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Effect of local magnetic moments on spectral properties and resistivity
near interaction- and doping-induced Mott transitions
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We study the effect of the formation and screening of local magnetic moments on the temperature and
interaction dependences of spectral functions and resistivity in the vicinity of the metal-insulator transition.
We use dynamical mean-field theory for the strongly correlated Hubbard model and associate the peculiarities
of the above-mentioned properties with those found for the local charge χc and spin χs susceptibilities. We
show that at half filling the maximum of resistivity at a certain temperature T ∗ corresponds to the appearance
of a central quasiparticle peak of the spectral function and entering the metallic regime with well-defined
fermionic quasiparticles. At the same time, the temperature of the crossover to the regime with screening of
local magnetic moments, determined by the minimum of double occupation, is smaller than the temperature
scale T ∗ and coincides at half filling with the boundary Tβ=1(U ) corresponding to the exponent of resistivity
β ≡ d ln ρ/d ln T = 1. Away from half filling we find a weak increase of the temperature of the beginning
and completion of the screening (i.e., Kondo temperature) of local magnetic moments, while the unscreened
local magnetic moments exist only up to a few percent of doping. In the low-temperature regime T < Tβ=1

the simultaneous presence of itinerant and localized degrees of freedom yields an almost linear temperature
dependence of the scattering rate and resistivity.
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I. INTRODUCTION

The Mott metal-insulator transition (MIT) [1] represents
a phenomenon which occurs due to strong electronic corre-
lations. It is observed in particular in transition metal oxides
such as V2O3 [2–8], layered organic compounds [9–15], high-
temperature cuprate superconductors (see, e.g., Ref. [16]), etc.
The proximity to the Mott transition yields peculiarities of
many physical properties, which can be related to the appear-
ance of local magnetic moments (see, e.g., the discussion in
Refs. [17–19]).

Quantitative studies of the Mott transition became possi-
ble with the discovery of the dynamical mean-field theory
(DMFT) [20]. Originally, the Mott transition was described
mainly on the basis of single-particle properties, e.g., spectral
functions, densities of states, etc. [20]. The peculiarities of
transport properties near the Mott transition were investigated
in Refs. [21–29]. In this respect, the boundary of the metal-
lic behavior (the so-called Brinkmann-Rice boundary), which
can be determined from the maximum of the temperature
dependence of resistivity, was introduced [13–15]. At the
same time, the crossover between different states near the
first-order transition can be characterized by the Widom line,
which was first introduced in the context of the liquid-gas
transition [30,31] as the line of a sharp change from a liquid to
gaslike behavior above the critical temperature. For correlated
electronic systems this boundary, corresponding to a sharp
change from metal to insulating behavior, can be determined

in particular from the inflection points of the resistivity ρ(U )
dependences [10,26], double occupation, or single-particle
properties [29]. The relation of the Widom line to the sec-
ond derivative of the Landau functional, determined by the
convergence rate of DMFT solutions, was emphasized in
Refs. [25,26]. Moreover, it was shown that near the Mott tran-
sition the interaction dependence of the resistivity [25–28],
the spectral functions, and the self-energies [28] obey cer-
tain scaling laws, showing quantum critical behavior of these
quantities.

Recently, in connection with the studies of the two-particle
quantities near the Mott transition, the formation of local
magnetic moments (LMMs) in the vicinity of the Mott tran-
sition [32–34] and the explicit determination of the Landau
functional and its derivatives in terms of the local vertices
[35] were discussed at half filling. In particular, criteria for
determining the temperatures of the formation [33,34], start
of screening [34], and fully screened (Kondo temperature)
[32–34] local magnetic moments based on the peculiarities of
the local charge and spin susceptibilities were proposed. The
relation of these criteria to the above-mentioned features of
the quantum critical behavior of resistivity near the Mott tran-
sition is, however, not obvious since it involves the relation
of single-particle, local two-particle, and transport properties.
Although at the level of DMFT for the single-band model
the vertex corrections to transport properties vanish and the
two-particle properties are not directly related to transport

2469-9950/2022/106(20)/205148(10) 205148-1 ©2022 American Physical Society

https://orcid.org/0000-0002-7349-916X
https://orcid.org/0000-0003-1574-657X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.205148&domain=pdf&date_stamp=2022-11-28
https://doi.org/10.1103/PhysRevB.106.205148


T. B. MAZITOV AND A. A. KATANIN PHYSICAL REVIEW B 106, 205148 (2022)

properties, they are both related to the single-particle prop-
erties.

