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In spite of extensive works on non-Hermitian topology, interaction effects remain crucial questions. We
analyze correlated non-Hermitian systems with special emphasis on the one-dimensional point-gap topology.
Specifically, our analysis elucidates that interactions result in a reduction of the topological classification
Z × Z → Z for systems of one synthetic dimension with charge U(1) symmetry and spin-parity symmetry.
Furthermore, we analyze an extended Hatano-Nelson chain which exhibits striking interaction effects; interac-
tions destroy the non-Hermitian skin effect at the noninteracting level. This fragility of the non-Hermitian skin
effect against interactions is consistent with the reduction of the point-gap topology in the one spatial dimension.
The above discoveries shed light on the topology of correlated systems and open up different directions for
research on non-Hermitian topological physics.
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I. INTRODUCTION

Topological insulators and superconductors have been ex-
tensively analyzed for these 15 years [1–9]. In particular,
considerable efforts have been devoted to understanding in-
teraction effects on nontrivial topology, which has revealed
a variety of unique phenomena. For instance, interaction ef-
fects induce topological ordered phases [10–16] which host
anyons. In addition, it has turned out that interaction effects
change the Z classification of topological superconductors at
the mean-field level to the Z8 classification [17]. Such a reduc-
tion phenomenon of possible topological phases for a given
symmetry class has been theoretically reported for arbitrary
spatial dimensions [18–32]. Furthermore, a theoretical work
[33] elucidated that the reduction can also occur in synthetic
dimensions which are considered to be fabricated in cold
atoms [34–37]. These developments reveal the ubiquity of the
reduction phenomena.

Along with the above significant progress, understand-
ing of the non-Hermitian band topology rapidly developed
in recent years [38–43]. Remarkably, it has been elucidated
that the point-gap topology induces novel phenomena which
do not have Hermitian counterparts [44–55]. A prime ex-
ample is the emergence of the exceptional points [56–60]
(and their symmetry-protected variants [61–69]) at which the
point-gap topology induces band touching for both the real
and imaginary parts. Another remarkable phenomenon is a
non-Hermitian skin effect which results in extreme sensitivity
to the presence or absence of boundaries [46,70–76]. So far,
the non-Hermitian topological band theory has been applied
to a wide range of systems from quantum [77–87] to classical
[88–102] systems.

While most studies have focused on the noninteracting
cases so far, interaction effects on non-Hermitian topology
are attracting growing interest [103–122] due to the potential
presence of novel non-Hermitian phenomena. Such interest
in interaction effects on non-Hermitian topology is further
enhanced by the recent development of technology in cold

atoms which allows us to experimentally tune both dissipation
and two-body interactions [123,124]. Despite these efforts,
the current understanding of point-gap topology in correlated
systems is quite limited. In particular, knowledge about the
reduction of point-gap topology is limited only to the zero
dimension [125], which poses the following significant ques-
tion: fate of higher-dimensional point-gap topology under
interactions.

We herein address a primitive version of the above ques-
tion. Specifically, we analyze the fate of one-dimensional
point-gap topology in both cases of synthetic and spatial
dimensions. We start with the topology in one synthetic di-
mension. Our analysis reveals the reduction of Z × Z →
Z for systems with charge U(1) symmetry and spin-parity
symmetry. We end up with this conclusion by analyzing
a toy model, as well as by using an argument in terms
of topological invariants. Furthermore, we analyze an ex-
tended Hatano-Nelson chain in which such a reduction
results in a striking phenomenon: the fragility of a non-
Hermitian skin effect against interactions in one spatial
dimension.

The rest of this paper is organized as follows. In Sec. II, we
discuss the reduction of the non-Hermitian topological classi-
fication in one synthetic dimension by introducing topological
invariants. In Sec. III, computing the obtained topological
invariants, we address the reduction of the topological clas-
sification in one spatial dimension. A brief summary and
discussion are provided in Sec. IV. In Appendix A, a de-
tailed analysis of a non-Hermitian quantum dot is provided.
Appendix B is devoted to a detailed analysis of the extended
Hatano-Nelson chain.

II. POINT-GAP TOPOLOGY IN ONE
SYNTHETIC DIMENSION

A. Topological invariants

First, we provide a generic argument in terms of topolog-
ical invariants. Consider a quantum dot whose many-body
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Hamiltonian reads

Ĥ = Ĥ0(θ ) + Ĥint, (1)

with Ĥ0(θ ) = ∑
αβ �̂†

αhαβ (θ )�̂β and �̂T =
(ĉa↑, ĉa↓, ĉb↑, ĉb↓, . . .). The second term, Ĥint , denotes
two-body interactions of fermions. Here, the one-body Hamil-
tonian h(θ ) is non-Hermitian and satisfies h(2π ) = h(0). The
synthetic dimension is parameterized by θ , which corresponds
to a tunable parameter in experiments [126,127] (e.g., a
hopping integral in cold atoms). The operator ĉ†

lσ (ĉlσ ) creates
(annihilates) a fermion in orbital l (l = a, b, . . .) and spin
state σ (σ =↑,↓). The subscript α labels the set of l and σ .

