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Metal-insulator transition in the disordered Hubbard model of the Lieb lattice
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Using the determinant quantum Monte Carlo method, we investigate the metal-insulator transition in the
interacting disordered Hubbard model of a Lieb lattice in which the system characterizes the flat band centered
at the Fermi level. By choosing suitable electron densities, we ensure the weak interaction sign problem to
improve the reliability of our results. It is found that disorder and on-site Coulomb repulsive interaction produce
interesting effects that induce the metal-insulator transition which is impossible in the half-filled case. The
density of states at the Fermi energy is still finite in the thermodynamic limit, suggesting that the system is
an Anderson insulator rather than a Mott insulator. Moreover, this doping system is paramagnetic, unlike the
half-filled system which is ferrimagnetic.
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I. INTRODUCTION

A series of experiments demonstrated the appearance of a
conducting phase in a Si/SiGe heterostructure [1–3] and sili-
con metal-oxide-semiconductor field-effect transistors [4–6]
as the electron density is varied. These findings contradict
the standard scaling theory of localization, which claims that
a metal-insulator transition (MIT) cannot exist in a two-
dimensional (2D) nointeracting system with disorder [7,8]. In
a low-density system, since the ratio of Coulomb repulsion
to kinetic energy is large, the electron-electron interaction
is important in the disordered system, which has also been
discussed in Refs. [9,10] and is likely responsible for the
metallic behavior.

In most realistic systems, both repulsion and disorder have
comparable magnitudes [11] and the interplay between them
has been widely studied and gives rise to several unusual
phenomena [12–15]. Finkel’stei first discussed this interplay
under magnetic filed and magnetic impurities [16] and Gulácsi
deduced exact multielectronic ground states of disordered
interacting system at and below quarter filling [17]. There
are also many studies on transport and magnetic properties.
For example, using quantum Monte Carlo (QMC) approaches
to the Anderson-Hubbard model of a square lattice, repul-
sive interaction significantly enhances the DC conductivity
and then induces a metal-insulator transition at quarter fill-
ing [18]. On the honeycomb lattice, the study found that
disorder suppresses long-range antiferromagnetic order and
induces a novel nonmagnetic insulating phase [19]. All of
these phenomena illustrate the necessity of considering elec-
tronic correlation in disordered systems.

*These authors contributed equally to this work.
†txma@bnu.edu.cn

The flat-band system, which ranges from optical lattices
[20–22] to ultracold atomic gases [23,24] to photonic de-
vices [25–28], is another issue in modern condensed matter
physics. Although it has been theoretically understood for
three decades, this system continues to receive a great deal
of attention, in particular, with regards to its ability to realize
new many-body phases [29–32]. Twisted bilayer graphene
is a striking example of this [33,34]. One of the simplest
flat-band 2D systems is the Lieb lattice, which is also known
as the side-centered square lattice. There are three types of
sites, labeled A, B, and C, in each unit cell outlined by
the dotted square in Fig. 1(a). For the infinite lattice with
only nearest-neighbor hopping, the Lieb lattice is a three-
band structure that consists of two dispersion bands ε±(k) =
±t

√
4 + 2 cos(k · a1) + 2 cos(k · a2) and one dispersionless,

macroscopically degenerate flat band ε(FB) = 0 centered at
the Fermi level. These three bands touch each other at the
M point (π, π ), where the low-energy spectrum behaves as a
single Dirac cone in the Brillouin zone, as shown in Fig. 1(b).

Recently, the electronic Lieb lattice was realized in surface
state electrons using CO molecules and Cu(111), providing
a realistic system to explore physical properties [35,36]. Fur-
thermore, in the experiment, the atoms can also be arranged
into the Lieb lattice, similar to the CuO2 plane of cuprate
superconductors [37–40].

The Hubbard model is the simplest model to use in
investigation of the interaction between particles. At half
filling, studies of the flat-band Lieb lattice revealed inter-
esting physics: the system behaves as a topologically trivial
gapless insulator when the Coulomb repulsion U = 0, but
it behaves as a Mott insulator when U > 0 [41], and the
topological phase transition caused by the spin-orbit coupling
is connected to the presence of a nondispersive flat band
[42]. The Lieb theorem states that bipartite lattices with two
sublattices that have different sites, NA �= NB, have a ferro-
magnetic state at half filling with on-site Coulomb repulsion
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FIG. 1. (a) Structure of the Lieb lattice. The dotted square shows
one unit cell containing three lattice sites with indices A, B, and C.
(b) The band structure of the tight-binding model of the Lieb lattice.

only when electron hopping between different sublattices is
considered [43]. The QMC simulations showed that the lo-
cal moment is strongly dependent on B/C sites due to the
decreased itinerancy caused by fewer neighbors, and a metal
without any magnetic ordering is found only if the repul-
sive effect is considered at A sites [44]. In addition, when
the interaction strength at sites is switched off randomly, an
insulator-to-metal transition and magnetic transition will oc-
cur simultaneously [45]. However, because of the infamous
sign problem, most studies focused on half filling, and re-
search on doping is highly important.

