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Detection of single, itinerant microwave photons is an important functionality for emerging quantum technol-
ogy applications as well as of fundamental interest in quantum thermodynamics experiments on heat transport. In
a recent experiment [W. Khan et al., Nat. Commun. 12, 5130 (2021)], it was demonstrated that a double quantum
dot (DQD) coupled to a microwave resonator can act as an efficient and continuous photodetector by converting
an incoming stream of photons to an electrical photocurrent. In the experiment, average photon and electron flows
were analyzed. Here we theoretically investigate, in the same system, the fluctuations of the photocurrent through
the DQD for a coherent microwave drive of the resonator. We consider both the zero-frequency full counting
statistics as well as the finite-frequency noise (FFN) of the photocurrent. Numerical results and analytical
expressions in limiting cases are complemented by a mean-field approach neglecting dot-resonator correlations,
providing a compelling and physically transparent picture of the photocurrent statistics. We find that for ideal,
unity efficiency detection, the fluctuations of the charge current reproduce the Poisson statistics of the incoming
photons, while the statistics for nonideal detection is sub-Poissonian. Moreover, the FFN provides information
of the system parameter dependence of detector short-time properties. Our results give insight into microwave
photon-electron interactions in hybrid dot-resonator systems and provide guidance for further experiments on
continuous detection of single microwave photons.
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I. INTRODUCTION

Photons are the elementary quanta of the electromagnetic
field and have been a central concept in physics for over a cen-
tury. The ability to experimentally create and detect individual
photons [1] has found applications in areas ranging from parti-
cle physics and astronomy [2] to imaging [3] and spectroscopy
[4]. During the last few decades, single-photon detectors in
the optical regime have attracted increasing interest due to
their potential applicability in emerging quantum technolo-
gies, such as linear optics quantum computation [5], quantum
random number generation [6], and quantum cryptography
and key distribution [7]. In state-of-the-art photodetectors,
key properties such as near-unity detection efficiency [8], low
dark-count rates [9], photon-number resolved detection [10],
and high operation speed [11] have been demonstrated.

In the microwave regime, photons have an energy, which is
four to five orders of magnitude smaller than in the optical
regime. This puts very different requirements for experi-
mental investigations and applications based on microwave
photons [12]. During the last decade, a large number of
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theoretical proposals for single-microwave-photon detectors
have been presented, see e.g., [13–18]. In recent years, single-
microwave-photon detection has also been demonstrated
experimentally [19–25]. Functionalities such as close-to-unit
efficiency photodetectors [20,21,24], quantum nondemolition
measurements [22,23] of itinerant photons and few-photon
number resolution [24,25] have been realized in experiments
based on superconducting qubits. A common property of the
superconducting qubit detectors [20–24] is that they require
synchronization with the photon signal and typically involve
advanced qubit pulsing and read-out schemes.

Very recently, taking an altogether different approach, con-
tinuous microwave photodetection was demonstrated in a
semiconductor double quantum dot (DQD) resonantly cou-
pled to a driven superconducting resonator [26]. The operation
principle is a direct microwave analog of the photocarrier
generation in conventional optical photo diodes [27], since
incident microwave photons generate an electron current
through the DQD by inducing tunneling of electrons from the
ground to the excited DQD state. The quantum efficiency of
the photon-to-electron conversion in the experiment reached
6% [26], several orders of magnitude higher than previous
experiments based on similar approaches [28,29].

The prospect of experimentally reaching even higher
values, approaching the theoretically predicted unity effi-
ciency [30], motivates further theoretical investigations of
the photodetector system. On the fundamental side, the
efficient conversion of a stream of photons, bosonic parti-
cles, into a current of electrons, fermionic particles, raises
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interesting questions on the relation of the statistical proper-
ties of the two flows. From a more applied perspective, the
short-time properties of the photodetector provide information
on dead-times and detection speed, important figures-of-merit
for time-resolved, single-photon detection.

In this paper, we address these questions theoretically by
analyzing both the statistical distribution, or full counting
statistics (FCS) [31–35], of the number of photoelectrons
transported through the DQD during a measurement as well as
the finite-frequency noise (FFN) of the photocurrent. We pro-
vide a numerical analysis, complemented by analytical results
in the low- and large-drive limits, based on the solution of the
appropriate generalized quantum master equation. Moreover,
we present a mean-field formalism for both the FCS and the
FFN, considerably simplifying the analysis, and discuss its
limits of applicability. As key results, we show that at unit
quantum efficiency, the photoelectrons inherit the Poissonian
statistics of the incoming photons. For lower efficiencies,
the electron statistics is typically sub-Poissonian. We more-
over, from the FFN, identify the system properties governing
the detector dead time. Our results will arguably stimu-
late further experiments on hybrid semiconductor-resonator
photodetectors. It will moreover provide the framework for
further theoretical investigations into photodetection with dif-
ferent microwave sources, e.g., nonclassical ones, as well as
functionalities such as single- and photon-number resolved
detection.

This paper is organized as follows. In Sec. II, we present
our theoretical model to describe the DQD-resonator system
and show how it can be used as an efficient photodetector.
We further review the conditions that need to be met in order
to reach near unit photon-to-electron conversion efficiency. In
Sec. III, we analyze the FCS and the FFN in the limiting cases.
In Sec. IV, we present the results for the FCS and the FFN
using a mean-field approach and compare them against the
solutions of Sec. III and numerical calculations. We conclude
and give a brief outlook in Sec. V.

II. SYSTEM AND MODEL

A. Hamiltonian for the DQD-resonator system

We consider a DQD, which is capacitively coupled to a
driven superconducting transmission line resonator [36], a
system investigated both theoretically [34,37–41] and experi-
mentally [42–48] in recent years, see Fig. 1. The total system
is described by the Hamiltonian

H = HDQD + Hr + HJC + Hd, (1)

where HDQD describes the DQD, Hr the resonator, HJC the
coupling between the DQD and the resonator, and Hd accounts
for the applied drive.

