PHYSICAL REVIEW B 106, 205151 (2022)

Finite-temperature dynamics in gapped one-dimensional models in the sine-Gordon family
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The sine-Gordon model appears as the low-energy effective field theory of various one-dimensional gapped
quantum systems. Here we investigate the dynamics of generic, nonintegrable systems belonging to the sine-
Gordon family at finite temperature within the semiclassical approach. Focusing on timescales where the effect
of nontrivial quasiparticle scatterings becomes relevant, we obtain universal results for the long-time behavior of
dynamical correlation functions. We find that correlation functions of vertex operators behave neither ballistically
nor diffusively but follow a stretched exponential decay in time. We also study the full counting statistics of the
topological current and find that distribution of the transferred charge is non-Gaussian with its cumulants scaling

nonuniformly in time.
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I. INTRODUCTION

Dynamical correlation functions are among the most im-
portant observables in quantum many-body systems, due to
their direct connection with experimentally measurable quan-
tities such as response functions. In real experiments, the
effects of finite temperature are almost always important, and
must be taken into account. However, real-time correlations at
finite temperature are extremely hard to access. Perturbation
theory and Monte Carlo methods work mostly in imaginary
time, and the analytic continuation to real time is nontrivial,
especially in the low-frequency limit. A possible route is to
study field theories emerging as low-energy effective descrip-
tions of microscopic systems.

In this paper we focus on one of the most important mod-
els of this kind, the sine-Gordon (sG) quantum field theory
defined by the action

§s= dxdt[l(a,cp)2 — (8,D) + g2cos(yq>)}, 1)
167 c?

where ®(x, ¢) is a real scalar field and c is the speed of light.
The sG model provides the effective low-energy description of
many one-dimensional gapped systems. Within the bosoniza-
tion framework, the long-wavelength behavior of Luttinger
liquids in the presence of a gap-opening perturbation is cap-
tured by the sG model [1,2]. Prominent examples are given by
the anisotropic Heisenberg spin chain in a staggered magnetic
field [3], spin ladders [2], quantum circuits [4], cold atoms in
an optical lattice [5,6], and coupled cold-atomic quasiconden-
sates [7,8].
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The sG model is also a paradigmatic example of an inte-
grable field theory [9,10]. Integrability provides some special
tools for computing correlation functions. One direction is
based on the exact analytic expressions of form factors, matrix
elements of local operators, that have been derived in this
model. These can be used, in principle, in a spectral expansion
of correlation functions. At finite temperature, the resulting
form factor series, or linked cluster expansion, is plagued
with singularities whose regularization requires a substantial
amount of work [11-13]. Depending on the correlator, a par-
tial resummation of the series may be necessary which is again
a highly nontrivial task [11].

Another possible route is provided by the framework of the
recently developed generalized hydrodynamics (GHD) that
describes the dynamics of integrable systems on hydrody-
namic spatial and time scales, i.e., at the Euler scale based
on the transport of the infinitely many conserved quantities
[14-16]. These conserved charges naturally leave their mark
on the dynamics, rendering the transport ballistic [17] or
anomalous [18,19], in contrast to the generic diffusive be-
havior [20] (for a recent review, see [21]). Expressions for
correlation functions within the GHD formalism have also
been derived [22,23].

However, the role of integrability is somewhat unclear in
the applications of the sG model as an effective field theory
for real systems. Real systems are never perfectly integrable:
a short distance cutoff spoiling integrability as well as ir-
relevant terms neglected in the sG model are almost always
present. While there are examples of detecting the signatures
of integrability in carefully devised experiments (see, e.g.,
Refs. [24-29]), real systems generally lack the infinitely many
conserved quantities that make the dynamics of integrable
systems special. However, systems modeled by the sG theory
do possess certain generic features of the sG model such as the

©2022 American Physical Society
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FIG. 1. Space-time diagrams of semiclassical histories. Kinks (solitons) travel along classical straight trajectories, while their topological
charges follow zigzag trajectories due to nontrivial collisions of solitons (blue) and antisolitons (red dashed lines). In the domains bordered by
kink trajectories, the field sits in one of the vacua, ®(x, 1) = Q 27 /y, where the integer charges of the domains, Q, are displayed in the figure.
Left: For perfectly reflective collisions, the spatial sequence of the domain charges is preserved. Right: The generic case with both reflective
and transmissive collisions, and approximate mapping to the Simple Symmetric Exclusion Process (SEP).

existence of a phase variable and corresponding soliton-like
topological excitations. In this work, we shall refer to these
models as belonging to the sG family.

For these reasons, to understand realistic models, integra-
bility is most likely inessential, which allows us to take a
less rigorous but more intuitive approach to capture universal
features of generic, nonintegrable systems in the sG family.
Our approach is based on the so-called semiclassical method
proposed by Sachdev and collaborators [30-32]. The essence
of this method is the observation that at temperatures much
lower than the gap, the system can be described in terms of
a dilute gas of thermally excited massive quasiparticles that
move along classical trajectories.! In one spatial dimension,
they will inevitably suffer collisions, which must be treated
using the quantum mechanical scattering matrix. In the case
of the sG model, these quasiparticles are solitons and antisoli-
tons, possessing topological charges, and colliding with each
other (see Fig. 1).

In the original semiclassical approach, the scattering ma-
trix is taken to be the “universal” low-energy limit of the
two-particle S matrix corresponding to perfect reflections in
terms of the internal quantum numbers (e.g., charges) of
the quasiparticles (left panel in Fig. 1). The method has
been applied to the transverse field Ising chain [30], the
O(3) nonlinear sigma model [31], the Potts model [33], and
the sine-Gordon model [32]. It was later generalized to the
study of out-of-equilibrium dynamics after quantum quenches
[34-36], and an improved version of the method, the so-
called hybrid semiclassical approach, has been developed to
go beyond the purely reflective collisions and to follow the
time evolution of the “charge” part of the wave function fully
quantum mechanically [37,38].

For the sG family, analytic results have been derived for the
finite-temperature dynamical correlation function of vertex
operators [32],

Cy(x, 1) = (NP0 MTOD) @)

INote that the term “semiclassical” does not refer to the /i — 0
limit but rather to a low-density limit.

using the original semiclassical approach based on purely
reflective collisions. These correlators as well as those of
the topological charge density have been shown to exhibit
diffusive ~1/+/t behavior for large times.

The main question of our work is how robust these results
are against changing the scatterings by allowing transmis-
sions. It is quite clear that the long-time limit and the limit
of purely reflective scattering do not commute: no matter
how suppressed nonreflective processes, after a long enough
time their effects accumulate, which is expected to change the
qualitative behavior. In order to answer this question, we use
a somewhat simpler approach than the hybrid semiclassical
method. Instead of following the fate of the coherent super-
positions created by the S matrices in the charge sector, we
turn the scattering amplitudes into probabilities, reminiscent
of a master equation approach. We find that while the charge
density correlator remains diffusive, the correlation functions
of vertex operators change qualitatively; they asymptotically
decay in a stretched exponential manner.

The paper is organized as follows. In Sec. II, we set the
stage by introducing the sine-Gordon model and discussing
the details of the semiclassical approach. Section III is dedi-
cated to the study of the vertex operator correlation functions.
After rederiving the analytic results in the perfectly transmis-
sive and reflective cases, we derive the long-time asymptotic
behavior by mapping the charge dynamics for weak transmis-
sions to the simple symmetric exclusion process. The results
of our numerical semiclassical simulations are also presented
here. In Sec. IV we turn to the full counting statistics of the
integrated topological current, while in Sec. V we discuss the
correlation functions of the topological charge density. We
provide our conclusions and outlook in Sec. VI.

II. SETUP

The action of the sine-Gordon model is given in Eq. (1).
We work in the & = kg = 1 convention so both & and the
coupling constant y are dimensionless. Here we focus on
the so-called repulsive regime of the model, 1/v/2 <y < 1,
where the cosine term is relevant, the model is gapped, and
the spectrum is built of multiparticle scattering states of
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massive kinks, i.e., solitons and antisolitons of topological
charge ¢ = =1 that interpolate between neighboring minima
of the cosine potential.> The kinks have relativistic dispersion
relation, e(p) = /p*c? + M%c*, where their mass, M, can be
explicitly expressed in terms of g and y [39]. The energy
and momentum of the incoming and outgoing particles can be
conveniently parametrized in terms of the relativistic rapidity
0 as E = Mc? cosh @ and p = Mcsinh @, respectively.