Throughout this paper, we suppose that the Hamiltonian (1)
respects the charge U(1) symmetry and spin-parity symmetry.
Namely, the zero-dimensional Hamiltonian satisfies

[Ĥ , N̂] = 0, [Ĥ, eiπ Ŝz
] = 0, (2)

with N̂ = ∑
α �̂†

α�̂α and Ŝz = ∑
l=a,b,...(ĉ

†
l↑ĉl↑ − ĉ†

l↓ĉl↓)/2.
Here, let us discuss the point-gap topology of the above

system. In terms of the one-body Hamiltonian, we can in-
troduce two distinct Z invariants due to the spin-parity
symmetry. Because the one-body Hamiltonian h(θ ) is periodic
in θ , we can introduce the winding number w:

w =
∫ 2π

0

dθ

2π i
∂θ tr ln [h(θ ) − εref1l], (3)

with the reference energy εref ∈ C. The derivative with respect
to θ is denoted by ∂θ . Here, tr denotes the trace of a matrix
(i.e., trh = ∑

α hαα).
In addition, we can introduce the spin winding number ws:

ws =
∫ 2π

0

dθ

4π i
∂θ tr{sz ln[h(θ ) − εref 1l]}, (4)

with (sz )αβ = sgn(σ )δαβ . Here, δαβ takes a value of 1 (0) for
α = β (α �= β), and sgn(σ ) takes a value of 1 (−1) for σ =↑
(↓). For the spin winding number the spin-parity symmetry is
essential; the one-body Hamiltonian satisfies [sz, h(θ )] = 0 in
the presence of the spin-parity symmetry [128].

The above results indicate that in the presence of the U(1)
symmetry and the spin-parity symmetry, the point-gap topol-
ogy of h(θ ) is characterized by two distinct Z invariants.

Now, let us discuss the point-gap topology of the many-
body Hamiltonian. In the presence of the spin-parity sym-
metry, the Hamiltonian Ĥ can be block diagonalized with N̂
and P̂ := (−1)N̂↑ = ei π

2 N̂ eiπ Ŝz
. Here, N̂↑ denotes the operator

of the total number of fermions in the up-spin state. There-
fore, for each Fock space, the following many-body winding
number W(N,P) can be introduced [129]:

W(N,P)(Eref ) =
∫ 2π

0

dθ

2π i
∂θTr ln[Ĥ(N,P) − Eref 1l], (5)

where N and P are eigenvalues of N̂ and P̂, respectively. The
reference energy is denoted by Eref ∈ C. By Ĥ(N,P), we denote
the many-body Hamiltonian for the subsector with (N, P).
Here, Tr denotes the trace over the subsector of the Fock
space.

In the absence of interactions, eigenvalues of the many-
body Hamiltonian Ĥ(N,P) for each Fock space are computed

FIG. 1. Spectral flow of the one-body Hamiltonian h(θ ). Data for
the subsector with (a) σ =↑ and (b) σ =↓ are plotted. The color de-
notes the value of θ . The data are obtained for (λ, εa↑, εa↓, εb↑, εb↓) =
(1, 0.2, −0.1, 0.35, −0.25).

from the eigenvalues of the one-body Hamiltonian h(θ ) whose
point-gap topology is characterized by w and ws.

The above results indicate that the point-gap topology of
the one-body Hamiltonian h(θ ) is characterized by a set of two
Z invariants (w,ws), while the topology of the many-body
Hamiltonian Ĥ is characterized by the Z invariant W(N,P) for
each sector of the Fock space. As we see below, this fact
is consistent with the behavior that the nontrivial topology
characterized by (w,ws) = (0, 1) is trivialized by introducing
the interactions.

B. Two-orbital quantum dot: Noninteracting case

As a specific case of Eq. (1), let us consider a two-orbital
quantum dot (l = a, b) with a diagonal matrix h(θ ) [hαβ (θ ) =
hα (θ )δαβ] whose diagonal elements are written as

hα (θ ) = λeiθ δα,(a,↑) + λe−iθ δα,(a,↓) + iεlσ δα,(l,σ ). (6)

Here, λ and εlσ (l = a, b and σ =↑,↓) are real numbers.
At the noninteracting level, couplings between orbitals are
absent. The one-body Hamiltonian of orbital a corresponds
to the small cycle limit of an extended Hatano-Nelson chain
under the twisted boundary condition [see Eq. (10)].

The topology of h(θ ) is characterized as (w,ws) = (0, 1)
for εref = 0 and |εaσ | < λ (σ =↑,↓). To be concrete, we plot
a spectral flow of the one-body Hamiltonian in Fig. 1 for
(λ, εa↑, εa↓, εb↑, εb↓) = (1, 0.2,−0.1, 0.35,−0.25). Figure 1
indicates that as θ increases from 0 to 2π , an eigenvalue
winds around the origin in the clockwise (counterclockwise)
direction for subsector σ =↑ (σ =↓). The above numerical
data support that the topology of h(θ ) is characterized by as
(w,ws) = (0, 1).

Figure 2(a) displays a spectral flow of the many-body
Hamiltonian Ĥ0 for the subsector with (N, P) = (2, 1) in the
Fock space. We can observe the loop structure of the spectral
flow due to the topology of the one-body Hamiltonian h(θ ).
However, Fig. 2(a) indicates that Ĥ(2,1) is topologically trivial
(i.e., W(2,1) = 0) for Eref = 0 because one eigenvalue winds
around the origin in the clockwise direction and the other
eigenvalue winds around the origin in the opposite direction.
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FIG. 2. Spectral flow of the many-body Hamiltonian for the sub-
sector with (N, P) = (2, 1). (a) Spectral flow for J = V = 0 and
λ = 1. Data for the subsector with (N, Sz ) = (2, 1) [(2,−1)] are plot-
ted with open circles (solid triangles). (b) Spectral flow for V = J =
λ = 1. In (a) and (b), we can see that the eigenvalues flow as denoted
by the arrows with θ increasing from 0 to 2π . (c) Spectral flow for
several values of V (J = V ) at λ = 1. With V increasing from 0 to 1,
the eigenvalues flow as denoted by the arrows. (d) Spectral flow for
several values of λ for V = J = √

λ. With λ decreasing from 1 to 0,
the eigenvalues flow as denoted by the arrows. The data are obtained
for (εa↑, εa↓, εb↑, εb↓) = (0.2,−0.1, 0.35, −0.25).