The resistivity at finite doping was studied previously
within DMFT and cluster theories in Refs. [22,27,36]. While
close to half filling the temperature dependence of the re-
sistivity shows a maximum, which is similar to that for the
half-filled case, the temperature interval of the pronounced al-
most linear temperature dependence of resistivity is obtained
in this case. Again, the question of the connection between
this behavior and peculiarities of single-particle quantities can
be raised in this case.

In the present paper we study the connection between the
above-described features of resistivity and the local single-
and two-particle properties. In particular, we supplement a
previous study of the formation of local magnetic moments
at half filling [34] with a detailed study of the temperature
and interaction dependence of resistivity within the Hubbard
model on the square lattice. By comparing the obtained char-
acteristic temperatures at half filling we find that different
criteria for the Widom line T ∗ almost coincide with each other
and with the start of the formation of quasiparticles. We also
find the coincidence of the line of the resistivity exponent
β ≡ d ln ρ/d ln T = 1 with the boundary of the start of the
screening of local magnetic moments, determined previously
from the minimum of local charge compressibility and double
occupation. This provides a natural definition of this boundary
in terms of directly measurable quantities and allows us to
conclude that the temperature of screening of LMMs is lo-
cated below T ∗. Away from half filling we show the presence
of screened LMMs. The boundary of the screening regime
is determined by the minimum of double occupation, while
the minimum of local charge compressibility disappears at
sufficiently large doping due to the presence of free charge
carriers. We also show that the exponent of the resistivity
β = 1 corresponds to the onset of the linear temperature de-
pendence of resistivity and quasiparticle damping in this case.

The plan of this paper is as follows. In Sec. II we briefly
discuss the model and method, in Sec. III we present the
results for half filling (n = 1; Sec. III A) and away from half
filling (n < 1; Sec. III B). In Sec. IV we present conclusions.

II. THE MODEL AND METHOD

We consider the Hubbard model on a square lattice,

H = −t
∑

〈i, j〉,σ
c†

iσ c jσ + U
∑

i

ni↑ni↓, (1)

and use the half bandwidth D = 4t = 1 as the unit of energy.
We apply the DMFT approach [20] and evaluate the self-

energies �(ν) and respective local spectral functions A(ν)
at the real frequency axis using the numerical renormaliza-
tion group approach [37] within the TRIQS-NRG LJUBLJANA

INTERFACE package [38]. Using DMFT results, we evaluate
the conductivity starting with the Kubo formula

σ (iωn) = 2e2T

ωn

∑
k,νn

v2
k,aG(εk, iνn)G(εk, iνn + iωn), (2)

where G(ε, iνn) = 1/[iνn − ε − �(iνn)] are the Green’s func-
tions, εk = −(cos kx + cos ky)/2 is the dispersion, vk =

∇εk = (sin kx, sin ky)/2 is the electron velocity, νn and ωn are
the fermionic and bosonic Matsubara frequencies, the factor
of 2 comes from the spin summation, and we neglect the ver-
tex corrections, which vanish in the DMFT for the single-band
model. Introducing the partial density of states

D0(ε) = 2
∑

k

sin2 kxδ(ε − εk )

= 8

π2
[E (1 − ε2) − ε2K (1 − ε2)], (3)

where E (x) and K (x) are the complete elliptic integrals of the
first and second kind, we find

σ (iωn) = e2T

4ωn

∑
νn

∫ 1

−1
dεD0(ε)G(ε, iνn)G(ε, iνn + iωn).

(4)

Using the spectral representation, performing the summation
over Matsubara frequencies and analytic continuation to the
real axis iωn → ω + iδ, and taking the real part of the limit
σ (ω → 0), we finally obtain the static conductivity

σ = −πe2

4

∫ 1

−1
dεD0(ε)

∫ +∞

−∞
dν f ′(ν)A(ε, ν)2, (5)

where A(ε, ν) = −(1/π )ImG(ε, ν) is the spectral density.
The position of the Widom line of the crossover from an
incoherent metal to an insulating regime is determined from
the maxima of the ρ(T ) dependence [13–15] or inflection
points of the ln ρ(U ) dependence [10,26]; we show below that
these two criteria agree well with each other.