In this paper, our simulations are completed by the ex-
act determinant quantum Monte Carlo (DQMC) method for
cases with different fillings. For systems with varying on-
site Coulomb repulsion U , disorder �, and electron density
〈n〉, the DC conductivity is calculated to distinguish between
metallic and insulating phases. For conditions far from half
filling, we focus on 〈n〉 = 0.3 and 0.5, for which the sign
problem is less significant compared to cases with other den-
sities and we reveal the appearance of U - and �-inducing
metal-insulator transitions that are absent in the half-filled
case. We find that repulsion plays a delocalized role on
electrons, whereas disorder plays the opposite role. In the ther-
modynamic limit, the finite density of states at Fermi energy
suggests that the insulator is an Anderson insulator instead
of a Mott insulator. Our results extend the understanding of
the metal-insulator transition and magnetic order in the Lieb
lattice.

II. MODEL AND METHOD

Our model is characterized by an interacting disordered
Hubbard model of a Lieb lattice. The Hamiltonian, using
periodic boundary conditions, reads

H = H0 + Hμ + HU,

H0 = −
∑

αα′〈i,j〉σ
tij(ĉ

†
αiσ ĉ

α′jσ + H.c.),

Hμ = −μ
∑
αiσ

ĉ†
αiσ ĉαiσ ,

HU = U
∑
αi

(
n̂αi↑ − 1

2

)(
n̂αi↓ − 1

2

)
, (1)

where 〈i, j〉 runs over all pairs of nearest-neighbor sites on
the lattice and ĉ†

αiσ (ĉαiσ ) is the creation (annihilation) op-
erator for fermion on site i of the α(α′) sublattice (α/α′ =
A, B,C), satisfying anticommutation relations {ĉ†

αi, ĉαj} = δij
and {ĉαi, ĉαj} = 0, and H.c. stands for the Hermitian conju-
gate. Disorder is introduced by taking the hopping parameters
tij from a probability distribution, P(tij) = 1/�, for tij ∈ [t −
�/2, t + �/2] and zero otherwise. � is a measure of the
strength of the disorder and t the unit of energy is set to 1
throughout our paper. The on-site Coulomb repulsive inter-
action is parameterized by U and the electronic densities of
system 〈n〉, denoted as the average number of electrons per
site, are controlled by chemical potential μ. When μ = 0,
our method ensures that the system becomes half-filled and
remains particle-hole symmetric without the sign problem,
even with the existence of bonding disorder. n̂αiσ = ĉ†

αiσ ĉαiσ
is the number operator on site i of the α sublattice.

We employ the DQMC approach to study the Lieb lattice
for on-site Coulomb repulsion. In this method, the parti-
tion function Z is expressed as Z = Tre−βH and is then
approximated by a path integral using Trotter-Suzuki decom-
position [46,47], which divides the imaginary-time interval
[0, β] into M equal subintervals of width �τ = β/M. The
interaction term formed in the term of quartic fermion op-
erators is decoupled through a Hubbard-Stratonovich (HS)
transformation [48], and thus introduces the fluctuating fields
by Ising variables. The resulting Hamiltonian quadratic form
can be integrated analytically and represented as the product
of the determinant of spin-up and spin-down determinants.
The physical quantity proceeds with Monte Carlo sam-
pling, which stochastically changes the space- and imaginary
time-dependent auxiliary field X . One the DQMC sweep is
composed of traversing the entire site, and in our simulation,
we used 8000 warmup sweeps to arrive at equilibrium state
and 24 000–150 000 measuring sweeps to compute. There are
two sources of statistical error in our results: one is induced
by the Trotter error �τ , we set �τ = 0.1, which confirms
that the error generated is small enough to neglect [49]; the
other is due to disorder averaging, and we reduce this error
by averaging the results from 20 disorder realizations. The
authors of Ref. [50] proved that the computed data are already
consistent for realization numbers larger than 10.

