q

2
±

√
1

4
(εk − εk+Q)2 + �2

k − μ. (27)

The effective coupling V̄ m
k,k′ (Q) is the particle-hole irreducible

part of V T ∗
in the magnetic channel, which can be obtained by

inverting a Bethe-Salpeter equation at the critical scale,

V m,T ∗
k,k′ (q) = V̄ m

k,k′ (q)

−
∫

k′′
V̄ m

k,k′′ (q) �T ∗
k′′ (q)V m,T ∗

k′′,k′ (q), (28)

where V m,T
k,k′ (q) = V T (k − q/2, k′ + q/2, k′ − q/2, k +

q/2), and the particle-hole bubble is given by

�T
k (q) =

∑
νn

GT
0 (k − q/2, iνn)GT

0 (k + q/2, iνn). (29)

Although V m,T ∗
k,k′ (q) diverges at certain wave vectors q = Qc,

the irreducible coupling V̄ m
k,k′ (q) is finite for all q.

The dependence of V̄ m
k,k′ (q) on k and k′ is rather weak

and of no qualitative importance. Hence, to simplify the
calculations, we discard the k and k′ dependencies of the
effective coupling by taking the momentum average V̄ m(q) =∫

k,k′ V̄ m
k,k′ (q). The magnetic gap then becomes momentum

independent, that is, �k = �. While the full vertex V m,T
k,k′ (q)

depends very strongly on q, the dependence of its irreducible
part V̄k,k′ (q) on q is rather weak. The calculation of the stiff-
nesses in the subsequent section is considerably simplified
approximating V̄ m(q) by a momentum-independent effective
interaction U m

eff = V̄ m(Qc).
The optimal ordering wave vector Q is found by minimiz-

ing the mean-field free energy of the system

F (Q) = −T
∫

k

∑
�=±

ln
(
1 + e−E �

k (Q)/T
) + �2

2U m
eff

+ μn, (30)

where the chemical potential μ is determined by keeping the
density n = ∫

k

∑
�=± f (E �

k ) fixed. The optimal wave vectors
Q at temperatures T < T ∗ generally differ from the wave
vectors Qc at which V T ∗

k,k′ (q) diverges.
Equation (26) has the form of a mean-field gap equa-

tion with a renormalized interaction that is reduced compared
to the bare Hubbard interaction U by fluctuations in the
pairing and charge channels. This reduces the critical doping
beyond which magnetic order disappears, compared to the
unrealistically large values obtained already for weak bare
interactions in pure Hartree-Fock theory (see, e.g., Ref. [29]).

C. Spin stiffnesses

The NLσM parameters, that is, the spin stiffnesses J ab
μν ,

are obtained by evaluating Eq. (15). These expressions can be
viewed as the reponse of the chargon system to an external
SU(2) gauge field in the low-energy and long-wavelength
limit, and they are equivalent to the stiffnesses defined by
an expansion of the inverse susceptibilities to quadratic or-
der in momentum and frequency around the Goldstone poles
[17,45]. The following evaluation is obtained as a simple
generalization of the RPA formula derived in Ref. [17] to a
renormalized RPA with effective interactions U m

eff and U c
eff .

Since in the magnetic state the translational symmetry is bro-
ken, the Fourier transforms of the response functions depend
on two distinct momenta q and q′, where q′ can assume the
values q, q ± Q, and q ± 2Q. However, to compute J ab

μν , we
only need to deal with the limit q, q′ → 0.

The temporal components of the stiffness matrix, that is,
J ab

00 , are given by the uniform spin susceptibility in the dy-
namical limit [17]

J ab
00 = −χab

dyn = − lim
ω→0

χab(0, 0, ω), (31)

where χab(q, q′, ω) is the Fourier transform of

χab
jl (τ ) = 1

4 〈(ψ∗
j (τ )σ aψ j (τ ))(ψ∗

l (0)σ bψl (0))〉c. (32)

Note that, in a metallic system, the static uniform susceptibil-
ity obtained from q, q′ → 0 after setting ω = 0 differs from
the quantity defined in Eq. (31).

The spin susceptibility can be most conveniently computed
in a rotating spin frame defined by the transformation [45,46]

ψ̃ j = e−i Q
2 ·r j eiσ 3 Q

2 ·r j ψ j, ψ̃∗
j = ψ∗

j e−iσ 3 Q
2 ·r j ei Q

2 ·r j , (33)

since in the rotated frame the magnetically ordered system
appears translation invariant. Hence, the rotated susceptibility
is diagonal in momentum space and can therefore be written
as χ̃ab(q, ω), with a single momentum variable q.

Consistently with the mean-field theory for the magnetic
order parameter, we compute the susceptibilities in the mag-
netic state via a random phase approximation (RPA) with
renormalized interactions as obtained from the fRG. In a spiral
state with a generic wave vector Q, the spin susceptibility
is coupled to the charge susceptibility [46]. Hence, we ex-
tend the definition of the spin susceptibility in Eq. (32) to a
combined charge-spin susceptibility by including the value 0
for the indices a and b, in addition to the values 1,2,3, and
defining σ 0 as the two-dimensional unit matrix. The prefactor
1
4 in Eq. (32) implies that χ00 is actually a quarter of the
conventional charge susceptibility.

