
PHYSICAL REVIEW B 106, 205136 (2022)

Neural tensor contractions and the expressive power of deep neural quantum states

Or Sharir * and Amnon Shashua†

The Hebrew University of Jerusalem, Jerusalem 9190401, Israel

Giuseppe Carleo ‡

Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

(Received 1 July 2021; revised 25 October 2022; accepted 2 November 2022; published 22 November 2022)

We establish a direct connection between general tensor networks and deep feed-forward artificial neural
networks. The core of our results is the construction of neural-network layers that efficiently perform tensor
contractions and that use commonly adopted nonlinear activation functions. The resulting deep networks feature
a number of edges that closely match the contraction complexity of the tensor networks to be approximated. In
the context of many-body quantum states, this result establishes that neural-network states have strictly the same
or higher expressive power than practically usable variational tensor networks. As an example, we show that all
matrix product states can be efficiently written as neural-network states with a number of edges polynomial in
the bond dimension and depth that is logarithmic in the system size. The opposite instead does not hold true, and
our results imply that there exist quantum states that are not efficiently expressible in terms of matrix product
states or projected entangled pair states but that are instead efficiently expressible with neural network states.

DOI: 10.1103/PhysRevB.106.205136

I. INTRODUCTION

Many fundamental problems in science can be formulated
in terms of finding an explicit representation of complex high-
dimensional functions, ranging from time-dependent vector
fields to normalized probability densities. In recent years,
machine learning (ML) techniques based on deep learning
[1] have become the leading numerical approach for ap-
proximating high-dimensional functions found in industrial
applications. Due to this success, ML methods have also been
recognized as a prime computational tool to attack functional
approximation problems in physics [2].

In quantum physics, one of the main theoretical challenges
in describing interacting, many-body systems stems from
the complexity of finding explicit representations of many-
particle quantum wave functions. Tensor networks states
(TNS) are a well-established general-purpose ansatz for rep-
resenting such functions. TNS are intrinsically rooted in the
notion of locality in quantum systems and constitute both a
key theoretical language to analyze many-body phenomena
as well as a powerful numerical tool for simulations [3–7].
Recently, neural-network-based representation of quantum

*Current address: California Institute of Technology, Pasadena,
CA, 91125; or.sharir@cs.huji.ac.il

†shashua@cs.huji.ac.il
‡giuseppe.carleo@epfl.ch

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

states, dubbed neural quantum states (NQS), have been intro-
duced [8] and subsequently used in a variety of variational
applications. A key theoretical question is how these two
alternatives relate to each other and whether some families of
quantum states are better described in terms of one of them.

Several theoretical properties of NQS have been estab-
lished to date. General representation theorems for neural
networks [9] guarantee that sufficiently large NQS can
describe arbitrary quantum states. Moreover, exact representa-
tions of many-body ground states of local Hamiltonians can be
analytically found in terms of deep Boltzmann machines [10].
Both representation results, however, do not bound the size
of the corresponding NQS networks that, in the worst case,
can be exponentially large in the number of physical degrees
of freedom [11]. Despite the worst-case exponential bound
on NQS, examples of physically relevant quantum states that
can be efficiently represented are numerous. These encom-
pass both analytical and numerical results. On the analytical
side, for example exact and compact NQS representations
of several correlated topological phases of matter are known
[12–15]. On the numerical side, suitable learning algorithms
have shown competitive results to find ab initio approximate
description of many physical systems of interest in physics
[14,16–20] and chemistry [21–23].

As mentioned, a well-established paradigm for describing
many-body quantum states are TNS. While generic TNS are
widely believed to be general enough to compactly describe
most physical quantum states, only a restricted subset of them
are amenable for numerical calculations. A determining factor
in the applicability of TNS as variational quantum states is
played by how complex it is to use these representations
to compute physical quantities, and it is in turn related to
the complexity of contracting TNS. TNS that can be effi-

2469-9950/2022/106(20)/205136(12) 205136-1 Published by the American Physical Society

https://orcid.org/0000-0003-4957-8957
https://orcid.org/0000-0002-8887-4356
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.205136&domain=pdf&date_stamp=2022-11-22
https://doi.org/10.1103/PhysRevB.106.205136
https://creativecommons.org/licenses/by/4.0/

SHARIR, SHASHUA, AND CARLEO PHYSICAL REVIEW B 106, 205136 (2022)

FIG. 1. We demonstrate a mapping from any tensor network with an efficient contraction algorithm to a compact neural network. Here
we illustrate our coarse-grained construction for an ε approximation of a matrix product state over N sites, each of d degrees of freedom, and
bond-dimension χ . The resulting network is of depth Õ(ln N+√

1/ε) and has Õ(N (d+χ)χ 2+√
1/ε) edges

ciently contracted most notably encompass matrix product
states (MPS) [3], a very powerful representation of low-
entangled states in one-dimension. Higher-dimensional TNS
are in general to be contracted only approximately, and rig-
orous complexity results have been established. For example,
computing expectation values of physical quantities over pla-
nar tensor networks in two dimension, the projected entangled
pair states (PEPS) [24], is non polynomial problem that is
known to belong to the #P complexity class [25,26].

Given the distinctive features of NQS and TNS, several
works have studied possible connections between the two
representations. For example, the volume-law entanglement
capacity of neural networks has been established in several
works [27–29]. Also, mappings between the two classes of
states have been realized, including between general fully
connected NQS and MPS with exponentially large bond di-
mension [28]. An approach mapping MPS onto nonstandard
neural networks has also been introduced [30]. Despite the
important theoretical progress, a direct mapping between
generic, efficiently contractible TNS and standard NQS has
not been established to date. This situation for example leaves
open the possibility that TNS can offer a general representa-
tional advantage over NQS representations [31,32], and that
there might exist compact, contractible TNS that cannot be
expressed by means of compact NQS.

In this work, we establish a direct mapping between TNS in
arbitrary dimensions and NQS, as illustrated in Fig. 1. By di-
rectly constructing neural-network layers that perform tensor
contractions, we show that efficiently contractible TNS can be
constructed in terms of polynomially sized neural networks.
Our result, in conjunction with previously established results
on the entanglement capacity of NQS, then demonstrates
that NQS constitute a very flexible classical representation of
quantum states and that TNS commonly used in variational
applications are strictly a subset of NQS.

II. PRELIMINARIES

We consider in the following a pure quantum system, con-
stituted by N discrete degrees of freedom s ≡ (s1, . . . , sN)
(e.g., spins, occupation numbers, etc.) such that the wave-
function (WF) amplitudes 〈s|�〉 = �(s) fully specify its state.

Following the approach introduced in Ref. [8], we can repre-
sent log[�(s)] as g1(s) + i · g2(s), where g1 and g2 are two
outputs of a feed-forward neural network, parametrized by a
possibly large number of network connections. Given an arbi-
trary set of quantum numbers, s, the output-value computation
of the corresponding NQS can generally [33] be described
as two roots of a directed acyclic graph (V, E), where the
value of each node v ∈ V is recursively defined by v(s) =
σ (bv + ∑

(u,v)∈E Wu,vu(s)), where {Wu,v ∈ R}(u,v)∈E and {bv ∈
R}v∈V are the parameters of the network, and σ : R → R is
some nonlinear function known as the activation function,
e.g., ReLU(x) = max(x, 0) or softplus(x) = log[exp(x) + 1]
[34,35]. The root nodes of the network can optionally use
the identity instead of a nonlinear activation function. The
depth of a neural network is defined as the maximal distance
between an input node and the roots.