The DQD is operated in the Coulomb blockade regime,
where only one excess electron is energetically allowed to
reside on the DQD. The Hilbert space of the DQD is thus
spanned by the states with one excess electron on the left dot
|L〉, one on the right dot |R〉 and no excess electron |0〉. In this
basis, the Hamiltonian of the DQD is given by (setting h̄ = 1)

HDQD = ε

2
(|R〉〈R| − |L〉〈L|) + tc(|L〉〈R| + |R〉〈L|), (2)

FIG. 1. (a) A coherent microwave drive with frequency ωl and
incoming photon rate Ṅ feeds in photons to a superconducting trans-
mission line resonator with resonance frequency ωr. The coupling
strength between drive and resonator is given by κin. The resonator is
capacitively coupled to a double quantum dot (DQD) with coupling
strength g0. (b) The DQD is tunnel coupled to a source (S) and drain
(D) lead with zero applied potential bias and the levels of the DQD
are tuned such that the chemical potentials of the leads lie in between
the DQD ground |g〉 and excited |e〉 state, which are depicted by
full-black lines. The energy splitting between |g〉 and |e〉 is given
by �. The charge states of the left |L〉 and right |R〉 dot are depicted
by grey-dashed lines and the detuning between those charge states
is given by ε. Electrons from the leads can tunnel into |g〉 from the
left and right with respective rates �L,in and �R,in. If the DQD and the
resonator are in resonance, transitions from |g〉 → |e〉 are enhanced.
Electrons tunnel out from |e〉 into the leads to the left and right with
respective rates �L,out and �R,out.

where ε is the detuning between the two charge states |L〉 and
|R〉 and tc is the tunnel coupling between them. For the further
analysis it is more convenient to work in the eigenstate basis
of the DQD spanned by the ground state |g〉 and excited state
|e〉, which are defined by(|g〉

|e〉
)

=
(

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)(|L〉
|R〉

)
, (3)

where the mixing angle θ is given by cos(θ ) = −ε/� and
� = √

4t2
c + ε2 gives the energy splitting between the DQD

eigenstates. In this basis, the Hamiltonian of the DQD can be
written as

HDQD = �

2
σz, (4)

where σz = |e〉〈e| − |g〉〈g|.
The Hamiltonian for the microwave resonator is given by

Hr = ωra
†a, (5)

where ωr is the the resonator’s characteristic frequency and
the operator a† (a) describes the creation (annihilation) of a
microwave photon in the resonator.
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The interaction between the DQD and the resonator is
described by a standard Jaynes-Cummings interaction Hamil-
tonian [49]

HJC = g(a†σ− + aσ+), (6)

where g = g0 sin(θ ) gives the interaction strength between the
DQD and the microwave photons inside the resonator with g0

being the bare coupling strength and σ+ = |e〉〈g| = σ
†
− is the

DQD raising operator.
The drive is a coherent source of monochromatic mi-

crowave radiation feeding in photons into the resonator and
is described by [26,50]

Hd =
√

κinṄ (a†eiωlt + ae−iωlt ), (7)

where κin gives the coupling strength between the input port
and the resonator, Ṅ is the rate of impinging photons and ωl is
the frequency of the microwave drive.

Moving to the rotating frame of the incoming microwave
radiation gives us [51,52]

H̃ = 	d
σz

2
+ 	ra

†a + g(a†σ− + aσ+)

+
√

κinṄ (a† + a), (8)

where we have used

H̃ = U †HU + i(∂tU )U †, (9)

with U = exp[iωlt (a†a + σz/2)] and 	d = � − ωl (	r =
ωr − ωl) gives the detuning between the DQD (resonator) and
the drive.

The DQD is also tunnel coupled to two fermionic leads
called source and drain, respectively. There is no applied bias
between source and drain and the chemical potential as well
as the energy of the empty state |0〉 are set to zero without loss
of generality. The temperature of the leads is negligible com-
pared to the DQD level spacing kBT � �, such that electrons
can only enter into the ground state with rate

�g0 = �L,in + �R,in, (10)

where

�L,in = �L cos2(θ/2),

�R,in = �R sin2(θ/2).
(11)

Here, �L (�R) is the rate for electron tunneling events into or
out of the left (right) dot.

Electrons in the excited state can tunnel back into the leads
with rate

�0e = �L,out + �R,out, (12)

where

�L,out = �L sin2(θ/2),

�R,out = �R cos2(θ/2). (13)

The DQD level spacing � is tuned to be in resonance
with the resonator’s characteristic frequency ωr (meaning that
we can set 	d = 	r ≡ 	). In that case, transitions from the
ground to the excited state are enhanced.

FIG. 2. Schematic of an ideal photodetection cycle using a DQD
coupled to a microwave resonator. The DQD starts in its empty state
|0〉 where no excess electron resides on it. An electron from the
source can tunnel into the ground state |g〉 with rate �L,in. The DQD
is in resonance with the resonator’s characteristic frequency ωr, such
that the electron in the ground state moves to the excited state |e〉 by
absorbing a microwave photon. It will then tunnel out to the drain
with rate �R,out, which brings the DQD back to its empty state and
closes the cycle.

B. Master equation for the DQD-resonator system

The dynamics of the DQD-resonator is modeled by the
following Lindblad master equation [53,54]:

∂tρ(t ) = −i[H̃, ρ(t )] + �g0D[s†
g]ρ(t ) + �0eD[se]ρ(t )

+ γφ

2
D[σz]ρ(t ) + γ−D[σ−]ρ(t ) + κD[a]ρ(t ),

(14)

with the Lindblad superoperator D[x]ρ(t ) = xρ(t )x† −
1
2 {x†x, ρ(t )}, where ρ(t ) is the density matrix of the DQD-
resonator system.

The first term in Eq. (14) describes the unitary time evo-
lution of the system. The second term describes tunneling of
electrons from the leads into the ground state of the DQD,
where s†

g = |g〉〈0|. The third term describes tunneling of elec-
trons out of the excited state of the DQD into the leads,
where se = |0〉〈e|. The fourth term describes dephasing of
the state of the DQD, which is typically caused by voltage
fluctuations in the electromagnetic environment [55], and is
quantified by the rate γφ . The fifth term describes relaxation
of an electron from the excited into the ground state and is
typically due to coupling of electrons to phonons in the solid
state environment [56,57]. Relaxation is quantified by the rate
γ−. Thermal excitations can be neglected because kBT � �.
The resonator is subject to losses due to coupling to the input
port of the resonator and also internal losses due to coupling
to the substrate, leading to a total loss rate given by κ .