In RPA, the rotated susceptibility χ̃ can be written as

χ̃ab(q) = χ̃ab
0 (q) +

3∑
a′,b′=0

χ̃aa′
0 (q)�̃a′b′

(q)χ̃b′b
0 (q), (34)

where q = (q, ω), and �̃ab(q) is the RPA effective interaction
in the rotated spin frame. The “bare” susceptibility χ̃ab

0 (q) is
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given by the particle-hole bubble [45]

χ̃ab
0 (q, ω) = −1

4

∫
k

T
∑
νn

Tr[σ aG̃(k + q, iνn + ω + i0+)

× σ bG̃(k, iνn)], (35)

with G̃(k, iνn) the mean-field chargon Green’s function in the
rotated basis

G̃(k, iνn) =
(

iνn − εk + μ −�

−� iνn − εk+Q + μ

)−1

. (36)

The RPA effective interaction is obtained from a ladder sum,
leading to the linear matrix equation

�̃ab(q) = �̃ab
0 (q) +

3∑
a′,b′=0

�̃aa′
0 (q) χ̃a′b′

0 (q) �̃b′b(q), (37)

where

�̃ab
0 (q) = �ab

0 (q) = 2 diag
[ − U c

eff (q),U m
eff ,U m

eff ,U m
eff

]
. (38)

The effective charge interaction is given by U c
eff (q) =∫

k,k′ V̄ c
k,k′ (q), where the irreducible coupling V̄ c

k,k′ (q) is ob-
tained by inverting a Bethe-Salpeter equation similar to
Eq. (28),

V c,T ∗
k,k′ (q) = V̄ c

k,k′ (q)

+
∫

k′′
V̄ c

k,k′′ (q) �T ∗
k′′ (q)V c,T ∗

k′′,k′ (q), (39)

with

V c,T
k,k′ (q) = 2V T (k−q/2, k′+q/2, k+q/2, k′−q/2)

−V T (k−q/2, k′+q/2, k′−q/2, k+q/2).

Here we keep the dependence on q since it does not com-
plicate the calculations. The off-diagonal (a �= b) elements of
χab(0, 0, ω) with a, b = 1, 2, 3 vanish for ω → 0 both in the
spiral and in the Néel states, so that we need to deal only with
the diagonal spin susceptibility components χaa(q, q, ω).

In a spiral state with Q �= (π, π ), the diagonal (both in
momentum and spin indices) spin susceptibility components
are related to the susceptibility components in the rotated basis
as [45]

χ11(q, q, ω) = χ22(q, q, ω)

= 1

4

∑
s=±

[χ̃11(q + sQ) + χ̃22(q + sQ)]

+ 2iχ̃12(q + Q) + 2iχ̃21(q − Q), (40a)

χ33(q, q, ω) = χ̃33(q), (40b)

where Q = (Q, 0). The momentum diagonal components of
χ11(q, q′, ω) and χ22(q, q′, ω) are equal, and the limit ω → 0
in (31) is nonzero for all diagonal components, yielding

J00 =
⎛⎝−Z⊥ 0 0

0 −Z⊥ 0
0 0 −Z�

⎞⎠, (41)

with Z⊥ = χ22(0, 0, ω → 0) and Z� = χ33(0, 0, ω → 0).
The quantities Z� and Z⊥ parametrize the low-frequency

dependence of the in-plane and out-of-plane spin susceptibil-
ity, respectively, near the Goldstone poles [17,45].

In the limits ω → 0 and q → 0 or Q, several off-diagonal
matrix elements of the RPA effective interaction �̃ab(q, ω)
vanish [45]. The expressions for Za can therefore be simplified
to [17]

Z� = χ̃33
0 (0, ω → 0)

1 − 2U m
eff χ̃33

0 (0, ω → 0)
(42)

and

Z⊥ = 2χ̃−+
0 (Q, 0)

+ 2
∑

a,b=0,1,2

χ̃−a
0 (Q, 0)�̃ab(Q, 0)χ̃b+

0 (Q, 0), (43)

where superscripts + and − attached to χ̃0 indicate that the
susceptibilities are formed with the ladder operators S± =
1
2 (S1 ± S2).

In the Néel state, terms which contribute to χ11(q, q′, ω)
and χ22(q, q′, ω) with q′ = q ± 2Q for Q �= (π, π ), con-
tribute to the momentum diagonal susceptibilities since 2Q ≡
0 for Q = (π, π ). The transformation of the susceptibilities
from the rotated to the unrotated basis then reads as [45]

χ11(q, q, ω) = χ̃11(q + Q), (44a)

χ22(q, q, ω) = χ̃22(q + Q), (44b)

χ33(q, q, ω) = χ̃33(q). (44c)

Since χ̃11(Q, ω) = 0 and χ̃22(q + Q) = χ̃33(q) for Q =
(π, π ), we obtain

J00 =
⎛⎝0 0 0

0 −Z 0
0 0 −Z

⎞⎠, (45)

with Z = χ22(0, 0, ω → 0) in the Néel state, which can be
evaluated by the same expression as the one for Z� in
Eq. (42). The spatial components of the stiffness matrix J ab

αβ

with α, β = 1, 2 are obtained from the spatial components of
the uniform gauge field kernel Kab

αβ in the static limit [17]

J ab
αβ = − lim

q→0
Kab

αβ (q, q, 0), (46)

where Kab
αβ (q, q′, ω) = Kp,ab

αβ (q, q′, ω) + δabKd
αβ is the

Fourier transform of

Kab
αβ, jl (τ ) = Kp,ab

αβ, jl (τ ) + Kd
αβ δabδ jlδ(τ ), (47)

with the paramagnetic and diamagnetic contributions [cf.
Eq. (15)]

Kp,ab
αβ, jl (τ ) = 1

4

∑
j′,l ′

γ (1)
α ( j, j′) γ

(1)
β (l, l ′)

×〈(ψ∗
j (τ )σ aψ j′ (τ ))(ψ∗

l (0)σ bψl ′ (0))〉c, (48)

Kd
αβ = −1

4

∑
j′

γ
(2)
αβ ( j, j′) 〈ψ∗

j (0)ψ j′ (0)〉, (49)

respectively. The diamagnetic contribution is translation in-
variant (in a spiral or Néel state). Fourier transforming, and
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FIG. 1. Diagrams contributing to the spin stiffness. The black triangles and circles represent the first- and second-order current vertices
γ (1)

α (k) and γ
(2)
αβ (k), respectively, while the dashed line represents the effective interaction �ab(q, q′, ω).

evaluating the expectation value in Eq. (49) by the renormal-
ized RPA, the paramagnetic part of the spin stiffness can be
written as

J p,ab
αβ = − lim

q→0

[
Kp,ab

0,αβ (q, q, 0)

+
3∑

a′,b′=0

∫
q′,q′′

Kp,aa′
0,α0 (q, q′, 0)

× �a′b′
(q′, q′′, 0)Kp,b′b

0,0β (q′′, q, 0)