Alternatively, a state �(s) can be viewed as a complex
tensor As1,...,sN that is represented following some tensor fac-
torization scheme. Most forms of tensor factorizations are
conveniently described graphically via tensor networks (TN),
undirected graphs whose nodes are tensors and edges specify
contractions between connected tensors. See Appendix A for
a brief introduction. In the next section we will present our
main results on the efficiency of approximating TN by NN.
To properly discuss the complexity of computing a TN, we
have to be specific on how a given TN is computed. First, a
contraction order must be selected, i.e., the order by which
intermediate tensors are computed. The complexity of con-
tracting a TN exactly is dependent on that order. While finding
the optimal contraction order for an arbitrary TN is known to
be NP-complete, for many common TN forms, e.g., matrix
product states, efficient algorithms exist. Two such contrac-
tion schemes are the sequential and parallel contractions that
are depicted in Fig. 2. Second, we must precisely describe
the computational circuit of contraction to be able to char-
acterize some structural properties, e.g., depth and number
of neurons, of the NN approximating it. Given a contraction
order, the value of �(s) can alternatively be described in
the form of an arithmetic circuit (AC) [36], i.e., a compu-
tational graph comprising product and weighted-sum nodes.
Specifically, the value for a product node v ∈ P is given by
v(s) = ∏

(u,v)∈E u(s), and for a weighted-sum node v ∈ S is

205136-2

NEURAL TENSOR CONTRACTIONS AND THE EXPRESSIVE … PHYSICAL REVIEW B 106, 205136 (2022)

FIG. 2. Left: Sequential contraction scheme for matrix product states: At step 1, we map indices d1, . . . , d8 to their corresponding matrices
(or vectors at boundaries), a O(dχ 2)-time operation. In each of the following steps, we contract a boundary vector with its neighboring
matrix node, a O(χ 2)-time operation, amounting to a total of O(Ndχ 2) for the entire contraction, performed in N steps. Middle: Parallel [37]
contraction scheme for matrix product states: Following step 1 as in the sequential contraction, we contract pairs of neighboring nodes in
parallel, each an O(χ 3)-time operation, amounting to a total of O(N (d + χ)χ2) for the entire contraction, performed in log2(N) steps. Right:
Illustration of a simple contraction scheme, in this case matrix-vector multiplication, as an arithmetic circuit.

given by v(s) = ∑
(u,v)∈E Wu,v · u(s), where {Wu,v ∈ C}(u,v)∈E

are the parameters of the circuit, corresponding to the tensor
nodes in the tensor network. Input to the arithmetic circuit
is represented by leaf input nodes, where for every si and
possible value k there is an indicator node vi,k = 1[si = k].
The depth of the circuit is defined the same as for neural
networks. See Fig. 2 for an illustration of a simple TN to AC
conversion.

III. RESULTS

Here we present our main results. First, NN can represent
any quantum state that is described by a TN with the same
efficiency. Second, there exist states that NN can describe
efficiently but require exponential time for common forms
of TN. The main outcome of our work is the representabil-
ity diagram in Fig. 3, summarizing the expressive power of
NN and TN as variational quantum states. As discussed, the
expressive efficiency of TN is defined with respect to a given
contraction scheme that gives rise to an explicit computation
in the form of an AC, composed of product and weighted sum
operations. Hence, the fundamental question is whether AC
can be efficiently simulated by NN.

This section is organized as follows. We present our main
theorem for the efficient approximation of AC by NN in
Sec. III A. Using that, we prove our corollaries for approxi-
mating general tensor network contractions in Sec. III B and
then examine more closely the implications for the special
case of MPS in Sec. III C. In Sec. III D we prove that NQS can
represent volume-law states very efficiently, improving on the
bounds of prior works, which most of the commonly used TN
geometries cannot represent efficiently.

A. Main theorem: Neural networks can efficiently simulate
arithmetic circuits

While the exact relationship between NN and AC has not
been well studied [38], several works did study the relation-
ship between NN and other polynomial functions [39–41].
However, these prior methods do not yield sufficiently good
bounds when applied to the problem at hand, leading to
impractical results. This inefficiency is inherently related to
focusing on linear metrics between functions rather than
multiplicative. Because WF amplitudes are normalized, their
absolute values are very small while their relative values are

often orders-of-magnitude apart. See Appendix B for a longer
discussion.

Unlike prior approaches, we consider the approximation of
the log-value of AC, i.e., finding g such that ‖g − ln f ‖∞ <

ε—which translate to multiplicative bound in linear space—
rather then ‖g − f ‖∞ < ε. Working in log-space has the
advantage that more reasonable values (not dependent on
N) for ε are sufficient for a meaningful approximation of
WF amplitudes. Using the infinity norm to measure the dis-
tance of two states gives a precise estimate over all inputs.

FIG. 3. Expressive power of classically tractable variational
quantum states. Different classes of quantum states describing a
qudit system with N degrees of freedom and comprising poly(N)
variational parameters are compared. MPS can efficiently represent
gapped ground states of one-dimensional systems. PEPS* denotes
projected entangled pair states of bond dimension χ that are exactly
or approximately contracted in poly(N, χ) time on a classical com-
puter. NQS comprise all polynomially tractable TN, thus include
MPS, and PEPS∗, while also representing additional states with
volume-law entanglement that are not efficiently described by such
planar TN.

205136-3

SHARIR, SHASHUA, AND CARLEO PHYSICAL REVIEW B 106, 205136 (2022)

Typically the fidelity is used to measure closeness of states,
i.e., F (ψ, φ) = |〈ψ |φ〉|2

〈ψ |ψ〉〈φ|φ〉 . However, notice that closeness of
the log-value under the infinity norm also implies closeness
under the fidelity, while infinity norm in the linear domain
does not entail such relationship unless ε is very small (see
Appendix C for proofs):

Claim 1. If ‖ ln ψ − ln φ‖∞ < ε < 1/4, then F (ψ, φ) �
1 − 4ε.

Claim 2. There exist functions ψ, φ : 2N → C, where
‖ψ − φ‖∞ < ε, but F (ψ, φ) < 2−N when ε−2 � 2N .

We assume the magnitude of the AC’s output is strictly
positive for all inputs and greater than some fix value, fmin

such that the log-value is well defined. fmin can be extremely
small, on the order of 10−1010

, without having a meaningful
impact on our results and so it bares little practical sig-
nificance. Furthermore, to simplify the presentation of our
proofs, we assume the absolute value of both real and imag-
inary parts to be strictly positive, though this last assumption
could be relaxed. Under these settings, we proved that NN
can simulate AC to almost arbitrary precision and with little
overhead:

Theorem 1. Let f : X → C be a complex-valued func-
tion described by an AC comprising n nodes and m edges,
of depth l , and using complex parameters. Assume 0 <

fmin ≡ infx∈X min{|re[f (x)]|, |im[f (x)]|}, and define Wmax ≡
max{1, maxe∈E We}. Then there exist a function g : X →
R2 described by a neural network comprising O(n + m +
c) nodes, O(m + c) edges, of depth O(l log(m) + c), and
using softplus activation functions and real parameters
such that maxx∈X |g1(x) + i · g2(x) − log[f (x)]| < ε, where

c(ε, m,Wmax, fmin) ≡ O(ln2(m
ε

ln(Wmax
fmin

)) + ln(1
ε

)
√

1
ε

).
The proof of Theorem 1, which is given in full in Ap-

pendix D, is based on two steps. First, we show that AC
with non-negative parameters and inputs can be exactly recon-
structed with NN with real parameters and softplus activation
functions. In this simple case, for any intermediate values
x1, x2 � 0, we can set oi = log(xi) (where 0 is mapped to the
right-side limit of −∞) and then multiplication becomes sum-
mation, i.e., log(x1 · x2) = o1 + o2. For summation, softplus
activations arise naturally:

ln(eo1+eo2)=o1+ ln(1+eo2−o1)=o1+softplus(o2−o1). (1)

For log-space summation of n inputs, we can decompose it as
a binary tree, which gives the log(m) correction to the depth
of the network. Second, we reduce the complex case to the
non-negative case plus a finite number of smooth operations,
which can be approximated efficiently by employing various
techniques. This is an extension of a known result that any
real-valued AC can be reduced to the subtraction of two
non-negative AC with similar number of gates as the original
[36]. Since only a finite number of operations requires ap-
proximation, it results in the additive term c(ε, m,Wmax, fmin),
which is merely logarithmic in the number of edges of the AC,
and double logarithmic with respect to the magnitudes of the
weights and the WF amplitudes. These weak dependencies of
the target AC result in practically arbitrary precision.

