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We investigate the charge-density wave (CDW) transition for one-dimensional spinless fermions at half band
filling with nearest-neighbor electron transfer amplitude t and interaction V . The model is equivalent to the
anisotropic XXZ Heisenberg model for which the Bethe Ansatz provides an exact solution. For V > Vc = 2t ,
the CDW order parameter and the single-particle gap are finite but exponentially small, as is characteristic for
a Kosterlitz-Thouless transition. It is notoriously difficult to locate such infinite-order phase transitions in the
phase diagram using approximate analytical and numerical approaches. Second-order Hartree-Fock theory is
qualitatively applicable for all interaction strengths, and predicts the CDW transition to occur at V (2)

c,2 ≈ 1.5t .
Second-order Hartree Fock theory is almost variational because the density of quasiparticle excitations is small.
We apply the density-matrix renormalization group (DMRG) for periodic boundary conditions for system sizes
up to 514 sites, which permits a reliable extrapolation of all physical quantities to the thermodynamic limit, apart
from the critical region. We investigate the ground-state energy, the gap, the order parameter, the momentum
distribution, the quasiparticle density, and the density-density correlation function to locate Vc from the DMRG
data. Tracing the breakdown of the Luttinger liquid and the peak in the quasiparticle density at the band edge
permits us to reproduce Vc with an accuracy of one percent.

DOI: 10.1103/PhysRevB.106.205133

I. INTRODUCTION

The isotropic spin-1/2 Heisenberg model on a chain
was the first exactly solved many-body problem [1]. Three
decades later, Orbach [2], and later Yang and Yang [3,4], suc-
ceeded to generalize the Bethe Ansatz to the one-dimensional
anisotropic Heisenberg (or XXZ) model,

ĤXXZ(�) = −1

2

L−1∑
l=1

[
σ x

l
· σ x

l+1
+ σ y

l
· σ y

l+1
+ �σ z

l
· σ z

l+1

]
,

(1)
where σ x,y,z

l
are the Pauli matrices on site l and � � 0

is the anisotropy parameter for antiferromagnetic coupling.
The XXZ model reduces to the Ising model in the limit of
strong anisotropy in the z direction, |�| → ∞. Since the
1960s, many exact results for the model in the thermodynamic
limit were established, e.g., the ground-state energy [3,4],
the elementary spinon excitations [5–8], and the staggered
magnetization in the Ising regime, |�| � 1 [9,10], to name
a few. An efficient exact description of the thermodynamic
properties was achieved by Klümper [11].
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Starting from the early 1990s [12] the focus of the ex-
act calculations shifted to the reduced density matrix, which
was fully characterized in the following decade [13–18]. This
made it possible to derive a number of spin correlation func-
tions analytically, see, e.g., Refs. [19–21]. Most recently,
fully explicit series representations for the exact dynamical
spin correlation functions and the spin conductivity were ob-
tained in the Ising regime [22,23]. Therefore, the XXZ model
belongs to the best studied and understood many-particle sys-
tems.

Via a Jordan-Wigner transformation, the antiferromagnetic
XXZ model on a chain with � � 0 and zero magnetization
maps onto a model for spinless fermions with open boundary
conditions at half band filling with nearest-neighbor elec-
tron transfer amplitude (−t ) and repulsive interaction V =
−�/(2t ) � 0 [24]. While the XXZ model contains a transi-
tion to an antiferromagnetically ordered ground state at the
Heisenberg point, � = −1, the model for spinless fermions
displays a metal-insulator transition at Vc = 2t from a Lut-
tinger liquid to a charge-density wave (CDW) insulator.

A transition at finite interaction strength is unexpected
because the nesting instability would place the transition at
V (1)

c = 0+, and it requires a sophisticated renormalization
group treatment to show that the system is marginally stable
against the formation of a CDW at weak coupling [25,26].
The same result can be obtained using bosonization, see
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Ref. [27] for an introduction. To complicate matters, the
single-particle gap and the order parameter display an essen-
tial singularity at Vc, i.e., they open exponentially as a function
of 1/

√
V − Vc, as is characteristic for a Kosterlitz-Thouless

transition [28]. Consequently, it is notoriously difficult to de-
termine the critical interaction strength for the transition using
approximate analytical and numerical approaches. Transitions
of Kosterlitz-Thouless type are common in one-dimensional
quantum systems such as in the bosonic Hubbard model, see
e.g., Ref. [29], or quantum spin chains, see, e.g., Ref. [30].