]
, (50)

where �ab(q, q′, ω) is the RPA effective interaction (37) in
the original (nonrotated) spin basis. The bare paramagnetic
response kernel is given by

Kp,ab
0,μν (q, q′, 0) = −1

4

∫
k,k′

T
∑
νn

γ (1)
μ (k + q) γ (1)

ν (k′)

× Tr[σ aG(k + q, k′

+ q′, iνn)σ bG(k′, k, iνn)], (51)

where γ (1)(k) = (1, ∂kx εk, ∂kyεk ) is the Fourier transform of
γ (1)( j, j′) in Eq. (16a). The chargon Green’s function in the
original spin basis reads as

G(k, k′, iνn) =
(

G+Q(k) δk,k′ F+Q(k) δk+Q,k′

F−Q(k) δk−Q,k′ G−Q(k) δk,k′

)
, (52)

with

G±Q(k) = iνn − εk±Q + μ

(iνn−εk+μ)(iνn−εk±Q+μ) − �2
, (53a)

F±Q(k) = �

(iνn−εk+μ)(iνn−εk±Q+μ) − �2
. (53b)

The diamagnetic part of the spin stiffness can be obtained
from the Green’s function as

J d,ab
αβ = δab

4

∫
k,k′

T
∑
νn

γ
(2)
αβ (k) tr[G(k, k′, iνn)], (54)

where γ
(2)
αβ (k) = ∂kα

∂kβ
εk is the Fourier transform of the

second-order current vertex γ
(2)
αβ ( j, j′) in Eq. (16b). The var-

ious contributions to the response kernel are represented
diagrammatically in Fig. 1.

The off-diagonal (a �= b) components of Kab
αβ (q, q, 0) van-

ish for q → 0 in the spiral and in the Néel states, so that
we need to consider only the diagonal components. For a =
b = 1, 2 only the first (bare) term in Eq. (50) contributes to
the stiffness [17]. In a spiral state with Q �= (π, π ), one thus

obtains the out-of-plane stiffness as

J⊥
αβ = J 11

αβ = J 22
αβ = − lim

q→0
Kp,22

0,αβ (q, q, 0) − Kd
αβ. (55)

For a = b = 3, there are nonvanishing components of the
kernel that mix temporal and spatial indices, namely,

Kp,30
0,α0(q, q′, 0) = Kp,03

0,0α (q, q′, 0) = Kp,30
0,α0(q, 0) δq,q′ , (56a)

Kp,31
0,α0(q, q′, 0) = Kp,13

0,0α (q, q′, 0)

= Kp,31
0,α0(q, 0)

δq+Q,q′ + δq−Q,q′

2
, (56b)

Kp,32
0,α0(q, q′, 0) = Kp,23

0,0α (q, q′, 0)

= Kp,32
0,α0(q, 0)

δq+Q,q′ − δq−Q,q′

2i
. (56c)

Using Kp,31
0,α0(q → 0, 0) = Kp,32

0,α0(q → 0, 0), one thus obtains
the in-plane stiffness in the form [17]

J�
αβ = J 33

αβ = − lim
q→0

Kp,33
0,αβ (q, q, 0) − Kd

αβ

− lim
q→0

∑
a,b=0,1

Kp,3a
0,α0(q, 0) �̃ab(q, 0)Kp,3b

0,β0(q, 0), (57)

where �̃ab(q) is the effective interaction in the spin rotated
basis [see Eq. (37)].

In the Néel state one finds, in close analogy to the tem-
poral components J ab

00 of the stiffness matrix, J 11
αβ = 0 and

J 22
αβ = J 33

αβ = Jδαβ , which can be most easily computed from
the right-hand side of Eq. (55).

In our low-energy theory of the spinons we have ignored
possible imaginary contributions from Landau damping of the
Goldstone modes. In a Néel state, they are of the same order
in the gradient expansion as the (real) temporal and spatial
stiffness terms [47]. The same is true for the Landau damp-
ing of the in-plane mode in a spiral state, but the damping
of the out-of-plane mode is of higher order [45]. Moreover,
it requires the existence of hot spots (connected by Q) of
the reconstructed Fermi surface. In our large-N evaluation
of the NLσM, the in-plane modes of the spiral state do not
contribute. Hence, for the spiral state, Landau damping is
irrelevant for our theory, while in the Néel state there might
be a quantitative (not qualitative) modification of our results.

We conclude this section by comparing our theory to the
SU(2) gauge theory of the half-filled Hubbard model derived
by Borejsza and Dupuis [14]. They used the same fraction-
alization of the electron in chargons and spinons, and the
chargon order was treated in (plain) mean-field theory. Our
expressions for the spin stiffnesses agree with theirs (at half-
filling) if we replace our renormalized interaction U m

eff by the
bare Hubbard interaction U , although their derivation differs
from ours. Following earlier work by Haldane [22,23] for
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the Heisenberg model, Borejsza and Dupuis obtained their
expressions for the spin stiffnesses by splitting the spinon into
a “Néel field” and a “canting field” describing ferromagnetic
fluctuations. Integrating out the fermions and the canting field
they obtained a NLσM for the Néel field, where the stiffnesses
are given by the RPA. We obtain the same expressions (with
a renormalized coupling) more directly from the RPA eval-
uation of the gauge field response, without introducing the
canting field.

IV. EVALUATION OF SIGMA MODEL

To solve the NLσM, we resort to a saddle-point approx-
imation in the CPN−1 representation, which is exact in the
large-N limit [48,49].

