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Competing states in the two-dimensional frustrated Kondo-necklace model
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The interplay between Kondo screening, indirect magnetic interaction, and geometrical frustration is studied
in the two-dimensional Kondo-necklace model on the triangular lattice. Using infinite projected entangled pair
states (iPEPS), we compute the ground state as a function of the antiferromagnetic local Kondo interaction JK

and the Ising-type direct spin-spin interaction Iz. As opposed to previous studies, we do not find partial Kondo
screening (PKS) in the isotropic limit Iz = 0 but the same behavior as in the unfrustrated case, i.e., a direct phase
transition between the paradigmatic phases of the Doniach competition: (i) a disordered phase consisting of local
spin singlets at strong JK and (ii) a magnetically ordered phase at weak JK . For Iz > 0, we find a PKS ground
state but again oppositely to previous studies, we find that the PKS ground state is in strong competition with a
second ground state candidate not found before. This state is characterized by a strongly polarized central spin
in each hexagon and its antiparallel, weakly polarized (i.e., partially screened) neighbors. We name it the central
spin phase.

DOI: 10.1103/PhysRevB.106.205140

I. INTRODUCTION

Two-dimensional strongly interacting lattice models con-
stitute one of the most challenging problems in condensed
matter theory. The complexity is especially high in systems
with frustration in the presence of large quantum fluctuations
based on the low dimensionality. For example, the uncon-
ventional d-wave superconductivity in cuprates arises when
introducing frustration by doping the antiferromagnetic Mott
insulator [1–6]. Heavy-fermion compounds constitute another
example for exotic quantum phases driven by the famous
Doniach competition between a nonmagnetic Kondo screened
and a RKKY-induced magnetic ground state [7]. Here, ad-
ditional frustration can enter the competition via a lattice
structure which is incompatible with the magnetic order. The
compounds CePdAl and UNi4B are layered materials which
form a triangular lattice which induces geometrical frustra-
tion of the antiferromagnetic order [8–11]. In both materials,
experiments suggests an exotic ground state which exhibits
partial Kondo screening (PKS) [8–11], i.e., a trade-off for the
geometrical frustration in which one-third of the moments are
screened while the remnant two-thirds form a magnetically
ordered state.

The quantum Monte Carlo approach is a powerful tool to
study these interacting two-dimensional systems but it has
weaknesses for the cases where the exotic phases are driven
by frustration, due to the infamous sign problem [12]. On the
other hand, within the last decade, great progress was achieved
in the theoretical description of these systems by using ten-
sor network related approaches [13–17]. For two-dimensional
systems, projected entangled pair states (PEPS) [18–20] have
proven to offer a competitive tool for studying ground state

properties. In particular the infinite PEPS (iPEPS) algorithm
[21,22], which is working directly in the thermodynamic limit,
was used for several strongly frustrated two-dimensional sys-
tems; see, e.g., Refs. [23–34].

Several theoretical investigations of the influence of
geometrical frustration on the Doniach competition in heavy-
fermion models have proposed that PKS can release the
geometrical frustration. For the two-dimensional Anderson
lattice, Hartree-Fock studies [35,36] suggest a PKS ground
state at and away from half filling. The PKS ground state,
however, was not found when using dynamical mean-field
theory at half filling but only at finite doping [37]. For the
two-dimensional Kondo lattice, a PKS ground state was found
by applying variational Monte Carlo (VMC) [38] but for a
one-dimensional zigzag chain, density matrix renormalization
group (DMRG) simulations discovered a spontaneous dimer-
ization as a different trade-off for the geometrical frustration
[39,40]. Finally, VMC simulations also predict PKS for the
two-dimensional Kondo-necklace model (KNM) on the tri-
angular and kagomé lattice [38,41]. Apart from the DMRG
simulations for the one-dimensional case, all the mentioned
studies depend on approximations which might not be able to
describe the highly complicated physics emerging from the
geometrical frustration. Additionally, the VMC simulations
were only performed on finite clusters of total size up to
N = 24 which might not be enough to describe truly two-
dimensional behavior.