We are interested in the temperature range T > TK , where
TK is the Kondo temperature of screening of local magnetic
moments [22,34,39]. Therefore, the van Hove singularity of
the density of states is cut by the temperature and quasiparticle
damping, and we expect the obtained results to be not spe-
cific for the two-dimensional square lattice but qualitatively
applicable for the other forms of the bare density of states
not gapped at the Fermi level (see, e.g., the discussion in
Ref. [40]).

At half filling, we also compare the position of the obtained
Widom line to that found from the minimum of the lowest
eigenvalue of the second derivative of the Landau functional
� [35],

δ2�

δ(iν )δ(iν ′ )
= 1̂

1̂ − x̂−1X̂
(1̂ − D̂)x̂, (6)

where ν is the hybridization function of the impurity prob-
lem; Dνν ′ = (xν − Xν )F loc

ω=0,νν ′ ; X̂ν = −1̂T
∑

k G(εk, ν)2 and
x̂ν = −1̂T G2

loc(ν) are the nonlocal and local bubbles, consid-
ered to be diagonal in frequency operators (1̂ = δνν ′); Gloc(ν)
is the local Green’s function; and F loc

ω=0,νν ′ is the zero bosonic
frequency local vertex. The local vertices are evaluated by
using the continuous-time quantum Monte Carlo impurity
solver, implemented in the IQIST software package [41].
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III. RESULTS

A. Half filling n = 1

We consider first the peculiarities of the resistivity near the
Mott transition at half filling. The temperature dependence
of the resistivity, calculated according to Eq. (5) for various
values of the Coulomb interaction, is shown in Fig. 1(a). In
agreement with previous studies on the infinite-dimensional
hypercubic [21–23] and square [24] lattices, the obtained
dependences show a maximum at some characteristic tem-
perature T ∗(U ), which decreases with an increase of the
interaction strength. It was suggested (see also experimen-
tal studies of layered organic compounds [13–15]) that the
maximum of the dependence ρ(T ) is related to the loss of
quasiparticles with increasing temperature.

To confirm the relation of the obtained maxima of the
resistivity to the loss of fermionic quasiparticles, we consider
the temperature evolution of the electronic self-energy. Fig-
ure 1(b) shows the temperature dependences of Im�(ν = 0)
at various interaction strengths. Closed (open) circles corre-
spond to the negative (positive) derivative ∂Re�(ν)/∂ν and
minimum (maximum) of |Im�(ν)| at ν = 0, corresponding
to well-defined (destroyed) fermionic quasiparticles. As one
can see, the change in the sign of the derivative occurs indeed
at approximately the same temperatures as obtained from the
maxima of the resistivity. We also compared the obtained tem-
perature T ∗ to that of the change in the frequency dependence
of the local spectral function A(ν) = −ImGloc(ν)/π [34]. We

(a)

(b)

FIG. 1. Temperature dependences of (a) the resistivity [in units
of ρ0 = h̄/(4e2)] and (b) the imaginary part of zero-frequency self-
energy at various values of U . The black open circles in (a) indicate
maxima of ρ, and the blue bars in (a) indicate points where β =
d ln ρ/d ln T = 1. Solid (open) circles in (b) indicate a negative
(positive) sign of ∂Re�(ν )/∂ν.

FIG. 2. Interaction dependence of the resistivity in logarithmic
scale. The open circles indicate inflection points of the ln ρ(U ).

found that the appearance of the central quasiparticle peak of
A(ν) also occurs at approximately the same temperature T ∗ as
the maximum of the resistivity and onset of the quasiparticle
shape of the electronic self-energy (this correspondence holds
also for the other values of U ; see below).