A. CP1 representation

The matrix R can be expressed as a triad of orthonormal
unit vectors:

R = (	̂1, 	̂2, 	̂3), (58)

where 	̂i · 	̂ j = δi j . We represent these vectors in terms of
two complex Schwinger bosons z↑ and z↓ [47]:

	̂− = z(iσ 2 �σ )z, (59a)

	̂+ = z∗(iσ 2 �σ )†z∗, (59b)

	̂3 = z∗ �σ z, (59c)

with z = (z↑, z↓) and 	̂± = 	̂1 ∓ i	̂2. The Schwinger bosons
obey the nonlinear constraint

z∗
↑z↑ + z∗

↓z↓ = 1. (60)

The parametrization (59) is equivalent to

R =
(

z↑ −z∗
↓

z↓ z∗
↑

)
. (61)

Inserting the expressions (58) and (59) into Eq. (18) and
assuming a stiffness matrix Jμν of the form (23), we obtain
the CP1 action for fluctuating spiral order

SCP1 [z, z∗] =
∫
T

dx [2J⊥
μν (∂μz∗)(∂νz) − 2(J⊥

μν − J�
μν ) jμ jν],

(62)

with sum convention for repeated greek indices and the cur-
rent operator

jμ = i

2
[z∗(∂μz) − (∂μz∗)z]. (63)

For the Néel case, the CP1 action is given by the same ex-
pression with J�

μν = 0. We recall that x = (τ, r) comprises the
imaginary-time and space variables, and T = [0, β] × R2.

B. Large-N expansion

The current-current interaction in Eq. (62) can be decou-
pled by a Hubbard-Stratonovich transformation, introducing
a U(1) gauge field Aμ, and implementing the constraint (60)
by means of a Lagrange multiplier λ. The resulting form of

the action describes the so-called massive CP1 model [50]

SCP1 [z, z∗,Aμ, λ] =
∫
T

dx

[
2J⊥

μν (Dμz)∗(Dνz)

+ 1

2
MμνAμAν + iλ(z∗z − 1)

]
, (64)

where Dμ = ∂μ − iAμ is the covariant derivative. The num-
bers Mμν are the matrix elements of the mass tensor of the
U(1) gauge field,

M = 4[1 − J�(J⊥)−1]−1J�, (65)

where J� and J⊥ are the stiffness tensors built from the matrix
elements J�

μν and J⊥
μν , respectively.

To perform a large-N expansion, we extend the two-
component field z = (z↑, z↓) to an N-component field z =
(z1, . . . , zN ), and rescale it by a factor

√
N/2 so that it now

satisfies the constraint

z∗z =
N∑

α=1

z∗
αzα = N

2
. (66)

To obtain a nontrivial limit N → ∞, we rescale the stiffnesses
J⊥
μν and J�

μν by a factor 2/N , yielding the action

SCPN−1 [z, z∗,Aμ, λ] =
∫
T

dx

[
2J⊥

μν (Dμz)∗(Dνz)

+N

4
MμνAμAν + iλ

(
z∗z− N

2

)]
. (67)

This action describes the massive CPN−1 model [51], which
in d > 2 dimensions displays two distinct critical points
[49,50,52]. The first one belongs to the pure CPN−1 class,
where Mμν → 0 (J�

μν = 0), which applies, for example, in the
case of Néel ordering of the chargons, and the U(1) gauge
invariance is preserved. The second is in the O(2N) class,
where Mμν → ∞ (J⊥

μν = J�
μν) and the gauge field does not

propagate. At the leading order in N−1, the saddle-point equa-
tions are the same for both fixed points, so that we can ignore
this distinction in the following.

At finite temperatures T > 0 the nonlinear sigma model
does not allow for any long-range magnetic order, in agree-
ment with the Mermin-Wagner theorem. The spin correlations
decay exponentially and the spin excitations are bounded from
below by a spin gap ms =

√
i〈λ〉/Z⊥. In the large-N limit, the

spin gap ms is related to the spin stiffness by the following
equation (see Appendix C for a derivation):

1

4πJ

∫ cs�uv

0

ε dε√
ε2 + m2

s

coth

(√
ε2 + m2

s

2T

)
= 1, (68)

where �uv is an ultraviolet momentum cutoff. The constant J
is an “average” spin stiffness given by

J =
√

det

(
J⊥

xx J⊥
xy

J⊥
yx J⊥

yy

)
, (69)

and cs =
√

J/Z⊥ is the corresponding average spin wave ve-
locity. In Sec. IV C, we shall discuss how to choose the value
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of �uv. For ms � cs�uv, and T � cs�uv, the magnetic corre-
lation length ξs = 1

2 cs/ms behaves as

ξs = cs

4T sinh−1
[

1
2 e− 2π

T (J−Jc )
] , (70)

with the critical stiffness

Jc = cs�uv

4π
. (71)

The correlation length is finite at each T > 0. For J > Jc, ξs

diverges exponentially for T → 0, while for J < Jc it remains
finite in the zero-temperature limit.

At T = 0, the bosons may condense and the saddle-point
condition yields

n0 + 1

4πJ

∫ cs�uv

0

ε dε√
ε2 + m2

s

= 1, (72)

where n0 = |〈z1〉|2 is the fraction of condensed bosons. Equa-
tion (72) can be easily solved, yielding (if ms � �uv)

ms = 0
n0 = 1 − Jc

J
for J > Jc, (73a)

n0 = 0
ms = 2πJ[(Jc/J )2 − 1]

for J < Jc. (73b)

The Mermin-Wagner theorem is thus respected already in the
saddle-point approximation to the CPN−1 representation of the
nonlinear sigma model, that is, there is no long-range order at
T > 0. In the ground state, long-range order (corresponding
to a z-boson condensation) is obtained for a sufficiently large
spin stiffness, while for J < Jc magnetic order is destroyed by
quantum fluctuations even at T = 0, giving rise to a paramag-
netic state with a spin gap.

C. Choice of ultraviolet cutoff

The impact of spin fluctuations described by the nonlinear
sigma model depends strongly on the ultraviolet cutoff �uv.
In particular, the critical stiffness Jc separating a ground state
with magnetic long-range order from a disordered ground
state is directly proportional to �uv. The need for a regulariza-
tion of the theory by an ultraviolet cutoff is a consequence of
the gradient expansion. While the expansion coefficients (the
stiffnesses) are determined by the microscopic model, there is
no systematic way of computing �uv.

A pragmatic choice for the cutoff is given by the ansatz

�uv = C/ξA, (74)

where C is a dimensionless number, and ξA is the magnetic
coherence length, which is the characteristic length scale of
spin amplitude correlations. This choice may be motivated by
the observation that local moments with a well-defined spin
amplitude are not defined at length scales below ξA [14]. The
constant C can be fixed by matching results from the nonlinear
sigma model to results from a microscopic calculation in a
suitable special case (see below).