The sG model is integrable; therefore multikink scatter-
ing processes factorize into two-particle scatterings with an
exactly known two-particle S matrix [9]. Due to topological
charge conservation, kinks of the same topological charge
only suffer a phase shift upon collision, while scattering in the
q = 0 (soliton-antisoliton) channel is nontrivial: a colliding
soliton and antisoliton can get reflected or transmitted. The 2-
particle S matrix is thus given by a 4 x4 block-diagonal matrix

in the 2-kink basis | + +), | + —), | — +), | — —) labeled by
the topological charges of the kinks:
l+4) I+=) |-+ [—=-)
So 0 0 0 | ++)
_ 0 Sr Sr 0 |+ —)
5= o Sr Sk 0 JI—+) )
0 0 0 So J1—-)

where, due to relativistic invariance, all entries depend only on
the relative rapidity 6 = 6, — 6, of the two incoming kinks.
Here St(0) is the amplitude of transmission and Sg(0) is the
amplitude of reflection. The term Sy accounts for the phase
picked up by the wave function upon scattering of two kinks
of the same charge. The transmission and reflection factors are
given by

sinh ¢
S1(0) = ———5 So(0), 4)
sinh =
~ sin %
Sr(0) = i———=5 So(0), )
sinh =
where & = % The probabilities of transmission and reflec-

tion are given by the modulus squares of the amplitudes which
satisfy |St|*> + [Sg|> = 1. At y = 1/4/2 (¢ = 1), the reflec-
tion probability is exactly zero for any 6. This is the so-called
free-fermion point, where the model can be mapped to the
theory of free Dirac fermions [40,41]. For small 6, they be-
have as |St|? oc 62 and |Sg|? o< 1 — #2; thus at small incoming
momenta, the scattering of kinks of opposite charges is almost
purely reflective, which is at the heart of the semiclassical
approach.

As discussed in the Introduction, we aim to describe
generic systems in the sG family, where integrability is
(weakly) broken. We assume the existence of two species
of long-lived massive quasiparticles of opposite topological
charge and with properties of the sG kinks. While the § matrix
may be slightly modified by integrability-breaking terms, cer-
tain properties of the S matrix are the same as in the sG model.

2For 0 < y < 1/+/2, neutral bound states of kinks called breather
particles are also present in the spectrum.

Quasiparticles with vanishing momenta, e.g., can be shown to
scatter reflectively on each other, just as in the sG case [32].
Since our main results and conclusions will not depend on
the exact form of the S matrix, for the sake of simplicity and
concreteness, we shall use the sG S matrix (3) in what follows.

The semiclassical approach is based on the observation
that at low temperatures, both the density and the velocities
of the kinks are suppressed and the thermal state, in the ab-
sence of a chemical potential, corresponds to a dilute neutral
gas of slow kinks. In a Keldysh path integral approach, the
main contribution to a dynamical correlation function is given
by classical histories corresponding to kinks moving along
straight trajectories between rare collisions (see Fig. 1).> In
the semiclassical approach, we compute thermal expectation
values by averaging over these semiclassical histories in a
Monte Carlo fashion. Each history is specified by the initial
configuration of the kinks and the outcomes of the scattering
events. We discuss these two aspects in turn.

The initial states correspond to a spatially uniform thermal
gas of kinks of randomly assigned topological charges (¢ =
41 with probability 1/2) with a classical (but relativistic)
velocity distribution. The density of kinks is thus given by

p= [ Lrw = [LerEran
4 2w

At low temperatures, T < Mc?, the density is well approxi-
mated by the nonrelativistic formula p ~ /MT/ (2 )e /7.
The normalized velocity distribution for v € (—c, ¢) is given
by

__Ladr
@) = 5= pv)

_ MET

e Vi-2?
a- v2/62)3/2 ’

where the Heaviside theta function expresses that the velocity

satisfies |v| < c¢. For T <« M, we recover the Maxwell-
2

Boltzmann distribution f(v) ~ /M/ (ZNT)e’% . For later
use, we introduce the characteristic collision time 7, as the ra-
tio of the mean interparticle distance and the average velocity,

M
=®(C—|v|)2np (N

_ . T
= = '0/ dvf(v)v| = — e MIT, (®
1/p —c T

where we used v = de(p)/dp.

Having discussed the initial state, let us now turn to the
collisions. Our semiclassical approach is in the spirit of Pauli’s
master equation: we neglect interference between consecutive
scatterings, and we treat collisions as a classical process. At
each collision of two kinks of opposite topological charge, a
reflection or transmission is realized with probabilities set by
the modulus square of the exact S-matrix amplitudes, which
depend only on the incoming momenta of the particles. The
collision history thus becomes a stochastic process (see Fig. 1)
that can be simulated in a double Monte Carlo fashion: First,

*Note that due to the diluteness of the gas, multiparticle scatterings
can be neglected even away from integrability.
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for a given, randomly sampled initial velocity distribution, the
initial topological charges are distributed randomly. Then the
probabilities of transmissions and reflections are computed for
each collision, which are then used to generate sets of topo-
logical charge configurations with appropriate Monte Carlo
weights.

In the extreme limits of perfect reflection at each collision
(original semiclassical approach), and perfect transmission
(noninteracting particles) realized at the free-fermion point,
y = 1/+/2, charge averaging along the trajectories is not nec-
essary, since instantaneous charge configurations are uniquely
determined by the initial charge and velocity configuration. In
this limit, analytical results can be obtained [32,33].

III. DYNAMICAL CORRELATION FUNCTION

We are interested in the finite-temperature dynamical
two-point function of general vertex operators (2). In the
semiclassical approach, this is replaced by the average®

Cy(x, 1) = (£MPED=2OM) . ©)

In the semiclassical approach, we compute the expectation
value (9) by averaging over semiclassical histories. In a
given history, the quantity within the average is measured
by noticing that within space-time domains bordered by kink
trajectories, the field sits in one of the classical vacua; i.e.,
it takes constant values, ®(x,7) = (27 /y)Q, where the in-
teger charge of the domain, Q € Z, depends on the initial
charge configuration as well as on the zigzag trajectories of
the charges. Consequently,

Cy(x, 1) = (MNP0 — (NAQGLY (10)
where

n=2mn/y, (11)

and AQ(x, 1) = Q(x,t) — Q(0, 0) is the charge difference of
the domains containing the points (0,0) and (x, 7).

A. Analytical results: Diffusive and ballistic limits

The average (9) can be evaluated numerically in a Monte
Carlo simulation. Before discussing our numerical results,
however, we focus on the purely reflective and transmissive
limits, where we can make analytic progress, and predict
the asymptotic long-time and large-distance behavior of the
correlation function.

In the first steps, we follow the derivation of Ref. [32],
and consider the segment [(0, 0), (x, #)] connecting the two
operator insertions in the space-time diagram of Fig. 1, and
crossing some domains delineated by kink trajectories. The
charge difference AQ(x,t) can be determined based on the
number and charges of the kink lines crossing this segment.
Whenever the segment (0, 0) — (x, f) crosses a soliton line
that comes from the right, we enter a new domain of topolog-
ical charge 41 with respect to the one we were in before the
crossing. For soliton lines from the left, the charge difference

4The difference between Eqgs. (2) and (9) is expected to cause, at
most, a power law of ¢ deviation in the asymptotic long-time limit.

is —1. For antisolitons, there is an extra minus sign in both
cases.