The purpose of the present study is the systematic inves-
tigation of the influence of geometrical frustration on the
Doniach competition in the 2D Kondo necklace model on
the triangular lattice by employing the iPEPS framework.
Our numerical simulations demonstrate the absence of any
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(a) Bilayer triangular lattice (b) iPEPS unit cell

FIG. 1. (a) Bilayer triangular lattice. Sketch of the Kondo-
necklace model with vanishing Iz. In this case, the lower layer
(orange arrows) has no direct interaction but is only coupled indi-
rectly via the upper layer (blue arrows). (b) iPEPS unit cell. The 3×3
unit cell (shaded gray) used in our iPEPS simulations. Additionally,
we enforce a pattern so that the unit cell contains three independent
tensors (colored red, green, and blue) which enables a breaking of
the translational symmetry into three sublattices.

intermediate phase between the two characteristic phases of
the Doniach competition (disordered and magnetic) in the
isotropic limit for the triangular lattice. For the anisotropic
case, however, a new possibility for releasing the geometri-
cal frustration is discovered which is found to be in strong
competition with the previously found PKS ground state. It
is characterized by a strongly polarized central spin in each
hexagon and its antiparallel weakly polarized neighbors. We
name it the central spin (CS) phase.

II. MODEL

We consider the Kondo-necklace model, i.e., two layers
of quantum spins with S = 1/2 coupled via a local antiferro-
magnetic Kondo exchange interaction with coupling constant
JK > 0. In both layers, the spins are positioned on the vertices
of a two-dimensional triangular lattice. The upper layer con-
stitutes an isotropic triangular antiferromagnetic Heisenberg
model with coupling constant J > 0 while the lower layer
forms a triangular Ising model with coupling constant Iz � 0.
The Hamiltonian reads

H = J
∑

〈i, j〉
sis j + JK

∑

i

Sisi + Iz

∑

〈i, j〉
Sz

i Sz
j . (1)

Here, si (Si) denotes the spin operator in the upper (lower)
layer and the sum in the first and third term is taken over
all adjacent sites i = (ix, iy) and j = ( jx, jy) in the triangular
lattice. We show a sketch of the geometry for vanishing Iz, i.e.,
the isotropic case, in Fig. 1.

This model can describe the qualitative physics of the full
Kondo lattice model at half filling as long as the charge de-
grees of freedom of the conduction electron layer are frozen.
This can arise by a large Hubbard interaction within the elec-
tron layer or by dominant Kondo screening.

III. METHODS

To compute the ground state of the Hamiltonian from
Eq. (1), we employ the infinite projected entangled pair state
(iPEPS) [18,21,42] approach directly in the thermodynamic
limit.

In the iPEPS framework the ground state wave function
|�〉 is parametrized by Nc rank-5 tensors Aσ

udlr (i) where

i = (ix, iy) denotes a site in the unit cell with Nc = Lx × Ly

sites. Such a parametrization obeys the “area law” for the
entanglement scaling of ground states of short-range two-
dimensional Hamiltonians [43] and therefore represents an
efficient variational ansatz for such states. The elementary
site tensors A(i) which build the iPEPS have one physical
index σ and four auxiliary indices of bond dimension D which
determines the accuracy of the ansatz.

In order to find an iPEPS which faithfully represents the
ground state, one needs to optimize the variational parameters
in the A tensors. This can be achieved by an imaginary-time
evolution or by gradient-based optimization methods. When
evolving the state in imaginary time, the bond dimension D
grows so that a renormalization step is necessary. A com-
mon renormalization method is the simple update [44] which
performs the renormalization by using an approximated envi-
ronment of the network. More accurate renormalization can
be achieved with the cluster [45,46] and full update [21,42].
For the latter, the environment of the infinite 2D double-layer
network needs to be computed to perform the renormalization.
This is performed with the corner transfer matrix [47–49] ap-
proach which introduces an effective virtual bond dimension
χ in the environment.