The coherence length ξA can be obtained from the con-
nected spin amplitude correlation function χA(r j, r j′ ) = 〈(n̂ j ·
�Sψ

j )(n̂ j′ · �Sψ

j′ )〉c, where n̂ j = 〈�Sψ
j 〉/|〈�Sψ

j 〉|. At long distances
between r j and r j′ this function decays exponentially with

an exponential dependence e−r/ξA of the distance r. Fourier
transforming and using the rotated spin frame introduced in
Sec. III C, the long-distance behavior of χA(r j, r j′ ) can be
related to the momentum dependence of the static correlation
function χ̃ab(q, 0) in the amplitude channel a = b = 1 for
small q, which has the general form

χ̃11(q, 0) ∝ 1

JA
αβqαqβ + m2

A

. (75)

The magnetic coherence length is then given by

ξA = √
JA/(2mA), (76)

where JA = (JA
xxJA

yy − JA
xyJA

yx )
1
2 .

The constant C in Eq. (74) can be estimated by consider-
ing the Hubbard model with pure nearest-neighbor hopping
(with amplitude −t) at half-filling. At strong coupling (large
U ) the spin degrees of freedom are then described by the
antiferromagnetic Heisenberg model, which exhibits a Néel
ordered ground state with a magnetization reduced by a factor
n0 ≈ 0.6 compared to the mean-field value [53]. On the other
hand, evaluating the RPA expressions for the Hubbard model
in the strong coupling limit, one recovers the mean-field
results for the spin stiffness and spin wave velocity of the
Heisenberg model with an exchange coupling JH = 4t2/U ,
namely, J = JH/4 and cs = √

2JH . Evaluating the RPA spin
amplitude correlation function yields ξA = 1/

√
8 in this limit.

With the ansatz (74), one then obtains n0 = 1 − 4C/π . Match-
ing this with the numerical result n0 ≈ 0.6 yields C ≈ 0.3 and
�uv ≈ 0.9.

We finally note that we are not overcounting any fluctua-
tions in our theory. In general, the electron fractionalization
in Eq. (3) introduces redundant degrees of freedom associated
with the gauge symmetry (4). We have not explicitly fixed a
gauge but, due to our (renormalized) mean-field treatment of
the chargons, fluctuations of the magnetic order parameter are
captured exclusively by the spinons.

V. RESULTS

In this section we present and discuss results obtained from
our theory for the two-dimensional Hubbard model, both in
the hole- (n < 1) and electron-doped (n > 1) regimes. We
allow for next- and second-nearest-neighbor hoppings with
amplitudes −t and −t ′, respectively, and we fix the ratio
of the hopping amplitudes as t ′/t = −0.2, and we choose a
moderate interaction strength U = 4t . The energy unit is t in
all plots.

A. Chargon mean-field phase diagram

The vertex V T (k1, k2, k3, k4) as obtained from the fRG
flow diverges at a density-dependent critical temperature T∞.
In a density range from n ≈ 0.83 to n ≈ 1.08, the divergence
of the vertex is due to a magnetic instability. Beyond the edges
of this density interval, the leading instability occurs in the
d-wave pairing channel. Pairing extends into the magnetic
regime at lower temperatures (below T∞) as a secondary insta-
bility. Vice versa, magnetic order is possible at temperatures
below T∞ in the regime where pairing fluctuations dominate
[16,32].
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FIG. 2. Chargon phase diagram in the plane spanned by density
and temperature. The black solid line labeled by T ∗ indicates the
onset of magnetic order of the chargons and thus the boundary
of the pseudogap regime in the absence of superconductivity. The
labels “Néel” and “Spiral” refer to the type of chargon order. They
are separated by a nematic transition temperature Tnem. The dashed
black line labeled by Tarc indicates a topological transition of the
quasiparticle Fermi surface within the spiral regime. The inset shows
the irreducible magnetic effective interaction U m

eff as a function of
density.

In the inset of Fig. 2, we show the irreducible effective
magnetic interaction U m

eff defined in Sec. III B. The effective
interaction U m

eff is strongly reduced from its bare value (U =
4t) by the nonmagnetic channels in the fRG flow, while its
density dependence is not very strong. From now on we
ignore the pairing instability and focus on the magnetic order
of the chargons. We compute the magnetic order parameter
� together with the optimal wave vector Q as described in
Sec. III B. In Fig. 3, we show results for � in the ground
state (T = 0) as a function of the filling. We find a stable
magnetic solution extending deep into the hole-doped regime
down to n ≈ 0.73. On the electron-doped side magnetic or-
der terminates abruptly already at n ≈ 1.08. This pronounced
electron-hole asymmetry and the discontinuous transition on
the electron-doped side has already been observed in previ-
ous fRG+MF calculations for a slightly weaker interaction
U = 3t [32].

The onset temperature T ∗ for magnetic order of the char-
gons as obtained from the renormalized mean-field theory
is shown in Fig. 2. At densities where magnetic interactions
dominate, it coincides with the temperature T∞ at which V T

diverges. At densities where the interaction diverges in the
pairing channel, T ∗ is lying only slightly below T∞ on the
hole-doped side, while it vanishes on the electron-doped side.
While the magnetic gap in the ground state reaches its peak at
n = 1, as expected, the pseudocritical temperature T ∗ and the
irreducible effective interaction U m

eff exhibit their maximum in
the hole-doped regime slightly away from half-filling.

The magnetic states are either Néel type or spiral with
a wave vector of the form Q = (π − 2πη, π ), or symmetry
related, with an “incommensurability” η > 0. In Fig. 3 results
for η in the ground state are shown as a function of the density.
At half-filling and in the electron-doped region only Néel
order is found, as expected and in agreement with previous

FIG. 3. Magnetic gap � (left axis) and incommensurability η

(right axis) at T = 0 as functions of the density.

fRG+MF studies [32]. Hole doping instead immediately leads
to a spiral ground state with η > 0. Whether the Néel state
persists at small hole doping depends on the hopping parame-
ters and the interaction strength. Its instability toward a spiral
state is favored by a larger interaction strength [31]. Indeed, in
a previous fRG+MF calculation at weaker coupling the Néel
state was found to survive up to about 10% hole doping [32].