B. Approximating general tensor networks

The immediate implication of Theorem 1 is that NQS can
simulate TNS at least as efficiently as their TN representation:

Corollary 1. For any TNS with an exact contraction
scheme of run-time k, and at most b bits of precision in
computations and parameters, there exists a neural network
that approximate it with a maximal error of ε and of run-time

(number of edges) O(k + ln2(kb
ε

) + ln(1
ε

)
√

1
ε

).
While MPS can be contracted exactly, many TN that can-

not be efficiently contracted exactly can still be used with
approximated contraction algorithms. One of the most notable
example for such a case are PEPS. The most common general
form of approximated contraction scheme are compressed
contractions [42]. This approach is based on iteratively con-
tracting local parts of the TN graph exactly, followed by
compressing the bond dimension of intermediate local tensors
with singular-value decomposition (SVD), thus preventing the
blow-out of exact contraction on generic graphs. While the
theoretical SVD cannot be exactly represented by an AC, we
can show that augmenting it with two other gates, namely
division and square-root gates, allows us to represent some of
the iterative SVD algorithms used in practice. These new gates
can be exactly represented by a single neuron in our network,
and thus we can trace the compressed contraction scheme
and approximate it with a NN, resulting in the following
corollary:

Corollary 2. For any TNS with a compressed contraction
scheme of run-time k, approximation error ε/2, and at most
b bits of precision in computations and parameters, there
exists a neural network that approximate it with a maximal
error of ε and of run-time (number of edges) O(k + ln2(kb

ε/2
) +

ln(1
ε/2

)
√

1
ε/2

).

To simulate SVD, we can rely on one of the iterative
approximation algorithms [43] used to compute it in prac-
tice. Such algorithms involves iteratively employing matrix
multiplications, computing the L2 norm of a vector, and
some divisions, hence the only missing operations that are
not native to AC are divisions and square-root operations
(for the L2-norm). Since our construction already represent
the log-value of intermediate computations, then perform-
ing both divisions and computing the square root is just as
easy as multiplications, where subtractions of log-values cor-
respond to divisions, and multiplying a log value with 1/2

corresponds to the logarithm of its square root. Combining
these methods, an SVD can be simulated with NN, and hence
some of the most common approximated contraction schemes
as well.

C. Special case: Approximating matrix-product states

For the specific case of MPS, Corollary 2 translates to the
following:

Corollary 3. For any MPS over N sites, each of local
dimension d , with bond dimension χ , and fixed b bits of
precision, there exists a neural network of depth l consisting
of m edges that approximates its contraction algorithm up to
ε, where l and m depend on the contraction scheme [44]:

(1) Sequential: l = Õ(N+
√

1
ε

) and m = Õ(Ndχ2+
√

1
ε

).

205136-4

NEURAL TENSOR CONTRACTIONS AND THE EXPRESSIVE … PHYSICAL REVIEW B 106, 205136 (2022)

(2) Parallel: l = Õ(ln N+
√

1
ε

) and m = Õ(N (d+χ)χ2 +√
1
ε

),

where Õ denotes big-O while ignoring logarithmic factors.
To illustrate the above results, consider the simple case of

χ = 2, d = 2, and non-negative translationally symmetric pa-
rameters {A(0), A(1) ∈ R2×2

�0 }, where �(s) = Tr[A(s1) · · · A(sN)].
Some well-known quantum states can be represented in
this form, e.g., the Greenberger-Horne-Zeilinger (GHZ) state

[45] (i.e., |GHZ〉= |0〉⊗N +|1〉⊗N√
2

) uses A(0) =
(

1 0
0 0

)
, A(1) =(

0 0
0 1

)
. With slight modifications to support negative values

and d = 3, the same construction could also represent the
AKLT model [46].

The corresponding NQS according to Corollary 3 has the
following recursive form (see full derivation in Appendix E):

ln �(s) = W 1ṽL,1 + softplus(W 2ṽL,1), (2)

ṽl,kl = W 3

[
ṽl−1,2kl −1

ṽl−1,2kl

]
+softplus

(
W 4

[
ṽl−1,2kl −1

ṽl−1,2kl

])
, (3)

ṽ0,k0 = Ãŝk0 , (4)

where ṽl,kl ∈ R4 for 0 � l � log2 N and 1 � kl � 2log2(N)−l ,
s is represented with one-hot encoded vectors ŝ1, . . . , ŝN ∈
{0, 1}d such that ŝi

j = 1 ⇐⇒ si = j, and define Ã ∈ R4×2

where Ãi j = ln A(j)
�i/2�,mod(i,2) (using zero-indexing). Any zeros

in A could be replaced with some arbitrarily small ε. The
weights W 1,W 2 ∈ R1×4 and W 3,W 4 ∈ R4,8 are constant ma-
trices that do not depend on the values of A(0) and A(1).

The above could be described as convolutional layers with
window length and stride equal to 1 and 2 for Eq. (E7)
and Eq. (E8), respectively. Note that this construction is ac-
tually suboptimal for representing GHZ, as more compact
NQS exist: ln �(s) = c11×2ReLU[11×N S − (N − 1)12×1] −
c − ln

√
2, where c > 0 and 1n×m is the n-by-m matrix of

ones—as c → ∞ then � → GHZ with exponential conver-
gence. This illustrates that our results merely show worst-case
complexity bounds, but NQS could be even more efficient for
specific states.

Furthermore, Corollary 3 enables us to directly quantify
NQS’s expressive power on special classes of quantum sys-
tems using previous, rigorous results on MPS. For example,
Hastings famously established an area-law entanglement for
the gapped ground state of one-dimensional systems [47] that
directly translates into an efficient approximation by MPS
[47–50], which together with Corollary 3 implies:

Corollary 4. Consider a one-dimensional (1D) Hamilto-
nian H defined on N qudits of finite local dimension d ,
and with a nonvanishing spectral gap �. The ground state
of a H can be written as a deep neural network of depth
l = O(ln N+√

1/ε) and m = O(poly(N, 1/ε)) edges.

D. Efficient volume-law neural quantum state

Though we have established a strictly inclusive relation-
ship, we can also show that the reverse is not true, i.e., there
are NQS that cannot be efficiently reproduced by most com-
monly used variational TNS:

Corollary 5. There exist quantum states that can be repre-
sented by NN with linear (1D) or sublinear (�2D) parameters
in the number of sites and that MPS and PEPS cannot
represent efficiently unless they use exponentially many pa-
rameters.