We find that the simple update is not able to capture
the relevant physics and use the cluster update instead for
finding initial guesses for the gradient-based optimization.
In the imaginary-time evolution, the step sizes are chosen
as �τ ∼ O(10−2) where the extrapolation to �τ → 0 is not
needed because of the subsequent direct energy minimiza-
tion. For the energy minimization, we use the variational
method described in Ref. [50] and a limited memory variant of
the Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS)
based on automatic differentiation (AD) [51,52]. A converged
state is reached when the gradient drops below 10−4 where
we additionally ensure that the relevant observables are well
converged. We employ the U (1) symmetry of the Hamiltonian
to reduce the computational cost [53,54] for some of the simu-
lations. For the majority of the presented results, we use bond
dimensions D = 4, 5 together with environment dimensions
χ = 80, 100.

IV. RESULTS

Figure 2 represents the JK−Iz phase diagram which gives
a broad overview of the different phases. As expected for
heavy-fermion models, we find a disordered phase at strong
JK which is colored red in Fig. 2 and a magnetic phase
at weak JK which is colored gray. The magnetic phase has
clock order for finite anisotropy Iz (see inset) which turns
smoothly into a 120◦ phase for Iz → 0. In between these two
phases, the geometrical frustration leads to the emergence
of an exotic ground state. However, we find that two can-
didates are in strong competition. The first one is the PKS
ground state (blue in Fig. 2) which was proposed as the
ground state of the KNM by a previous VMC study [38].
The second one is the CS ground state (green in Fig. 2)
which was not found by any previous work. It is character-
ized by a strongly polarized central spin in each hexagon
which is surrounded by weakly polarized antiparallel adjacent
spins.
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FIG. 2. JK−Iz phase diagram based on iPEPS simulations with
bond dimension D = 4. Gray and red denote the characteristic phases
of the Doniach competition: (i) disordered (red) at strong JK and
magnetic (gray) at weak JK . The geometrical frustration leads to
an intermediate region in the phase diagram (blue and green) in
which two ground state candidates are found which are in strong
competition over the entire intermediate region: (i) partial Kondo
screening (blue) is realized at weaker JK and (ii) central spin phase
(green) is realized at stronger JK . The white region indicates a broad
transition regime (possibly a mixed phase) between PKS and CS.
Insets: Magnetization patterns of the lower layer in the respective
phases.

The different phases are all characterized by symmetry
breaking. The disordered phase preserves all symmetries of
the Hamiltonian, i.e., the translational symmetry, the lattice
point group, and—in the isotropic case—the SU (2) spin
symmetry. The intermediate phases PKS and CS break the
translation symmetry and the point group symmetry but not
the continuous U (1) symmetry of the Hamiltonian. The CS
spin phase preserves the 60◦ rotations of the triangular lattice
around one site in the unit cell while the PKS phase obeys 60◦
rotations about a different site in the unit cell only in combina-
tion with a global flip of all spins. Finally, the magnetic phase
breaks the continuous U (1) [SU (2) for the isotropic case] spin
symmetry down to a remaining Z2 symmetry.

In the following, we present an in-depth analysis of the
different phases starting with the disordered and magnetic
phases in Secs. IV A and IV B. Afterward, we discuss the
intermediate region and its possible internal transitions in
Sec. IV C and demonstrate its exotic character induced by the
geometrical frustration and the strong competition between
the PKS and CS ground state. Finally, we present data for the
quantum phase transitions from the intermediate region to the
magnetic and disordered phase in Sec. IV D.