At low and moderate hole dopings, there is a transition
between a Néel state at high temperatures and a spiral state at
low temperatures. Since the spiral state breaks the tetragonal
symmetry of the square lattice, spiral order entails electronic
nematicity. In Fig. 2 we show the corresponding nematic tran-
sition temperature Tnem as a function of density. Tnem merges
with T ∗ at n ≈ 0.88. For lower densities the magnetic order
is spiral with η > 0 at any temperature below the magnetic
transition temperature. Within the spiral regime there is a
topological transition of the quasiparticle Fermi surface (indi-
cated by the black dashed line labeled Tarc in Fig. 2), where
hole pockets merge. The Fermi surface extracted from the
single-particle spectral function develops Fermi arcs on the
right-hand side of this transition, while it resembles the large
bare Fermi surface on the left (see Sec. V C).

B. Spinon fluctuations

Once the magnetic order parameter � of the chargons and
the wave vector Q have been computed, we are in the posi-
tion to calculate the NLσM parameters from the expressions
presented in Sec. III C.

In Fig. 4, we plot results for the spatial and temporal spin
stiffnesses Ja

αα and Za in the ground state. In the spiral state
(for n < 1) out-of-plane and in-plane stiffnesses are distinct,
while in the Néel state (for n � 1) they coincide. Actually,
the order parameter defines an axis, not a plane, in the latter
case. All the quantities except Z� exhibit pronounced jumps
between half-filling and infinitesimal hole doping. These dis-
continuities are due to the appearance of hole pockets around
the points ( π

2 , π
2 ) in the Brillouin zone [45]. The spatial stiff-

nesses are almost constant over a broad range of hole doping,
with a small spatial anisotropy Ja

xx �= Ja
yy. The temporal stiff-

nesses Za exhibit a stronger doping dependence. The peak of
Z⊥ at n ≈ 0.79 is associated with a van Hove singularity of the
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FIG. 4. Out-of-plane (left panel) and in-plane (right panel) spatial (J) and temporal (Z) spin stiffnesses in the ground state (T = 0) as
functions of the filling n. In the Néel state (for n � 1) out-of-plane and in-plane stiffnesses coincide.

quasiparticle dispersion [45]. On the electron-doped side all
stiffnesses decrease almost linearly with the electron filling.
The off-diagonal spin stiffnesses Ja

xy and Ja
yx vanish both in the

Néel state and in the spiral state with Q = (π − 2πη, π ) and
symmetry related. In Fig. 5 we show the magnetic coherence
length ξA and the average spin wave velocity cs in the ground
state. The coherence length is rather short and only weakly
doping dependent from half-filling up to 15% hole doping,
while it increases strongly toward the spiral-to-paramagnet
transition on the hole-doped side. On the electron-doped side
it almost doubles from half-filling to infinitesimal electron
doping. This jump is due to the formation of electron pockets
upon electron doping. Note that ξA does not diverge at the
transition to the paramagnetic state on the electron-doped side,
as this transition is first order. The average spin wave velocity
exhibits a pronounced jump at half-filling, which is inherited
from the jumps of J⊥

αα and Z⊥. Aside from this discontinuity
it does not vary much as a function of density.

We now investigate whether the magnetic order in the
ground state is destroyed by quantum fluctuations or not.
To this end we compute the boson condensation fraction n0

as obtained from the large-N expansion of the NLσM. This
quantity depends on the ultraviolet cutoff �uv. As a reference

FIG. 5. Magnetic coherence length ξA (left axis) and average spin
wave velocity cs in the ground state as functions of the filling n.

point, we may use the half-filled Hubbard model at strong
coupling, as discussed in Sec. IV C, which yields �uv ≈ 0.9,
and the constant in the ansatz (74) is thereby fixed to C ≈ 0.3.
In Fig. 6 we show the condensate fraction n0 computed with
two distinct choices of the ultraviolet cutoff: �uv = �uv(n) =
C/ξA(n) and �uv = C/ξA(n = 1). For the former choice the
cutoff vanishes at the edge of the magnetic region on the
hole-doped side, where ξA diverges. One can see that n0

remains finite for both choices of the cutoff in nearly the
entire density range where the chargons order. Only near the
hole-doped edge of the magnetic regime, n0 vanishes slightly
above the mean-field transition point, if the ultraviolet cutoff
is chosen as density independent. The discontinuous drop of
n0 upon infinitesimal hole doping is due to the corresponding
drop of the out-of-plane stiffness, while the discontinuous
increase of n0 upon infinitesimal electron doping, for the
density-dependent cutoff choice �uv(n) = C/ξA(n), is due to
the discontinuity of ξA(n). In the weakly hole-doped region
there is a substantial reduction of n0 below one, for both
choices of the cutoff. Except for the edge of the magnetic
region on the hole-doped side, the choice of the cutoff has only
a mild influence on the results, and the condensate fraction

FIG. 6. Fraction of condensed z bosons n0 at T = 0 for two
distinct choices of the ultraviolet cutoff �uv as a function of the
filling.
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remains well above zero. Hence, we can conclude that the
ground state of the Hubbard model with a moderate coupling
U = 4t is magnetically ordered over wide density range. The
spin stiffness is sufficiently large to protect the magnetic order
against quantum fluctuations of the order parameter.

C. Electron spectral function

Fractionalizing the electron operators as in Eq. (3), the
electron Green’s function assumes the form[
Ge

j j′ (τ )
]
σσ ′ = −〈c j′σ ′ (τ )c∗

jσ (0)〉
= −〈[Rj′ (τ )]σ ′s′ [R∗

j (0)]σ s ψ j′s′ (τ )ψ∗
js(0)〉. (77)

To simplify this expression, we decouple the average
〈RR∗ψψ∗〉 as 〈RR∗〉〈ψψ∗〉, yielding [9,10,14][

Ge
j j′ (τ )

]
σσ ′ = −〈[Rj′ (τ )]σ ′s′ [R∗

j (0)]σ s〉〈ψ j′s′ (τ )ψ∗
js(0)〉.