To intersect the segment [(0, 0), (x, t)], a world line from
the right must have been within the spatial interval [0, x — vt]
at t = 0. Similarly, a world line crossing from the left must
have started in the interval [x — v, 0]. The average number of
world lines crossing from the right and from the left is given
by

M(x, 1) =(N;(x, 1)) = ,o/cdvf(v)(@(x— vt)(x—vt), (12a)

Mx, 1) =(Ni(x,1))= p/ dvf(v)®(vt— x)(vt— x). (12b)
—C

Since world lines are statistically independent of each other

and are distributed uniformly in space, the left and right inter-

sections are independent Poisson processes, so the probability

of k left and &, right intersections is

— 1 kiy ke ,—(utAr)
P(k], kr) = W)\.l )\r e . (13)
The correlation function can then be expressed as
oo
Cyx, )=y Plh, k(€700 (14)
ki=0,k;=0

Here AQ(ky, k) is the difference of the topological charges of
the domains where the points (0,0) and (x, ¢) lie and which
are separated by k; and k; left and right crossing kinks, and
the average (... )cn is over the initial topological charges at
fixed & and k;. In the purely reflective or transmissive cases,
AQ(ky, k) is completely determined by the initial charge
configuration, and the charge averaging can be carried out
analytically. In the general case, however, AQ is a stochas-
tic variable even for a fixed initial charge configuration, and
averaging implies a Monte Carlo simulation.

Perfect transmission or reflection

The average in Eq. (10) must be taken over the initial
positions and velocities of the kinks, and over the charge
history.

For the perfectly transmitting case, the topological charges
crossing the segment (0, 0) — (x,t) are completely uncor-
related. Each crossing kink is either a soliton or antisoliton
with probability 1/2, and either comes from the left or from
the right with probability 1/2, so (e4Ckk)(D — (Leil 4
le~Mmykith) = (cos )% +k). The distribution of the sum of
two Poissonian variables is again Poissonian, so

C. ) =) P (n)(cos )" (15)
n=0

with PW(n = k; + ky) = LA o=(e2) which gives [32]
CO(x, 1) = e~ 1=eOSMHA) — =205 (F) [ dvf@)lx—u
n oo :
(16)
In particular, both the autocorrelation function C,, (0, t) and the

static correlation function C,(x, 0) decay exponentially in the
transmissive case:

C'(er)(o’ t) — e—ZSinz(;l)t/T’ (173)

C(x, 0) = ¢ 25w, (17b)
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where p is the kink density and t is the characteristic collision
time defined in Eq. (8).

In the other extreme case of perfectly reflective collisions,
the calculation is more complicated as the trajectories of the
charges become correlated. The key observation is that the
spatial sequence of charges of the domains from left to right
at any given time is invariant under the time evolution [32,33].
As a consequence, the charge difference only depends on the
“distance” of the domains of (0,0) and (x, ¢) in the sequence
of domains,

s =k — ki, (18)

which also determines AQ(ky, k;) = AQ(k; — k).
Inserting a factor of 1 in the form Y oo  Sk_ks =

hped o d‘/’ e'?%—k=9) in Eq. (14), we can perform the sum

s=—00 J0
over k; and k

2

x e—xl(x,z)(l—e*"”)fxr<x,z)(1fe""’>. (19)

The integral can be evaluated giving

CO, 1) =Y Ps)(MCV)q, (20)
with
Pls =k — k) = e 0 /M) P12y ), (21

where I,(x) denotes the modified Bessel function. As ex-
pected, we recovered the so-called Skellam distribution
obeyed by the difference of two Poisson-distributed random
variables.

In this reflective limit, due to the conservation of the do-
main charges, the charge difference AQ(s) does not change
in time, and can be evaluated at + = 0. The charges are in-
dependent and take 21 with probability 1/2, so (e42®)) =
(cos 77)"*! which leads to

CO(x,1) = Z e‘“ﬁ”()\l) L 2/ (cos P (22)

§=—00

We can obtain another representation by exchanging the inte-
gral and the sum in Eq. (19) and evaluating the latter, yielding

2 d¢)
Cf]r)(X, t) = / — — 7
o 2m1—2cosijcos(¢)+ cos 7

1 —cos’ 7

« 2 sin?(¢/2)(Ar4-A)+i Sin(@)(Ar—A1) (23)

In the case of the autocorrelation function we have
M(@0,¢) = A:(0,¢) =¢t/(27), and the last exponential reduces
to e~25i"@/21/7 A similar but somewhat different expression
was obtained in Ref. [42] using form factor techniques.
Outside the light cone, x > ct, left crossings are im-
possible: A; =0, X = px, and k = 0.> This implies that

SFor x < —ct, analogous statements hold with left and right quan-
tities interchanged.

n=|s| and P(s) = P“(Is]), so CO(|x| > cr) = CO(|x| >

ct)=e? sin’(@/2)plx| independently of time, a property reflect-
ing the light cone effect. It is also easy to check that for
short times ¢ < t, before the collisions can make their effect,
C,g“)(O, 1)~ C,(]r)(O, 1)~ 1 —2sin®(7/2)t/t.

However, the large-time behavior inside the light cone,
|x| < ct, is very different in the two cases. We can obtain
the asymptotics of Eq. (23) using the saddle point approxi-
mation. We note that A, — A} = px exactly, while A; + A} =
t/T + pf(0)x?/t for px < t/t. So for large /T > 1, px, the
exponent is dominated by the real term, and the saddle point
is at ¢ = 0. This leads to the diffusive form [32]

cotz( e~ &

CO(x, 1)~ (24)
7 p~/4m Dt
with the diffusion constant
1 Mc?/T
-~ 25)
2p0%t M
where the approximation is valid for T <« Mc?. For large

t/t and (px)?/(t/7) fixed px < t/7 holds, consistently with
our assumption in the saddle point calculation. Note that the
autocorrelation function decays algebraically in the reflective

case, as ~1/+/1.

B. Numerical results

After discussing the two extreme, analytically tractable
cases, we now turn to the numerical evaluation of Eq. (9)
within the semiclassical framework. In our simulations, we
used units ¢c =kg =% =1 and M =1, and measured di-
mensionful quantities in appropriate powers of the soliton
mass M.

We first set the initial state by placing N atoms randomly
in a box of length L, and assigning ¢ = £1 charges to them
with equal probability. Their initial velocities are then drawn
from the classical, relativistic thermal distribution, (7). This
fixes the straight kink trajectories and the positions and times
of the collisions up to some maximal time (e.g., the time
separation of the correlation function). The history of the
charges is then determined by going through the collisions
one by one in chronological order. For each collision, the
transmission and reflection probabilities, |St(6; — 6,))? and
|Sr(6; — 6)]?, are computed from the rapidities 6, 6, of the
incoming particles using Eq. (4), and then one of the two pos-
sible outcomes is selected in a Monte Carlo step. Finally, the
charge difference AQ appearing in Eq. (10) is computed from
the kink charges. Averaging is then performed by repeating
this procedure around 25 000-95 000 times.

To get rid of finite-size effects, we have chosen a system
size L >> ct. In this way, the measurements can be done far
away from the edges (a distance cr is sufficient) and the
autocorrelation function can be measured more efficiently by
performing a spatial average.

First we show in Fig. 2 the distribution of the trans-
mission probability over the collisions (for a derivation, see
Appendix A). At the free-fermion point, y = 1/+/2 & 0.707,
we have perfect transmission, and the distribution is a Dirac
delta, P(pr) = 8(pr — 1). However, the distribution broadens
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16 (a)

v=0.71

0.8 1.0

pr

FIG. 2. Probability distribution P(pr) of the transmission prob-
ability pr. (a) P(pr) for three different values of the coupling y at
temperature T = 0.02Mc?. (b) P(pr) for three different temperatures
for coupling y = 0.8.

and its average decreases rapidly upon increasing y, and for

even higher values of y its maximum is at pr = 0. We can
thus interpolate between the two extreme limits, the fully
transmissive and fully reflective cases, by changing the sG
coupling y. Conversely, fixing y and varying the temperature

----- reflective limit (pr = 0) N\

= . v =0.9, pr=0.01 N
© 4 =08, pr=0.03
0.01 v =0.75, pp = 0.10 \\‘AA
v =0.73, pr =0.26 N
5 =0.72, pp =048 N\
\ L
v =071, pr =09 v
[ 1 \
)= Pr \
\
1 10

t/T

T, the distribution changes from having a maximum at py = 0
(low T') to being peaked near pr = 1 (high 7).