A. Disordered phase

The disordered phase directly relates to the limit JK →
∞ which corresponds to the atomic limit. In this limit, the
unique ground state is the direct tensor product of on-site
singlets formed by the spins of the two layers. The rest of
the many-body spectrum is separated by a large gap of order
JK . Standard nondegenerate perturbation theory connects the

(a) Upper layer Iz = 0:4J (b) Lower layer Iz = 0:4J

(c) Upper layer Iz = 0 (d) Lower layer Iz = 0

FIG. 3. Magnetization patterns for both layers in the magnetic
phase as obtained by iPEPS simulations with D = 5 for JK = 0.2J .
(a) Upper layer Iz = 0.4J . (b) Lower layer Iz = 0.4J . (c) Upper layer
Iz = 0. (d) Lower layer Iz = 0.

atomic limit to finite JK . The first contribution is at order
J2/JK . The large gap in this phase leads to a fast exponential
decay of correlations and allows for an exact description of the
ground state as a tensor network with small bond dimension.
Furthermore, the ground state respects all symmetries of the
Hamiltonian.

B. Magnetic phase

The magnetic phase is the second paradigmatic phase in the
Doniach competition where the indirect magnetic interactions
dominate. It is realized for weak JK . This section is partitioned
into the case Iz > 0 and Iz = 0.

1. Finite Iz

The magnetization pattern for Iz = 0.4J and JK = 0.2J
is displayed in Figs. 3(a) and 3(b). Here, we show the ex-
pectation value 〈si〉 for the upper layer [Fig. 3(a)] and the
expectation value 〈Si〉 for the lower layer [Fig. 3(b)]. Due
to the weak interlayer coupling JK , the two layers are non-
collinear but in each layer, the pattern can be understood
by looking at the decoupled layers. The upper layer forms
a spin-1/2 Heisenberg model which is known to have a
symmetry-broken ground state with three-sublattice 120◦ or-
der [55] and homogeneous spin correlations. The absolute
value of the magnetization is m = |〈si〉| ≈ 0.33 for the D = 5
iPEPS simulations. Although this value will decrease in the
D = ∞ limit, it is substantially higher than the value of the
triangular lattice Heisenberg model (m ≈ 0.2 [55]). This is
attributed to the residual influence of the Kondo interaction
since we see a clear decrease of m for decreasing JK .
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FIG. 4. Visualization of the ground state energy as obtained by
iPEPS simulations with D = 5 for JK = 0.2J . Left: Clock phase
at Iz = 0.4J; right: 120◦ phase at Iz = 0. Bond patches display the
summation of the contributions from both layers: J〈SiS j〉 + Iz〈Sz

i Sz
j〉.

Site patches display the Kondo energy: JK 〈Sisi〉.

In contrast, the lower layer is an Ising model on the trian-
gular lattice with Ising exchange Iz. Its isolated ground state
is strongly degenerate at finite Iz. But a small transverse mag-
netic field lifts this degeneracy toward a clock-ordered ground
state [56]. Since the main role of the transverse magnetic field
in the Ising model is the creation of spin flips in the classical
Ising state, the finite magnetic moments of the upper layer
act similarly to a transverse magnetic field due to a weak JK .
The only difference is that the effective field is inhomoge-
neous due to the three-sublattice 120◦ order. The spins in the
lower layer are strongly polarized with a magnetization M =
|〈Si〉| ≈ 0.49, very close to the maximal value M = 1/2. The
clock-ordered ground state breaks the translational symmetry
so that also the spin correlations along the nearest-neighbor
bonds become inhomogeneous. This can be seen in the left
panel of Fig. 4, where the inhomogeneous bond energies are
caused by the lower-layer contribution Iz〈Sz

i Sz
j〉.

2. Vanishing Iz

The magnetization pattern for Iz = 0 is represented in
Figs. 3(c) and 3(d). In this case, the two layers are collinear;
i.e., spins on opposite sites are antiparallel. The upper layer
has not changed qualitatively as compared to Iz = 0.4. How-
ever in the decoupled limit, the lower layer is now completely
degenerate. Due to a weak JK , the spins in the lower layer
align antiparallel with their opposite partner so that the lower
layer has the same 120◦ order. Therefore, the translational
symmetry of the bond energies is preserved in the ground state
which can be seen at the right of Fig. 4. For the strength of
polarization, we find similar values as compared to Iz = 0.4J .