C. Ideal photodetection

The operation of the DQD-resonator as an ideal photode-
tector was described in Ref. [30] and is briefly discussed here
for completeness. The photodetection scheme is illustrated in
Fig. 2. In the ideal case, each photon arriving at the resonator
is absorbed by the DQD, giving rise to a photocurrent from
source to drain.
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In practice, the photodetector will not be ideal. A relevant
figure of merit to quantify how close the DQD-resonator
system is to the ideal photodetector is the photon-to-electron
conversion efficiency, which is given by

η = I/e

Ṅ
, (15)

where I is the generated photocurrent through the DQD.
In Ref. [30], certain conditions for the system have been

derived in order to reach η ≈ 1. First, the total photonic loss
rate needs to be dominated by the coupling to the input port of
the resonator, i.e., κ = κin. Second, the frequency of the drive
should match the frequency of the resonator, such that 	 = 0.
Third, the tunneling rates to the left and right dot need to occur
on a faster time scale than the decoherence rates, i.e., �L,R �
γ−, γφ . Fourth, the tunnel coupling strength between the dots
needs to be small compared to the resonator frequency, i.e.,
tc � ωr. Fifth, the rate at which photons get absorbed by the
DQD, which is given by 4g2/(�0e + γ− + 2γφ ), should match
the photonic loss rate κ . Lastly, the generated photocurrent
needs to be linearly proportional to the incoming photon flux,
i.e., I ∝ Ṅ . This last point reflects that the probability to have
every single photon absorbed by the DQD is maximized in the
limit of weak microwave drive.

III. FULL COUNTING STATISTICS

Due to the quantum statistical nature of the photon absorp-
tion and electron tunneling processes, the photocurrent will
be subject to fluctuations in time. The statistical properties
are analyzed within the framework of the FCS, which allows
us to infer the probability distribution p(n, t ) of n electrons
having passed to the drain in a time span t . From p(n, t ) all
the cumulants of the distribution can be obtained.

We calculate the FCS using a master equation approach
developed in Ref. [58]. Introducing the counting field χ , the
variable conjugate to n, we can write a master equation like the
one in Eq. (14) using the χ -dependent density matrix ρ(χ, t )
as

∂tρ = −i[H̃, ρ] + �L,inD[s†
g]ρ + �L,outD[se]ρ

+ �R,in
(
e−iχ s†

gρsg − 1
2 {sgs†

g, ρ})
+ �R,out

(
eiχ seρs†

e − 1
2 {s†

ese, ρ})
+ γφ

2
D[σz]ρ + γ−D[σ−]ρ + κD[a]ρ

= L(χ )ρ, (16)

where L(χ ) = L0 + eiχJR + e−iχ JL is the χ -dependent Liou-
villian. The term L0 contains all terms in the Liouvillian,
which leave the number of electrons in the drain unchanged
and JR(L) contains the terms, which increase (decrease) the
number of electrons by one. For a system described by ρ(t0)
at time t0, the general solution to Eq. (16) is

ρ(χ, t ) = eL(χ )(t−t0 )ρ(t0). (17)

Moving forward, we will set t0 = 0 and assume that the sys-
tem at that time is in its steady state, i.e., ρ(t0 = 0) ≡ ρst.

Instead of calculating the probability distribution p(n, t ) di-
rectly, it is more convenient to look at the cumulant-generating
function (CGF) C(χ, t ) of the distribution. It can readily be
obtained from the χ -dependent density matrix as

eC(χ,t ) = Tr{ρ(χ, t )} = Tr{eL(χ )tρst}. (18)

The cumulants can then be found by differentiation with re-
spect to the counting field

〈〈nk〉〉 = ∂k

∂ (iχ )k
C(χ, t )|χ=0, (19)

where 〈〈nk〉〉 gives the kth cumulant of the distribution. The
CGF is related to p(n, t ) by inverse Fourier transformation

p(n, t ) =
∫ π

−π

dχ

2π
eC(χ,t )−inχ . (20)

Below we will employ this recipe to compute the cumulants
of the photocurrent through the DQD.

A. Zero-frequency FCS

We will first investigate the FCS in the long-time, or zero-
frequency, limit. In this limit, the CGF is [35]

C(χ, t ) = λ0(χ )t, (21)

where λ0(χ ) is the eigenvalue of L(χ ) with the largest real
part. Finding the cumulant generating function thus becomes
an eigenvalue problem in an infinite-dimensional Hilbert
space. A direct analytical analysis of λ0(χ ), providing a clear
physical picture of the photocurrent statistics, will therefore
only be possible in certain limiting cases.

1. Low-drive limit

Of particular interest is the regime of low-microwave drive,
pointed out above as a prerequisite for ideal photodetection.
In this regime, the photocurrent statistics can be obtained by
perturbation theory [59], treating the drive Hamiltonian Hd

as a small perturbation to the DQD-resonator system. The
parameter in which we make the perturbative expansion is the
effective drive amplitude [cf. Eq. (7)], which we abbreviate by
f ≡

√
κinṄ .

To make progress, we note that we can write the
χ -dependent density matrix in the long-time limit as
limt→∞ ρ(χ, t ) = exp[λ0(χ )t]μ0(χ ) (see Appendix A for de-
tails). This allows us to write the master equation (16) as

λ0(χ )ρ̃(χ ) = L(χ )ρ̃(χ ), (22)

where ρ̃(χ ) ≡ limt→∞[ρ(χ, t )/Tr{ρ(χ, t )}]. Expanding
Eq. (22) up to lowest order in f (which is the second
one) using λ0(χ ) = λ

(0)
0 (χ ) + λ

(1)
0 (χ ) + λ

(2)
0 (χ ), ρ̃(χ ) =
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ρ̃ (0)(χ ) + ρ̃ (1)(χ ) + ρ̃ (2)(χ ), and L(χ ) = L(0)(χ ) + L(1)(χ )
gives the following equations:

λ
(0)
0 ρ̃ (0) = L(0)ρ̃ (0), (23)

λ
(0)
0 ρ̃ (1) + λ

(1)
0 ρ̃ (0) = L(1)ρ̃ (0) + L(0)ρ̃ (1), (24)

λ
(2)
0 ρ̃ (0) + λ

(1)
0 ρ̃ (1) + λ

(0)
0 ρ̃ (2) = L(1)ρ̃ (1) + L(0)ρ̃ (2). (25)

For the expansion of ρ̃(χ ) we make an ansatz where we
keep terms with up to one excitation, either in the resonator
or the DQD. Details on the explicit form of the normalized,
χ -dependent density matrix to different orders in f can be
found in Appendix B.