C. Two-orbital quantum dot: Interacting case

Now, let us introduce the following two-body interaction:

Ĥint = iJ

2
(Ŝ+

a Ŝ−
b + H.c.) + iV

2
(Ŝ+

a Ŝ+
b + H.c.), (7)

with real numbers J and V . Here, H.c. denotes the Hermi-
tian conjugate of the corresponding operator [e.g., iJ (Ŝ+

a Ŝ−
b +

H.c.) = iJ (Ŝ+
a Ŝ−

b + Ŝ−
a Ŝ+

b )]. The spin operator Ŝ±
l is defined

as Ŝ±
l = Ŝx

l ± iŜy
l , with Ŝx(y)

l being the x (y) component of the
spin operator for orbital l . The above two-body interactions
respect charge U(1) symmetry and spin-parity symmetry;
applying the operator eiπ Ŝz

transforms the spin operators as
eiπ Ŝz

Ŝ±
l e−iπ Ŝz = −Ŝ±

l , meaning that the interactions respect
spin-parity symmetry.

For the sake of simplicity, we focus on the subsector with
(N, P) = (2, 1). The results for subsector (N, P) = (2,−1)
are provided in Sec. A 1. Figure 2(b) displays the spectral
flow for V = J = 1. Remarkably, Fig. 2(b) indicates that
the interactions open an imaginary gap; interactions split the
loops which wind the origin at the noninteracting level [see
Fig. 2(a)].

This fact indicates that interactions [Eq. (7)] allow a
smooth deformation of the spectral flow for λ = 1 to that for
λ = 0 without closing the point gap at Eref = 0, the latter of
which is obviously trivial. Indeed, the following deformation
smoothly connects the Hamiltonian Ĥ (θ ) for λ = 1 and that

for λ = 0: (i) Increasing V from 0 to 1 for λ = 1 and J = V
[see Fig. 2(c)]; (ii) decreasing λ from 1 to 0 for J = V = √

λ

[see Fig. 2(d)]. This deformation demonstrates that the many-
body Hamiltonian Ĥ(2,1)(θ ) is topologically trivial.

We note that the difference in the symmetry constraint
of the spin-parity symmetry is essential for the imaginary
gap at ImE = 0 in Fig. 2(b). As discussed above, the sym-
metry constraint (2), which results in [sz, h(θ )] = 0, forbids
hybridization terms between two distinct subsectors with
(N, Sz ). In contrast, the symmetry constraint allows such hy-
bridization terms for two-body interactions Ĥint. Therefore,
the two-body interactions can destroy the loop structure aris-
ing from the nontrivial topology of the one-body Hamiltonian
[see Figs. 2(a) and 2(b)].

For instance, in the subsector with (N, P) = (2, 1), the
Hamiltonian is written as

Ĥ(2,1) =
(

λeiθ + iεa↑ + iεb↑ iV
2

iV
2 λe−iθ + iεa↓ + iεb↓

)
.

Here, we have chosen the following basis vectors spanning
the subsector of the Fock space: (ĉ†

a↑ĉ†
b↑|0〉, ĉ†

a↓ĉ†
b↓|0〉). The

vacuum state is denoted by |0〉 (i.e., ĉlσ |0〉 = 0 for arbitrary l
and σ ).

Diagonalizing the above Hamiltonian, we obtain

E± = λ cos θ + iδ0 ± i

√
(sin θ + δ3)2 +

(V

2

)2

, (8)

with 2δ0 = εa↑ + εb↑ + εa↓ + εb↓ and 2δ3 = εa↑ + εb↑ −
εa↓ − εb↓. Equation (8) elucidates that spin-parity symmetry
allows the hybridization term between states with (N, Sz ) =
(2, 1) and (N, Sz ) = (2,−1), which opens the line gap
Im[E+(θ ) − E−(θ )] > 0 [see Fig. 2(b)]. In contrast, spin-
parity symmetry forbids such hybridization terms for the
quadratic Hamiltonian Ĥ0.

The above numerical results support the many-body
Hamiltonian Ĥ(2,1)(θ ) being topologically trivial despite the
loop structure due to the topology of the one-body Hamil-
tonian with (w,ws) = (0, 1). We can also confirm the
robustness of the topology characterized by finite values of
W(2,1) [130] (see also Sec. A 2).

Putting the argument in terms of the topological invariants
and the above results of the toy model together, we end up
with the reduction of the point-gap topology Z × Z → Z.