Since spinless fermions represent a rare case of an exactly
solvable model with a metal-insulator transition at a finite
interaction strength, it is desirable to see if and how well
approximate methods are able to reproduce the formation of
CDW order at Vc = 2t . As our analytical approximations we
use Hartree-Fock theory and second-order perturbation theory
around it [31,32]. First-order Hartree-Fock theory suggests
a CDW for all finite interaction strengths, V (1)

c = 0+, cor-
responding to the nesting instability. As we shall show in
this paper, second-order Hartree-Fock approximation predicts
a discontinuous transition at V (2)

c,2 ≈ 1.5 with a jump in the
order parameter and concomitant discontinuities in physical
quantities.

As numerical approach, we employ the density-matrix
renormalization group (DMRG) method [33–35] that provides
highly accurate data for finite rings with up to L = 514 sites;
we choose periodic boundary conditions and even L/2 for an
open-shell ground state to reduce finite-size effects. To make
contact with finite-size corrections calculated for the XXZ
model from Bethe Ansatz, we also investigate odd L/2.

We identify two successful strategies to locate accurately
the CDW transition. The first route monitors the breakdown of
the metallic phase. The properties of the Luttinger liquid are
reflected in finite-size corrections to the ground-state energy
and the gap, and most prominently in the Luttinger parameter
that determines the momentum distribution close to the Fermi
points and the small-momentum limit of the density-density
correlation function. In the end, the accurate calculation of
the Luttinger parameter permits to locate the breakdown of the
Luttinger liquid with an accuracy of three percent. Following
an alternative route, we trace the maximum of the quasipar-
ticle distribution as a function of system size and interaction.
Using this independent approach, we determine the critical
interaction strength with an accuracy of one percent.

The paper is organized as follows. In Sec. II we define
the model Hamiltonian for spinless fermions. We discuss its
relation to the XXZ model for various boundary conditions
and particle numbers.

In Sec. III we put together exact results from the lit-
erature for the ground-state energy, the nearest-neighbor
single-particle density matrix, the single-particle gap, and the
charge-density wave order parameter in the thermodynamic
limit. Since this information is often phrased for the XXZ
model and is not summarized in reviews or books, we find it
useful to compose them here for spinless fermions. Limiting
cases are derived and discussed in the Supplemental Material
[36] (see, also, references [37,38] therein).

In Sec. IV we present the standard (first-order) Hartree-
Fock approximation for spinless fermions. This permits us
to introduce the lower and upper Hartree-Fock bands in the

reduced Brillouin zone and the corresponding quasiparticle
operators.

In Sec. V we calculate the second-order weak-coupling
perturbation correction to the Hartree-Fock approximation,
and justify its applicability to all interaction strengths. Tech-
nicalities for the second-order Hartree-Fock calculations can
be found in the Supplemental Material [36].

In Sec. VI we compare approximate results with those from
the exact Bethe Ansatz solutions. We focus on the issue how
to obtain the critical interaction strength for the charge-density
wave transition from finite-size DMRG data.

Short conclusions, Sec. VII, close our presentation.

II. SPINLESS FERMIONS IN ONE DIMENSION

We start with the introduction of the Hamiltonian for spin-
less fermions and discuss its relation to the XXZ Heisenberg
model.