Figure 3 shows the results of the semiclassical “molec-
ular dynamics” simulation for the autocorrelation function
C,(x=0,t)vst/tforij =m /3 (n/y = 1/6) at a temperature
T = 0.02Mc? (small triangles). Different colors correspond
to different values of y. As y is increased, the correlation
function crosses over from a purely transmissive exponential
behavior to the purely reflective ~1/+/¢ result (both shown as
dashed lines). Between these two curves, the asymptotic time
dependence of the semiclassical results is not a pure power
law, and it can also be checked that it is not an exponential
decay. We shall derive an approximate formula for this time
dependence in the next subsection.

In the right panel of Fig. 3, we plot our numerical results for
the correlator at finite spatial separation x = 7/p for i = 7 /3.
Here we varied the temperature at fixed coupling y = 0.8
in order to navigate between the purely reflective (low T')
and transmissive (high T') cases which are again plotted in
dashed lines. As the temperature is lowered, a peak develops
in the time dependence of the correlation function, similar to
the diffusive result (24). The generic long-time behavior is
apparently qualitatively different from both analytic cases.

C. Mapping to the simple exclusion process

At small enough temperatures, the momenta of the kinks
are small, and their collision is predominantly reflective for
any y # 1/+/2. However, transmissive processes are also
present, and while the original semiclassical approach assum-
ing perfect reflection may be a good approximation for some
time, it is expected to break down for sufficiently long times.

The timescale at which the original semiclassical ap-
proach breaks down can be estimated as follows. At low
temperatures, transmissive collisions have a small probability,
pr ~ v%/c®> ~ T/(Mc*). In a time period ¢, a given kink suf-
fers t /7. collisions on average, where t is the collision time
of the order of 7. This means that after time t* ~ t/pr ~
Mc?/T2eMe/T | the charges of the kinks will change, and their

T =0.01,
reflective limit
(pr.=0)

/:?m —
ya . T=001,
pr = 0.0129
. T=005
‘.“ pr = 0.0607

T.=0.1,
pr=0.113
T =0.25,
pr = 0237

pr = 0.546
_T=1,

pr=1

60 80 100
t/T

FIG. 3. Correlation functions C,(x, t) for 7 = m /3. (a) Autocorrelation function C, (0, #) on a log-log scale as a function of dimensionless
time ¢/t at temperature T = 0.02M¢? for y = 0.71,0.72,0.73,0.75, 0.8, 0.9 (from bottom to top). (b) Correlation function C,(x =7/p, t)
at y = 0.8 at different temperatures 7/(Mc?) = 0.01,0.05, 0.1, 0.25, 1 (from top to bottom). In both panels, the dots correspond to the
semiclassical Monte Carlo simulation results, the empty circles represent the SEP results, while the perfect transmission (bottom) and perfect
reflection (top) limits are shown in dashed lines. For the Monte Carlo data, the error bars are smaller than the symbol sizes.
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sequential order, the origin of diffusive scaling, will not be
preserved.

In the generic case, an analytic calculation similar to the
ones in Sec. IIT A is not possible, because trajectory and
charge averages do not factorize, in general. The fate of
the charges and the space-time properties of the trajectories
get correlated, because the outcome of each collision is not
fixed but depends on the incoming velocities (slopes of the
trajectories).

However, we can make some analytic progress by focusing
on the limit of small transmission probability, and by re-
placing the velocity-dependent transmission probability by its
mean value, pr. We assume furthermore that since transmis-
sive collisions happen very rarely in our limit, transmissions
of neighboring charges happen randomly in the space-time
history. The average charge difference of the domains of the
two operators does not depend exclusively on the intersection
numbers anymore, but it becomes effectively time dependent
due to rare transmissive collisions that change the charges
of the domains. With these assumptions, the charge and tra-
jectory averages factorize, and Eqgs. (19) and (20) can be
used after replacing AQ(s) by the effectively time-dependent
AQ(s;t).

The dynamics of the soliton charges in this simplified
model can be mapped to the Simple Symmetric Exclusion
Process (SEP), a classical Markovian stochastic process de-
scribing hard-core particles hopping on a lattice. The mapping
is illustrated in Fig. 1. The sites of the 1D lattice of the SEP
correspond to the kinks. A site is occupied if the kink is a
soliton and empty if it is an antisoliton. In the SEP, particles at-
tempt a jump at a constant rate p & pr with equal probability
to the left and to the right, but can only jump if the target site
is empty. This is mapped to the collision of kinks: a particle
jump corresponds to swapping a soliton and an antisoliton
with probability pr. The distance that a SEP particle travels
corresponds to s given by Eq. (18), the distance in terms of
the domains.

Finally, we have to match the timescales of the two sys-
tems. The rate of jumps in the SEP is related to the frequency
of transmissive soliton-antisoliton collisions which depends
on the mean collision time as well as on the transmission
probabilities. Away from the perfectly transmissive and re-
flective limits, the distribution of transmission probabilities is
typically very broad (cf. Fig. 2) and there is no unambiguous
way to capture it by a single number (e.g., the mean). For
this reason, we leave the proportionality factor between the
physical and the dimensionless SEP time as a free parameter
o X pr,

~ t
r=a—. (26)
T

The mapping to the SEP allows us to use some of the exact
results in this model. In particular, an analytic result has been
derived in Ref. [43] for the cumulant generating function of
a quantity closely related to the transferred charge AQ,(f) in
terms of a Fredholm determinant (for the explicit expressions,
see Appendix B). This result allows us to compute (¢742())
numerically for any s and 7, which then can be used for the
numerical evaluation of the correlator in Eq. (20). The result
of this is shown in circles in Figs. 3 and 4. The sole free

-===reflective limit (pp = 0)
S 7 =0.9, pr =0.01
+ =08, pr=0.03

~v=0.75, pr =0.10
.= 0.73, pr =0.26
y =072, pr =048
7 =0.71, pp. = 0.9

e = k=T

I 4 6 8 10
t/T

FIG. 4. Rescaled autocorrelation function In[(z/7)Y*C,(0, 1)]
against /t/t. The data and the conventions are the same as in
Fig. 3(a).

parameter « was adjusted to minimize the differences between
the Monte Carlo data and the SEP calculations, resulting in an
excellent agreement for all the curves using the same «.

The large-time asymptotics has also been derived in
Ref. [43]. Translated into our language, in the limit / — o0,
s —> 00, = —s/\/4_f fixed, we have

(182D o p=Viw®) Q7

where w(8) = Y20, WA /nE) with A(y) = =+
yerf(y).

It is the Fourier series of the expectation value (27) that
appears in Eq. (19). In the large-¢ limit, the final integral over
¢ will be evaluated again in the saddle point approximation,
where the saddle point remains at ¢ = 0 since the exponent of
(27) is ~+/t as opposed to ~¢. Setting ¢ = 0 and approximat-
ing the sum over s by an integral over £, we obtain

o0
Z <ei7] AQs(f))Ch ~ _2\/;\/ d%-e—\[fw(é) ~ al’bl/4e—b«ﬁ’
(28)
where we evaluated the integral in the saddle point approxi-
mation, yielding a = —2/27/@"(0) = ——2- and b =
Liy 2 [sin”(1)]
w(0) = \/LE Lis /2[sin2(7"7)] in terms of the polylogarithm func-
tion Li,(x). Plugging this result into Eq. (19) and performing
the ¢ integral in the saddle point approximation, we obtain

2
_ o X/@DD)
C,(x, 1) ~at'* e

_— 29
o~ 4 Dt 9

witha = aa'/* and b = ba'/2.°
Equation (29) is one of the central results of our paper. It
shows that the ~1/+/¢ diffusive behavior found for perfect

This result can also be obtained by using a Gaussian approx-
imation for the distribution P(s) in Eq. (20) [obtained, e.g., by
performing the ¢ integral in Eq. (19) in the saddle point approxima-
tion], replacing the sum over s by an integral over £, and evaluating
the integral in the saddle point approximation using that A, + A; ~
t~x2~ (O — M)
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FIG. 5. Full counting statistics of the topological charge transfer. (a) Full distribution functions of the transferred charge at temperature
T = 0.02Mc? at time ¢/t = 75 in the purely transmissive (black) and purely reflective (magenta) limits, and in the generic case with finite
transmission at y = 0.73 (pr ~ 0.1). Symbols represent the semiclassical simulation results. The black line shows the exact transmissive result
(33), the green line represents the SEP approximation, and the magenta line displays the approximate result (37). (b) Full distribution functions
of the transferred charge at temperature 7 = 0.02M 2, y = 0.75, and times ¢/t = 25, 50, 75. The simulation results are shown in dots; the

lines correspond to the SEP approximation.

reflections is not universal, but gets modified for large enough
times in the presence of an arbitrary small transmission rate.
The more generic result is a stretched exponential, ~e bV s
with a slowly decaying ~¢~!/4 prefactor.