The damping of the quasiparticles � = −Im�(0) at in-
termediate temperatures increases with increasing U and at
the temperatures T ∼ T ∗ follows the linear temperature de-
pendence � � �0 + AT instead of the quadratic one for the
Fermi liquid. We note that recently, similar linear temperature
dependences of the quasiparticle damping were obtained in
the combination of ab initio and DMFT studies of vanadium
in the regime of partly formed local magnetic moments [42],
although in the latter case it is caused by Hund’s interaction
instead of the proximity to the Mott insulator.

To determine the position of the Widom line from the
resistivity, following Refs. [10,26], we also determine flec-
tion points of the ln ρ(U ) dependences (see Fig. 2). We find
that the flection points coincide to good accuracy with the
above-discussed positions of maxima of ρ(T ) dependences,
showing the uniqueness of determining the crossover from
metallic to insulating phase near the Mott transition. Notably,
the obtained dependences ln ρ(U ) closely resemble the ex-
perimental data from Ref. [10] for the pressure dependence
ln ρ(p) in the organic layered compound κ-(ET)2Cu2(CN)3.

The obtained results for the dependence of characteris-
tic temperatures on the interaction strength are combined in
Fig. 3 with previous results from Ref. [34] for characteristic
temperatures obtained from the local charge and spin suscep-
tibilities. We use the notations introduced in Ref. [34]: PLM
stands for the preformed local moment regime, SCR is the
regime of the local moment screening, and FL denotes the
Fermi liquid state. As mentioned above, the temperatures T ∗
of the maxima of resistivity and appearance of quasiparticles
in both the self-energy and local spectral functions almost
coincide and mark the boundary of the quasiparticle (metallic)
regime, which we denote by QP. The Widom line obtained
from inflection points of ln ρ(U ) also appears to be close to
T ∗(U ). We also note that the minima of the second derivative
of the Landau functional are sufficiently close to the consid-
ered boundary, although they do not coincide with it precisely.
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FIG. 3. The obtained phase diagram at n = 1. The turquoise line (rhombs) shows maxima of ρ(T ), and the green dash-dotted line
(pentagons) indicates points corresponding to the exponent β ≡ d ln ρ/d ln T = 1. The temperatures for the appearance of quasiparticles
obtained from the change in the sign of ∂Re�(ν )/∂ν are shown by the black dashed line (triangles), and those obtained from the appearance
of the peak of the spectral function are shown by the red dashed line (squares). The Widom line determined from the inflection points of
ln ρ(U ) is shown by the purple line (open circles), and that from the minima of the second derivative of the Landau functional � is shown
by blue stars. The interaction dependence of the Kondo temperature TK (black line with circles) and the temperatures Tc,max and Tc,min of the
maxima and minima of the local charge compressibility χc(T ) (blue dashed line with crosses and purple dashed line with triangles) are taken
from Ref. [34]. The shaded area corresponds to the “plateau” of the temperature dependence of the effective local moment; see Ref. [34]. The
critical interaction Uc2 of the MIT taken from Ref. [36] is shown by the blue line; see text for the other notations. The inset zooms in on the
region near the MIT.

Importantly, the temperature T ∗(U ) of the appearance of
quasiparticles, being close to the boundary of the plateau of
the square of the effective local moment T χs(T ) (χs is the
local spin susceptibility; see Ref. [34]), is larger than the
previously determined temperatures Tc,min of the minima of
local charge compressibility, which mark the boundary of the
screening of local magnetic moments [34]. This shows that
quasiparticles appearing at T ∗(U ) start to screen local mag-
netic moments at lower temperatures closer to Tc,min. To see
the trace of the screening of local moments on the temperature
dependence of resistivity, we also show in the phase diagram
the line of the exponents of resistivity β = d ln ρ/d ln T = 1,
which is rather close to the Tc,min boundary. Therefore, the
start of the screening of local magnetic moments is associ-
ated with the linear temperature dependence of the resistivity,
which is inherited from the linear temperature dependence of
the self-energy. This gives the possibility of experimental de-
termination of the boundary of the beginning of the screening
of local magnetic moments.