Solving Eqs. (23)–(25) gives λ
(0)
0 (χ ) = λ

(1)
0 (χ ) = 0 and

λ0(χ ) = �LR(eiχ − 1) + �RL(e−iχ − 1), (26)

with

�αβ = 16 f 2g2(�̃ + κ )(4g2 + �̃κ )�α,in�β,out

�g0[4g2(�0e + γ− + κ ) + κ (�0e + γ−)(�̃ + κ )][(�̃2 + 4	2)(κ2 + 4	2) + 8g2(�̃κ − 4	2) + 16g4]
, (27)

where �̃ ≡ �0e + γ− + 2γφ is the effective dephasing rate and
α, β ∈ {L, R}. Equation (26) describes a bidirectional Poisson
process. The corresponding low-drive probability distribution
is given by [cf. Eq. (20)]

p(n, t ) =
(√

�LR

�RL

)n

In(2
√

�LR�RLt )e−(�LR+�RL )t , (28)

where In(x) is the modified Bessel function of the first kind
[60].

Applying the conditions for ideal photodetection intro-
duced in section II to Eq. (27), the rate �RL will go to zero
and �LR will reduce to Ṅ . Thus, Eq. (26) reduces to

λ0(χ ) = Ṅ (eiχ − 1), (29)

with a corresponding unidirectional Poissonian probability
distribution

p(n, t ) = e−Ṅt (Ṅt )n

n!
. (30)

This shows that the statistics of the electrons arriving to the
drain in the limit of ideal photodetection is equivalent to the
statistics of photons from a coherent light source [61]. The
ideal photodetector does therefore not only detect each single
photon but also preserves their long-time statistics.

2. Large-drive limit

We also find analytical results in the regime where the
microwave drive is large. In this regime, the resonator photon
state has negligible quantum fluctuations and is independent
on the presence of the DQD. We can then replace the photonic
annihilation operator a with a c-number given by −2i f /(κ +
2i	). This replacement reduces the Liouvillian to a 5 × 5
matrix in the basis of the DQD ρDQD = (ρ0, ρg, ρe, ρeg, ρge)T ,
where ρi = 〈i|ρ|i〉 and ρi j = 〈i|ρ| j〉 (see Appendix for C de-
tails). We derive an analytical expression for λ0(χ ) by finding
the eigenvalue of the corresponding χ -dependent Liouvillian
in the limit f → ∞,

λ0(χ ) = 1
4 {−�0e − 2�g0 +

√
8[(eiχ − 1)�L,in�R,out + (e−iχ − 1)�R,in�L,out] + (�0e + 2�g0)2}. (31)

We see that in the limit of large drive, only the in- and out-
tunneling rates of the electrons are relevant for the statistics of
the photocurrent. The resonator essentially works as a media-
tor for transitions between the ground and excited state of the
DQD, which are so fast that the corresponding rates disappear
from the FCS.

B. Finite-frequency noise

The zero-frequency cumulants give us insight into many of
the statistical properties of the electron transport through our
system. However, a full picture of the relevant correlations and
time scales of said properties requires an analysis over the full
frequency range [62]. We will thus turn to the FFN, which can
be calculated by employing MacDonald’s formula [63]

S(ω) = ω

∫ ∞

0
dt sin(ωt )

d

dt
〈〈n2〉〉(t ). (32)

Following Ref. [64], we write Eq. (32) by moving to Laplace
space as

S(ω) = −ω2Re{〈〈n2〉〉(z = −iω)}. (33)

To find 〈〈n2〉〉(z), we use the χ -dependent density matrix in
Laplace space

ρ(χ, z) =
∞∑

n=0

{�z[(e
iχ − 1)JR + (e−iχ − 1)JL]}n�zρst,

(34)
where the propagator in Laplace space is defined by �z =
[z − L(χ = 0)]−1. The second cumulant is found by expand-
ing Eq. (34) in χ and keeping only the second-order terms

〈〈n2〉〉(z) = ∂2
iχTr{ρ(χ, z)}|χ→0

= Tr{(�zJ�z + 2�zI�zI�z )ρst}, (35)

where J = JR + JL and I = JR − JL, where JL and JR are
defined below Eq. (16).
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1. Low-drive limit

We obtain an analytical expression for the FFN in the low-
drive limit. The steady state is given from Eqs. (23)–(25) by
putting χ = 0, resulting in the FFN,

S(ω) = �LR + �RL + 2�RRω2

�2
g0 + ω2

. (36)

The frequency dependence is governed by the rate �g0. This
can be understood in the following way: In the low-drive limit,
the system is almost always in its ground state—the event
of an electron getting excited and jumping out of the DQD
occurs with small probability. If it does, another electron will
tunnel into the ground state with rate �g0. Tunneling events
thus occur in pairs. Events within one pair are correlated and
separated by the time-scale 1/�g0, which can thus be inter-
preted as the dead-time of the photodetector. Tunneling events
from different pairs are uncorrelated, as the pairs are separated
by a large timescale proportional to 1/ f 2 [cf. Eq. (27)].

We note that in the limit of ideal photodetection, the FFN
reduces to S(ω) = Ṅ , which is equivalent to the noise of
photons emitted from a coherent light source.

2. Large-drive limit

It was pointed out above that the Liouvillian reduces to a
5 × 5 matrix in the regime where the drive is strong. Inserting
the Liouvillian into the formula for the propagator �z and
taking the limit f → ∞ in Eq. (35) for both the propagator
and the steady state, we find for the FFN,

S(ω) = 1

�0e + 2�g0

[
�0e�R,in + �g0�R,out

− 2(2�R,in + �R,out)
(
�2

0e�R,in + 2�2
g0�R,out

)
(�0e + 2�g0)2 + 4ω2

]
. (37)

The frequency dependence is thus governed by both the in-
and outgoing rate from the ground and excited state of the
DQD. In direct analogy to the low-drive case we interpret the
timescale 1/(�0e + 2�g0) as the dead-time of the photodetec-
tor. We note however that in the large-drive limit, the detector
is oversaturated and cannot detect every single photon.

IV. MEAN-FIELD APPROACH

To obtain analytical expressions for the different cumulants
of the photocurrent beyond the low- and large-drive limit, we
employ a mean-field approach [65,66]. Albeit being an ap-
proximation, we find that the mean-field solutions reproduce
the exact results to a large degree and in a wide range of pa-
rameters. We note that this approach has been used in a similar
system to obtain the average current through the DQD [30].
Here we extend that work by analyzing the zero-frequency
FCS and the FFN.