A. Hamiltonian

The Hamiltonian for spinless fermions on a ring with L
lattice sites reads

Ĥ = T̂ + V̂ . (2)

The kinetic energy operator describes the transfer of fermions
between neighboring sites with real amplitude (−t ) and t > 0

T̂ = (−t )
L∑

l=1

(ĉ+
l+1ĉl + ĉ+

l ĉl+1), (3)

where ĉ+
l (ĉl ) creates (annihilates) a fermion on lattice site l ,

l = 1, 2, . . . , L; we choose L/2 to be even if not stated explic-
itly otherwise. Periodic boundary conditions apply, ĉL+l ≡ ĉl .
The nearest-neighbor interaction with strength V is given by

V̂ = V
L∑

l=1

n̂l n̂l+1, (4)

where n̂l = ĉ+
l ĉl counts the number of fermions on site l , and

V > 0 is repulsive.
The kinetic energy is diagonal in momentum space using

the Fourier transformation

âk =
√

1

L

L∑
l=1

e−ikl ĉl , (5)

ĉl =
√

1

L

∑
k

eikl âk, (6)

where k = (2π/L)m, m = −L/2,−L/2 + 1, . . . , L/2 − 1, to
fulfill periodic boundary conditions. We have

T̂ =
∑

k

ε(k)â+
k âk, ε(k) = −2t cos(k). (7)

In the following we shall focus on the case of half band-filling,
where the number of fermions N equals half the number of
lattice sites, N = L/2, and use t ≡ 1 as our energy unit. The
bare bandwidth is W = 4.
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B. XXZ Heisenberg model

The model for spinless fermions in one dimension can be
transformed into the XXZ Heisenberg model using a Jordan-
Wigner transformation. For the moment, let us assume open
boundary conditions. On a chain, the XXZ model is given by
Eq. (1). Using spin operators,

Ŝx,y,z
l = 1

2
σ x,y,z

l
, Ŝ+

l = Ŝx
l + iŜy

l ,

Ŝ−
l = Ŝx

l − iŜy
l , (8)

the XXZ Heisenberg model reads

ĤXXZ(�) = −
L−1∑
l=1

[Ŝ+
l Ŝ−

l+1 + Ŝ+
l+1Ŝ−

l ] − 2�

L−1∑
l=1

Ŝz
l Ŝz

l+1. (9)

Note that spin operators on different lattice sites commute
with each other.

The Pauli particle operators

b̂+
l = Ŝ+

l , b̂l = Ŝ−
l ,

n̂b
l = b̂+

l b̂l = Ŝz
l + 1

2 , (10)

obey fermionic anticommutation relations between operators
on the same site but bosonic commutation relations between
different sites. This deficiency is cured by the Jordan-Wigner
transformation [24,39],

ĉ+
l = exp

(
iπ

l−1∑
k=1

n̂b
k

)
b̂+

l , ĉl = exp

(
−iπ

l−1∑
k=1

n̂b
k

)
b̂l ,

n̂l = ĉ+
l ĉl = b̂+

l b̂l = n̂b
l . (11)

Therefore, the XXZ Heisenberg model can be written in terms
of spinless fermions as

ĤXXZ(�) = −
L−1∑
l=1

(ĉ+
l ĉl+1 + ĉ+

l+1ĉl )

−2�

L−1∑
l=1

(
n̂l − 1

2

)(
n̂l+1 − 1

2

)
(12)

when open boundary conditions are employed. Thus, the
equivalence reads

ĤXXZ(−V/2) = Ĥ (V ) − V N̂ + V
L

4
. (13)

Equation (13) permits to translate exact results for the an-
tiferromagnetic XXZ model ĤXXZ(� � 0) to the model of
spinless fermions for V � 0 for open boundary conditions.

For the case of periodic boundary conditions, an additional
boundary term arises [39],

Ĥpbc
XXZ(�) = −

L∑
l=1

(ĉ+
l ĉl+1 + ĉ+

l+1ĉl )

− 2�

L∑
l=1

(
n̂l − 1

2

)(
n̂l+1 − 1

2

)
+ (ĉ+

L ĉ1 + ĉ+
1 ĉL )(exp(iπ N̂ ) + 1). (14)

Therefore, a comparison of Bethe Ansatz results for the peri-
odic XXZ model with those for spinless fermions on a ring are
only possible in the thermodynamic limit, or, when finite-size
corrections are addressed, for situations where the particle
number N is odd. For the ground state at half band filling
it implies that L/2 must be odd. For excitations from the
half-filled ground state we must study the sector with two
particle or two hole excitations, N = L/2 ± 2.