The proof is based on prior results [29,52] that used convo-
lutional AC (ConvAC) as indirect analogues to convolutional
NN and showed that ConvAC can represent some volume-law
states, which MPS and PEPS cannot represent efficiently.
Theorem 1 closes this theoretical gap, transferring these re-
sults to conventional NN. It is especially noteworthy that our
constructive approximation of ConvAC coincidentally results
in the ResNet [51] architecture—arguably the most prominent
architectures in computer vision. See Fig. 4 for an illustration.
Corollary 5 leaves open the possibility of other novel TNS ge-
ometries that might be efficiently evaluated while supporting
volume-law states. Nevertheless, Theorem 1 shows even such
hypothetical TNS could be represented by NQS. Overall, we
have established the representability diagram of Fig. 3.

IV. DISCUSSION

We introduced a general mapping between tensor networks
and deep neural networks. This mapping allows us to directly
connect two of the most important classes of parametric rep-
resentations of high-dimensional functions and to establish
a representation diagram of modern many-body variational
quantum states.

We expect that our mapping will be especially use-
ful for establishing further rigorous representation results
on neural-network-based quantum states using the well-
developed theory of tensor-network representations. Indeed,
our analysis is limited in scope to TNS that support efficient
amplitude evaluation, i.e., 〈s|ψ〉, which do cover all planar
TNS that are most commonly adopted in practical computa-
tions. However, our work also lays the important foundations
for studying the relation to TNS that support efficient compu-
tation of expectation values, for a restricted set of observables,
even if they lack the ability to efficiently compute (or approx-
imate) 〈s|ψ〉, e.g., multiscale entanglement renormalization
ansatz (MERA) and its variants [53,54].

Furthermore, the kind of neural-network architectures
and connectivity patterns resulting from our mapping might
inspire practical applications leveraging tensor-network al-
gorithms. Similarly, our mapping can help clarify when
gradient-based optimization, ubiquitous in ML, should be
considered over successful alternating-optimization strategies
commonly employed with tensor networks.

ACKNOWLEDGMENT

This research was supported by the ERC (European Re-
search Council) and the ISF (Israel Science Foundation).

APPENDIX A: INTRODUCTION TO TENSOR NETWORKS

Here we give a brief introduction to the basic concepts
of TN. See Fig. 5 for the accompanying illustrations. TN
is a graphical notation for describing common tensor opera-
tions and factorization schemes. Nodes in the graph represent

205136-5

SHARIR, SHASHUA, AND CARLEO PHYSICAL REVIEW B 106, 205136 (2022)

FIG. 4. Convolutional arithmetic circuit is a theoretical anzatz capable of representing volume-law states with polynomial time and memory
complexity [29], unlike most planar TNS such as PEPS. Here we illustrate its transformation into a conventional convolutional neural network
following Theorem 1 that give rise to a a ResNet-like architecture [51]. The residual connections are a direct result of the o1 + softplus(o2 − o1)
construction found in Eq. (D1).

tensors, where edges correspond to indices, ranging from
vectors (top left) and matrices (top middle) to arbitrary
high-dimensional tensors (top right). Connected nodes rep-
resent tensor contractions, i.e., a summation over matching
indices of the products of all tensor nodes in the graph, e.g.,
matrix-vector multiplication (bottom left). Tensor networks
are useful for describing tensor factorizations, e.g., SVD fac-
torization of matrices (bottom right). The most commonly
used forms of TN are MPS, tree tensor networks, PEPS,
and MERA.

APPENDIX B: RELATED WORKS ON APPROXIMATING
POLYNOMIAL FUNCTIONS WITH NEURAL NETWORKS

When examining the ability of NN to approximate polyno-
mials, one can notice that while the weighted sum operation is
straightforward for NN, the product operation is not trivially
simulated by NN and has been the topic of several works
[39–41] in the context of the approximation power of NN.
Nevertheless, we could not base our approximation scheme on
these claims without attaining worse bounds. The most recent
result [40] on approximating products with NN demonstrates
a construction with a width and a depth at most O(log(M/ε))
such that maxx,y∈[−M,M] |NN(x, y) − x · y| < ε. While this

FIG. 5. Illustrations of basic elements and operations of tensor networks, as well as common tensor networks types.

205136-6

NEURAL TENSOR CONTRACTIONS AND THE EXPRESSIVE … PHYSICAL REVIEW B 106, 205136 (2022)

impressive rate of approximation is sufficient for many pur-
poses, it is less suitable for quantum states representation.

Consider for example an arbitrary N-qubit system, then due
to normalization at least half of its wave-function amplitudes
are, in modulus, less than 2−N/2, which entails ε < 2−N/2 for
a meaningful approximation. Thus, using this construction
would require at least poly(N) width and depth for every prod-
uct operation, resulting in a multiplicative polynomial penalty
to the runtime. In practice, this polynomial penalty would
have major ramifications. To put this in perspective, a 10×10
two-dimensional system would require at least hundreds of
NN layers regardless of the complexity of the TNS.

APPENDIX C: PROOFS OF CLAIMS ON THE
RELATIONSHIP BETWEEN THE FIDELITY AND THE

INFINITY NORM

1. Proof of Claim 1

Let ψ and φ be two WF with nonzero magnitudes ev-
erywhere, such that their logarithm is well defined, i.e.,
ln ψ (s) = a(s) + i · b(s) and ln φ(s) = c(s) + i · d (s). As-
sume ‖ ln ψ − ln φ‖∞ < ε < 1

4 .
We begin by finding a lower bound for the inner product:

|〈ψ |φ〉| � |Re(〈ψ |φ〉)| =
∣∣∣∣∣
∑

s

ea(s)+c(s) cos[d (s) − b(s)]

∣∣∣∣∣ =
∣∣∣∣∣
∑

s

|ψ (s)|2ec(s)−a(s) cos[d (s) − b(s)]

∣∣∣∣∣
× �

∣∣∣∣∣
∑

s

|ψ (s)|2e−ε cos(ε)

∣∣∣∣∣ = ‖ψ‖2
2e−ε cos(ε)

and similarly we can find an upper bound for the norm of φ:

‖φ‖2
2 =

∑
s

|φ(s)|2 =
∑

s

|ψ (s)|2e2[c(s)−a(s)] � ‖ψ‖2
2e2ε .

Using the above, we can find a lower bound for the fidelity:

F (ψ, φ) = |〈ψ |φ〉|2
‖ψ‖2

2‖φ‖2
2

� e−4ε (cos ε)2 � 1 − 4ε.

The last step can be confirm by looking at the first and second
derivative of the difference between the left-hand and right-
hand sides, showing they are both strictly positives in the
range (0,0.25):

f (x) = e−4x(cos x)2 − 1 + 4x

f ′(x) = 4 − 4e−4x(cos x)2 − 2e−4x cos x sin x

f ′′(x) = 2e−4x + 12e−4x(cos x)2 + 16e−4x cos x sin x,

f ′′(x) is composed of strictly positive terms in the given range,
and so it is strictly positive. Because f ′(0) = 0 and f ′′(x) > 0
for x ∈ (0, 1/4) then f ′(x) > 0 in that range as well, and simi-
larly for f (x), proving the lower bound.

2. Proof of Claim 2

Let s′ ∈ 2N an arbitrary point and define:

ψ (s) =
{

1 s = s′
1

2N −1 otherwise ,

φ(s) =
{

1 − ε s = s′

ε + 1
2N −1 otherwise .

Clearly ‖ψ − φ‖∞ � ε, and yet:

|〈ψ |φ〉|2 =
(

1 + 1

2N − 1

)2

‖ψ‖2
2 = 1 + 1

2N − 1

‖φ‖2
2 = 1 + 1

2N − 1
+ 2Nε2

F (ψ, φ) = 1

1 + (2N − 1)ε2

≈
{

2−N ε−2 � 2N

1 − (2N − 1)ε2 ε−2 � 2N .