Our approach relies on the assumption that correlations
between the states of the DQD and the resonator can be ne-
glected, such that at all times we can approximate the system’s
density matrix as ρ(t ) = ρDQD(t ) ⊗ ρr(t ), a product between
the reduced density matrix for the DQD and the resonator.
Inserting this factorization of the density matrix into Eq. (14)
and tracing over the degrees of freedom of the resonator, we

get a master equation for the DQD, where the properties of the
resonator enter only via their average values. We thereafter
include the counting fields into this master equation, as we
want to count electron-tunneling events through the DQD, and
get

∂tρDQD = −i[H̄DQD, ρDQD] (38)

+�L,inD[s†
g]ρDQD + �L,outD[se]ρDQD

+�R,in
(
e−iχ s†

gρDQDsg − 1
2 {sgs†

g, ρDQD})
+�R,out

(
eiχ seρDQDs†

e − 1
2 {s†

ese, ρDQD})
+ γφ

2
D[σz]ρDQD + γ−D[σ−]ρDQD,

H̄DQD = 	
σz

2
+ g(〈a†〉σ− + 〈a〉σ+). (39)

Along the same lines, tracing over the degrees of freedom of
the DQD gives a master equation for the resonator

∂tρr = −i[H̄r, ρr] + κD[a]ρr, (40)

H̄r = 	a†a + g(a†〈σ−〉χ=0 + a〈σ+〉χ=0)

+ f
(
a† + a

)
. (41)

We use Eqs. (38)–(41) to find equations of motions for opera-
tors, which act on the subspace of the DQD and the resonator,
respectively.

A. Mean-field FCS

In the long-time limit, we write the reduced, χ -dependent
density matrix for the DQD as

ρ̃DQD(χ ) ≡ lim
t→∞

ρDQD(χ, t )

Tr{ρDQD(χ, t )} . (42)

With this at hand, we obtain the following set of equations for
the DQD [cf. Eq. (22)]:

λ0(χ ) p̃0 = −�g0 p̃0 + (�L,out + eiχ�R,out) p̃e, (43)

λ0(χ ) p̃e = −(�0e + γ−) p̃e (44)

−ig(〈a〉〈σ+〉 − 〈a†〉〈σ−〉), (45)

λ0(χ ) p̃g = (�L,in + e−iχ�R,in) p̃0 + γ− p̃e

+ ig(〈a〉〈σ+〉 − 〈a†〉〈σ−〉),

λ0(χ )〈σ+〉 = −
(

�̃

2
− i	

)
〈σ+〉 − ig〈a†〉〈σz〉, (46)

where p̃i = Tr{|i〉〈i|ρ̃DQD(χ )} and 〈σ j〉 = Tr{σ j ρ̃DQD(χ )} for
j ∈ {+,−, z}. For the resonator, we have

0 = −
(κ

2
− i	

)
〈a†〉 + i f + ig〈σ+〉χ=0. (47)

Using Eqs. (43)–(47), together with the conservation of the
effective probabilities p̃0 + p̃e + p̃g = 1, we find two coupled
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FIG. 3. (a) The first two zero-frequency cumulants within the mean-field approximation (full lines) normalized with �t and plotted as a
function of the normalized drive amplitude f /�, where � ≡ �L = �R. The cumulants are compared to the analytical results in the low- and
large-drive limits (dotted lines). (b) The third cumulant within the mean-field approximation (full line) normalized with �t and plotted as a
function of f /�. The third cumulant is also compared to the low- and large-drive limits (dotted lines). Inset: Probability distribution in the
saddle-point approximation for the low-drive (red-dashed line) and the large-drive limit (blue-dotted line) as a function of (n − 〈〈n1〉〉)/〈〈n2〉〉.
A Gaussian is shown for comparison (gray-full line). The distributions are normalized by their second cumulant 〈〈n2〉〉. (c) The FFN within the
mean-field approximation (full lines) normalized with its value at zero frequency S(0) and plotted as a function of the normalized frequency
ω/� for different values of f /�. The FFN is compared to the analytical results in low- and large-drive limit (dotted lines). The chosen
system parameters are g/� = 0.457, κin/� = 0.094, κ/� = 0.337, ε/� = −17.57, tc/� = 6.78, γ−/� = 0.5, γφ/� = 3.92, and 	 = 0. The
numerical values for the rates are taken from Ref. [26].

equations for p̃e and λ0(χ ),

p̃e = −16 f 2g2(�̃2 + 4	2)(�̃ + 2λ0)(�g0 + λ0)�

(�0e + γ− + λ0)[(�̃ + 2λ0)2 + 4	2][(�g0 + λ0)2(�̃2 + 4	2)(κ2 + 4	2) + 8g2�(�g0 + λ0)(4	2 − �̃κ ) + 16g4�2]
,

(48)

λ0 = p̃e

�g0 + λ0
[(eiχ − 1)(�L,in�R,out + �R,outλ0) + (e−iχ − 1)�R,in�L,out], (49)

where � ≡ (2 p̃e − 1)�g0 − λ0 + p̃e(�L,out + eiχ�R,out + 2λ0).
The solution of Eq. (49), which goes to zero for χ → 0 is the one of interest. It is given by

λ0(χ ) = 1
2 {−�g0 + (eiχ − 1) p̃e�R,out +

√
4 p̃e[(eiχ − 1)�L,in�R,out + (e−iχ − 1)�R,in�L,out] + [�g0 − (eiχ − 1) p̃e�R,out]2}.

(50)

By expanding Eq. (50) in χ using λ0(χ ) ≈ iχ〈〈n1〉〉 −
χ2

2 〈〈n2〉〉 + O[χ3] and p̃e ≈ p̃(0)
e + iχ p̃(1)

e + O[χ2], the first
and second cumulant, which give the mean current and the
shot-noise, respectively, are

〈〈n1〉〉 = p̃(0)
e

�g0
(�L,in�R,out − �R,in�L,out), (51)

〈〈n2〉〉 = 2 p̃(1)
e

�g0
(�L,in�R,out − �R,in�L,out)

+ 2 p̃(0)2
e

�3
g0

[�0e�R,in(�L,in�R,out − �R,in�L,out )]

+ p̃(0)
e

�g0
(�L,in�R,out + �R,in�L,out). (52)

Third and higher-order cumulants could be found along the
same lines. The different orders of p̃e are found by expanding
Eq. (48) to zeroth and first order in χ , respectively. The full
expressions for p̃(0)

e and p̃(1)
e are given in Appendix D.

In the low-drive regime we can again obtain a closed an-
alytical expression for the FCS by expanding Eqs. (48) and

(49) to lowest order in f . This gives

λmf
0 (χ ) = �mf

LR(eiχ − 1) + �mf
RL(e−iχ − 1), (53)

where

�mf
αβ − �αβ

�αβ

= 8g2κγφ

(�0e + γ−)(�̃ + κ )(4g2 + �̃κ )
, (54)

where α, β ∈ {L, R}. We again get a bidirectional Poisson
process describing the statistics of the photocurrent in the
low-drive regime but with different rates compared to the
perturbative result in Eq. (26).