To verify the asymptotic time dependence predicted
by Eq. (29), we display the rescaled correlation function
In[(¢/7)"4C,(0, )] vs /t/7 in Fig. 4. As expected, the SEP
approximation (empty circles) becomes very accurate as the
reflective limit is approached, and gives a good approximation
for y 2 0.75, where pr < 0.1.

Moreover, the SEP result appears to capture the asymptotic
stretched exponential behavior correctly for any y # 1/+/2.
The plotted curves indeed seem to be straight lines starting
from an early time even for larger transmission rates, indicat-
ing that the time dependence of both the exponent and the
prefactor in Eq. (29) (for x = 0) hold beyond the range of
validity of Eq. (29). This suggests that the stretched expo-
nential decay is the universal behavior instead of the special
results found in the extreme limits of perfect transmission or
reflection.

IV. FULL COUNTING STATISTICS

As Eq. (10) shows, the autocorrelation function is the
moment-generating function of the distribution of the net
charge transferred through the origin,

Qo(1) = AQ(0,7) = Q(0,1) — Q(0, 0). (30)
The distribution of Qy(#) is just given by
P(Qo:1) = Z P(ky, k)P i (Qo3 1), 3D
f=0,k=0

where P(k, k;) is given in Eq. (12), and Py, (Qo;t) is the
(conditional) probability of Qg for k. right and & left cross-
ings.

A. Charge distributions in the reflective and transmissive limits

In the perfectly transmitting case, the conditional probabil-
ity Py 1, (Qo;t) is, of course, the binomial distribution,

1 ke + Kk
(tr) . T
Pk:kl (Qoit) = W <Q0+§r+k| ) ’ (32)
if Qo + k: + k is even and non-negative, and O otherwise.
Substituting this in Eq. (31) we obtain

P (Q;t) = e "Ip, (t/7),

where we used that for x = 0 the left and right Poisson param-
eters are equal, A.(0, 1) = A;(0,¢) = ¢/(27).” The distribution
is plotted in Fig. 5(a) for ¢/t = 75. For t > t, the distri-
bution approaches a Gaussian of mean deviation 4/f/7, and
PW(Qg;t) ~ (2m t/7)~'/? for any fixed Qy.

For perfect reflections, the conditional probability
P/i,r,)m(QO; 1) = P§r)(Qo) is also the binomial distribution,
Eq. (32), but with the replacement k, + k; — |s| = |k, — k.
For A, = X =¢/(27) Eq. (21) reduces to

(33)

P(s) = e Thy (/) (34)
and Eq. (31) can be expressed as
- L[ Isl
PY(Qo:t) = Z el /T) W(-Qoﬂ)- (35)
§=—00 2

We are interested in the large-time asymptotic behavior
of the distribution P"”"(Qy; ). Unfortunately, it cannot be de-
termined by taking the Fourier transform of the asymptotic
results in Egs. (24) and (29) because the integrals do not con-
verge. We use the representation (23) instead and exploit that

"This is again a Skellam distribution, because Qy is the difference
of Poisson-distributed left and right crossings of positive and nega-
tive charges. It can also be obtained by taking the Fourier transform
of Eq. (17a).
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the Fourier transform of the integrand can be written in terms
of hypergeometric functions (cf. Appendix C).® Expanding
them around ¢ = 0 and evaluating the ¢ integral in the saddle
point approximation we obtain for the large-time behavior for
|Qol < (t/7)!*

(r) (él_t) 2 E 1
PV (Qost) ~ ——= o (t/ ) —(2|Qo|+5Q0.0)—2m/T
2 F(%)( 2 )3/4 —5/4
+ (205 +1) 2 \ij + 0@, (36)

As in the perfectly transmitting case, the leading asymptotic
behavior of P(Qy;t) is the same for any fixed Qy, but now
P(Qy; 1) falls off as ~t~!/* instead of ~¢~!/2, and similarly,
the width of the distribution also scales as (/7)"/* (see also
next subsection) rather than (z/7)!/2, as found in the trans-
missive case. However, for any ¢ the distribution is nontrivial,
as reflected by the quite unusual nonanalytic o |Qy| term in
Eq. (36). We compared this result with the numerical evalua-
tion of the discrete sum (35) and found good agreement.

We can derive another large-time property by replacing
P(s) by its long-time asymptotic form P(s) &~ ¢=5/2/1)/
J/27t/t and approximating the binomial distribution by a
Gaussian (valid for large |s|), yielding

e’ 2/(2t/7) 2

d
s J2nt]T

This approximate expression is compared to the exact result
(35) in Fig. 5(a) for t /T = 75. Apart from Qy = 0, an excel-
lent agreement is found.

In fact, Eq. (37) gives the time-independent distribution
of the scaled transported charge Qy = (t/1)~'/4Qy at large
times. Indeed, after a trivial change of integration variables
we obtain

PY(Qo) = (t/1)"*P(Qo = (t/7)"* Qo)
1 o0
! / d
T J-oo
As we will show in the next subsection, the variance of
P(Qo; 1) scales as ~t'/2 for large times, so Eq. (38) describes
the distribution of the fypical fluctuations of Qp which are
non-Gaussian. Expression (37) already appeared in Ref. [42]
and was also found independently in Ref. [44] for the distri-
bution of the integrated charge current in a cellular automaton
model involving two species of hard-core particles having
opposite charges. This model can be viewed as the discretized
version of a perfectly reflective semiclassical system in which
particles move at a fixed, constant speed. The authors of
Refs. [44,45] argued that Eq. (38) gives the universal equi-
librium distribution of typical current fluctuations in systems
obeying the single file property.

We studied the generic case with finite transmission rate
numerically, both via the semiclassical simulation and within

PP(Qu;1) ~ )

et 2=03/ @) (38)

8We derived this by evaluating the sum ) e *P®(Q,) coming
from Eq. (19).

the SEP approximation. In the latter the distribution function
was computed by a numerical Fourier transformation of the
generating function calculated by Eq. (20) and using the exact
SEP result for the charge average. The results are shown in
Fig. 5(b) at different times for temperature 7 = 0.02M¢? and
y = 0.75 where the mean transmission probability is pr ~
0.1. There is an excellent agreement between the semiclassi-
cal simulations and the SEP approximation. In Fig. 5(a) the
distributions in the two extreme limits are plotted together
with the results obtained in this generic case for the same time.
Naturally, the distribution is broader for greater transmission
probability but remains very different from the purely trans-
missive distribution whose width scales differently with time.

B. Moments and cumulants

We now discuss the moments (Qf) and cumulants (Qf)c
of the distribution P(Qy;t). The moments of the transferred
charge (integrated topological current) distribution can be ob-
tained by differentiating C, (0, ) with respect to # and then
setting 7 to zero. The cumulants can be derived in the same
way from In C,(0, t).

In the totally transmitting case, we find from Eq. (17a) that
the even moments scale as

(on®™ ~ /Ty, (39)

while all odd moments vanish. All even cumulants are equal,

()" =~ 0)

showing that the distribution never becomes Gaussian, al-
though for large times all the moments approach the Gaussian
moments in the leading order, so the Gaussian becomes an
excellent approximation of the true distribution.