III. POINT-GAP TOPOLOGY IN ONE SPATIAL
DIMENSION AND FRAGILITY

OF A NON-HERMITIAN SKIN EFFECT

By analyzing an extended Hatano-Nelson chain [see
Fig. 3(a)], we elucidate that interactions reduce the point-
gap topology in one spatial dimension, as is the case of one
synthetic dimension. Remarkably, this reduction phenomenon
results in the fragility of a non-Hermitian skin effect against
interactions. As in the case of one synthetic dimension, essen-
tial ingredients are spin-parity symmetry and two-body terms
flipping spins.
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FIG. 3. (a) Sketch of the extended Hatano-Nelson chain. Spectral
flows for (b) J = V = 0 and (d) J = V = 1. Red dots denote the data
obtained under the open boundary condition. Expectation values of
n̂ jaσ for (c) J = V = 0 and (e) J = V = 1 under the open bound-
ary condition. In (c) and (e), 〈n̂ jaσ 〉 = R〈�n|n̂ jaσ |�n〉R is plotted
against j, and 〈N̂a↑〉 = R〈�n|N̂a↑|�n〉R. Here, |�n〉R (n = 0, 1, . . .)
denote the right eigenstates of ĤeHN. Red (blue) lines denote the data
for σ =↑ (σ =↓). These data are obtained for subsector (N, P) =
(3, −1) and parameter set (L, t ) = (7, 1).

Let us consider an extended Hatano-Nelson chain [see
Fig. 3(a)] whose Hamiltonian reads

ĤeHN(θ ) = Ĥ0(θ ) + Ĥint, (9a)

Ĥ0(θ ) =
∑

k

�̂
†
kα

hαβ (k, θ )�̂kβ, (9b)

Ĥint =
∑

j=0,L−1

[
J (Ŝ+

jaŜ−
jb + H.c.) + iV (Ŝ+

jaŜ+
jb + H.c.)

]
,

(9c)

with a diagonal matrix h(k, θ ) [hαβ (k, θ ) = hα (k, θ )δαβ ,
kL/2π = 0, 1, . . . , L − 1], whose diagonal elements are

hα (k, θ ) = tδα,(a,↑)e
i(k+θ/L) + tδα,(a,↓)e

−i(k+θ/L). (10)

Here, we have imposed the twisted boundary condition in
order to compute the winding numbers (for more details, see
Sec. B 1). The operator �̂kα is the Fourier transformed anni-
hilation operator �kα := 1√

L

∑
j=0,...,L−1 eik j� jα , with �T

j =
(ĉ ja↑, ĉ ja↓, ĉ jb↑, ĉ jb↓). The two-body term Ĥint describes the
interaction between fermions in orbital a and localized
fermions in orbital b. This model also preserves charge U(1)
and spin-parity symmetry, meaning that ĤeHN(θ ) can be block
diagonalized with N̂ and P̂ = (−1)N̂a↑+N̂b↑ , where N̂lσ and N̂
are defined as N̂lσ = ∑

j ĉ†
jlσ ĉ jlσ and N̂ = ∑

lσ N̂lσ , respec-

tively. The Hamiltonian ĤeHN(θ ) also commutes with n̂ jb =

FIG. 4. Expectation values of n̂ ja↑ for subsector (N, P) =
(9, −1) and parameter set (L, t ) = (7, 1). In (a) and (b), data for
J = V = 0 and J = V = 1 are plotted, respectively. These fig-
ures are plotted in the same way as Figs. 3(c) and 3(e).

∑
σ ĉ†

jbσ ĉ jbσ for j = 0, L − 1, and thus, we suppose that
orbital b is occupied at both edges ( j = 0, L − 1) by focusing
on the corresponding Fock space.

Now, we demonstrate that for Na = 1 (i.e., N = 3), a non-
Hermitian skin effect observed at the noninteracting level is
fragile against the two-body interactions due to trivial topol-
ogy of the many-body Hamiltonian. Let us start with the
noninteracting level. Under the twisted boundary condition,
the spectral flow shows a loop structure [see Fig. 3(b)] due to
the point-gap topology of the one-body Hamiltonian h(θ ) :=⊕

k h(k, θ ) characterized by (w,ws) = (0, 1) for εref = 0.
This nontrivial topology of h induces the non-Hermitian skin
effect at the noninteracting level. In the presence of the bound-
aries, all of the eigenvalues En (n = 0, 1, . . .) become zero, in
contrast to the eigenvalues in the absence of the boundaries
[see Fig. 3(b)]. In addition, a fermion in the up- (down-) spin
state is localized around the right (left) edge under the open
boundary condition [see Fig. 3(c)].

However, interactions destroy the above non-Hermitian
skin effect due to the trivial topology of the many-body
Hamiltonian W(3,−1) = 0 for Eref = 0 (for computation of the
many-body winding number, see Fig. 6). Because of the trivial
topology, we can observe that interactions destroy the loop
structure of the spectral flow and open a line gap for J =
V = 1 [see Fig. 3(d)], which is also confirmed by analysis
based on the perturbation theory (see Sec. B 2). This result
verifies the reduction of the point-gap topology Z × Z → Z
for the subsector with (N, P) = (3,−1). Correspondingly, the
interactions destroy the extreme sensitivity of the spectrum
to the presence or absence of boundaries [see Fig. 3(d)].
Furthermore, in the presence of interactions, fermions extend
to the bulk even under the open boundary condition [see
Fig. 3(e)]. This result is also intuitively understood as follows:
While the one-body term Ĥ0(θ ) localizes the fermions in
orbital a and the up- (down-) spin state around the right (left)
edge, the two-body interactions Ĥint flip their spins at edges,
which suppresses the effects of boundaries. The above results
indicate that the non-Hermitian skin effect observed at the
noninteracting level is fragile against two-body interactions
[131]. Our numerical calculations indicate that such fragility
of the non-Hermitian skin effect is also observed for the case
of many fermions in orbital a (see Fig. 4). More detailed data
are provided in Sec. B 3.