Under DQMC method, we can obtain the average fermion
sign 〈sign〉 by computing the ratio of the integral of the prod-
uct of up and down spin determinants, to the integral of the
absolute value of the product [51]

〈sign〉 =
∑

X detM↑(X ) detM↓(X )∑
X | detM↑(X ) detM↓(X ) | , (2)

here, Mσ (X ) represents each spin specie matrix.
With the aim of investigating the metal-insulator transition,

we computed the T -dependent DC conductivity, which can
be obtained using the wave vector q and the imaginary (Mat-
subara) time τ -dependent current-current correlation function

xx,

σdc(T ) = β2

π

xx

(
q = 0, τ = β

2

)
, (3)

where 
xx(q, τ ) =< ĵx(q, τ ) ĵx(−q, 0) >, β is the reciprocal
of temperature and ĵx(q, τ ) is the Fourier transform of the
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current density operator ĵx(i, τ ) in the x direction. This for-
mula is valid only if the temperature is lower than the energy
scale. Thus, the high-order term of the Taylor expansion
formula of the frequency-dependent function of conductance
needs to be sufficiently small [52]. In the disordered sys-
tem that we study, the energy scale is set by the disorder
strength � so that Eq. (3) is valid at low temperatures, and
we judge the phase transition mainly by the result T � 0.25.
The temperatures are much smaller than disorder strength,
and all results are valid for the studied disorder strength. It is
worth mentioning that the equation was used in the disordered
Hubbard model [18,19,53,54], whereas it is still applied to a
system without disorder [19,55]. A further way to distinguish
the type of insulating phase is the density of states (DOS) at
Fermi energy [53,56]

N (0) 
 β × G(r = 0, τ = β/2), (4)

where G is the imaginary time Green’s function. We are in-
terested in the magnetic behavior of the system by focusing
on the space equal-time spin-spin correlation function [57],
defined as

C(r) =< Sz(Ri + r)Sz(Ri ) >, (5)

where Sz(Ri ) = ni↑ − ni↓. From C(r), we can obtain the spin
structure factor S(q) through the Fourier transform

S(q) =
∑

r

eiq·rC(r). (6)

Then, we define the q-dependent susceptibility as χ (q) =
βS(q) [18]. The wave vectors q = (0, 0) yield the fer-
romagnetic (FM) susceptibility, and q = (π, π ) yields the
antiferromagnetic (AF) susceptibility [58]. For the Lieb
lattice with ideal antiferromagnetic distribution, the spin di-
rection of same sublattices (AA, BB, CC) and next-nearest
neighbor sublattices (BC) is the same, and the spin di-
rection of the nearest-neighbor sublattices is opposite, so
the AF structure factor in our paper is calculated by the
formula SAF = Sz

AA + Sz
BB + Sz

CC − Sz
AB − Sz

AC − Sz
BA − Sz

CA +
Sz

BC + Sz
CB, where each term that contributes to AF is consid-

ered, and the form of the equation is unaffected no matter how
the electrons are distributed on the A/B/C sites [59].

III. RESULT AND DISCUSSION

First, we plot the DC conductivity as a function of temper-
ature under a few representative U and � at half filling. The
total number of lattice sites we focus on in this paper is N =
3 × L2 with L = 8 unless otherwise specified. Figure 2(a)
shows that keeping the disorder strength � = 1.0, the DC
conductivity decreases with increasing repulsive interaction
strength. In the case of higher temperatures, σdc increases as
the temperature decreases, while in the case of T � 0.2, σdc

starts to decrease, indicating insulating behavior. The effect
of disorder on the DC conductivity with the intermediate
repulsive interaction U = 4.0 is shown in Fig. 2(b), where
increasing the hopping disorder strength reduces the value of
the DC conductivity. Neither increases in the hopping disorder
strength nor the interaction strength can change the insulating
state at half filling. Our finding that there is no metal-insulator

FIG. 2. Temperature dependence of the DC conductivity σdc

computed on the N = 3 × 8 × 8 lattice for (a) various interaction
strengths at � =1.0 and (b) various disorder strengths at U = 4.0.
Data points are averages over 20 disorder realizations.

transition in the hopping-disordered Hubbard model at half
filling is consistent with previous results [44].