APPENDIX D: PROOF OF THEOREM 1

In this section we describe the proof of Theorem 1. We
begin by providing a sketch of the proof, followed by the full
proof. As mentioned in the main text, we prove the theorem
in two steps. First, prove the theorem for the case of non-
negative AC. Second, reduce the general complex case to the
non-negative case.

1. Proof sketch

The proof is based on two steps. First, we show that
AC with non-negative parameters and inputs can be exactly
reconstructed with NN with real parameters and softplus acti-
vation functions. Let o1 = log(x1), o2 = log(x2) for x1, x2 �
0. Then, working in log-space, multiplication becomes
summation, i.e., log(x1 · x2) = o1 + o2, making input-input
multiplication trivial for NN, unlike before. For every input-
parameter multiplication, i.e., a sum-node edge in the AC
graph, we add an auxiliary neuron with a single input.
The AC’s parameters are stored in the bias terms of these
auxiliary neurons, adding m nodes to the NN but with neg-
ligible effect on runtime (number of edges). For summation,
softplus activations arise naturally:

log(x1 + x2) = log[exp(o1) + exp(o2)]

= o1 + log [1 + exp(o2 − o1)]

= o1 + softplus(o2 − o1). (D1)

For log-space summation of n inputs, we can decompose it as
a binary tree, which gives the log(m) correction to the depth of

205136-7

SHARIR, SHASHUA, AND CARLEO PHYSICAL REVIEW B 106, 205136 (2022)

the network. With both log-space NN analogs in place, a non-
negative AC can be exactly reproduce with same asymptotic
time complexity.

For the second step, we reduce the general complex case
to the non-negative case. A real number x ∈ R can be repre-
sented with a redundant representation of two non-negative
numbers x+, x− � 0 by x = x+ − x−. Addition and multipli-
cation can be applied directly on this representation:

x + y = (x+ + y+) − (x− + y−)

x · y = (x+ · y+ + x− · y−) − (x− · y+ + x+ · y−).

Thus, a real AC can be expressed as the difference of two
non-negative AC, and a complex AC by representing the real
and imaginary parts in this fashion. Finally, to compute the
logarithm of this redundant complex representation, i.e., the
log-magnitude and phase, we employ various univariate ap-
proximation schemes. Since these two operations are smooth
and used only at the end of the network, it results in the
additive term c(ε, m,Wmax, fmin), which is merely logarithmic
in the number of edges of the AC, and double logarithmic
with respect to the magnitudes of the weights and the WF
amplitudes. Due to these weak dependencies of the target
AC, it allows for an approximation with a practically arbitrary
precision.

2. Non-negative case

For the first step, we assume an AC with non-negative
inputs and parameters. The inputs and AC parameters are
transformed to their log-value, where we extend the real-line
with ±∞ and represent log(0) = −∞. For most practical
considerations, −∞ could be substituted with a large but finite
negative constant.

In our NN construction, we freely use the identity instead
of a softplus activation function when it is more convenient.
We can do so because the identity operation can be simulated
with arbitrary precision using the weighted sum of just two
neurons with softplus activations:

x = max(x, 0) − max(−x, 0),

max(x, 0) = lim
δ→∞

softplus(δx)

δ
= lim

δ→∞
1

δ
ln[1 + exp(δx)],

= lim
δ→∞

⎧⎪⎪⎨
⎪⎪⎩

1
δ

→0︷ ︸︸ ︷
ln[1 + exp(δx)] x � 0

x + 1
δ

→0︷ ︸︸ ︷
ln[1 + exp(−δx)] x > 0

,

⇒ x = lim
δ→∞

softplus(δx) − softplus(−δx)

δ
.

The above workaround can at most double the number of
neurons and edges in our construction, and thus does not affect
our asymptotic bounds.

Every product node with k in-edges in the AC is replaced
by a neuron with k in-edges, whose weights are set to 1
and bias to 0, representing multiplication in log-space, i.e.,
log(

∏k
i=1 xi) = ∑k

i=1 oi, where {oi = exp(xi)}k
i=1 are the log-

values of the connected nodes.
Every weighted-sum node with k in-edges and parameter-

ized by w ∈ Rk
�0 is replaced by the following NN subgraph

of O(k) nodes and O(k) edges. Every input-parameter multi-
plication term, i.e., wi · xi, is represented by a single neuron
with a single in-edge with weights set to 0 and bias set to
wi, resulting in pi ≡ log(wi · xi) = wi + oi. Without loosing
our generality, assume k = 2t for some t ∈ N, and so we
can decompose

∑k
i=1 pi as a complete binary tree of depth

t , 2k − 1 nodes, and 2k − 1 in-edges in total. Each node in
the tree represent a binary addition, which can be realized
with two neurons, one with softplus activation and one with
identity:

log(x1 + x2) = log[exp(o1) + exp(o2)]

= o1 + log [1 + exp(o2 − o1)]

= o1 + softplus(o2 − o1).

Applying the above transformations to a non-negative AC
with n nodes, m edges, and depth l results in a NN of depth
l log(m) with O(n + m) nodes and O(m) edges, concluding
the proof of the first step.

3. Complex case

For the second step, we begin initially by transforming
a complex AC into four distinct non-negative AC graphs,
representing the following four “parts” of a complex number:
positive real, negative real, positive imaginary, and negative
imaginary.

Every real number x ∈ R can be represented with the
redundant form x = x+ − x−, where x+, x− ∈ R�0. Multipli-
cation and addition can be performed directly within that
representation using the following identities:

x + y = [x+ + y+] − [x− − y−],

x · y = [x+ · y+ + x− · y−] − [x+ · y− + x− · y+].

Similarly, a complex number z ∈ C can be represented
with four components, z = zre,+ − zre,− + i · (zim,+ − zim,−),
where zre,+, zre,−, zim,+, zim,− ∈ R�0.

Given a complex AC with m edges, n nodes, and
of depth l , we can use the above redundant representa-
tion for its inputs, parameters, and intermediate computa-
tions. Propagating the operations with the above identities
through the complex AC graph, results in four non-negative
AC, each with O(m) edges, O(n) nodes, and of depth
O(l), denoting each component of the complex AC’s out-
put, i.e., AC(z) = AC(ẑ)re,+ − AC(ẑ)re,− + i · [AC(ẑ)im,+ −
AC(ẑ)im,−], where ẑ = (zre,+, zre,−, zim,+, zim,−). The loga-
rithm of each of these non-negative AC can be represented
with a NN according to the first step.

What remains is to convert the redundant representation
to a log-polar form, i.e., log(z) = log(|z|) + i · arg(z), per the
desired output described in Theorem 1. We employ various
approximation techniques to simulate this operation. In the
following we denote the components of the redundant repre-
sentation and its log-value by ore,+ = ln zre,+, ore,− = ln zre,−,
oim,+ = ln zim,+, and oim,− = ln zim,−.

a. Estimating log |z|
In this subsection, we describe the estimation of log(|z|) by

softplus networks.