IV. SUMMARY AND DISCUSSION

We have analyzed interaction effects on the one-
dimensional point-gap topology in both cases of synthetic
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FIG. 5. Spectral flow of the many-body Hamiltonian for the sub-
sector with (N, P) = (2, −1). (a)–(d) are plotted in the same way
as Figs. 2(a)–2(d). (e) is a magnified version of the range −0.12 �
ImE � 0.12 in (d).

and spatial dimensions. Our analysis has elucidated that the
reduction Z × Z → Z occurs for systems of one synthetic
dimension with charge U(1) symmetry and spin-parity
symmetry. This conclusion was obtained with the argument
of topological invariants as well as by explicit analysis of the
toy model. Furthermore, we have also analyzed the extended
Hatano-Nelson chain, which exhibits striking interaction
effects: Interactions reduce the point-gap topology and
destroy the non-Hermitian skin effect at the noninteracting
level.

We stress that the spin-parity symmetry plays an essential
role, which leads to qualitative differences with results of
previous works [118,119]. Instead of Eq. (9c), one can
introduce Hubbard-type interactions preserving spin U(1)
symmetry. This type of interactions does not flip the spins
and thus would not destroy the non-Hermitian skin effect
as discussed in Refs. [118,119]. Analysis of other types
of interactions is left as future work to be addressed. We
also note several open questions. Our results indicate that
interactions result in the same reduction phenomenon for both
cases of synthetic and spatial dimensions whose generality for
other symmetry classes remains an open question. In addition,
establishing strict one-to-one correspondence between the
many-body winding number and skin effect also remains a
crucial open question.

The above discoveries shed light on non-Hermitian corre-
lated systems and open up different directions for research on
non-Hermitian topological physics. For instance, the above re-
sults imply the possibility of similar reduction phenomena for
other cases of symmetry and dimensions. As well as the above
theoretical open question, experimental observation of the
reduction is also a significant issue that needs to be addressed.
We believe that cold atoms could be promising candidates
where interactions and non-Hermiticity can be tuned in
experiments.

FIG. 6. Data for (L, t ) = (7, 1) and subsector (N, P) = (3, −1).
(a) and (b) The twist angle θ dependence of arg[

∏
n(En − Eref )] for

Eref = 0. Expectation values 〈n̂ jaσ 〉 = R〈�n|n̂ jaσ |�n〉R with (c) and
(d) σ =↑ and (e) and (f) σ =↓. Here, |�n〉R (n = 0, 1, . . .) denote
right eigenstates of ĤeHN. Data obtained under the open boundary
condition (the periodic boundary condition) are shown with colored
(gray) symbols. (a), (c), and (e) [(b), (d), and (f)] display data for
J = V = 0 (J = V = 1).
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APPENDIX A: DETAILS OF A TWO-ORBITAL MODEL

1. Analysis for the subsector with (N, P) = (2,−1)

In the main text, we saw that interactions open a line
gap for the subsector with (N, P) = (2, 1), which is consis-
tent with the trivial topology W(2,1) = 0 for Eref = 0. In this
section, we show that a similar behavior is observed for the
subsector with (N, P) = (2,−1).

Despite the nontrivial topology of the one-body Hamilto-
nian, the many-body winding number takes a value of zero
(W(2,−1) = 0) for Eref = 0, as shown in Fig. 5(a). Correspond-
ingly, the spectrum of the many-body Hamiltonian Ĥ(2,−1) can
smoothly shrink to the points [see Figs. 5(b)–5(d)].

In this subsector, the interaction J is essential for the de-
struction of the loop structure observed in Fig. 5(a), which can
be seen as follows. In the subsector with (N, P) = (2,−1), the
Hamiltonian is written as

Ĥ(2,−1) = Ĥ0(2,−1) + Ĥint(2,−1), (A1a)
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Ĥ0(2,−1) = diag
(
λeiθ + iεa↑ + iεb↓, λe−iθ + iεa↓ + iεb↑

× 2λ cos θ + iεa↑ + iεa↓, iεb↑ + iεb↓), (A1b)

Ĥint(2,−1) = iJ

2

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, (A1c)

with diag(· · · ) denoting a diagonal matrix. Here, we have
chosen the following basis vectors spanning the subsector of
the Fock space:

(ĉ†
a↑ĉ†

b↓|0〉, ĉ†
a↓ĉ†

b↑|0〉, ĉ†
a↑ĉ†

a↓|0〉, ĉ†
b↑ĉ†

b↓|0〉). (A2)

Diagonalizing the Hamiltonian, we obtain

E± = λ cos θ + iδ′
0 ± i

√
(sin θ + δ′

3)2 +
(J

2

)2

, (A3)

E ′ = 2λ cos θ + iεa↑ + iεa↓, (A4)

E ′′ = iεb↑ + iεb↓, (A5)

with 2δ′
0 = εa↑ + εb↓ + εa↓ + εb↑ and 2δ′

3 = εa↑ + εb↓ −
(εa↓ + εb↑). The above results elucidate that the spin-parity
symmetry allows the two-body interaction which splits the
loop structure observed in Fig. 5(a).