(78)

The spinon Green’s function can be computed from the
NLσM in the continuum limit. Using the Schwinger boson
parametrization (61), we obtain, in the large-N limit,

〈[R(r j′ , τ )]σ ′s′ [R∗(r j, 0)]σ s〉 = −D(r j −r j′ , τ ) δσσ ′δss′

+ n0 δσ sδσ ′s′ . (79)

The boson propagator D(r, τ ) is the Fourier transform of

D(q, ωn) = 1

Z⊥ω2
n + J⊥

αβqαqβ + Z⊥m2
s

, (80)

with the bosonic Matsubara frequency ωn = 2πnT . Fourier
transforming Eq. (78), the electron Green’s function is ob-
tained in momentum representation as

Ge(k, k′, νn) = −T
∑
ωm

∫
q

tr[G(k − q, k′ − q, νn − ωm)]

× D(q, ωm) 1 + n0 G(k, k′, νn), (81)

where G(k, k′, νn) is the chargon Green’s function.
We see that when n0 = 0, the electron Green’s function is

diagonal in momentum, that is, it is translational invariant,
as the diagonal components of the chargon Green’s function
entering the trace are nonzero only for k = k′. Furthermore,
in this case Ge is proportional to the unity matrix in spin space
since there is no spin SU(2) symmetry breaking, and is thus
given by a single normal-state Green’s function Ge(k, νn).
Performing the Matsubara sum in Eq. (81) and continuing to
real frequencies, we get

Ge(k, ω) =
∑
�=±

∑
p=±

∫
|q|��uv

1

4Z⊥ω
sp
q

(
1 + �

hk−q

ek−q

)

× f
(
pE �

k−q

) + nB
(
ω

sp
q

)
ω + i0+ − E �

k−q + pω
sp
q

+ {k → −k}, (82)

where

ωsp
q =

√
(J⊥

αβqαqβ )/Z⊥ + m2
s , (83)

FIG. 7. Quasiparticle Fermi surfaces defined as zeros of the
chargon quasiparticle energies E±

k (left column) and momentum
dependence of electron spectral function at zero frequency (right col-
umn) for various electron densities. The temperature is T = 0.05t .

and nB(x) = (ex/T − 1)−1 is the Bose distribution function.
In the right column of Fig. 7 we show the spectral function
obtained as the imaginary part of the retarded electron Green’s
function at zero frequency as a function of momentum for
various electron densities in the hole-doped regime. The tem-
perature T = 0.05t is below the chargon ordering temperature
in all cases. The Fermi-surface topology is the same as the
one obtained from a mean-field approximation of spiral spin
density wave order [54]. At low hole doping it originates from
a superposition of hole pockets (see left column of Fig. 7),
where the spectral weight on the back sides is drastically
suppressed by coherence factors, so that only the front sides
are visible. The spinon fluctuations lead to a broadening of
the spectral function, so that the Fermi surface is smeared out.
Since the spinon propagator does not depend on the fermionic
momentum, the broadening occurs uniformly in the entire
Brillouin zone. Hence, the backbending at the edges of the
“arcs” obtained in our theory for n = 0.9 is more pronounced
than experimentally observed in cuprates. The backbending
edges could be further suppressed by including a momentum-
dependent self-energy which has a larger imaginary part in the
antinodal region [55].
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VI. CONCLUSIONS

We have presented a SU(2) gauge theory of fluctuating
magnetic order in the two-dimensional Hubbard model. The
theory is based on a fractionalization of the electron operators
in chargons and spinons [12–15]. The chargons are treated in
a renormalized mean-field theory with effective interactions
obtained from a functional renormalization group flow. They
undergo Néel or spiral magnetic order in a broad density range
around half-filling below a density-dependent temperature T ∗.
Fluctuations of the spin orientation are described by a non-
linear sigma model obtained from a gradient expansion of
the spinon degrees of freedom. The parameters of the sigma
model, the spin stiffnesses, have been computed from a renor-
malized RPA. Our approximations have been designed for a
moderate Hubbard interaction U . While magnetic long-range
order of the electrons is still possible in the ground state, at any
finite temperature the spinon fluctuations prevent long-range
order, in agreement with the Mermin-Wagner theorem. We
expect that at strong coupling even the ground state becomes
disordered already at relatively low hole doping since fluctua-
tions are then enhanced due to the shorter magnetic coherence
length.

In spite of the moderate interaction strength chosen in
our explicit calculations, the phase with magnetic chargon
order below T ∗ exhibits all important features characterizing
the pseudogap regime in high-Tc cuprates. The Fermi-surface
reconstruction yields a reduction of the electronic density of
states. At low hole doping the Fermi surface obtained from
the spectral function for single-particle excitations looks like
Fermi arcs. The spinon fluctuations generate a spin gap at any
finite temperature. The spinon fluctuations do not contribute to
quantities involving only charge degrees of freedom, such as
the longitudinal or Hall conductivities. It was already shown
previously that Néel or spiral order of the chargons can ex-
plain the drastic charge carrier drop observed at the onset of
the pseudogap regime in hole-doped cuprates [34,54,56–60].

In the Néel regime, the structure of our theory is very
similar to the SU(2) gauge theory of the pseudogap phase
derived by Sachdev and coworkers [7–11,15]. Aside from our
extension to spiral states, an important aspect of our work
is that we compute the magnetic order parameter and spin
stiffnesses instead of fitting the parameters of the theory. This
computation revealed a strong doping dependence of the stiff-
nesses, with discontinuities at half-filling and a pronounced
electron-hole asymmetry, which has important physical con-
sequences.

Spiral order of the chargons entails nematic order of the
electrons. At low hole doping, the chargons form a Néel state
at T ∗, and a spiral state at a lower temperature Tnem. The
electrons thus undergo a nematic phase transition at a critical
temperature below the pseudogap temperature. Evidence for a
nematic transition at a temperature Tnem < T ∗ has been found
recently in slightly underdoped YBCO [61]. For large hole
doping instead, the nematic transition occurs right at T ∗, while
nematic order is completely absent for electron doping, that is,
above half-filling.