Our simulation is aimed at understanding the physical
properties when the band is far from half filling. The fermion
sign problem is protected by the particle-hole symmetry at
exactly half filling, while our simulations are plagued by the
sign problem when doping away from half filling [60] and this
restricts accessible temperatures. To avoid the error caused by
the sign problem, we compute the relation between the sign
problem and density for different temperatures and disorder
strengths at fixed U = 4.0 in Fig. 3 with the Monte Carlo
parameters of 24 000 times runs. As 〈n〉 decreases from 1,
〈sign〉 decreases rapidly to 0 and floats about 0 until 〈n〉 = 0.7.
Then, as 〈n〉 gradually decreases to 0, 〈sign〉 recovers to 1.
〈sign〉 shows no signal as it passes through 〈n〉 = 2/3, which
corresponds to entry into the flat band. Figure 3(a) shows
the inverse temperature β dependence of the sign; increasing
β leads to a more severe sign problem. Indeed, the average
sign decays exponentially with increasing β [51]. Conversely,
increasing the disorder strength ameliorates the sign problem,
as shown in Fig. 3(b). Avoiding densities with a more serious
sign problem such as 〈n〉 = 0.4, we choose two densities of
〈n〉 = 0.3 and 〈n〉 = 0.5 to study the effect of doping on the
transport and magnetic properties. For the results where the
sign problem is not too serious, longer runs can help compen-
sating the fluctuations. In fact, the runs can be estimated to be
stretched by a factor on the order of 〈sign〉−2 [61,62]. In our

FIG. 3. Sign problem 〈sign〉 as a function of density for (a) dif-
ferent temperatures and (b) various disorder strengths. The dashed
line represents 〈n〉 = 0.5.

205149-3



LI, TIAN, MA, AND LIN PHYSICAL REVIEW B 106, 205149 (2022)

FIG. 4. The DC conductivity as a function of temperature for
various disorder strengths at 〈n〉 = 0.5 and 〈n〉 = 0.3.

simulations, some of the results are computed with 150 000
runs to obtain the same quality of data as 〈sign〉 ∼ 1.0.

In Fig. 4(a), we show the behavior of the DC conduc-
tivity for a range of disorder strengths at 〈n〉 = 0.5 and
U = 4.0. The DC conductivity curve below � = 1.6 is con-
cave (dσdc/dT < 0) at low T , indicating a metallic phase,
while above � = 1.8, the curve is convex (dσdc/dT > 0),
corresponding to an insulating phase. This figure displays a
transition from metallic to insulating behavior at a critical
disorder strength of �c = 1.6–1.8, completely differing from
the half filling case [see Fig. 2(a)]. Similarly, �c = 1.8 ∼ 2.0
at 〈n〉 = 0.3 for U = 4.0. This indicates that disorder localizes
the electrons. We also focus on the effect of doping on trans-
port properties. For example, when keeping other parameters
constant (� = 1.4 and U = 4.0), the system at 〈n〉 = 0.3, 0.5
is metallic, but is insulating at half filling; see Fig. 2(b), sug-
gesting that doping can lead to the metal-insulator transition.

The difference between the square lattice and Lieb lattice
lies at the flat band; thus, one can compare the physical prop-
erties of these two lattices to analyze the importance of the
flat band. To verify the flat band in a disordered system, we
compute the total energy as a function of density in the nonin-
teracting limit. In Fig. 5, the addition of disorder changes the
energy level and destroys its degeneracy when 〈n〉 < 2/3 and
〈n〉 > 4/3. However, the band structure is hardly influenced
by disorder when 〈n〉 ∈ (2/3, 4/3), the range of filling density
which corresponds to the flat band, suggesting that disorder
has little effect on the flat band. Thus we can refer to the
results of the disordered system in our paper to discuss the role
of the flat band. At half filling, the Lieb lattice exhibits weaker

FIG. 5. Total energy as a function of electronic density for the
L = 8 lattice in the noninteracting limit. 〈n〉 ∈ (2/3, 4/3) corre-
sponds to the flat-band filling.

FIG. 6. The DC conductivity as a function of temperature for
various interaction strengths at 〈n〉 = 0.5 and 〈n〉 = 0.3.

metallicity than the square lattice with the same parameters;
see Fig. 2(b) and Fig. 1 in Ref. [18]. A similar phenomenon
also appears at 〈n〉 = 0.3, 0.5 when the flat band is empty.
Thus, the flat band will suppress transport properties regard-
less of whether the electrons have filled the flat band.