III. EXACT RESULTS

In this section we collect exact results in the thermo-
dynamic limit for the ground-state energy and the nearest-
neighbor single-particle density matrix at half band-filling, the
single-particle gap, the charge-density wave order parameter,
the correlation energy, the momentum distribution, and the
density-density correlation function.

A. Ground-state energy and nearest-neighbor single-particle
density matrix at half band filling

In the sector of half band filling we have N = L/2 so that
Eq. (13) gives

e0(V ) = eXXZ
0 (−V/2) + V

4
(15)

for the energy per lattice site in the thermodynamic limit,
N, L → ∞, N/L = 1/2, where eXXZ

0 (�) is the energy per lat-
tice site in the XXZ model with antiferromagnetic anisotropy
and zero magnetization.

Yang and Yang [3,4] give the following expressions
for the ground-state energy density at zero magnetization
[eXXZ

0 (�) = 2 f (�, 0) in the paper of Yang and Yang]:

eXXZ
0 (−V/2) =

⎧⎨⎩g(μ) for V = 2 cos(μ) < 2,

1/2 − 2 ln(2) for V = 2,

h(λ) for V = 2 cosh(λ) > 2,

(16)
where

g(μ) = cos(μ)

2
−

∫ ∞

−∞

sin2(μ)dx

cosh(πx)[cosh(2μx) − cos(μ)]
,

(17)

h(λ) = cosh(λ)

2
− sinh(λ)

λ

[
λ + 4λ

∞∑
n=1

1

1 + exp(2λn)

]
.

(18)

The first and the third region can be continuously extended
to V = 2. The above formulas can be expressed in terms
of q-digamma functions [40]. We shall not digress into the
representation by special functions here.

Expansions for small and large V can be found in the Sup-
plemental Material [36]. For comparison with Hartree-Fock
theory, we give the leading-order results for weak and strong
interactions,

e0(V � 1) = − 2

π
+

(
1

4
− 1

π2

)
V +

(
− 2

3π3
+ 1

36π

)
V 2,

e0(V � 1) = − 1

V
+ 1

V 3
. (19)
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For more details, see the Supplemental Material [36].
With the help of the Hellmann-Feynman theorem [41,42],

both the potential energy and the kinetic energy can be derived
from the exact ground-state energy,

〈V̂ 〉/L = V
∂e0(V )

∂V
,

〈T̂ 〉/L = e0(V ) − V
∂e0(V )

∂V
. (20)

Since there is no bond-order wave in the exact ground state,
the kinetic energy is just a multiple of the nearest-neighbor
single-particle density matrix,

B0 = − 1

2L
〈T̂ 〉 = −1

2

(
e0(V ) − V

∂e0(V )

∂V

)
. (21)

The limiting values are

B0(V � 1) = 1

π
−

(
1

3π3
− 1

72π

)
V 2,

B0(V � 1) = 1

V
− 2

V 3
. (22)

For more details, see the Supplemental Material [36].

B. Single-particle gap

1. Particle-hole symmetry

The XXZ Hamiltonian in the fermionic language (12) is
particle-hole symmetric so that the chemical potential μ = 0
guarantees half filling for all temperatures. To see this, we
perform the particle-hole transformation

τph : ĉl → (−1)l ĉ+
l , âk → â+

k+π (23)

that leaves the Hamiltonian ĤXXZ in Eq. (12) invariant but
changes the particle number operator, N̂ → L − N̂ . There-
fore,

〈N̂〉XXZ(T,V, μ = 0) = 1

Z
Tr{e−βĤXXZ N̂}

= 1

Z
Tr{e−βĤXXZ

(
L − N̂

)}
= L − 〈N̂〉XXZ(T,V, μ = 0) (24)

so that μ = 0 indeed guarantees half band filling for
all temperatures T = 1/β and interaction strengths V ,
〈N̂〉XXZ(T,V, μ = 0) = L/2.