In the perfectly reflecting case, the integral representation
(19) cannot be used because differentiating the integrand leads
to a divergent integral. We use instead Eq. (35) to write

(0" = Z PS)HAQ(s: 1)), @n

§=—00

where s = k; — k;, and the moments of P;(AQ;t) appear. In
this case we can use the well-known moments of the binomial
distribution to evaluate (AQ(s;?)"), and the final moments
can be given in a closed form in terms of modified Bessel
functions. For example, the second moment reads as

(@) = Z eyt /T)]s)

§=

=t/te "It /T) + Lt /7)) (42)

Some higher moments are listed in Appendix C. In light of
the general case treated below, it is instructive to investigate
the large-time behavior of the moments in this reflective limit

205151-9



M. KORMOS, D. VOROS, AND G. ZARAND

PHYSICAL REVIEW B 106, 205151 (2022)

by approximating P(s) by its asymptotic Gaussian form® and
approximating the sum over s by an integral, which leads to

o e—sz/<2r/r> o
® 6”2/ @m .t [81
(@5 ~ W == (38 =2 =3~
(43b)

and so on. The even moments thus grow for large times as

Qo)) ~ (t/T)"* (44)

in the reflective limit. This must be contrasted to the
(0ot ~ (1 /T)"? behavior in the transmissive case. The
same scaling holds for the cumulants; in stark contrast to
the transmissive limit, now the leading contributions do not
cancel.

The kurtosis (“tailedness”) of the distribution is given by

4
Q) 3 [ s)

(@2~ 2 VT
It approaches 37 /2 =~ 4.71 which is clearly larger than 3, the
kurtosis of the normal distribution.

Away from the special cases of perfect transmission and
perfect reflection, for small transmission rates, we can again
make use of the mapping to the SEP and the exact moments
of P(AQ(s;t)) obtained in Ref. [43]. Although Eq. (41) is not
valid in general, it holds in the SEP approximation, where
the distribution of the transferred charge depends only on
s = k; — k;. The first two nontrivial moments are

(AQ(s;1)*)3FF =
(AQ(s; 1)*)SEP =

Is| -+ 2J1(s, 7),
(35> — 2|s]) + 4(3ls| + 2)i (s, )
+ 12J5(s, 7), (46b)

(462)

where J; are given by k-fold integrals (see Appendix B). We
can see that the moments of the binomial distribution valid for
perfect reflections get modified in a time-dependent manner.

The asymptotic behavior of Ji(s, ) is also known in the
limit |s|,7 — oo, & = —s/~/4t fixed [43] (cf. Appendix B).
Plugging these into Eq. (41) and approximating the sum over
s by an integral over & yields

QD ~ | 2;a / " dg e A

_ ﬁ\/?m @)
s T
3 o0
(o) ~ 2L / d e € 12A(E)?
T TJ
— \/g\/g(}\/l + o —24142a), (47b)

9The resulting expression also follows from evaluating the integral
in Eq. (19) in the saddle point approximation.

. n=2_§
10
10°
4 st n=>0
10
::103 ‘A/
~ pasist n=4___.
102 YT
111 e ‘M
—————— i i e bk Ak
1 L et
1 10 100
t/T

FIG. 6. Moments of the transferred charge (Qp) forn =2,4,6, 8
as functions of time at y = 0.8 and 7 = 0.1Mc?. Symbols denote
results of the semiclassical simulation; asymptotic results (47) are
plotted as dashed lines.

where A(£) is defined below Eq. (27) and « is defined in
Eq. (26) as the proportionality factor between the SEP time
f and dimensionless physical time #/.

We can see that the powers of ¢ are the same as for the
totally reflective case; only their coefficients get modified. The
statistical properties of charge transfer in the general case are
thus closer to the completely reflective limit. Indeed, the last
integral approaches 3./ /(2a3) for @ o« pr — 0 from above,
so in the reflective limit, pr — 0, we recover the reflective re-
sults in Eqgs. (43). The kurtosis is larger than in the completely
reflective case.

In Fig. 6, we show the Monte Carlo results for the first
four even moments on a log-log scale, together with the SEP
asymptotics (47) for the first two. We checked that, although
the correction with respect to the reflective results are small
in the small-py regime, Eqgs. (47) give better agreement than
Egs. (43), valid in the totally reflective case.

We note that the fact that the cumulants scale with different
powers of  means that they cannot be obtained from a scaled
cumulant generating function. According to Eq. (29), the latter
scales as ~+/f but this does not carry over to the cumu-
lants. A similar anomalous behavior was recently observed in
Refs. [44-4T7].

V. TOPOLOGICAL CHARGE DENSITY CORRELATORS

The topological charge density operator is given by

Q4(x) = 3 D(x). (48)

Its correlation functions,

R(x, 1) = (04(x,1)04(0, 0)), (49)

can be obtained [32] from the vertex operator correlation func-
tion by extracting the second-order term in its series expansion
in n and then differentiating twice with respect to x.

In the purely transmissive case, from Eq. (16) we obtain

M4 A 27\
_L<_”> ] (50)
2 Y

1 92CM(x, 1)
2 9n?

n=0
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Using that

2 2 ¢ 2p

ROatr) = p | dof)—vl="f(x/) (D)
for timelike separations (|x| < ct) and zero for spacelike sep-
arations (|x| > ct) (see Appendix D), we obtain for timelike
separations

R(")(x, 1) = p@,

(52)

where f(v) is given in Eq. (7). For spacelike separations, the
charges are uncorrelated and R™(x, t) = 0. At low tempera-
tures, we recover the free density-density correlation function,

R(tr)(x, t) ~ Zﬂe—Mcz/Te—MXZ/(ZIZ)' (53)
T

In particular, the autocorrelation function is

2
—MCZ/T ~ 'O_ (54)

() M
R™(0,t) = —e ,
2wt /T

where the 1/¢ behavior emerges in the limit where the exten-
sion of the topological charges tends to zero.

In the purely reflective case, the calculation is more com-
plicated. We differentiate twice the integrand of Eq. (23) with
respect to x, and then with respect to 7. The resulting integral
expression is shown in Appendix D. It can be evaluated for
the autocorrelation function with the result

R0, 1)
M Io(t Li(t
= M MEIT it ) 4 pRe o(t/T)+ Li(t/7)
2t 2

~ 1 2 —t/t 2
r—pe L/t +h@/t)+Lt/T) ). (55)
2 wt/T
For short times ¢ << T we recover the transmissive result,

M 1
RO, 1)~ ——e MMt/ 4 —p2 4. (56)
2wt 2

while the large-time asymptotics is of the diffusive form [32]

2
RO, 1)~ —L—— 1 o[/t . (57)

2Tt [T

We show our semiclassical numerical results for the charge
density autocorrelation function in Fig. 7. In the numerical
calculations, shown as dots, the charge density was measured
in finite intervals. To obtain better precision and to reduce
noise, we varied the length of the intervals and used shorter
intervals at short times.

The upper (green) data points were obtained for the totally
reflective case and are seen to match the analytic expression
(55) shown in magenta dashed line. The lower (blue) dots
show our numerical results for y = 0.725 where both trans-
missive and reflective collisions are present. The asymptotic
behavior is found to be consistent with the diffusive ~¢~!/2
form also in this case, providing evidence for the generic
diffusive nature of charge transport.

Tael . reflective limit, simulation
el e reflective limit, analytical

Ra Y . v = 0.725, pr = 0.6624
010" . .

(04(t)0y(0))/?

0.01

FIG. 7. Topological charge density autocorrelation function nor-
malized by the particle density squared on a log-log scale. The
upper curves correspond to the purely reflective case, while the lower
curves refer to y = 0.725; the temperature is set to T = 0.1Mc?. The
purely reflective simulation results are plotted in green dots, while
the magenta dashed line shows the analytic result (55). The blue dots
represent the simulation results for y = 0.725, and the black dashed
line indicates the large-time ~¢~!/? asymptotics.

VI. CONCLUSIONS

In this work, we studied topological charge dynamics of
generic, nonintegrable systems in the sine-Gordon family at
low temperatures. The systems in this class possess a natural
phaselike field and associated long-lived, gapped topological
“kink” excitations carrying topological charges. These models
arise naturally as effective low-energy descriptions of various
1D quantum systems via bosonization.