B. Away from half filling, n < 1

We first investigate the existence and screening of local
magnetic moments away from half filling in a way similar to
what was done at half filling in Ref. [34]. In Fig. 4 we show
the temperature dependence of the square of the effective

local magnetic moment μ2
eff = T χs and the inverse static local

spin susceptibility χ−1
s , where χs = ∫ β

0 〈sz(τ )sz(0)〉 and sz(τ )
is the local spin operator in the Heisenberg representation
at the imaginary time τ . The inverse local susceptibility is
almost linear in temperature, which shows the existence of
LMMs in the low-temperature phase. Similar to what we did
for half filling [34], we determine the Kondo temperatures TK

by fitting the obtained temperature dependences of μeff (T ) to
the universal temperature dependence for the Kondo model
[43,44]. We can see that the doping yields a reduction of the
maximal effective local magnetic moment, which is reached
at T ∼ 10TK . The plateau of the temperature dependence of
μ2

eff , which was obtained in the half-filled case [34], continu-
ously disappears with doping, such that the Curie law χloc ∝
1/T is not fulfilled in the intermediate-temperature range.
At the same time, as mentioned above (see also the inset of
Fig. 4), in a broad range of temperatures the inverse local
spin susceptibility remains linear in temperature, fulfilling the
Curie-Weiss law χloc ∝ 1/(T + TW) with the Weiss temper-
ature TW ≈ √

2TK , as suggested for the screened regime of
the Kondo model [43–46]. In contrast to the half-filled case,
this temperature dependence of the susceptibility is observed
almost up to the maximum of the dependence μeff (T ). This
shows that at finite doping the LMMs exist mainly in the
screened regime.
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FIG. 4. Temperature dependence of the square of the effective lo-
cal magnetic moment μ2

eff = T χs for different values of filling n and
U = 2.25. The open rhombs correspond to n = 1, crosses correspond
to n = 0.98, triangles correspond to n = 0.95, squares correspond
to n = 0.90, and circles correspond to n = 0.85. The dashed line
with stars shows the universal temperature dependence for the Kondo
model [43,44]. The inset shows the temperature dependence of the
inverse local spin susceptibilities.

The upper temperature boundary TSCR of the regime of
screening of local magnetic moments (which we denote in
the following as SCR like for half filling) can be obtained
from the minima of the temperature dependence of double
occupation (see Fig. 5). In agreement with the discussion
above, the corresponding temperatures are located somewhat
below the maxima of the local magnetic moment μeff (T ). To
understand the peculiarities of the SCR regime, we show in
Fig. 6 the temperature dependence of local charge compress-
ibilities χc(T ) = dn/dμ, where the change in the chemical
potential dμ acts only at the impurity site. For n = 0.98 and
n = 0.95 we observe a behavior similar to that obtained at half
filling [34] with the temperatures of the maxima of local com-
pressibility Tc,max corresponding to the beginning of formation
of local magnetic moments and the temperatures of minima of

FIG. 5. Temperature dependence of the double occupation for
different fillings n. Solid lines show data for U = 2.25; dotted lines
are for U = 2.5. The black open circles (triangles) indicate minima
of 〈n↑n↓〉 for U = 2.25 (U = 2.5).

FIG. 6. Temperature dependence of the local static charge sus-
ceptibility χc at various fillings n. Solid lines show data for U =
2.25; dotted lines are for U = 2.5. The black solid circles (inverted
triangles) indicate minima of χc for U = 2.25 (U = 2.5), the black
opened circles (triangles) indicate maxima of χc for U = 2.25 (U =
2.5).

compressibility Tc,min corresponding to the beginning of the
screening of LMMs. For these fillings, which are close to half
filling, the minimum of charge compressibility appears to be
close to that of double occupation, such that the two criteria of
the screening of LMMs agree with each other (cf. Ref. [34]).

At the same time, for n < 0.95 the maximum of the local
charge compressibility shifts to the much lower tempera-
ture Tc,max ∼ 0.1 deep inside the SCR regime, and the local
minimum of compressibility is not observed. Physically, this
appears due to a sufficiently large number of free coher-
ent charge carriers. Accordingly, these carriers substantially
contribute to the local charge compressibility, changing its
temperature dependence, which can be interpreted as the de-
localization of hole motion. Nevertheless, the local magnetic
moments persist (although in the screened regime) even in this
case, which can be seen from the above-discussed temperature
dependences of static local spin susceptibility, as well as from
the frequency dependences of the dynamic local spin suscep-
tibilities χs(ω). Indeed, the dynamic susceptibilities show a
sharp peak at ω = 0 (see Fig. 7), which is characteristic of
the presence of LMMs [47,48]. In contrast to the half-filled
case [34] the width of the peak increases with the decrease
of temperature, which shows that the local moments’ lifetime
decreases. Also, the width of the peak increases with doping.
However, the half-width of the peak ω ∼ 0.03–0.05 remains
smaller than the temperature of the crossover to the SCR
regime, which implies that the local moments in a substantial
part of the SCR regime remain well defined.