At zero temperature, the energies for adding another
fermion to the half-filled system and adding a particle to reach
half filling are given by

μ+
1 (V ) = E0(L/2 + 1,V ) − E0(L/2,V ),

μ−
1 (V ) = E0(L/2,V ) − E0(L/2 − 1,V ). (25)

The chemical potentials define the gap at half filling,

�1(V ) = μ+
1 (V ) − μ−

1 (V )

= μ+,XXZ
1 (−V/2) − μ−,XXZ

1 (−V/2)

= 2μ+,XXZ
1 (−V/2)

= 2(μ+
1 (V ) − V ), (26)

where we used particle-hole symmetry in the next to last step,

EXXZ
0 (L − N,V ) = EXXZ

0 (N,V ) (27)

for the ground-state energy with N and L − N fermions. Due
to Eq. (26), we only need to calculate the ground-state energy
at half-band filling and with one additional fermion to cal-
culate the single-particle gap �1(V ), or with two additional
particles when we calculate the two-particle gap �2(V ).

For the momentum distribution,

nk = 〈â+
k âk〉, (28)

it is sufficient to investigate the region |k| � π/2 because
particle-hole symmetry leads to

nk = 1 − nk±π (29)

when |k| > π/2 and periodic boundary conditions are em-
ployed.

2. Gap formula from the XXZ model

In the antiferromagnetic XXZ model, the elementary exci-
tations are spin-1/2 objects called spinons. For a spin-flip in
the XXZ model, (at least) two spinons are required. Adding
or subtracting a particle in the model for spinless fermions
corresponds to such a spin flip. Since the spinon dispersion is
gapped for � < −1, there is a finite gap for charge excitations
for V > Vc = 2.

The spinon dispersion for the XXZ chain is known analyt-
ically [5,6] (recall � = −V/2),

εs(p,V ) = 2K (m)

π
sinh(γ )

√
1 − m cos2(p),

cosh(γ ) = V

2
, 0 � p � π. (30)

Here, K (m) is the complete elliptic integral of the first kind,

K (m) =
∫ π/2

0

dθ√
1 − m sin2(θ )

(31)

and m follows from the solution of the implicit equation

γ = πK (1 − m)

K (m)
. (32)

Since it takes two spinons to create a spin-flip, we have

μ+,XXZ
1 (V ) = 2εs(0,V ). (33)

Therefore, the single-particle gap is given by

�1(V ) = 8K (m)

π
sinh(γ )

√
1 − m. (34)

The single-particle gap can be expressed more compactly in
terms of Jacobi functions [40].

Analytic results close to the transition and for strong cou-
pling are summarized in the Supplemental Material [36]. For
comparison with approximate treatments, we list the leading-
order behavior close to the transition and the strong-coupling
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result,

�1(V � 2) = 16π exp

(
− π2

2
√

V − 2

)
, (35)

�1(V � 1) = 2V − 8 + 4

V
. (36)

Apparently, above the transition the gap opens exponen-
tially in 1/

√
V − Vc. A similar exponential behavior is

characteristic for the Kosterlitz-Thouless transition in certain
two-dimensional models at finite temperature [28]. Therefore,
it is said that the quantum phase transition is of “Kosterlitz-
Thouless type”.

The result for strong coupling is readily understood. An
extra fermion added to the half-filled system leads to three
fermions in a row and thus to two nearest-neighbor interac-
tions with an excitation energy of 2V . The transfer of particles
between neighboring sites results in the free motion of domain
walls to the right and left. Therefore, the first correction term
to the single-particle is twice the bandwidth, namely W = 4
for each domain wall.

C. Order parameter

For spinless fermions, the charge density obeys

〈n̂l〉 = 1
2 + (−1)l na(V ) (37)

with 0 � na(V ) � 1/2 when we select the CDW solution with
higher particle density on the even lattice sites. Note that
na(V ) is finite for V > Vc = 2 and na(V → ∞) = 1/2 for
strong coupling.