205136-8

NEURAL TENSOR CONTRACTIONS AND THE EXPRESSIVE … PHYSICAL REVIEW B 106, 205136 (2022)

log(|z|) can be expressed with respect to the redundant
representation’s components as:

log |z| = ln

(√
|zre|2 + |zim|2

)
,

= ln |zre| + 1

2
ln [1 + exp (2 ln |zim| − 2 ln |zre|)],

= ln |zre| + 1

2
softplus(2 ln |zim| − 2 ln |zre|), (D2)

where zre = zre,+ − zre,− and zim = zim,+ − zim,−.
In the rest of this subsection we focus on the approximation

of ln |zre|, where the same methods can be applied for ln |zim|.
We begin by defining ore,max = max(ore,+, ore,−) and ore,min =
min(ore,+, ore,−), and similarly for the imaginary part. Re-
call that max(x, y) = y + max(x − y, 0) and min(x, y) = y −
max(y − x, 0), and so both can be approximated to arbitrary
precision with softplus networks. With that, we can write:

ln |zre| = ln [max(zre,+, zre,−) − min(zre,+, zre,−)]

= ln [exp(ore,max) − exp(ore,min)],

= ore,min + ln [exp(ore,max − ore,min) − 1],

= ore,min + softplus−1(ore,max − ore,min),

where softplus−1 is the inverse of the softplus function. To
approximate the inverse, we employ two strategies: (i) For
large values, softplus−1(x) ≈ x to a high precision, and (ii)
for smaller values, we estimate the inverse using root-finding
algorithms, and specifically, the bisection method.

Let ε > 0, and x = ore,max − ore,min. For x > xlarge ≡
− ln[1 − exp(−ε)] it holds that |x − softplus−1(x)| < ε. For
realizing the bisection method, we first set the initial search
range for y∗ = softplus−1(x). y∗

max can be set to xlarge because
softplus−1(x) � x. For y∗

min we can bound the minimal value
of x as follows:

x = ore,max − ore,min = ln

(
zre,max

zre,min

)
= ln

(|zre| + zre,min

zre,min

)

= ln

(|zre|
zre,min

+ 1

)
� ln

(
fmin

zre,min
+ 1

)
.

Next, we upper bound the value of zre,min by finding an
upper bound on the value of a generic non-negative AC
with m edges. First, we replace every nonzero weight
with the maximal weight in the graph. Then we can re-
place every weighted sum with v(s) = ∑

(u,v)∈E Wu,vu(s) �
|{(u, v) ∈ E}|(maxe∈E We)[max(u,v)∈E u(s)]. Finally, we can
prove by induction along the topological order of the graph
that the output of every subgraph of m′ edges is upper
bounded by [m′ max(v,u)∈E |Wv,u|]m′

. Thereby, we can set
xmin ≡ ln[fmin

(mWmax)m + 1], and thus y∗
min ≡ ln[fmin

(mWmax)m].
To simulate the bisection algorithm, we define the ap-

proximate Heaviside function by Hδ (x) ≡ max(x
2δ

+ 1
2 , 0) −

max(x
2δ

− 1
2 , 0) that satisfies H = limδ→0 Hδ , and use the fol-

lowing recursive update rule for T ≡ �log2(y∗
max−y∗

min/ε)� steps:

mi ≡ yi−1,min + yi−1,max

2
,

ci ≡ Hδ[softplus(m) − x]

yi,min ≡ ciyi−1,min + (1 − ci)mi,

yi,max ≡ cimi + (1 − ci)yi−1,max,

where the multiplications are approximated accord-
ing to Yarotsky [40], which requires an additional
O(ln(max{|y∗

max|,|y∗
min|}/ε̃)) edges and depth per multiplication,

where ε̃ ≡ ε/8T . The usual bisection method relies on the
exact Heaviside function; however, if δ is chosen to be
small enough, then it, too, satisfies the range halving
property, i.e., it holds that yi,max − yi,min = yi−1,max−yi−1,min

2
and softplus−1(x) ∈ [yi,min, yi,max]. The latter holds
because either |softplus(m) − x| � δ, a regime at which
Hε = H , or |softplus(m) − x| < δ, which due to the
lipschitzness of softplus−1 it holds that |m − softplus−1(x)| �
L|softplus(m) − x| � Lδ. Thus, for δ < ε/2L, the claim holds.
Similarly, we can use the approximated Heaviside function
once more to combine both regimes of x, by outputting
Hδ (x − xlarge)x + [1 − Hδ (x − xlarge)]mT .

In total, to approximate log |z| up to ε, requires
O(ln2(m

ε
ln(Wmax

fmin
))) nodes, edges, and depth on top of the base

NN used to approximate the four non-negative AC.

b. Estimating arg z

In this subsection, we describe the estimation of arg z by
softplus networks, building on the approximations of ln |zre|
and ln |zim| described in the previous subsection.

arg z can be computed according to the following formula:

arg z = atan2(zim, zre)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

arctan
(zim

zre

)
zre > 0

arctan
(zim

zre

) + π zre < 0 ∧ zim � 0
arctan

(zim
zre

) − π zre < 0 ∧ zim < 0
+π

2 zre = 0 ∧ zim > 0
−π

2 zre = 0 ∧ zim < 0
undefined zre = 0 ∧ zim = 0

.

Since we assumed |zim|, |zre| > 0, then only the first three
cases are relevant. Therefore, we can write the formula using
the following compact form:

arg z = arctan
(zim

zre

)
+ H (−zre)sgn(zim)π,

where H is the Heaviside function. Furthermore, we can
rewrite in terms of ln |zim| and ln |zre|:

arg z = sgn(zrezim) arctan
(∣∣∣ zim

zre

∣∣∣)+H (−zre)sgn(zim)π,

= sgn(zrezim) arctan exp (ln |zim| − ln |zre|)
+ H (−zre)sgn(zim)π.

The signs of zre can be computed as sgn(zre) = H (ore,+ −
ore,−) − H (ore,− − ore,+), which can be approximated with
softplus networks using the approximated Heaviside func-
tion, Hδ (defined in previous subsection). Since we proved
in the previous section that |ore,+ − ore,−| � ln[fmin

(mWmax)m +
1] then using 0 < δ < ln[fmin

(mWmax)m + 1] the approximated
Heaviside function will be equivalent to the exact Heav-
iside in the regime of our network. Similarly, H (−zre) =
1−sgn(zre)

2 , and so could be computed exactly as well. The

205136-9

SHARIR, SHASHUA, AND CARLEO PHYSICAL REVIEW B 106, 205136 (2022)

multiplications between these terms and arctan exp(.) can
be approximated via Yarotsky [40], where in this case
the since the values are all bounded by ±2, then we
only need O(ln(1/ε)) nodes, edges and depth for this
subnetwork.

To approximate t (x) ≡ arctan exp(x), we start with a
piecewise-linear approximation, which can then be approxi-
mated to arbitrarily precision with softplus networks. Since
t (x) = π

2 − t (−x), then it is enough to show an approximation
for x � 0, and the x > 0 case can be constructed with the
above identity. For x � 0, t is a 1/2-smooth convex function
because its derivative, 1

exp(x)+exp(−x) , is strictly increasing and
bounded by 1/2 in this range. Hence, for any x, y < 0 it holds
that |t (x) + t ′(x)(y − x) − t (y)| � 1

4 |y − x|2.
For any xmin < 0 and n ∈ N, define the following piece-

wise linear function. Use n + 1 uniformly spaced anchor
points in the [xmin, 0] range, where the first and last anchors
are the boundaries. For every anchor point x, denote the
first-order linear approximation at this point by lx(y) = t (x) +
t ′(x)(y − x). Since t is convex in this range, then lx(y) �
t (y), and so for every two neighboring anchor points x1 < x2

the intersection point of lx1 and lx2 must lie in the range
(x1, x2). Define the segments of the piecewise linear function
according to the intersection points and the matching linear
approximations lx of the anchor point within each segment.
For any two neighboring anchors x1 < x2 and x1 � y � x2,
this function can be denoted by max{lx1 (y), lx2 (y)}. Using
the last inequality, we can bound the error in the [xmin, 0]

range with 1
4 (x2−x1

2)2 � x2
min

16n2 . For x < xmin, we extend the seg-
ment of the anchor xmin until its intersection with the x-axis,
followed by an open segment for the zero function. Since
arctan x � x for any x > 0, then t (x) � exp(x), and so for
xmin = − ln(1/ε) it holds that ∀x � xmin, |t (x)| < ε. Thus, a

piecewise linear function with O(ln(1/ε)
√

1
ε

) segments can
approximate t (x) up to ε maximal difference. Finally, a piece-
wise linear function with k segments can be realized with
a ReLU network of O(k) nodes and edges, and of constant
depth.