The FCS in the large-drive regime is found by expanding
Eqs. (48) and (49) to zeroth order in 1/ f . This gives exactly
the same result as in Eq. (31), i.e., the mean-field approach is
exact in the large-drive limit.

In Fig. 3(a) we plot the first two cumulants in Eqs. (51)
and (52) and compare them to the low-drive result in Eq. (53)
and the large-drive result in Eq. (31). We can clearly see
that the cumulants match the low-drive limit in the regime
where the drive is weak and approach the large-drive limit
asymptotically.

In addition, we look at the non-Gaussian properties of the
probability distribution p(n, t ) by plotting the third cumulant,
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see Fig. 3(b). We see that the third cumulant is nonzero and
is monotonically increasing as a function of the microwave
drive. This shows a non-Gaussian behavior of the distribution.
In the inset we plot the logarithm of the probability distri-
bution in the saddle-point approximation (see Appendix E
for details) for the low- and large-drive limit and compare
them to the logarithm of a Gaussian distribution. For the
chosen parameters, we see that both the low- and large-
drive limits are skewed and hence deviate from a Gaussian
distribution.

B. Mean-field FFN

The mean-field approach also allows us to find an analyt-
ical solution for the FFN. The Liouvillian for the DQD is a
5 × 5 matrix in the basis of the DQD. The full expression
for the noise is, however, too lengthy to be given here. We
find a closed analytical expression in the low-drive regime by
expanding Eq. (35) to lowest order in f ,

Smf(ω) = �mf
LR + �mf

RL + 2�mf
RRω2

�2
g0 + ω2

. (55)

Similar to the mean-field zero-frequency FCS in Eq. (53), the
form of the expression for the FFN is the same as in Eq. (36),
however with the rates given by their mean-field expression
in Eq. (54). In the large-drive limit, the FFN coincides with
the exact result in Eq. (37). In Fig. 3(c) we plot the noise
for different values of f and compare them to the low-drive
result in Eq. (55) and the large-drive result in Eq. (37). We
can see that the mean-field FFN matches the low-drive limit
well for small values of f and approaches the large-drive limit
for larger values of f .

C. Validity of the mean-field approach

It is a priori not clear to what extent the assumption to
neglect correlations between the DQD and the resonator is
justified. We therefore check the validity of the mean-field
approach by first comparing the result in Eq. (53) to the per-
turbative one in in Eq. (26). We have seen that the mean-field
results are exact in the large-drive limit. From Eq. (54) it is
clear that the mean-field result in the low-drive limit becomes
exact if either g = 0, γφ = 0, or κ = 0. For g = 0, the DQD
and the resonator are not coupled and thus no correlations can
arise. For κ = 0 or γφ = 0, we find that the state is not of
the product form assumed in the mean-field approach, but that
〈a†σ−〉 factorizes in the low-drive limit. As can be anticipated
from Eqs. (44) and (45), this factorization is sufficient for the
mean-field approach to become exact. For γφ = 0, we may
understand this factorization because the two-level system
provided by the DQD containing one electron can be treated
as a harmonic oscillator in the low-drive limit (where only
the two lowest energy levels are relevant). In the absence of
dephasing, and if there is an electron in the DQD, the dot-
resonator system may then be described as two bosonic modes
(one of which is coherently driven), coupled by a beamsplit-
ter interaction, which is well known to preserve the product
state structure for coherent states [67]. Correlations between
the DQD and the resonator still arise because electrons are

entering and leaving the DQD. The empty DQD state however
does not affect 〈a†σ−〉. For κ = 0, we have not been able to
find a compelling physical picture explaining the factorization
of 〈a†σ−〉.

We note that the photodetector requires a nonzero g and κ

to operate. Importantly, in the limit of ideal photodetection,
where �L,R � γ−, γφ , the difference in Eq. (54) becomes
vanishingly small.

Outside the low- and large-drive limit, the mean-field solu-
tions can be benchmarked against an exact, numerical result
for the cumulants. Details on the numerical calculations can
be found in Appendix F. In Fig. 4, we compare the first
two zero-frequency cumulants in Eqs. (51) and (52) and the
FFN from the mean-field calculations with exact numerics.
We can clearly see that, in the chosen parameter regime, the
mean-field approach fits the numerics very well.

V. CONCLUSIONS AND OUTLOOK

To summarize, we have theoretically investigated the FCS
of the photocurrent through a DQD, which is coupled to a
driven microwave resonator. The zero-frequency FCS and the
FFN show that the detector preserves the statistics of the
incoming microwave photons in the parameter regime where
the system was found to be an ideal photodetector. The statis-
tics in that case can be described by a Poisson process. We
have found analytical solutions for the zero-frequency FCS
and the FFN in the limit of low and large applied drive,
respectively. We have also shown how a mean-field approx-
imation can be used to compute the zero-frequency cumulants
and the FFN. Analysis of the third cumulant showed that
the probability distribution p(n, t ) exhibits a non-Gaussian
behavior. Comparison of the mean-field approach to exact nu-
merics showed excellent agreement in the parameter regime of
interest.

Our results pave the way for a better theoretical under-
standing of the statistical properties of electrons and photons
inside a DQD-resonator hybrid structure used as an ef-
ficient and continuous single-photon detector. To achieve
single-photon detection, real-time charge sensing techniques
could be employed [28,69]. Such techniques typically induce
back action from the measurement device [69], affecting the
statistics of the photocurrent. A theoretical investigation into
a specific architecture allowing for single-photon detection
provides an interesting avenue for future research. Other inter-
esting directions include the investigation of different drives,
for instance single-photon sources, as well as the possibility
of creating nonclassical states of light and the study of their
statistical properties using the present architecture [29,61,70–
73].
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FIG. 4. (a) Comparisons between analytical (dashed lines) and numerical (full lines) calculations of the normalized, zero-frequency
cumulants 〈〈nk〉〉/(�t ) for k = 1, 2, where � ≡ �L = �R. The cumulants are plotted as a function of the normalized drive amplitude f /�.
(b) Comparison between analytical (dotted line) and numerical (full line) calculations of the normalized FFN S(ω)/� plotted as a function
of the normalized frequency ω/�. The analytical solutions of the cumulants and the noise were found using a mean-field approach, and
the numerical solutions were found using QuTip [68]. The chosen system parameters are �t = 2.9 × 105, g/� = 0.457, κin/� = 0.094,
κ/� = 0.337, ε/� = −17.57, tc/� = 6.78, γ−/� = 0.5, γφ/� = 3.92, 	 = 0 for (a) and also f /� = 0.036 for (b). The numerical values
for the rates are taken from Ref. [26].