The clock order in the lower layer for finite Iz is not exact
but slightly canted due the finite coupling of the layers. For
Iz = 0.4J , we find an angle of ϑ ≈ 94◦ instead of ϑclock = 90◦
for the perfect clock order. The evolution of ϑ as a function of
Iz can be seen in Fig. 5. It shows that the angle evolves con-
tinuously from the 90◦ clock order to the isotropic 120◦ state.

C. Intermediate phases

On a bipartite lattice, the disordered and the magnetic
phases are separated by a quantum critical point where the

FIG. 5. The angle ϑ between adjacent spins as a function of Iz as
obtained by iPEPS simulations with D = 5. Red dashed lines mark
the two limiting cases θ = 90◦ for Iz → ∞ and θ = 120◦ for Iz = 0.

competition is the strongest. Adding geometrical frustration
as a third competitor can lead to a region with new exotic
phases in between the disordered and magnetic phase where
the Kondo screening is only partially active. For the present
triangular lattice, we find an intermediate phase only at finite
Iz while the isotropic limit (Iz = 0) shows the same behavior
as in bipartite lattices. The evidence for this is described in
Sec. IV D while this section focuses on the nature of the
intermediate phase for finite Iz. We find two different ground
state candidates in competition with opposite character. Their
magnetization pattern for the lower layer and energy expecta-
tion values are displayed in Fig. 6. The magnetization pattern
of the upper layer (not shown) is found to be the opposite of
the lower layer. The left state shows PKS where the central
spin in a hexagon is completely screened. The screening leads
to a large on-site Kondo energy contribution for the central
site. The bond energies are higher along the circumference
of the hexagon representing strong antiferromagnetic correla-
tions between spins on the edge of the hexagon. In contrast,

FIG. 6. The energy expectation values for the bond and site terms
of the Hamiltonian and the on-site magnetization in the lower layer
for the PKS phase (left) and CS phase (right) for an iPEPS with D =
6. Parameters are Iz = 0.4J , JK = 0.7J and the bond contributions
from the two layers are summed. Color legend refers to the bond
energies.
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(a) x = 0 (b) x = 1/2 (c) x = 1

FIG. 7. Illustration of the continuous mixing of both phases with
three examples for the mixing degree x [Eq. (2)]. The CS phase is
realized for x = 0 while the PKS phase corresponds to x = 1. The
red dot marks the central site of the hexagons in Fig. 6. (a) x = 0.
(b) x = 1/2. (c) x = 1.

the right panel shows a CS state where the central site is not
screened but strongly polarized leading to a low Kondo contri-
bution of the center. Reminiscent to a central spin model, the
outer spins align antiparallel to the strongly polarized central
spin while being partially screened. Completely oppositely to
the PKS state, the bond energies are low along the circumfer-
ence and high toward the center. In that sense the CS state is
an “inverted” version of the PKS state.

The two states in Fig. 6 can also be in an arbitrary su-
perposition with the total energy being nearly independent
of the superposition. We find relative energy differences of
O(10−5). The degree of superposition can be parametrized
by a single parameter utilizing the fact that the total magne-
tization per layer

∑
i∈cell Mi = ∑

i∈cell mi = 0 vanishes. The
magnetization Mz

i (with i the nonequivalent sites in the unit
cell) of the lower layer can then be parametrized with a single
dimensionless parameter x,

Mz
1 = M(1 + x)

2
,

Mz
2 = M(1 − x)

2
, (2)

Mz
3 = −M.

Here, M is the strength of the polarization of the moment
pointing in opposite direction compared to the two other mo-
ments. The PKS state corresponds to x = 1 and the CS state to
x = 0. See Fig. 7 for an illustration. The weak x dependence
of the total energy can be seen in Fig. 13.