APPENDIX E: DERIVATION OF NQS FORM FOR MPS
WITH BOND DIMENSION χ = 2 AND LOCAL

DIMENSION d = 2

Below is a derivation for the transformation of an MPS
with bond dimension χ = 2, local dimension d = 2, and non-
negative translationally symmetric parameters, {A(0), A(1) ∈
R2×2

�0 }, with the resulting state following the formula �(s) =

Tr[A(s1) · · · A(sN)], into an NQS following the construction of
Corollary 3.

The evaluation of �(s) is given by the following recursive
formula:

�(s) = V L,1
11 + V L,1

22 , (E1)

V l,kl
i j = V l−1,2kl −1

i1 V l−1,2kl
1 j + V l−1,2kl −1

i2 V l−1,2kl
2 j , (E2)

V 0,k0
i j = A(sk0)

i j , (E3)

where 0 � l � L = log2(N) and 1 � kl � 2log2(N)−l .
In the NQS form, we represent s with the one-hot encoded

vectors ŝ1, . . . , ŝN ∈ {0, 1}d such that ŝi
j = 1 ⇐⇒ si = j,

and denote the logarithms of the A and V matrices with Ã and
Ṽ , respectively. Any zeros in A could be replaced with some
arbitrarily small ε. This results in

ln �(s) = Ṽ L,1
11 +softplus

(
Ṽ L,1

22 − Ṽ L,1
11

)
, (E4)

Ṽ l,kl
i j =Ṽ l−1,2kl −1

i1 +Ṽ l−1,2kl
1 j

+softplus
(
Ṽ l−1,2kl −1

i2 −Ṽ l−1,2kl −1
i1 +Ṽ l−1,2kl

2 j −Ṽ l−1,2kl
1 j

)
,

(E5)

Ṽ 0,k0
i j = Ã(0)

i j ŝk0
1 + Ã(1)

i j ŝk0
2 . (E6)

In vectorized form, where ṽl,kl ∈ R4, we could rewrite the
above in more conventional terms as:

ln �(s) = W 1ṽL,1 + softplus(W 2ṽL,1), (E7)

ṽl,kl = W 3

[
ṽl−1,2kl −1

ṽl−1,2kl

]
+softplus

(
W 4

[
ṽl−1,2kl −1

ṽl−1,2kl

])
, (E8)

ṽ0,k0 = Ãŝk0 , (E9)

where the weights W 1,W 2 ∈ R1×4 and W 3,W 4 ∈ R4,8 are
defined as W 1 = (1 0 0 0), W 2 = (−1 0 0 1),

W 3 =

⎛
⎜⎝

1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 1 0 1 0 0 0
0 0 1 0 0 1 0 0

⎞
⎟⎠ (E10)

W 4 =

⎛
⎜⎝

−1 1 0 0 −1 0 1 0
−1 1 0 0 0 −1 0 1
0 0 −1 1 −1 0 1 0
0 0 −1 1 0 −1 0 1

⎞
⎟⎠. (E11)

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning
(MIT Press, Cambridge, MA, 2016).

[2] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld,
N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Machine
learning and the physical sciences, Rev. Mod. Phys. 91, 045002
(2019).

[3] S. R. White, Density Matrix Formulation for Quantum Renor-
malization Groups, Phys. Rev. Lett. 69, 2863 (1992).

[4] U. Schollwöck, The density-matrix renormalization group in
the age of matrix product states, Ann. Phys. 326, 96 (2011).

[5] R. Orús, Tensor networks for complex quantum systems, Nat.
Rev. Phys. 1, 538 (2019).

[6] F. Verstraete, V. Murg, and J. I. Cirac, Matrix product states,
projected entangled pair states, and variational renormalization
group methods for quantum spin systems, Adv. Phys. 57, 143
(2008).

205136-10

https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1080/14789940801912366

NEURAL TENSOR CONTRACTIONS AND THE EXPRESSIVE … PHYSICAL REVIEW B 106, 205136 (2022)

[7] I. Cirac, D. Perez-Garcia, N. Schuch, and F. Verstraete, Matrix
product states and projected entangled pair states: Concepts,
symmetries,and theorems, Rev. Mod. Phys. 93, 045003 (2021).

[8] G. Carleo and M. Troyer, Solving the quantum many-body
problem with artificial neural networks, Science 355, 602
(2017).

[9] G. Cybenko, Approximation by superpositions of a sigmoidal
function, Math. Contr. Sign. Syst. 2, 303 (1989).

[10] G. Carleo, Y. Nomura, and M. Imada, Constructing exact rep-
resentations of quantum many-body systems with deep neural
networks, Nat. Commun. 9, 5322 (2018).

[11] X. Gao and L.-M. Duan, Efficient representation of quantum
many-body states with deep neural networks, Nat. Commun. 8,
662 (2017).

[12] D.-L. Deng, X. Li, and S. Das Sarma, Machine learning topo-
logical states, Phys. Rev. B 96, 195145 (2017).

[13] R. Kaubruegger, L. Pastori, and J. C. Budich, Chiral topological
phases from artificial neural networks, Phys. Rev. B 97, 195136
(2018).

[14] I. Glasser, N. Pancotti, M. August, I. D. Rodriguez, and J. I.
Cirac, Neural-Network Quantum States, String-Bond States,
and Chiral Topological States, Phys. Rev. X 8, 011006 (2018).

[15] S. Lu, X. Gao, and L.-M. Duan, Efficient representation of topo-
logically ordered states with restricted Boltzmann machines,
Phys. Rev. B 99, 155136 (2019).

[16] K. Choo, T. Neupert, and G. Carleo, Two-dimensional frus-
trated J1-J2 model studied with neural network quantum states,
Phys. Rev. B 100, 125124 (2019).

[17] O. Sharir, Y. Levine, N. Wies, G. Carleo, and A. Shashua, Deep
Autoregressive Models for the Efficient Variational Simulation
of Many-Body Quantum Systems, Phys. Rev. Lett. 124, 020503
(2020).

[18] M. Schmitt and M. Heyl, Quantum Many-Body Dynamics in
Two Dimensions with Artificial Neural Networks, Phys. Rev.
Lett. 125, 100503 (2020).

[19] M. Hibat-Allah, M. Ganahl, L. E. Hayward, R. G. Melko, and
J. Carrasquilla, Recurrent neural network wave functions, Phys.
Rev. Res. 2, 023358 (2020).

[20] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko,
and G. Carleo, Neural-network quantum state tomography, Nat.
Phys. 14, 447 (2018).

[21] D. Pfau, J. S. Spencer, A. G. D. G. Matthews, and W. M. C.
Foulkes, Ab initio solution of the many-electron Schrödinger
equation with deep neural networks, Phys. Rev. Res. 2, 033429
(2020).

[22] J. Hermann, Z. Schätzle, and F. Noé, Deep-neural-network so-
lution of the electronic Schrödinger equation, Nat. Chem. 12,
891 (2020).

[23] K. Choo, A. Mezzacapo, and G. Carleo, Fermionic neural-
network states for ab-initio electronic structure, Nat. Commun.
11, 2368 (2020).