2. Robustness of the topology characterized by W(2,1) = 2

Let us analyze a toy model in order to demonstrate
the robustness of the topology characterized by W(2,1) = 2.
Specifically, we consider Ĥ specified by

hα (θ ) = λeiθ (δα,(a,↑) + δα,(a,↓) ) + iεlσ δα,(l,σ ) (A6)

and the interaction term [Eq. (7)]. Then, we have

Ĥ(2,1) =
(

λeiθ + iεa↑ + iεb↑ iV
2

iV
2 λeiθ + iεa↓ + iεb↓

)

for the subsector with (N, P) = (2, 1) [see also arguments
above Eq. (8)]. Diagonalizing the above Hamiltonian, we
obtain

E± = λeiθ + iδ0 ± i

√
(δ3)2 +

(V

2

)2

, (A7)

where δ0 and δ3 are defined just below Eq. (8). This result
demonstrates that the topology characterized by W(2,1) = 2
is robust against interactions. Let us choose the parameters
as δ0 = δ3 = 0. In this case, Eqs. (5) and (A7) indicate that
the topology is characterized by W(2,1) = 2 for Eref = 0 in the
absence of the interactions. Equation (A7) also indicates that
this nontrivial topology is maintained for finite values of V .

APPENDIX B: DETAILS OF THE EXTENDED
HATANO-NELSON CHAIN

1. Hamiltonian under the twisted boundary condition

We provide the explicit form of the extended Hatano-
Nelson chain under the twisted boundary condition. The

FIG. 7. Numerical data for J = V = 0 and subsector (N, P) =
(4, 1). (a) Spectral flow of the many-body Hamiltonian. (b) The twist
angle θ dependence of arg[

∏
n(En − Eref )] for Eref = 0.3i. Expecta-

tion values 〈n̂ jaσ 〉 = R〈�n|n̂ jaσ |�n〉R with (c) and (d) σ =↑ and (e)
and (f) σ =↓. Here, |�n〉R (n = 0, 1, . . .) denote right eigenstates of
ĤeHN(θ = 0). Data obtained under the open boundary condition (the
periodic boundary condition) are shown with colored (gray) symbols.
These data are obtained for parameter set (L, t ) = (7, 1).

Hamiltonian reads

ĤeHN = Ĥ0(θ ) + Ĥint, (B1a)

Ĥ0(θ ) = t

[
eiθ ĉ†

0a↑ĉL−1a↑ +
L−2∑
j=0

ĉ†
j+1a↑ĉ ja↑

]

+ t

[
e−iθ ĉ†

L−1a↓ĉ0a↓ +
L−1∑
j=1

ĉ†
j−1a↓ĉ ja↓

]
, (B1b)

Ĥint (θ ) =
∑

j=0,L−1

[
J

2
(Ŝ+

jaŜ−
jb + Ŝ−

jaŜ+
jb)

+ iV (Ŝ+
jaŜ+

jb + Ŝ−
jaŜ−

jb)

]
. (B1c)

Under a gauge transformation ĉ jaσ → e−i θ
L j ĉ jaσ , the one-

body term is written as

Ĥ0(θ ) =
L−1∑
j=0

[teiθ/Lĉ†
j+1a↑ĉ ja↑ + te−iθ/Lĉ†

j−1a↓ĉ ja↓], (B2)

with ĉ†
La↑ := ĉ†

0a↑ and ĉ†
−1a↓ := ĉ†

L−1a↓.
Applying the Fourier transformation to the above Hamil-

tonian yields Eq. (10). We note that under the open boundary
condition, hopping terms between sites j = 0 and j = L − 1
[i.e., the first and third terms of Eq. (B1b)] become zero.

In the presence of charge U(1) symmetry and spin-parity
symmetry, the one-body Hamiltonian is characterized by w

and ws [Eqs. (3) and (4)] with h(θ ) := ⊕kh(k, θ ). The topol-
ogy of the many-body Hamiltonian for a given subsector with
(N, P) is characterized by the many-body winding number
[Eq. (5)] with Ĥ(N,P) := ĤeHN(N,P). Here, ĤeHN(N,P) denotes
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FIG. 8. Numerical data for J = V = 1 and subsector (N, P) =
(4, 1). These figures are plotted in the same way as Figs. 7(a)–7(d).

the many-body Hamiltonian of the extended Hatano-Nelson
model for the given subsector with (N, P).

2. Analysis based on the perturbation theory

Based on the perturbation theory, we confirm that interac-
tions open a line gap as shown in Fig. 3(d). As mentioned in
the main text, we suppose that orbital b is occupied at both
edges ( j = 0, L − 1).

Suppose that interactions are sufficiently weak. In the sub-
sector with (N, P) = (3,−1), the noninteracting Hamiltonian
Ĥ0(θ ) is written as

Ĥ0(3,−1) = tωn

⎛
⎜⎜⎜⎝

ei θ
L 0 0 0

0 ei θ
L 0 0

0 0 e−i θ
L 0

0 0 0 e−i θ
L

⎞
⎟⎟⎟⎠, (B3)

with ω = e
2π i
L and the basis

(|n ↑; ↑↑〉, |n ↑; ↓↓〉, |n ↓; ↑↓〉, |n ↓; ↓↑〉) (B4)

for given n (n = 0, 1, 2, . . . , L − 1). Here, |nσ ; σ ′σ ′′〉 is
defined as |nσ ; σ ′σ ′′〉 := ¯̂dnσ ĉ†