APPENDIX A: EXPRESSION FOR THE DENSITY MATRIX
IN THE LONG-TIME LIMIT

In order to derive the expression for the χ -dependent
density matrix in the long-time limit and find the explicit
expression for μ0(χ ), we have to start by giving the eigende-
composition of the the Liouvillian L(χ ). Since the Liouvillian
is a superoperator, its eigenvectors will be operators. We rep-
resent these eigenvectors using a special Dirac notation and
write |ψk (χ )〉〉 for the right and 〈〈ψk (χ )| for the left eigen-
vector, respectively [74]. Note that, in general, |ψk (χ )〉〉† 
=
〈〈ψk (χ )|. Using this, the eigendecomposition of L(χ ) is given
by

L(χ ) =
N−1∑
k=0

λk (χ )|ψk (χ )〉〉〈〈ψk (χ )|, (A1)

where λk (χ ) are the eigenvalues of L(χ ). Using Eq. (A1), we
can write Eq. (17) of the main text as

ρ(χ, t ) =
N−1∑
k=0

eλk (χ )t |ψk (χ )〉〉〈〈ψk (χ )|ρst. (A2)

We have seen that, in the long-time limit, only the eigenvalue
λ0(χ ) will be of importance, since it yields the smallest ex-
ponentially damped contribution to the density matrix. Using
Eq. (A2) together with Eq. (17) of the main text, we can write
the χ -dependent density matrix in the long-time limit as

lim
t→∞ ρ(χ, t ) = eλ0(χ )tμ0(χ ), (A3)

where

μ0(χ ) = |ψ0(χ )〉〉〈〈ψ0(χ )|ρst. (A4)

APPENDIX B: PERTURBATIVE LOW-DRIVE EXPANSION

In this Appendix, we will give the explicit expressions for
the normalized χ -dependent density matrix in the long-time
limit ρ̃(χ ) to different orders in f . To zeroth order, there are
no photons arriving in the resonator, such that the electron on
the DQD will remain in the ground state for ever. We can thus

make the following ansatz

ρ̃ (0)(χ ) = |g, 0r〉〈g, 0r|, (B1)

where |0r〉 describes the state of the resonator with zero pho-
tons. We have added the subscript in order to differentiate the
empty-resonator state from the empty-dot state |0〉.

To first order, we consider superpositions of states having
one and zero excitations, either in the resonator or in the DQD.
We thus make the following ansatz:

ρ̃ (1)(χ ) = α1|g, 1〉〈g, 0r| + α2|g, 0r〉〈g, 1|
+ α3|e, 0r〉〈g, 0r| + α4|g, 0r〉〈e, 0r|. (B2)

The prefactors α1−4 can be found by plugging Eqs. (B2) and
(B1) into Eq. (24) of the main text.

To second order, we similarly include all density matrix
elements where the number of excitations in the bra and the
ket sum to two, resulting in the following ansatz

ρ̃ (2)(χ ) = β1|g, 1〉〈g, 1| + β2|e, 0r〉〈e, 0r| + β3|g, 1〉〈e, 0r|
+ β4|e, 0r〉〈g, 1| + β5|g, 2〉〈g, 0r| + β6|g, 0r〉〈g, 2|
+ β7|e, 1〉〈g, 0r| + β8|g, 0r〉〈e, 1| + β9|g, 0r〉〈g, 0r|
+ β10|0, 0r〉〈0, 0r|. (B3)

Note that we included the last two terms since they are
coupled to the first and second term by the process of a
photon or electron leaving the system, respectively. Plugging
Eq. (B3) into Eq. (25) of the main text and using the fact that
Tr{ρ̃ (0)(χ )} = 1 and Tr{ρ̃ (1)(χ )} = Tr{ρ̃ (2)(χ )} = 0 gives us
a closed set of equations for the prefactors β1−10.

APPENDIX C: LARGE-DRIVE LIMIT

We start by giving the equation of motion for the photonic
annihilation operator in steady state [cf. Eq. (47)],

0 = −
(κ

2
+ i	

)
〈a〉 − i f − ig〈σ−〉. (C1)

For large drives, fluctuations of the resonator photon state and
the back action from the DQD can be neglected. We thus make
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the replacement

a = − 2i f

κ + 2i	
. (C2)

Inserting this replacement in to Eq. (16) results in the follow-
ing χ -dependent master equation:

∂tρ = −i[H̃ ′, ρ] + �L,inD[s†
g]ρ + �L,outD[se]ρ

+ �R,in
(
e−iχ s†

gρsg − 1
2 {sgs†

g, ρ})
+ �R,out

(
eiχ seρs†

e − 1
2 {s†

ese, ρ})
+ γφ

2
D[σz]ρ + γ−D[σ−]ρ, (C3)

where

H̃ ′ = 	
σz

2
+ 2i f g

(
σ−

κ − 2i	
− σ+

κ + 2i	

)
. (C4)

APPENDIX D: ANALYTICAL EXPRESSIONS FOR
p̃(0)

e AND p̃(1)
e

Expanding Eq. (48) to zeroth order in χ gives the following
cubic equation for p̃(0)

e ,

Ap̃(0)3
e + Bp̃(0)2

e + C p̃(0)
e + D = 0, (D1)

where

A = −16g4(�0e + γ−)(�0e + 2�g0)2, (D2)

B = 8g2�g0(�0e + γ−)(�0e + 2�g0)(�̃κ + 4g2 − 4	2),

(D3)

C = −�g0{�g0(�0e + γ−)[(4g2 + κ�̃ − 4	2)2

+ 4	2(κ + �̃)2] + 16g2 f 2�̃(�0e + 2�g0)}, (D4)

D = 16 f 2g2�̃�2
g0. (D5)

A general solution to Eq. (D1) is given by

p(0)
e = {q + [q2 + (r − p2)3]

1
2 } 1

3

+ {q − [q2 + (r − p2)3]
1
2 } 1

3 + p, (D6)

where

p = − B

3A
, (D7)

q = p3 + BC − 3AD

6A2
, (D8)

r = C

3A
. (D9)

Two out of the three solutions in Eq. (D6) are complex and
thus nonphysical. We keep the real solution to compute the
cumulants in Eqs. (51) and (52).