The order parameter for the XXZ Heisenberg model in
the thermodynamic limit was calculated by Baxter using the
Bethe Ansatz [9], and rederived by Izergin et al. using the
algebraic Bethe Ansatz [10]; they give

s0(q) =
[ ∞∏

m=1

1 − q2m

1 + q2m

]2

, (38)

where, for

|�| = V

2
� 1, (39)

we have

q(V ) = |�| −
√

�2 − 1 = V

2
−

√(V

2

)2

− 1 � 1. (40)

The charge-density wave order parameter evaluated for spin-
less fermions thus reads

na(V ) = 1
2 s0[q(V )]. (41)

The order parameter can be expressed more compactly in
terms of Jacobi functions and their derivatives [40].

Analytic results close to the transition and for strong cou-
pling are summarized in the Supplemental Material [36]. For
comparison with approximate treatments, we list the leading-
order behavior close to the transition and the strong-coupling

result,

na(V � 2) = π

ln (q(V ))
exp

(
− π2

4 ln (q(V ))

)
≈ π√

V − 2
exp

(
− π2

4
√

V − 2

)
,

na(V � 1) = 1

2
− 2

(
1

V

)2

− 2

(
1

V

)4

. (42)

As for the single-particle gap, we find that the order parameter
is exponentially small just above the transition.

D. Correlation energy

By definition, the correlation energy is the difference
between the total interaction energy 〈V̂ 〉 per site and the
single-particle contribution that results from a Hartree-Fock
decomposition of the four-fermion terms in V̂ ,

ecorr (V ) = 1

L
(〈V̂ 〉 − 〈V̂ H + V̂ F〉), (43)

see Sec. IV for the definition of 〈V̂ H〉 and 〈V̂ F〉. In terms of
the exactly known CDW order parameter and the nearest-
neighbor single-particle density matrix we have

〈V̂ H〉 = V L
(

1
4 − [na(V )]2

)
,

〈V̂ F〉 = −V L[B0(V )]2. (44)

With Eq. (20) and Eq. (21) we thus find for the correlation
energy

ecorr (V ) = V

[
e′

0(V ) − 1
4 + [na(V )]2+ 1

4 (e0(V ) − Ve′
0(V ))2

]
,

(45)

where the prime indicates the partial derivative with
respect to V .

E. Momentum distribution

The momentum distribution nk = 〈â+
k âk〉 has not been de-

termined analytically thus far, apart from some limiting cases.
It is known that the curves for V > 0 are smooth in the
thermodynamic limit with nk=±π/2 = 1/2 due to particle-hole
symmetry, see Eq. (29).

Below the transition, V < Vc = 2, the system describes a
Luttinger liquid [27,43]. Consequently, the momentum distri-
bution close to the Fermi points k± = ±kF = ±π/2 is known
in the thermodynamic limit,

nk≈kF (V � Vc) = 1

2
− 1

2
sgn(k − kF)|k − kF|α(V ),

α(V ) = 1

2

(
K (V ) + 1

K (V )
− 2

)
> 0, (46)

where the factor one half in front of the sign function takes
into account that the fermions are spinless.

A comparison of the elementary excitations from Bethe
Ansatz with those from a generic Luttinger liquid permits
to identify the Luttinger parameter K (V ) in the metallic
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phase [27],

K (V ) = π

2 arccos(−V/2)
(47)

for 0 � V < Vc = 2. This results in K (V = 0) = 1 (α(V =
0) = 0) at the Fermi-liquid point, and K (V = Vc) = 1/2
(α(Vc) = 1/4) at the CDW transition. Consequently, the criti-
cal interaction can be deduced from monitoring K (V ) or α(V )
in the Luttinger-liquid phase. The Luttinger exponent can also
be extracted from the long-range decay of the single-particle
correlation function in position space [44]. The most reliable
way to extract K (V ) is provided by the analysis of the density-
density correlation function in the limit of long wave lengths
[45], see Sec. III F.