0bσ ′ ĉ
†
L−1bσ ′′ |0〉, with ¯̂dn↑ :=∑

j ĉ†
ja↑Rjn and ¯̂dn↓ := ∑

j ĉ†
ja↓L∗

jn. Matrices R and L†

(Rjn := 1√
L
ω−n j and L†

n j := 1√
L
ωn j) diagonalize the matrix h

(hi j = tδi, j+1),

L†hR = t diag(1, ω, ω2, . . . , ωL−1), (B5)

which corresponds to the kinetic term of fermions in orbital a
and the up-spin state for θ = 0 [see Eq. (B1b) and Fig. 3(a)].
Here diag(· · · ) describes a diagonal matrix. Introducing the
operators d̂n↑ := ∑

j ĉ ja↑(L†)n j and d̂n↓ := ∑
j ĉ ja↓(RT )n j ,

we have anticommutation relations

{d̂nσ , ¯̂dmσ ′ } = δnmδσσ ′ (B6)

for n, m = 0, 1, 2, . . . , L − 1 and σ, σ ′ =↑,↓, which can
be seen by noting the relations

∑
j L†

n jR jm = δnm and

FIG. 9. Data for (L, t ) = (7, 1) and subsector (N, P) = (9, −1).
[(c) and (d)]: Spectral flow for (a) and (b) J = V = 0 and (c) and
(d) J = V = 1. (b) and (d) are magnified versions of the ranges
−0.1 � ImE � 0.1 and −0.1 � ReE � 0.1 in (a) and (c), respec-
tively. The twist angle θ dependence of arg[

∏
n(En − Eref )] for Eref =

−0.04 and (e) J = V = 0 and (f) J = V = 1.

{ĉilσ , ĉ†
jl ′σ ′ } = δi jδll ′δσσ ′ . We note that ( ¯̂dnσ )† = d̂nσ holds due

to the relation R∗
jn = L†

n j .
Now, let us compute energy eigenvalues at the first order

of the interactions. First, we note the following relations:

Ŝ+
ja|m ↓; σσ ′〉 =

∑
i

Ŝ+
jaL∗

imĉ†
ia↓ĉ†

0bσ ĉ†
L−1bσ ′ |0〉

= L∗
jmĉ†

ja↑ĉ†
0bσ ĉ†

L−1bσ ′ |0〉
=

∑
n

L∗
jm(L†)n j

¯̂dn↑ĉ†
0bσ ĉ†

L−1bσ ′ |0〉

= 1

L

∑
n

ω(n+m) j |n ↑; σσ ′〉, (B7)

Ŝ−
ja|m ↑; σσ ′〉 =

∑
i

Ŝ−
jaRimĉ†

ia↑ĉ†
0bσ ĉ†

L−1bσ ′ |0〉

= Rjmĉ†
ja↓ĉ†

0bσ ĉ†
L−1bσ ′ |0〉

=
∑

n

R jm(RT )n j
¯̂dn↓ĉ†

0bσ ĉ†
L−1bσ ′ |0〉

= 1

L

∑
n

ω−(n+m) j |n ↓; σσ ′〉. (B8)
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FIG. 10. (a) and (b) Spectrum of the many-body Hamiltonian
for J = V = 0 and J = V = 1, respectively. Blue (red) symbols
denote data obtained under the periodic (open) boundary condition.
(c) and (d) Expectation values 〈n̂ ja↓〉 = R〈�n|n̂ ja↓|�n〉R against j and
〈N̂a↑〉 = R〈�n|N̂a↑|�n〉R for J = V = 0 and J = V = 1, respectively.
These data are obtained for (L, t ) = (7, 1) and subsector (N, P) =
(9, −1).

Here, we have used the relations
∑

n R jnL†
ni = δi j , ĉ†

ia↑ =∑
n L†

ni
¯̂dn↑, and ĉ†

ia↓ = ∑
n RT

ni
¯̂dn↓.

Thus, at the first order, the Hamiltonian is written as
ĤeHN(3,1) = Ĥ0(3,1) + Ĥint(3,1) with Ĥ0(3,1) in Eq. (B3) and

Ĥint(3,−1) = V

L

⎛
⎜⎜⎝

0 0 ω−2n 1
0 0 0 0

ω2n 0 0 0
1 0 0 0

⎞
⎟⎟⎠

+ iJ

L

⎛
⎜⎜⎝

0 0 0 0
0 0 1 ω−2n

0 1 0 0
0 ω2n 0 0

⎞
⎟⎟⎠ (B9)

for the basis defined in Eq. (B4).
The eigenvalues of ĤeHN(3,1) are written as

Ep,± = tωn

(
cos

(
θ

L

)
±

√
C2

p − sin2

(
θ

L

))
, (B10a)

Em,± = tωn

(
cos

(
θ

L

)
±

√
C2

m − sin2

(
θ

L

))
,

(B10b)

with

C2
p = 1

(tωnL)2
[(V 2 − J2) +

√
V 4 + J4 − 2V 2J2Re[ω4n]],

(B10c)

C2
m = 1

(tωnL)2
[(V 2 − J2) −

√
V 4 + J4 − 2V 2J2Re[ω4n]].

(B10d)

As well as by directly diagonalizing the matrix, the eigen-
values are obtained by taking the square of the matrices (see
below). These results indicate that interactions lift the fourfold
degeneracy observed for θ = 0. Specifically, the imaginary
parts of Cp and Cm lift the degeneracy. To see this, first, let us
suppose that the imaginary parts are zero (ImCp = ImCm = 0).
Then, Eq. (B10a) indicates that exceptional points emerge at
certain θ [i.e., C2

p � 0 holds, and C2
p − sin2(θ/L) = 0 can be

satisfied]. On the other hand, the finite imaginary parts lift the
degeneracy at θ = 0 without inducing exceptional points [i.e.,
C2

p − sin2(θ/L) �= 0 for 0 � θ < 2π ].
Equations (B10c) and (B10d) indicate that the imaginary

parts of Cp and Cm can be finite for a proper choice of n, J , and
V . Therefore, the above result for the first-order perturbation
theory indicates that interactions open a line gap.