Expanding Eq. (48) to first order in χ gives the following
linear equation for p̃(1)

e :

p̃(1)
e = −Gp̃(0)

e 〈〈n1〉〉(�̃2 + 4	2) + E

F (�̃2 + 4	2)
, (D10)

where E , F , and G are polynomials

E = 16 f 2g2
(
A1 p̃(0)3

e + B1 p̃(0)2
e + C1 p̃(0)

e + D1
)
, (D11)

with coefficients

A1 = 16g4(�0e + 2�g0)2{�̃3(〈〈n1〉〉�0e − �R,out�g0) + 4	2{〈〈n1〉〉[2�g0(�0e + 2�g0) + �0e�̃] − �R,out�g0�̃}}, (D12)

B1 = 32g2�2
g0(�0e + 2�g0){g2�R,out�g0�̃(�̃2 + 4	2) + 〈〈n1〉〉{2�g0	

2(�0e + 2�g0)(4	2 − �̃κ )

− g2{�0e�̃
3 + 4	2[3�g0(�0e + 2�g0) + �0e�̃]}}}, (D13)

C1 = �2
g0{�R,out�g0�̃(�̃2 + 4	2)[(�̃2 + 4	2)(κ2 + 4	2) − 16g4] + 〈〈n1〉〉{16g4{�0e�̃

3 + 4	2

× [6�g0(�0e + 2�g0) + �0e�̃]} − 128g2	2(�0e + 2�g0)(4	2 − �̃κ ) − (�̃2 + 4	2)(κ2 + 4	2)

×{�0e�̃
3 + 4	2[�0e�̃ − 2�g0(�0e + 2�g0)]}}}, (D14)

D1 = −8〈〈n1〉〉�4
g0	

2[16g4 − 8g2(4	2 − �̃κ ) + (�̃2 + 4	2)(κ2 + 4	2)], (D15)

and

F = A2 p̃(0)4
e + B2 p̃(0)3

e + C2 p̃(0)2
e + D2 p̃(0)

e + E2, (D16)

with

A2 = −16g4(�0e + 2�g0)2A, (D17)

B2 = −32g4(�0e + 2�g0)2B, (D18)

C2 = 32g4�g0(�0e + 2�g0)2{�g0(�0e + γ−)[48g4 + 24g2(�̃κ − 4	2) + �̃2(3κ2 + 4	2) + 4	2(κ2 + 12	2)

− 16�̃κ	2] − 8 f 2g2�̃(�0e + 2�g0)}, (D19)

D2 = −16g2�2
g0(�0e + 2�g0)2{�g0(�0e + γ−){64g4 + 48g4(�̃κ − 4	2) + (�̃2 + 4	2)(�̃κ − 4	2)(κ2 + 4	2)

− 4g2[16�̃κ	2 − 4	2(κ2 + 12	2) − �̃2(3κ2 + 4	2)]} − 32 f 2g4�̃(�0e + 2�g0)}, (D20)
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E2 = 16 f 2g2�̃(�0e + 2�g0)[(�̃2 + 4	2)(κ2 + 4	2) − 16g4] + �g0(�0e + γ−){16g2{16g6 − 16g4(4	2 − �̃κ )

+ (�̃2 + 4	2)(κ2 + 4	2)(�̃κ − 4	2) + 2g2[�̃2(3κ2 + 4	2) + 4	2(κ2 + 12	2) − 16�̃κ	2]}
+ [(�̃2 + 4	2)(κ2 + 4	2)]2} (D21)

and

G = A3 p̃(0)4
e + B3 p̃(0)3

e + C3 p̃(0)2
e + D3 p̃(0)

e + E3, (D22)

with

A3 = (2g)8(�0e + 2�g0)4, (D23)

B3 = −28g6�g0(�0e + 2�g0)3(�̃κ + 4g2 − 4	2), (D24)

C3 = 32g4�2
g0(�0e + 2�g0)2[48g4 + 24g2(�̃κ − 4	2) + 2(�̃κ − 4	2)2 + (�̃2 + 4	2)(κ2 + 4	2)], (D25)

D3 = −16g2�3
g0(�0e + 2�g0)(�̃κ + 4g2 − 4	2)[(4g2 + κ�̃ − 4	2)2 + 4	2(κ + �̃)2], (D26)

E3 = �4
g0[(4g2 + κ�̃ − 4	2)2 + 4	2(κ + �̃)2]2. (D27)

APPENDIX E: SADDLE-POINT APPROXIMATION

The saddle-point approximation is a widely used method
providing an approximation to a probability distribution us-
ing the CGF [75]. It states that, given the CGF C(χ, t ), the
probability distribution can be approximated by [cf. Eq. (20)]

p(n, t ) ≈ 1√
2πC′′(χ, t )|χ=χ∗

exp[C(χ∗, t ) − inχ∗], (E1)

where χ∗ is the solution to the saddle-point equation

C′(χ∗, t ) − n = 0. (E2)

In Fig. 3(b), we plot the logarithm of the different dis-
tributions. Within the saddle-point approximation, and to
exponential accuracy, this logarithm can be approximated as

log[p(n, t )] ≈ C(χ∗, t ) − inχ∗. (E3)

APPENDIX F: NUMERICS

For the numerical calculations of the different cumulants,
we follow Refs. [74] and [76], where the authors give a
method for the evaluation of the zero-frequency cumulants
and FFN, respectively. These methods rely solely on matrix

multiplications and are, therefore, ideal for numerical imple-
mentation. We briefly review the methods for completeness.
We write the steady state using the special Dirac notation
defined in Appendix A as ρst = |ψ0〉〉 and the corresponding
left eigenvector as 〈〈ψ0|. The inner product between these
objects is given by 〈〈ψ0|ψ0〉〉 = Tr{ρst} = 1. Next, we give
the projector onto the steady state P = P2 = |ψ0〉〉〈〈ψ0| as
well as its complement Q = 1 − P . Note that the following
relations hold LP = PL = 0 and therefore L = QLQ. With
this at hand, we can define the pseudo-inverse of the Li-
ouvillian R = QL−1Q in the subspace where L is regular.
Having defined the necessary quantities, we find the first two
zero-frequency cumulants

〈〈n1〉〉 = 〈〈ψ0|I|ψ0〉〉, (F1)

〈〈n2〉〉 = 〈〈ψ0|J |ψ0〉〉 − 2〈〈ψ0|IRI|ψ0〉〉, (F2)

and the FFN is given by

S(ω) = 〈〈ψ0|J |ψ0〉〉 − 2Re{〈〈ψ0|IR(ω)I|ψ0〉〉}, (F3)

where R(ω) = Q(L + iω)−1Q is the frequency-dependent
pseudo-inverse. We have computed the different cumulants
using QuTip [68].
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