Let us discuss how the temperature dependence of the re-
sistivity changes with the decrease of the filling n. In Fig. 8(a)
we show the temperature evolution of the resistivity for U =
2.25 (corresponding to the metallic phase at half filling) and
U = 2.5 (corresponding to the insulating phase at half fill-
ing). As in the case of half filling and similar to results in
previous studies of the doped Hubbard model on an infinite-
dimensional hypercubic [22] and Bethe [27] lattices, close to
half filling, there is a maximum of the resistivity at a certain
temperature T ∗(U, n), which increases with the decrease of n.
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(a)

(b)

FIG. 7. Real frequency dependence of the real part of the local
spin susceptibility χs(ω) for U = 2.25 and (a) n = 0.98 and (b) n =
0.85.

(a)

(b)

FIG. 8. Temperature dependences of (a) the resistivity [in units
of ρ0 = h̄/(4e2)] and (b) the imaginary part of the zero-frequency
self-energy for various fillings n. Solid lines correspond to U = 2.25;
dotted lines are for U = 2.5. The black open circles (triangles) indi-
cate maxima of ρ for U = 2.25 (U = 2.5).

FIG. 9. The frequency dependences of (a) and (b) the imaginary
part of the self-energy and (c) and (d) its second derivative for U =
2.25 and filling n = 0.98 (top) and n = 0.85 (bottom).

Suppression of the resistivity in comparison to the half filling
n = 1 is related to smaller damping of the quasiparticles away
from half filling (see below). The peak of the resistivity also
becomes less pronounced, from which it can be assumed that
the boundary between coherent and incoherent quasiparticle
regimes becomes even less defined than for half filling. At the
same time, the region of almost linear behavior of resistivity
becomes broader than for n = 1, as obtained previously in
Ref. [22] for the infinite-dimensional hypercubic lattice and
in Ref. [36] for the square and triangular lattices.

The linear temperature dependence of the resistivity orig-
inates from the temperature dependence of the imaginary
part of the self-energy [Fig. 8(b)], which shows almost linear
behavior � � AT (with a small zero-frequency temperature-
independent part) in the temperature range T < 0.05 and
more complex behavior at higher temperatures; as mentioned
above, the quasiparticle damping remains smaller than for
n = 1 and decreases with a decrease in filling. The frequency
dependence of the self-energy is shown in Fig. 9. In contrast to
the half-filled case, we observe quasiparticle behavior for all
considered temperatures. With a decrease of filling the second
derivative of the self-energy with respect to frequency also de-
creases, which implies frequency behavior of the self-energy
closer to linear.

Similar to half filling, the temperatures of the maxima
T ∗(U, n) are located somewhat above the temperatures of
the onset of screening TSCR. To emphasize the origin of
the maximum of the temperature dependence of resistivity
at n < 1, in Fig. 10 we show the temperature evolution of
the spectral functions for n = 0.98. We can see that the
form of the spectral functions changes with an increase in
temperature from having a central quasiparticle peak at the
Fermi level at low temperatures, similar to that observed at
half filling [34], to the monotonously decreasing density of
states near the Fermi level, located at the upper edge of the
lower Hubbard band. This behavior is similar to that for the
particle-hole asymmetric Anderson impurity model [49,50].
The high-temperature form of the spectral functions (referred
to below as the PLM+H regime) physically corresponds to
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FIG. 10. The frequency dependences of the spectral function for
U = 2.25, filling n = 0.98, and various temperatures T . The tem-
perature range T > 0.17 is associated with the PLM+H regime,
where the central quasiparticle peak is absent and the holes move
incoherently in the background of local magnetic moments. The SCR
regime (T < 0.1) is characterized by the narrow quasiparticle peak
at the Fermi level.