The strong competition of both ground state candidates
makes the iPEPS simulations challenging. For example, the
simple update simulations clearly favor the PKS ground state
which indicates that an accurate consideration of the environ-
ment is required to capture the CS state and the competition
between both [57]. On account of this, we do not use the
simple update at all but follow the subsequent protocol to
identify the true ground state. Simulations are initialized with
random tensors at D = 3 to avoid peculiar ground states at
D = 1, 2. Afterward the variational parameters are optimized
using imaginary-time evolution with the cluster update. The
result is taken as the initial state for the gradient-based opti-
mization with AD. To increase the bond dimension, we use

FIG. 8. The mixture parameter x [Eq. (2)] as a function of JK for
Iz = 0.4J .

again the imaginary-time evolution in combination with the
cluster update.

Figure 8 shows the mixture parameter x as a function of
JK for Iz = 0.4J . The simulations at D = 4 and D = 5 show
a continuous change of x from the CS state at stronger JK

to PKS at weaker JK [58]. Although the underlying tensors
of the iPEPS are nonsymmetric in these cases, we do not
see any U (1) symmetry breaking in the observables. This
suggests that a description with symmetric tensors should be
feasible. However, due to the strong competition between both
phases, it turns out that it is very hard to find appropriate
symmetry sectors in the tensors since these are determined at
the initialization procedure with an imaginary-time evolution
while the gradient-based optimization works at fixed sectors.
For an in-depth discussion of this issue see the Appendix.

In order to examine the physical properties of both phases,
we analyze the site-resolved local Kondo correlations in
Fig. 9. For the chosen unit cell, there are three independent
sites [see Fig. 1(b)] which are labeled as A, B, and C. For
JK > 1.2J , all three sites are equivalent and the system is in
the disordered phase. In the CS state (green shaded area in

FIG. 9. The site-resolved Kondo correlations for all three inde-
pendent sites in the unit cell and the mean value for Iz = 0.4J at
bond dimension D = 4.
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Fig. 9), one site is less screened than the other two. This site
corresponds to the central site in the right hexagon of Fig. 6.
On the other hand in the PKS phase (blue shaded area in
Fig. 9), one site is more screened than the other two. Similarly,
this site corresponds to the central site in the left hexagon
of Fig. 6. In between, there is a broad transition regime in
which all three sites have different local Kondo correlations.
Within the transition regime, one site is changing its nature
from strongly to weakly screened.

Regarding the nature of the transition, two different scenar-
ios are conceivable: (i) a first-order direct transition between
PKS and CS containing a jump in one of the local Kondo
correlations and (ii) a mixed phase in between PKS and CS
including two continuous phase transitions. This can also be
corroborated by looking at the symmetries of the involved
phases. For the CS phase, the ground state obeys a 60◦
rotational symmetry about the B site and a 120◦ rotational
symmetry about the A and C sites. On the other hand, the PKS
phase obeys a 60◦ rotational symmetry in combination with
a spin flip about the A site and a 120◦ rotational symmetry
about the B and C sites. We note that the absolute position of
the 6-fold axis is different in the PKS and CS phase and that
in the PKS phase, an additional spin flip is required. Thus,
both phases have different symmetries which implies that a
(conventional) direct transition would be of first order. In the
mixed phase, both 6-fold rotational symmetries are broken
which allows two continuous transitions, first from CS to the
mixed phase and then from the mixed phase to PKS.

Our iPEPS simulations do not show a direct transition
between the two phases, and the size of the transition regime is
almost equal for D = 4 and D = 5 (see Fig. 8). This suggests
that the appearance of the transition regime is not a finite-D
effect, but rather that scenario (ii) is realized, i.e., that the
transition regime corresponds to a mixed phase. However, for
a clarification, higher bond dimensions would be required.

The observed site-resolved Kondo correlations suggest a
simple qualitative picture. The multiplicity of the undermost
line in Fig. 9 changes from 3 in the disordered to 2 in the CS
state and to 1 in the PKS state. This can be interpreted as a
gradual decrease of the Kondo screening with decreasing JK

in a steplike manner. However, this picture does not show up
in the mean value of the local Kondo correlations which is
featureless (see Fig. 9).