[24] F. Verstraete and J. I. Cirac, Renormalization algorithms
forquantum-many body systems in two and higher dimensions,
arXiv:cond-mat/0407066 (2004).

[25] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, Compu-
tational Complexity of Projected Entangled Pair States, Phys.
Rev. Lett. 98, 140506 (2007).

[26] J. Haferkamp, D. Hangleiter, J. Eisert, and M. Gluza, Contract-
ing projected entangled pair states is average-case hard, Phys.
Rev. Res. 2, 013010 (2020).

[27] D.-L. Deng, X. Li, and S. Das Sarma, Quantum entanglement
in neural network states, Phys. Rev. X 7, 021021 (2017).

[28] J. Chen, S. Cheng, H. Xie, L. Wang, and T. Xiang, Equivalence
of restricted boltzmann machines and tensor network states,
Phys. Rev. B 97, 085104 (2018).

[29] Y. Levine, O. Sharir, N. Cohen, and A. Shashua, Quantum
Entanglement in Deep Learning Architectures, Phys. Rev. Lett.
122, 065301 (2019).

[30] L. Pastori, R. Kaubruegger, and J. C. Budich, Generalized trans-
fer matrix states from artificial neural networks, Phys. Rev. B
99, 165123 (2019).

[31] A. Borin and D. A. Abanin, Approximating power of machine-
learning ansatz for quantum many-body states, Phys. Rev. B
101, 195141 (2020).

[32] C.-Y. Park and M. J. Kastoryano, Are neural quantum states
good at solving non-stoquastic spin Hamiltonians? Phys. Rev.
B 106, 134437 (2022).

[33] We employ the classical definition of a neural network. Some
modern architectures assume a broader definition extending its
expressiveness.

[34] V. Nair and G. E. Hinton, Rectified linear units improve restrict-
edboltzmann machines, in Proceedings of the 27th International
Conference on International Conference on Machine Learning
(Omnipress, Madison, WI, 2010), pp. 807–814.

[35] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia,
Incorporating second-order functional knowledge for better op-
tion pricing, in Advances in Neural Information Processing
Systems (MIT Press, Cambridge, MA, 2000), pp. 472–478.

[36] A. Shpilka and A. Yehudayoff, Arithmetic circuits: A survey
of recent results and open questions, Found. Trends Theor.
Comput. Sci. 5, 207 (2010).

[37] When parallelizing across sites, the effective run-time in prac-
tice depends mostly on the number of steps, i.e., log2 N , and
χ 2 rather than χ 3 because each matrix multiplication itself
can be parallelized across the coordinates of the output matrix,
resulting in O(χ 2 log N).

[38] N. Cohen, O. Sharir, Y. Levine, R. Tamari, D. Yakira, and
A. Shashua, Analysis and design of convolutional networks
via hierarchical tensor decompositions, arXiv:1705.02302
(2018).

[39] H. Mhaskar, Q. Liao, and T. Poggio, When and why are
deepnetworks better than shallow ones, in Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 31 (Association
for the Advancement of Artificial Intelligence, Palo Alto, CA,
2017).

[40] D. Yarotsky, Error bounds for approximations with deep ReLU
networks, Neural Netw. 94, 103 (2017).

[41] M. Telgarsky, Neural networks and rational functions, in Pro-
ceedings of the 34th International Conference on Machine
Learning, Vol. 70, edited by D. Precup and Y. W. Teh (PMLR,
International Convention Centre, Sydney, Australia, 2017),
pp. 3387–3393.

[42] J. Gray and G. K.-L. Chan, Hyper-optimizedcompressed
contraction of tensor networks with arbitrary geometry,
arXiv:2206.07044.

[43] M. Andrecut, Parallel gpu implementation of iterative pca algo-
rithms, J. Comput. Biol. 16, 1593 (2009).

[44] The bounds on the two contraction schemes serve to highlight
different characteristics. The sequential scheme demonstrates
that NN can approximate MPS with the same runtime.

205136-11

https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1007/BF02551274
https://doi.org/10.1038/s41467-018-07520-3
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1103/PhysRevB.96.195145
https://doi.org/10.1103/PhysRevB.97.195136
https://doi.org/10.1103/PhysRevX.8.011006
https://doi.org/10.1103/PhysRevB.99.155136
https://doi.org/10.1103/PhysRevB.100.125124
https://doi.org/10.1103/PhysRevLett.124.020503
https://doi.org/10.1103/PhysRevLett.125.100503
https://doi.org/10.1103/PhysRevResearch.2.023358
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1103/PhysRevResearch.2.033429
https://doi.org/10.1038/s41557-020-0544-y
https://doi.org/10.1038/s41467-020-15724-9
http://arxiv.org/abs/arXiv:cond-mat/0407066
https://doi.org/10.1103/PhysRevLett.98.140506
https://doi.org/10.1103/PhysRevResearch.2.013010
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1103/PhysRevB.97.085104
https://doi.org/10.1103/PhysRevLett.122.065301
https://doi.org/10.1103/PhysRevB.99.165123
https://doi.org/10.1103/PhysRevB.101.195141
https://doi.org/10.1103/PhysRevB.106.134437
https://doi.org/10.1561/0400000039
http://arxiv.org/abs/arXiv:1705.02302
https://doi.org/10.1016/j.neunet.2017.07.002
http://arxiv.org/abs/arXiv:2206.07044
https://doi.org/10.1089/cmb.2008.0221

SHARIR, SHASHUA, AND CARLEO PHYSICAL REVIEW B 106, 205136 (2022)

The parallel scheme demonstrates that logarithmic depth is
sufficient and is better suited for parallel execution as leveraged
by GPUs.

[45] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going
beyond bell’s theorem, in Bell’s Theorem, Quantum Theory and
Conceptions of the Universe, edited by M. Kafatos (Springer
Netherlands, Dordrecht, 1989), pp. 69–72.

[46] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Rigorous
Results on Valence-Bond Ground States in Antiferromagnets,
Phys. Rev. Lett. 59, 799 (1987).

[47] M. B. Hastings, An area law for one-dimensional
quantum systems, J. Stat. Mech.: Theory Exp. (2007)
P08024.

[48] I. Arad, A. Kitaev, Z. Landau, and U. Vazirani, An area law and
sub-exponential algorithm for 1D systems, arXiv:1301.1162
(2013).

[49] N. Schuch and F. Verstraete, Matrix product state approxima-
tions for infinite systems, arXiv:1711.06559 (2017).

[50] A. M. Dalzell and F. G. S. L. Brandão, Locally accurate MPS
approximations for ground states of one-dimensional gapped
local Hamiltonians, Quantum 3, 187 (2019).

[51] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for
imagerecognition, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (IEEE, New
York, 2016), pp. 770–778.

[52] O. Sharir and A. Shashua, On the expressive power of overlap-
ping architectures of deep learning, in Proceedings of the 6th
International Conference on Learning Representations (ICLR)
(The International Conference on Learning Representations,
2018).

[53] G. Evenbly and G. Vidal, Class of Highly Entangled Many-
Body States that can be Efficiently Simulated, Phys. Rev. Lett.
112, 240502 (2014).

[54] G. Evenbly and G. Vidal, Scaling of entanglement entropy
in the (branching) multiscale entanglement renormalization
ansatz, Phys. Rev. B 89, 235113 (2014).

205136-12

https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1088/1742-5468/2007/08/P08024
http://arxiv.org/abs/arXiv:1301.1162
http://arxiv.org/abs/arXiv:1711.06559
https://doi.org/10.22331/q-2019-09-23-187
https://doi.org/10.1103/PhysRevLett.112.240502
https://doi.org/10.1103/PhysRevB.89.235113