holes, which move incoherently in the background of local
magnetic moments. At the same time, the quasiparticle peak at
low temperatures corresponds to the many-particle screening
state. Near half filling (i.e., for n = 0.98) the temperature of
the appearance of the quasiparticle peak, determined by the
appearance of the inflection points of the energy dependence
of the density of states near the Fermi level, is close to the
temperature T ∗ at which the maximum of the resistivity is
observed; the temperature T ∗ also coincides with reaching
a maximal value of the local magnetic moment (see Fig. 4).
Therefore, in this regime we associate the maximum of the
resistivity with the crossover from the incoherent motion of
holes to the presence of coherent quasiparticles.

Importantly, the crossover with the appearance of the
quasiparticle peak at the Fermi level with lowering temper-
ature occurs at all considered fillings n � 0.85, while the
Fermi level shifts from the upper edge to the center of the
lower Hubbard subband with the increase of the doping to
δ = 1 − n ∼ 0.15 (see Fig. 11). In the latter case the Fermi
level is far below the interaction-induced minimum of the
local density of states, and as discussed above, the LMMs
exist only in the screened state at low temperatures. On the
other hand, the high-temperature form of the spectral function
corresponds to coherently moving holes, referred to below
as the CMH regime. The transition between the PLM+H
and CMH regimes corresponds to the changing temperature
dependence of the local charge susceptibility, discussed above
for Fig. 6.

As mentioned above, at low temperatures an almost linear
temperature dependence of the quasiparticle damping and re-
sistivity occurs, which is reminiscent of the marginal Fermi
liquid in Ref. [51]. We can therefore interpret this state as
occurring due to competition of two effects: an increase of
the coherence of quasiparticles due to the presence of a suf-
ficient number of charge carriers and their decoherence due
to the interaction with local magnetic moments. We note that
a similar linear temperature dependence of the resistivity was

FIG. 11. The same as Fig. 10 for n = 0.85. The SCR regime
(T < 0.23) is characterized by the narrow quasiparticle peak at the
Fermi level.

previously obtained in the doped Kondo lattice model [52] and
a compactified version of the single-impurity Anderson model
[53].

The obtained results for n < 1 are collected in the phase
diagram in Fig. 12. Close to half filling the temperature of the
maximum of the resistivity, which determines the boundary
of the PLM+H regime and the regime with present coherent

FIG. 12. The phase diagram away from half filling. Solid lines
show data for U = 2.25; dotted lines are for U = 2.5. The turquoise
line (triangles) shows maxima of χc(T ), corresponding to the upper
temperature boundary of the unscreened LMMs, and the purple line
(squares) corresponds to minima of χc(T ), which mark the beginning
of the screening of LMMs in the PLM+H regime. The green line
with open circles shows the appearance of a sharp quasiparticle
peak (corresponding to the crossover to the QP regime). The black
lines with crosses show minima of double occupation 〈n↑n↓〉, which
bound the screening SCR regime (shaded orange area for U = 2.25);
the Kondo temperatures are shown by green lines (circles). The red
lines (stars) indicate maxima of ρ(T ), corresponding to the crossover
from incoherent to coherent quasiparticle motion, and the blue lines
(rhombs) show β ≡ d ln ρ/d ln T = 1 points, which mark the onset
of the linear temperature dependence of quasiparticle damping and
resistivity. For the form of the spectral functions in different regimes
see Figs. 10 and 11.
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quasiparticles, is somewhat larger than the temperatures of
the minimum of double occupation and charge compressibil-
ity, which mark the onset of the screening regime TSCR. As
described above, the screening of local magnetic moments
in this regime is similar to that at half filling. With moving
further away from half filling, the temperature of the onset of
quasiparticles approaches the boundary of the SCR regime,
which shows again that the local magnetic moments in this
regime exist in the screened phase. In the interval of fillings
0.90 < n < 0.95 the temperature of the local compressibility
maximum sharply changes towards low temperatures, which,
as we noted earlier, indicates delocalization of the charge
carriers (i.e., holes). This idea is also supported by the fact
that far away from half filling the resistivity ρ(T ) becomes
monotonously increasing with temperature, which shows a
different nature of fermionic quasiparticles close to and far
away from half filling, corresponding to the crossover from
the PLM+H to CMH regime.