We show that eigenvalues (B10) can be obtained by
taking the squares of the matrices. Consider the following
matrix:

H̃ = (xσ0τ0 + yσ0τ3 + aσ1τ1 + bσ2τ2 + cσ0τ1

+ dσ3τ1 + f σ0τ2 + gσ3τ2), (B11)

with complex numbers x, y, a, b, c, d , f , and g. Here,
σ0 and τ0 denote the 2 × 2 identity matrix. Pauli matri-
ces are denoted by σs and τs (s = 1, 2, 3). Matrices σμτν

(μ, ν = 0, 1, 2, 3) denote 4 × 4 matrices. For instance, σ1τ2 is
written as

σ1τ2 =

⎛
⎜⎝

0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

⎞
⎟⎠. (B12)

For the parameter set

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x

y

a

b

c

d

f

g

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

2L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2Ltωn cos θ
L

2iLtωn sin θ
L

V + iJ

−V + iJ

(V + iJ )Re(ω2n)

(V − iJ )Re(ω2n)

(V + iJ )Im(ω2n)

(V − iJ )Im(ω2n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B13)

H̃ is reduced to the matrix ĤeHN(3,−1).
Taking the square of this matrix yields

(H̃ − xσ0τ0)2 − (y2 + a2 + b2 + c2 + d2 + f 2 + g2)

= −2abσ3τ3 + 2(cd + f g)σ3τ0 + 2acσ1τ0 + 2agσ2τ3

+ 2bdσ1τ3 + 2b f σ2τ0. (B14)
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Thus, we have

[(H̃ − xσ0τ0)2 − (y2 + a2 + b2 + c2 + d2 + f 2 + g2)2]2

= [{−2abσ3τ3 + 2(cd + f g)σ3τ0} + (2acσ1τ0 + 2bdσ1τ3) + (2agσ2τ3 + 2b f σ2τ0)]2

= {−2abσ3τ3 + 2(cd + f g)σ3τ0}2 + (2acσ1τ0 + 2bdσ1τ3)2(2agσ2τ3 + 2b f σ2τ0)2

= 4{(ab)2 + (cd + f g)2 + (ac)2 + (bd )2 + (ag)2 + (b f )2} − 8ab(cd + f g)σ0τ3 + 8acbdσ0τ3 + 8agb f σ0τ3

= 4{(ab)2 + (cd + f g)2 + (ac)2 + (bd )2 + (ag)2 + (b f )2}. (B15)

Therefore, the eigenvalues are written as

E ′
p± = x ±

√
y2 + C′2

p , (B16)

E ′
m± = x ±

√
y2 + C′2

m , (B17)

with

C′2
p = a2 + b2 + c2 + d2 + f 2 + g2 + 2

√
(ab)2 + (cd + f g)2 + (ac)2 + (bd )2 + (ag)2 + (b f )2, (B18)

C′2
m = a2 + b2 + c2 + d2 + f 2 + g2 − 2

√
(ab)2 + (cd + f g)2 + (ac)2 + (bd )2 + (ag)2 + (b f )2. (B19)

Thus, choosing the parameters in Eq. (B13), we obtain Eq. (B10).

3. Numerical results

In the main text, we briefly discussed the extended Hatano-
Nelson chain. Here, let us numerically analyze this system
in detail. First, we focus on the subsector with (N, P) =
(3,−1) (see Fig. 6). Although the topology of the one-body
Hamiltonian is nontrivial [i.e., (w,ws) = (0, 1) for εref =
0], the many-body Hamiltonian is topologically trivial (i.e.,
W(3,−1) = 0 for Eref = 0), as shown in Figs. 6(a) and 6(b). This
fact results in the fragility of the non-Hermitian skin effect
against interactions. Namely, although the fermion with the
up- (down-) spin state is localized at the right (left) edge due to
the non-Hermitian skin effect in the noninteracting case [see
Figs. 6(c) and 6(e)], such a localization cannot be observed in
the presence of the interactions [see Figs. 6(d) and 6(f)]. Cor-
respondingly, the extreme sensitivity of the energy spectrum
to the boundary condition is not observed for J = V = 1 [see
Figs. 3(b) and 3(d)].

This fragility of the non-Hermitian skin effect is intu-
itively understood as follows: the interactions flip the spin

of fermions in orbital a, which suppresses the effects of the
boundaries.

Now, let us focus on the subsector with (N, P) = (4, 1)
(see Figs. 7 and 8). Figures 7(a) and 7(b) indicate the topology
of the many-body Hamiltonian is trivial. However, due to
the topology of the one-body Hamiltonian, we can observe
the extreme sensitivity of the spectrum and expectation val-
ues 〈n̂ jaσ 〉 to the presence or absence of the boundaries [see
Figs. 7(c) and 7(d)]. As is the case for (N, P) = (3,−1), such
extreme sensitivity is fragile against interactions (see Fig. 8).

Finally, we discuss the case for (N, P) = (9,−1), where
orbital a is half filled. Figure 9 indicates that the many-
body Hamiltonian is topologically trivial, which results
in the fragility of the non-Hermitian skin effect at the
noninteracting level as discussed above. Namely, while
the topology of the one-body Hamiltonian induces the
extreme sensitivity of the energy spectrum and the ex-
pectation values 〈n̂ ja↓〉 to the boundary conditions, such
extreme sensitivity is not observed in the interacting case
(see Fig. 10).
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