In the ground state of the two-dimensional Hubbard model
there is a whole zoo of possible magnetic ordering patterns,
and away from half-filling Néel or spiral order do not al-

ways minimize the ground-state energy. The most important
competitor is stripe order, that is, collinear spin order
associated with charge order, where holes accumulate in one-
dimensional lines [3]. Stripe order in the ground state has been
established rather convincingly for special cases, such as pure
nearest-neighbor hopping and doping concentration 1

8 [62].
The energy difference between distinct order patterns can be
very small. At finite temperatures, the issue of the proper
choice of the magnetic order reappears for the chargons. A
classification of the numerous possibilities has been provided
recently by Sachdev et al. [63]. We have focused on Néel and
spiral states because any other state leads to a fractionalization
of the Fermi surface into numerous tiny pieces (infinitely
many for incommensurate wave vectors), which is in conflict
with the experimental observation of only four arcs in the
pseudogap phase of cuprates. Moreover, it is hard to explain
the sharp carrier drop observed at the edge of pseudogap
regime in high magnetic fields via collinear magnetic order
[64]. Hence, to us Néel or spiral order of the chargons seems
the most promising starting point to understand the universal
features of the pseudogap phase. Refinements are required to
capture also secondary instabilities, that is, charge order and
superconductivity.

At finite temperatures, we obtain a “pseudogap” phase with
a reconstructed Fermi surface and a spin gap also for the
electron-doped Hubbard model. In contrast, in electron-doped
cuprates one observes a comparatively broad (in doping) Néel
phase, and no or only a very narrow pseudogap regime. Néel
order at finite temperature is possible due to the interlayer cou-
pling in cuprates. On the hole-doped side, interlayer coupling
stabilizes the Néel state only in a very narrow regime near
half-filling. This electron-hole asymmetry can be explained by
the asymmetry of the spin stiffnesses, which are much smaller
on the hole-doped side (see Fig. 4), enhancing thus the impact
of spin fluctuations.

A microscopic computation of the spin stiffnesses is thus
key for a detailed understanding of the pseudogap behavior
in cuprate superconductors, in particular to explain trends as
a function of doping. While electrons in cuprates are inter-
acting strongly, our approximations are limited to moderate
interaction strengths. This limitation could be overcome by
computing the spin stiffnesses via the dynamical mean-field
theory [65].
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APPENDIX A: LINEAR TERM IN THE GAUGE FIELD

In this Appendix we show that the linear term in Eq. (12)
vanishes. Fourier transforming the vertex and the expectation
value, the coefficient Ba

μ can be written as

Ba
μ = 1

2

∫
k

T
∑
νn

γ (1)
μ (k)Tr[σ aG(k, k, νn)]. (A1)
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Inserting G from Eq. (52) one immediately sees that B1
μ =

B2
μ = 0 for μ = 0, 1, 2, and B3

0 = 0, too. Performing the
Matsubara sum for B3

α with α = 1, 2, we obtain

B3
α = 1

2

∫
k

∑
�=±

[
(∂kα

εk )u�
k f

(
E �

k

) + (∂kα
εk+Q)u−�

k f
(
E �

k

)]
,

(A2)

where u�
k = 1

2 (1 + �hk/

√
h2

k + �2) with hk = 1
2 (εk − εk+Q).

One can see by direct calculation that this term vanishes if
∂F (Q)/∂Q with F (Q) given by Eq. (30) vanishes. Hence, B3

α

vanishes if Q minimizes the free energy. A similar result has
been obtained in Ref. [28].

APPENDIX B: DERIVATION OF THE NLσM

Here we derive the NLσM action (18) from Eq. (12). We
first prove the identity

∂μR = −iR�aAa
μ, (B1)

where R is defined by Eq. (17), and �a are the generators of
the SU(2) in the adjoint representation,

�a
bc = −iεabc, (B2)

with εabc the Levi-Civita tensor. Rewriting Eq. (17) as

Rab = 1
2 Tr[R†σ aR σ b], (B3)

we obtain the derivative of R in the form

∂μRab = Tr[R†σ a (∂μR)σ b] = Tr[R†σ aRR†(∂μR)σ b]

= −iRac�d
cbAd

μ, (B4)

which is the identity in (B1).
We now aim to express the object 1

2J ab
μνAa

μAb
ν in terms of

the matrix field R. We write the stiffness matrix in terms of a
new matrix Pμν via

J ab
μν = Tr[Pμν]δab − Pab

μν = Tr[Pμν�
a�b]. (B5)

Using RTR = 1, we obtain
1
2J

ab
μνAa

μAb
ν = 1

2 Tr[Pμν �a RTR�b]Aa
μAb

ν

= 1
2 Tr[Pμν (∂μRT )(∂νR)], (B6)

where we have used Eq. (B1) in the last line. The above
equation yields Eq. (18). Relation (B5) can be easily inverted
using Tr[Jμν] = 2 Tr[Pμν].

APPENDIX C: DETAILS ON THE LARGE-N EXPANSION

In this Appendix, we describe some details regarding the
saddle-point equations of the CPN−1 action. Integrating out
the z bosons from Eq. (67), we obtain the effective action [48]

S[Aμ, λ] = N
∫
T

dx

[
ln(−2J⊥

μνDμDν + iλ) − i

2
λ

+ 1

4
MμνAμAν

]
. (C1)

In the large-N limit the functional integral for its partition
function is dominated by its saddle point, which is determined
by the stationarity equations

δS
δAμ

= δS
δλ

= 0. (C2)

The first condition implies Aμ = 0, that is, in the large-N
limit the U(1) gauge field fluctuations are totally suppressed.
The variation with respect to λ gives, assuming a spatially
uniform average value for λ,

n0 + T
∑
ωn

∫
q

1

Z⊥ω2
n + J⊥

αβqαqβ + i〈λ〉 = 1, (C3)

where n0 is the fraction of condensed bosons, which can
be nonzero at T = 0. Performing the sum over the bosonic
Matsubara frequencies ωn = 2nπT , inserting the identity

1 =
∫ ∞

0
dε δ(ε −

√
J⊥
αβqαqβ/Z⊥ ), (C4)

and performing the q integral, we obtain Eq. (68) at T > 0
and Eq. (72) at T = 0.
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