In the insulating CDW phase, V > Vc, the momentum dis-
tribution is continuous and continuously differentiable. For
V � 1, strong-coupling perturbation theory gives for |k| �
π/2

nk (V � 1) ≈ 1

2
+ |ε(k)|

V
+ O

(
1

V 2

)
(48)

so that for all |k| � π

nk (V � 1) ≈ 1

2
+ 2 cos(k)

V
+ O

(
1

V 2

)
. (49)

This relation follows from the fact that the Hartree-Fock
ground state becomes exact to leading order in 1/V , see
Sec. IV.

The two expressions (46) and (49) can be combined to

nk≈kF (V ) = 1
2 − b(V ) sgn(k − kF)|k − kF|α(V ), (50)

where exact expressions for α(V ) and b(V ) are known in the
Luttinger liquid phase, see Eq. (46), and for strong coupling,
α(V � 1) = 1, b(V � 1) = 2/V .

F. Density-density correlation function

Lastly, we list some exact results for the density-density
correlation function,

CNN(r,V ) = 1

L

L∑
l=1

(〈n̂l+r n̂l〉 − 〈n̂l+r〉〈n̂l〉), (51)

which can be calculated analytically from Bethe Ansatz [23]
and numerically using DMRG. By inversion symmetry, we
have CNN(L − r,V ) = CNN(r,V ). The limit r � 1 for V �
Vc = 2 is also accessible from field theory [27,43,46],

CNN(r � 1,V ) ∼ − K (V )

2(πr)2
+ A(V )(−1)r

r1+K [ln(r)]3/2
+ . . . , (52)

where A(V ) is a constant that depends on the interaction but
not on the distance r.

We extract the Luttinger exponent K (V ) from the structure
factor,

C̃NN(q,V ) =
L−1∑
r=0

CNN(r,V )e−iqr, (53)

where the wave numbers are from momentum space, q =
(2π/L)mq, mq = −L/2,−L/2 + 1, . . . , L/2 − 1. By con-
struction, C̃NN(q = 0,V ) = 0 because the particle number is

fixed, N = L/2 in the ground state. When Eq. (52) is em-
ployed, it follows that

K (V )

2
= π lim

q→0

C̃NN(q,V )

q
. (54)

Using this equation, the Luttinger exponent can be calcu-
lated numerically with very good accuracy [45]. The limiting
cases of noninteracting spinless fermions and the limit of
strong interactions are readily derived analytically because the
Hartree-Fock decoupling of the four-fermion term becomes
exact, see Sec. IV D.

Equation (52) shows that the structure factor diverges al-
gebraically for |q| → π , with logarithmic corrections for all
V > 0 where K (V ) < 1. In the charge-density wave insulator,
C̃NN(|q| = π,V > Vc) is finite. Note that contributions from
the long-range order are subtracted in the definition of CNN(r).
In principle, the CDW transition can also be inferred from the
finite-size scaling of

SNN
π (L,V ) = C̃NN

(
π − 2π

L
,V

)
. (55)

This quantity diverges algebraically in the Luttinger liquid and
is finite in the CDW insulator. However, it turns out that, even
for V = 2.5, it requires system sizes much larger than L =
512 to observe the saturation of SNN

π (L,V = 2.5). Therefore,
we refrain from a further analysis of this quantity.

IV. HARTREE-FOCK APPROXIMATION

In this section we derive the Hartree-Fock approxima-
tion for the model (2) for spinless fermions. We define the
Hartree and Fock interactions, diagonalize the Hartree-Fock
Hamiltonian, and optimize the Hartree-Fock ground-state en-
ergy in the thermodynamic limit. Lastly, we calculate the
density-density correlation function in the Hartree-Fock ap-
proximation.