D. Transitions

1. Intermediate to disordered

The disordered phase at strong JK consists of localized
on-site Kondo singlets. The decrease of JK gradually increases
the nonlocal correlations and the entanglement in the ground
state and can eventually lead to a phase transition. The phase
transition goes along with a symmetry breaking of the SU (2)
spin symmetry so that the spontaneous magnetization Mz =
1
N

∑
i∈cell |〈Sz

i 〉| serves as an order parameter. To detect this
transition point, we study the magnetization Mz in the lower
layer as a function of JK . Figure 10 shows the iPEPS results of
the order parameter at bond dimension D = 4 for several val-
ues of Iz. The data are consistent with a continuous quantum
phase transition which shifts to larger JK for increasing Iz in
agreement with Ref. [38]. Besides this qualitative agreement,

FIG. 10. The order parameter Mz as a function of JK as obtained
by iPEPS simulations with bond dimension D = 4.

the quantitative transitions points are lower than the values
found in Ref. [38]. For example, for Iz = 0.2J , we find Jc

K ≈ J
as compared to Jc

K ≈ 1.2J . In great contrast to the study in
Ref. [38], we do not encounter a transition to the intermediate
phase in the isotropic case Iz = 0. Instead, we find a direct
transition to the magnetic phase as discussed in Sec. IV D 2.

To check the D dependence, we plot the transition for
Iz = 0.4J for D = 4 and D = 5 (Fig. 11). This shows that the
transition point shifts to smaller values of JK , i.e., shifts farther
away from the behavior found in Ref. [38].

2. Magnetic to intermediate

The second phase transition is connected with the breaking
of the remaining U(1) spin symmetry and can be observed by
the order parameter Mx = 1

N

∑
i∈cell |〈Sx

i 〉|. We plot the results
of our iPEPS simulations in Fig. 12 for several values of Iz.
The transition point is only weakly dependent on Iz and we
find Ji↔m

K ≈ 0.7J . This is approximately twice as large as
the value found in Ref. [38]. As opposed to Ref. [38], the
transition is not completely independent of Iz and we find that

FIG. 11. The order parameter Mz as a function of JK for Iz = 0.4J .
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FIG. 12. The order parameter Mx (except for the black circles) as
a function of JK for several values of Iz with iPEPS bond dimension
D = 4. The transition point Ji↔m

K is only weakly dependent on Iz.

the transition point shifts to larger values of JK for weaker
Iz. The data for the order parameter are consistent with a
continuous quantum phase transition.

For Iz = 0, the transition is different because the interme-
diate phase is missing; i.e., at the right of Fig. 12, the ground
state is disordered. This can be seen by comparing the value
of Mx with that of Mz (black circles in Fig. 12). Both are zero
above the phase transition and increase equally indicating a
homogeneous 120◦ order.

V. CONCLUSIONS AND OUTLOOK

We have studied the influence of geometrical frustration
on the two-dimensional Kondo-necklace model using iPEPS.
Our findings include two novelties as compared to previ-
ous studies: (i) The PKS ground state is not realized in
the isotropic Kondo-necklace model; i.e., this exotic state is
clearly driven by anisotropic interactions and not only by
geometrical frustration. This can be compared to the simplest
model for quantum magnetism, the Heisenberg model. The
unfrustrated square lattice is magnetically ordered. This or-
der persists for the geometrically frustrated triangular lattice
however with stronger quantum fluctuations [55]. For even
more frustrated lattices, e.g., the kagomé lattice, the quantum
fluctuations destroy the magnetic order leading to a spin liquid
ground state [24,59–63]. This comparison raises the question
of whether the PKS or any other exotic intermediate phase
will be present in the Kondo-necklace model on stronger
frustrated lattices. (ii) The PKS ground state is not the only
exotic phase driven by the geometrical frustration in combi-
nation with anisotropic interactions. The second candidate has
a strongly polarized spin in the center of a hexagon pointing
antiparallel to its surrounding weakly polarized neighbors. We
named it the central spin (CS) phase and it can be seen as an
inverted version of the PKS phase. We find that both phases
are in an extraordinarily strong competition which makes
the iPEPS simulations challenging. Both a direct transition
and a mixed phase in between PKS and CS are conceiv-

able, but our iPEPS simulations are more compatible with the
latter.