We investigated the equilibrium, finite-temperature corre-
lation function of the vertex operators, (e1®™)e=n®0.0))
the distribution function of transferred topological charge
P(AQ;t) and its cumulants, as well as the correlation function
of the topological charge density g,(x,¢) using the hybrid
semiclassical method developed in Ref. [37]. This approach
is formulated in terms of the physical massive kink particles,
and is supposed to be valid at temperatures small compared
to the energy gap (the kink mass). It allows us to go beyond
the original semiclassical approach that assumes perfectly
reflective scatterings [30-32], and to study the effect of trans-
missive collisions, present at any finite temperature. We found
that in contrast to the prediction of the original semiclassical
approach, the vertex operator correlation function does not
decay diffusively in time but follows a stretched exponential
decay, multiplied by a power law [cf. Eq. (29)]. This generic
result is different from the analytically tractable purely reflec-
tive (diffusive power law) and purely transmissive (ballistic
exponential) cases.

We substantiated these results analytically in the weakly
transmissive limit, by approximating the system and mapping
it to the simple symmetric exclusion process. The decay of
correlations comes from two sources: the random motion of
the domains bordered by the kinks (see Fig. 1) giving rise
to a slow, diffusive decay, and from the domains chang-
ing their charges due to transmissive collisions, yielding an
exponential decay. However, since the charge of a given do-
main propagates diffusively, due to the random domain wall
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collisions, the exponent scales as ~+/7 instead of being linear
in time.

Even though the SEP approach is well justified only in the
case of rare transmissive collisions, our numerical semiclas-
sical simulations showed that the obtained time dependence
holds much more generally, even for relatively high average
transmission probabilities.

While the generic (finite transmission) vertex correlation
functions are very different from the ones computed in the
reflective limit, the autocorrelation function of the topological
charge density is found to behave generically diffusively, just
like in the purely reflective case. This is somewhat expected:
as the probability of reflective collisions is finite, at some
point the charges get reflected, implying a diffusive, Brownian
motion. It is interesting to note, however, that even though the
charge dynamics is diffusive, the vertex operator correlation
function behaves very differently in the purely reflective and
in the generic case, so it appears to be a more sensitive probe
of the dynamics.

Our approach also allowed us to study the statistics of
transferred topological charge, P(AQ;t), as a function of
time. We derived analytical results in the purely reflective
and transmissive limits, and have shown that this function
as well as the moments and cumulants of the transferred
charge behave strikingly differently in these limits. In the
transmissive (ballistic) limit, the moments (AQ()")™ scale
as ~t"/? (for n even), while in the purely reflective limit,
(AQ(t)")® ~ "4 The origin of the difference is very sim-
ple; in the transmissive limit, N oc ¢ topological charges of
random sign are transferred through a given point, yielding
AQ ~ /N ~ 72 and (AQ@)")™ ~ "2, In the reflective
limit, however, topological charges move diffusively, and the
number of charges passing a given point scales as N ~ /t
only. The sum of these ~+/t random charges then scales as
AQ ~ t/4, yielding the observed scaling, (AQ(t)")") ~ t"/4,

In the transmissive case, the cumulants scale ballistically,
~t, whereas in the purely reflective case they follow the
moments and scale nonuniformly. This implies that the scaled
cumulant generating function is anomalous as it does not
generate faithfully the scaled cumulants [45]. In the reflective
limit, we recover the same “universal” distribution of typical
fluctuations as a recent, independent work [44] that studied a
quantum cellular automaton involving two kinds of charges,
which can be viewed as a discretized version of our model.

Since in the generic case a small backscattering is always
relevant, the asymptotic behavior of moments and cumulants
is similar to what we find in the reflective case, though small
corrections appear and the prefactors obviously differ.

Even though we used the sine-Gordon S matrix for con-
venience, our main results do not depend on this choice.

J

Importantly, whether the S matrix satisfies the Yang-Baxter
equation played no role in our study that focused on generic,
nonintegrable versions of the sine-Gordon theory. We also
neglected some coherent parts of the scattering histories.
These coherent contributions become important in the in-
tegrable case, when the S matrix obeys the Yang-Baxter
equation, and the exact eigenstates of the system can be writ-
ten in terms of ballistically propagating quasiparticles, the
so-called magnons. This representation is used in the general-
ized hydrodynamics of the integrable sine-Gordon model [36]
predicting ballistic charge transport, exponentially decaying
vertex operator autocorrelation functions, and uniformly scal-
ing cumulants for the integrated topological current [48].

Physical systems belonging to the sG family are, however,
not integrable, and the S matrix typically does not satisfy
the Yang—Baxter relations. In this case integrability-related
interference features are expected to be unimportant or to
appear in a restricted region. We therefore expect our results
to describe the dynamics in these generic systems.
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APPENDIX A: DISTRIBUTION OF THE
TRANSMISSION PROBABILITY

The transmission probability given by the modulus square

of the transmission amplitude (4),
S 12 (0
sinh® (¥)

sinh (?) + sin (%)
depends on the rapidity difference ¥ = 6; — 0, of the col-
liding solitons. Let us assume that the first soliton travels at
velocity v; = v(#;) = ctanh #;. The probability that a ran-
domly chosen soliton with velocity v, = ctanh 6, crosses its
world line within time ¢ is |v; — v,|¢t/L. The average of any
quantity h(¥*) depending only on the rapidity difference at
collisions is then

pr(®) = [S1(P)* =

(AD)

F= N / dv, f(vn) / v f (02|01 = val By — ) = N / a6, / 65 g(6))9(6)[v(6)) — v(62)[h(B; — 6)

dpr

1
=N*12/ d
A pr a0

—1 1
f dOg(® —9/2)8(0 + ¥ /2)|v(O® — #/2) — v(O + ¥/2)|h(¥) = / dprP(pr)h[d(pr)l,
0

(A2)
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where g(6) = 42 f[v(6)] = M4l o=Me*cost/T gnd

N=/dU1f(U1)/dU2f(U2)|U1 — 2]

(A3)

is the normalization factor. The plot of P(pr) can be drawn parametrically by sweeping through a range of ¢ and plotting

together pr(¥) and

dpr "

— Al
Plpr)] =N 15

In the nonrelativistic (low temperature) limit we can obtain
an explicit expression. In this limit, ¥ ~ u/c <« 1 and

(&)

G Ttk — (A5)
P4 2 (T
(E) —+ sin (3)
which can be inverted:
19| = £ sin (Z> pr (A6)
§/V1—pr
Exploiting the Gaussian nature of fv) =~

JM]Q2rT)e ™MV /@) the integrals can be performed
explicitly. We obtain N =~ 2,/T/(Mm) and, by taking
explicitly the derivative du/d pt, we arrive at

M , L, (n o~ ME/ETIE sin® (2)pr/(1=pr)
P(pT) ~ —E sSin _
T § (1= pr)?
(AT)

APPENDIX B: EXACT RESULTS FOR THE SEP

In this Appendix we quote some exact results relevant
to our work derived in Ref. [43] for the simple symmetric
exclusion process. Following this reference, let us denote by
N(0, ) the integrated particle current at the origin, i.e., the
total number of particles that have jumped from site 1 to 0
minus the total number of particles that have jumped from 0
to 1 in SEP time 7 (note the somewhat unusual convention for
the sign of the current). Let us also define the quantity N (s, 7)
for s # 0 such that

NQO, D)+, (D),

N, 7) = )y (@),
where n,(f) € {0, 1} is the site occupation at site r at time 7.
This is closely related to the topological charges in domains

at different times that are s kinks apart from each other. The
precise relation is

0(s, ) — 0(0,0) = 2N(s, ) — 5. (B2)

s> 0,
s <0,

NGs.7) = { (B1)

To see this, note that the topological current is (minus) twice
the SEP particle current, because a particle jump corresponds
to swapping two opposite charges. When we move along a
vertical (timelike) segment in the calculation of AQ(s, ),
we need the negative of the current, so the sign is correct.
Along the horizontal (spacelike) segment, we need to add the
charges, which using g; = 2n; — 1 gives the above relation.
In the work [43], an exact result was derived for the char-
acteristic function of the probability distribution of N (s, ) for

2/d@ 2O — 9/2)g(0 + ¥ /2)|v(O — 9 /2) — v(® + 9 /2)|.