To observe the role of the interaction U on the DC conduc-
tivity, we compare the σdc behavior of different interactions.
The value of disorder strength we choose is 1.5, so that
the system size is larger than the localization length and
the disordered noninteracting system is insulating. Figure 6
displays the temperature dependence of the DC conductivity
for electronic density 〈n〉 = 0.5 and 0.3. The interaction is
found to play a profound role in the DC conductivity: in
the high-temperature regime, the interaction slightly reduces
σdc. In contrast, in the low-temperature regime, upon turning
on the interaction, the value of σdc starts to increase, and
a noninteracting insulating phase gradually changes into a
metallic phase at approximately U = 1.0. This phenomenon
indicates that the interaction has a delocalizing effect on the
electrons in the disordered systems. The single-particle gap is
another electronic property we are interested in. At half filing,
the Hubbard model of the the Lieb lattice shows a charge
excitation gap for U > 0 without disorder, i.e., the properties
of a Mott insulator. Since the Anderson insulator is gapless
at the Fermi level, the gap can be used to determine the type
of the insulating phase although the gap is unaffected by the
order parameter of symmetry breaking. Here, we use the den-
sity of states at the Fermi energy to extract the single-particle
gap. In Fig. 7 DOS is plotted as a function of temperature

FIG. 7. The density of states as a function of temperature at
(a) 〈n〉 = 0.5 and (b) 〈n〉 = 1.0 for U = 4.0 for various disorder
strengths.
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FIG. 8. (a) The ferromagnetic and antiferromagnetic susceptibil-
ity as a function of temperature at 〈n〉 = 0.5, 0.3 for U = 4.0. Inset:
Spatial dependence of the spin-spin correlation function at β = 10.
r running along a horizontal line, i.e., line with alternating red and
blue sites in Fig. 1(a).

for various disorder strengths and fixed on-site Coulomb re-
pulsive interaction at different densities. One can see that
N (0) decreases with decreasing temperature for all cases.
When T → 0, DOS will converge to finite values at 〈n〉 = 0.5,
suggesting the presence of the Anderson insulator. With in-
creasing intensity of disorder, the value of DOS decreases in
the thermodynamic limit but is finite. The finite density of
states forms an interesting counterpoint to that of the Mott
insulator whose DOS converges to zero, as shown in Fig. 7(b).
Finally, we consider the effect of doping on magnetic order.
Figure 8 provides the dependence of susceptibility χ on T for
U = 4.0 and various disorder strengths. In all cases, it can
be seen that the ferromagnetic susceptibility χFM increases
slightly with decreasing temperature, while the antiferromag-
netic susceptibility χAF increases significantly and is always
stronger than χFM. Although χAF increases rapidly when T
approaches 0, it is still not enough to prove that there is an
antiferromagnetic order in our system. If there was perfect
order, χAF should approach β ∗ N when T → 0; however, χAF

here is much smaller than this value. In the inset of Fig. 8(a),
inhibition of disorder is only apparent in non-nearest-neighbor
terms, which contribute little to antiferromagnetism; perhaps
this is why disorder has little effect on magnetic susceptibility.
Overall, Fig. 8 proves that the doped system is paramagnetic,
while the half-filled system is ferromagnetic [44], indicating
doping can change the magnetic properties.

IV. CONCLUSION

In summary, we studied a doped Lieb lattice containing
both on-site Coulomb repulsion and disorder using a de-
terminant quantum Monte Carlo method. We computed the
half-filled case to examine our method and explored the
sign problem at states far away from half filling. The sign
problem becomes more serious with decreasing temperature

FIG. 9. The conductivity as a function of temperature (a) with
different lattice sizes L = 8, 12, (b) with various disorder strengths
for L = 12 and 〈n〉 = 0.5.

and weaker with increasing disorder strength. To ensure the
reliability of the results, we chose two electron densities
where the sign problem is less severe. We calculate the
temperature-dependent DC conductivity σdc and found that
Hopping disorder drives the metallic phase to the insulating
phase, while Coulomb repulsion has the opposite effect. Com-
pared to the previous theoretical results on the half-filled case,
the produced insulating phase is proven to be an Anderson
insulator by studying the density of states in the Fermi energy.
In addition, data on the susceptibility χ (T ) suggested that the
doping system is in a paramagnetic state. Compared to the
ferrimagnetic half-filled system, it can be inferred that doping
can change lattice magnetic properties.
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APPENDIX: FINITE-SIZE EFFECT

To ascertain that the insulating phase produced by disorder
at low T is not due to the system size being smaller than
the localization length, we study the conductivity response
for varying system size. We find that the size affects weakly
on conductivity regardless of whether the system is in an
insulating or metallic phase, as shown in Fig. 9(a). We also
focus on the relationship between σdc and T at different dis-
order for L = 12 and 〈n〉 = 0.5. In Fig. 9(b), the behavior
of conductivity at L = 12 is almost the same as the one at
L = 8, and the critical disorder-inducing phase transition is
also around 1.6–1.8. These results demonstrate the reliability
of our conclusion that disorder induces the metal-insulator
transition when doping away from half filling.
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