Moreover, we have unveiled the JK -Iz phase diagram and
found quantitative differences to previous studies for all phase
boundaries. At weak JK , the ground state is magnetically
ordered and at strong JK the ground state is disordered. The
magnetic order at weak JK is of clock type for strong Iz and
goes smoothly into a 120◦ order for Iz → 0. The magnetic
and disordered phases touch each other directly for Iz = 0
while there are two intermediate phases in between at fi-
nite Iz. The first one after the disordered is PKS which is
in strong competition with the second, the previously men-
tioned new CS spin phase. The order of the phases can be
understood qualitatively by the simple rule that the amount
of Kondo screening is decreasing with decreasing JK . In
the disordered phase, three out of three sites are screened.
In the CS spin phase this reduces to two out of three and in
the PKS phase only one out of three sites is screened. Finally
in the magnetically ordered phase, no Kondo screening is
present.

Our work is potentially relevant for recently discovered van
der Waals heterostructures [64]. These structures constitute
very clean two-dimensional systems on the triangular lattice
where the microscopic parameters can be controlled by the
twist of the heterostructures. Especially, also the filling can
be tuned via gating the samples. Thus, it is conceivable that
similar physics to our case can be studied when probing their
magnetic properties.

Two different routes can be chosen to further explore
the influence of geometrical frustration to Kondo lattice
systems. First, one can increase the geometrical frustration
by considering more frustrated lattices or by including further
interactions. Second, one can fully include the electronic layer
and study the full Kondo lattice model. This is in particular
interesting since the electronic layer can mediate diverse ef-
fective interactions and additionally can be doped away from
half filling. This would shrink the gap to the experimental
realizations of frustrated Kondo lattice systems since the main
compounds CePdAl and UNi4B are heavy-fermion metals.
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APPENDIX: SYMMETRIC TENSORS
IN THE INTERMEDIATE PHASE

The intermediate coupling regime includes the competition
between the PKS and CS ground state. In our simulations
with nonsymmetric tensors, we do not see a U (1) symmetry
breaking in the observables. This suggests that a descrip-
tion with symmetric tensors should be feasible. In practical
computations however, it turns out that the results scatter
between both possible ground states. To demonstrate this
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FIG. 13. (a) Variational energies for various different random
initial sector distributions at JK = J and Iz = 0.4J . The dotted line
marks the energy with nonsymmetric tensors in the iPEPS ansatz.
(b) The mixture parameter x for the various seed values.

issue we focus on JK = J and run simulations with various
random sector distributions. The simulations are initialized
with random charges for each nonequivalent bond in the
iPEPS tensor network at bond dimension D = 3. Thereafter,
imaginary-time evolution with the cluster update is used to
optimize the ansatz. We note that during this process the
charge sectors are allowed to change. After increasing the
bond dimension to D = 4, we run gradient-based optimization

FIG. 14. The mixing parameter as function of JK for Iz = 0.4J
and various seed values at bond dimension D = 5.

with AD and take the simulations with lowest energy. In that
case, these are the results of 15 different simulations. With
an additional imaginary-time evolution—which may change
the charge sectors again—the bond dimension is increased to
D = 5 followed by another gradient-based simulation. The
energies (mixture parameters) of the different simulations
are displayed in the top (bottom) of Fig. 13. The mixture
parameters scatter over nearly the whole range [0,1] with a
cumulation at intermediate values. In contrast, the final en-
ergies lie very close. Compared to the energy obtained with
nonsymmetric tensors (dotted lines in Fig. 13), all obtained
energies are slightly higher. However, the relative distance
is of order 10−5. Finally, the results at JK = J are used as
initial states for the whole intermediate JK range as displayed
in Fig. 14. These initial states are optimized using gradient-
based optimization with AD which does not change the
charge sectors. The overall tendency that the mixture increases
with decreasing JK is in agreement with the nonsymmetric
simulations.
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