The upper temperature boundary of the SCR regime, de-
termined from the minimum of double occupation, increases
only moderately with a decrease in n. As mentioned above,
close to half filling this boundary is close to Tc,min. At low
temperatures T � Tβ=1, where Tβ=1 ∼ 0.1 is the temperature,
at which the exponent β ≡ d ln ρ/d ln T = 1, we find almost
linear behavior of the quasiparticle damping and the resis-
tivity, which, as mentioned above, resembles the marginal
Fermi liquid state. With the increase of the doping, the linear
behavior of the resistivity becomes more pronounced.

IV. CONCLUSIONS

In the present paper we have considered the effect of local
magnetic moments on the temperature dependence of resis-
tivity. We have shown that the maximum of the temperature
dependence of the resistivity T ∗(U, n), obtained with DMFT,
corresponds to the beginning of the formation of the quasipar-
ticle peak of the spectral function. Physically, the temperature
T ∗(U, 1) marks the crossover from insulating to coherent
quasiparticle behavior at half filling, while away from half fill-
ing T ∗(U, n) marks the crossover from incoherent to coherent
motion of charge carriers and it is obtained only sufficiently
close to half filling (n � 0.95).

At half filling, we considered the boundary for the ap-
pearance of quasiparticles, which in this case coincides with
with the temperature of the maximum of the resistivity and
is also close to the Widom line. An important aspect is that
the appearance of quasiparticles does not necessarily cause
screening of LMMs; the latter begins only after the coher-
ence of quasiparticles with decreasing temperature becomes
sufficient. The boundary of the beginning of the screening
regime, previously defined by the minima of the local charge
susceptibility and double occupation, perfectly corresponds to
the exponent of the resistivity β ≡ d ln ρ/d ln T = 1.

Close to half filling we found that at not too low tem-
peratures the local magnetic moments exist, together with

incoherently moving holes. This is the regime described by
the t-J model [16,54–56]; the present study shows, however,
that it is restricted to only a few percent of doping. With
lowering temperature, the LMMs are screened by itinerant
electrons, similar to half filling. With moving further away
from half filling, the hole motion becomes more coherent.
In this case the LMMs exist only in the screened phase at
sufficiently low temperatures, where the sharp quasiparticle
peak of the spectral function emerges. The presence of both
LMMs and coherent quasiparticles at sufficient doping yields,
at low temperatures, a linear dependent scattering rate and
resistivity below the temperature at which the exponent β = 1
is reached.

We therefore emphasize the complexity of the obtained
physical properties of the doped phase, which, on the one
hand, show features of conventional quasiparticle behavior
at sufficient doping but, on the other hand, show traces of
screened LMMs. While at high temperatures the crossover
from the incoherent to coherent motion of holes is obtained, at
low temperatures we find the SCR phase, whose properties are
distinctly different from the coherent hole motion. This phase
shows linear temperature dependence of the scattering rate
and resistivity, reminiscent of a marginal Fermi liquid [51].
The appearance of incoherent holes at low doping, the onset of
their coherence at larger doping δ ∼ 0.1, and the “marginal”
Fermi liquid behavior at low temperatures highlight some sim-
ilarities with the physics of high-temperature superconductors
(see, e.g., Ref. [16]). For the description of these compounds,
however, magnetic and, possibly, charge correlations likely
have to be taken into account.

The inclusion of magnetic and/or charge correlations, e.g.,
within the dynamical cluster approximation (DCA) or cellular
dynamical mean-field theory (CDMFT) approach, and/or non-
local diagrammatic extensions of DMFT [57] is therefore of
certain interest for future research. Another interesting topic is
studying the effect of Hund’s exchange in multiorbital models
and considering the difference of “Mottness” and “Hundness”
behavior of local magnetic moments.

Note added. Recently, we learned about a related study on
the half-filled Hubbard model on a square lattice [58] which
confirms the coincidence of the Widom line TQWL(U ) with
the temperatures of the appearance of quasiparticles and the
maximum of the resistivity, as well as onset of the screening
of the local magnetic moments at lower temperatures, T �
TSCR < TQWL.
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