(A4)

(

arbitrary s and f for a Bernoulli initial condition with a steplike
density profile. Here we specify to the case where the left
and right densities are both 1/2. The characteristic function
is written in terms of a Fredholm determinant:

(e)\.N(S,f)> — (ek/ZAQ(S,tA)>e)»S/2

1+ esgn(s)k)m

= det(1 + sinh?>(x /2)KS,;)L2(CO)( 5

(B3)
where the kernel is
gllsle(s, +1/6-2)F
§&+1-28"

and Cj is a contour around the origin small enough so the
poles of the kernel lie outside of it.

For s > 0, the moments of the distribution can be ex-
pressed as

K, i (51, 6) = (B4)

(NG, B)") =D i (s)Jis, D), (BS)

k=0
where
Ji (s, 7) =/ / l_[ § —§&; 1_[%-156(51-&-1/&;—2);
Co C0i<j Eté]"‘l—zgj . (l_gl)z

i=1
(BO)

and the coefficients m,, ; are given implicitly by

2\ A" sinh®*(A/2) (& + 1)\’
D k() = — ( 3 ) (B7)

n=0

For example,

! s s(1+5)
moo=1, mo==, myo= ,
0,0 10 =3 2,0 1
23+ ) s(1+5)(s*+5s—2)
myg=——s—, mM4g= , (B3
8 16
3s
mo1 =0, m; =0 my; = 3 M=
35 +3s+2
myy =212 (B9)
4
The long-time asymptotic behavior of the characteristic
function in the limit{ — oo, s — o0, £ = —s/x/4_fﬁxed was
also derived in Ref. [43]:
(eAN(s,f)) ~ e—ﬁu(g,x)’ (B10)
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where
ey = 30 IOy ey e i
with -
40 = S +yert (). (B12)

In the same asymptotic limit, the long-time behavior of the
moments can be obtained based on the asymptotic behavior
of the J, (s, ) functions:

Ji(s. B) ~ VIIAE) — &1, (B13)

Da(s, ) ~ [IAE) — €11 — VI/2[A(V2§) — V2[£]]. (B14)

We now translate these results to our language. In our case,
A = 2in, and

(400D = det[1 — sin®(7) K, 12,y (cos ). (B1S)

Notice the (cos 7)1/ factor corresponding to the binomial dis-
tribution at 7 = 0. This is the purely reflective result which
corresponds to no SEP dynamics, i.e., f = 0.

The moments of AQ(s, ) = 2N(s,f) — s are obtained as
linear combinations of moments of N(s, 7). The odd moments
obviously vanish, and the even moments are even in s:

(AQ(s, 1)*) = |s| + 2J1(s, 1), (B16)

(AQGs, 1)) = (35® = 2Is]) + 4(ls| + 2)Ji (s, 1) + 12J2(s, D).
B17)
Finally, the asymptotic expression (27) in the main text fol-
lows simply from Egs. (B2) and (B10).
APPENDIX C: FULL COUNTING STATISTICS
IN THE PERFECTLY REFLECTING CASE

We start from

2 df] -~
P(Qo;l)=f S—e G, (0, 1). (ChH
0 2
Using Eq. (23)
2 d¢) -
P (Q31) = / S F(Qo, ¢)e ™™ (C)
0 2
where
wogE 1 — cos? 7]
R ——
0o 27 1 — 2 cosijcos(¢p) + cos™ 7

(C3)

Alternatively, F (Qo, ¢) can be obtained from Eq. (19) by tak-
ing the Fourier transform of (¢*%®)) = (cos 7)"! to obtain

2 =
i _i . L/ sl
(r) — inQ Isl —
PS (QO) - /(; 2716 U(COS’?) - 2\S| <Q0-2-|s>’ (C4)

and then calculating the sum

F(Qo,¢)= ) 2—(&) e 7, (C5)

§=—00

In practice, the sum runs over |s| > |Qp| in steps of two. The
first few examples are

1
FO,¢p)=—-1+ |1+ — ) (C6)
| sin @ |
3¢/2 in(3¢/2
F(xl, gy = SB8CP/DT5nGH/2) o )
A/sin ¢
The general result for any Qg # 0 is
e~ 910l 1+ 10| [Qol 2
— . —2ip
F(Qo, ¢) = o0 2 1( > 1+ > 3 14100l € >
/71| 1+ 10| |Qol 2
. i¢p
+ 100 2 1< 5 ,1+—2 3 14100l € >,

(C8)

where » Fi (a, b; c; 7) is the hypergeometric function. Its Taylor
expansion around ¢ = 0 reads

2
L 00+ 28t 50w, (©9)

F P =
(Qo. 9) 73 >
Plugging this into Eq. (C2) and evaluating the integral in the
saddle point approximation, we obtain Eq. (36).
The first few moments of the transferred charge can be
given in a closed form using Eq. (35) and the moments of
the binomial distribution:

Qo) = > eIyt /7)ls]

§=—00

=t/te " [Iy(t/T) + I, (t)7)), (C10)
(Qo@H? = Y~ eIy (t/T)3s = 2Is])
=3¢/t =2t )te T [ly(t/T) + I, (t/T)],  (Cl1)

Qo)) = Y eIyt /r)(A5]s] — 305” + 16)
=—30r/t+ (30t /T4+31)t/re T o(t JT)+ L1 (¢ )T)
+30t /T + 16)t/te I (t] 7). (C12)

APPENDIX D: TOPOLOGICAL CHARGE DENSITY
CORRELATION FUNCTION

In this Appendix, we detail the calculation of the charge
correlators. These can be obtained from the correlation func-
tion (9) by differentiating it with respect to x and 7n. Let
us consider the correlator of operators inserted at x; and x,.
Differentiating it with respect to these coordinates, we find

By, Dy, (1211 P20y
1 2

= (3, @(xy, 1)1V M0 D(xy, 0).  (D1)
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Taking two n derivatives and setting n = 0 we arrive at

1828 a <€iﬂ¢(xl»f)g*m(b(xz~,0)>|

5 n %01 % n=0

2 2
= (0, P(x1, )05, P(x2, 0)) = (%) (0q(x1,1)04(x2, 0)).
(D2)

Due to translational invariance, the correlation function de-
pends on x; — x, only, so dy, = —3,,. SO we can reset x; = x,
x» = 0, and then

32 2

297 02 (D3)

(0q(x,1)04(0,0)) = — Gy (x, )l5=0,

where we used 7 = 27n/y.
The correlation function C,(x, t) depends on x through the
functions A, (x, t) and A;(x, t). Their x derivatives are

Ih = p / dvf(1)O(x/t — v), (D4)
A = —p / dvf()® — x/t), (D5)

and
02k = 020 = L (/) (D6)

for timelike separations (|x| < ct) and zero otherwise. Tak-
ing the derivatives of Eq. (23) we obtain for timelike

separations
{04(x,1)04(0, 0))

o2 sin? (¢p/2)(Ae+A1)+i sin p(A —A1)

_ l/z”@;
2 )0 2w 2sin®(¢/2)

X [4 sin2(¢/2)§ flx/t) — (2 sin®(¢/2)p

2
X /dvf(v)sgn(x—vt)—ipsin¢>) :| D7)

For spacelike separations (|x| > ct) we get zero as the
charges are uncorrelated outside the light cone. The large-
time asymptotics can be obtained by the saddle point
approximation, i.e., by expanding the exponent to the second
order around ¢ = 0 and substituting ¢ = 0 in the rest of the
integrand, which yields the diffusive result

exp [_ e=M)? ] e—xz/(4Dt)

X, t O, 0 ~ 2 2(Ar+21) ~ .
(a2 Deq 0,00 = p 27 (Ar 4 A1) P /47 Dt
(D8)

The autocorrelation can be obtained in an analytic form. At
x = 0, the v integral in Eq. (D7) vanishes (the integrand is an
odd function), and A, = A; = ¢/(27). Then

(04(0,1)04(0, 0))

2w
:/ ;&e—ZSin2(¢/2)l/‘[ [Bf(0)+p2 COSZ(¢/2)}
0 T t

p —y Lo e
= 7f(0)€ Lt/7) + 5,0 e Tlp(t/T) + Li(/T)].
(D9)
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