A. Hartree and Fock interaction

1. Hartree interaction

In Hartree approximation, the interaction becomes

V̂ H = V
L∑

l=1

[〈n̂l〉n̂l+1 + n̂l〈n̂l+1〉 − 〈n̂l〉〈n̂l+1〉]. (56)

At half band filling, the best Hartree solution is obtained for a
charge-density wave

〈n̂l〉 = n + (−1)l na. (57)

Since

N =
L∑

l=1

〈n̂l〉 = Ln (58)

we can set n = 1/2 from the start, irrespective of the interac-
tion V , whereas the alternating charge density depends on V ,

na(V ) = 1

L

L∑
l=1

(−1)l〈n̂l〉 = 1

2
(〈n̂2l〉 − 〈n̂2l+1〉). (59)
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In the following we assume na(V ) � 0, which selects the
symmetry-broken state with higher particle density on the
even lattice sites. Since we double the unit cell, the Hartree
Hamiltonian must be diagonalized in the reduced Brillouin
zone (RBZ) where −π/2 � k < π/2.

2. Fock interaction

In Hartree-Fock theory, the Hartree Hamiltonian is supple-
mented by the Fock term,

V̂ F = V
L∑

l=1

[ĉ+
l ĉl+1〈ĉl ĉ

+
l+1〉 + 〈ĉ+

l ĉl+1〉ĉl ĉ
+
l+1

−〈ĉ+
l ĉl+1〉〈ĉl ĉ

+
l+1〉]. (60)

Compatible with the Hartree solution is a bond-order wave
state,

〈ĉ+
l+1ĉl〉 = B0 + (−1)lB1 (61)

with complex B0, B1.
The bond-order wave loses against the charge-density wave

so that we find B1 = 0 and a real B0 for V � 0. We shall work
with these simplifications right from the start.

B. Diagonalization of the Hartree-Fock Hamiltonian

To leading order in the Hartree-Fock approximation, the
Hartree-Fock Hamiltonian,

ĤHF = T̂ + V̂ H + V̂ F, (62)

must be diagonalized.

1. Operators in the reduced Brillouin zone

We have

T̂ =
∑

k∈RBZ

ε(k)(â+
k âk − â+

k+π âk+π ) (63)

because of the nesting property of the dispersion relation,
ε(k + π ) = −ε(k).

For the Hartree interaction we find

V̂ H = V
L∑

l=1

(n + (−1)l na)n̂l+1 + n̂l (n + (−1)l+1na)

−V
L∑

l=1

(n + (−1)l na)(n + (−1)l+1na)

= V L
(
n2 + n2

a

) − 2V na

∑
k∈RBZ

(â+
k âk+π + â+

k+π âk ),

(64)

where we used that N̂ = N in the sector of fixed particle
number N .

For the Fock interaction we find

V̂ F = V LB2
0 + V

∑
k∈RBZ

b0(k)(â+
k âk − â+

k+π âk+π ),

b0(k) = −2B0 cos(k). (65)

The Hartree-Fock Hamiltonian in the reduced Brillouin zone
RBZ = {−π/2 � k < π/2} reads

ĤHF = V L
(
n2 + n2

a + B2
0

)
+

∑
k∈RBZ

ε̃(k)(â+
k âk − â+

k+π âk+π )

−
∑

k∈RBZ

2V na(â+
k âk+π + â+

k+π âk ) (66)

with

ε̃(k) = ε(k) + V b0(k) = −2(1 + V B0) cos(k). (67)

2. Diagonalization

For the diagonalization of the Hartree-Fock Hamiltonian
we introduce for each k ∈ RBZ

âk = cos(ϕk )α̂k − sin(ϕk )β̂k,

âk+π = sin(ϕk )α̂k + cos(ϕk )β̂k . (68)

The operators α̂k and β̂k obey fermionic commutation rela-
tions for real 0 � ϕk < 2π .

For each k ∈ RBZ we thus have to diagonalize

ĥHF
k = ε̃(k)(ukα̂

+
k − vkβ̂

+
k )(ukα̂k − vkβ̂k )

− ε̃(k)(vkα̂
+
k + ukβ̂

+
k )(vkα̂k + ukβ̂k )

− 2V na(ukα̂
+
k − vkβ̂

+
k )(vkα̂k + ukβ̂k )

− 2V na(vkα̂
+
k + ukβ̂

+
k )(ukα̂k − vkβ̂k ), (69)

where we abbreviated uk = cos(ϕk ) and vk = sin(ϕk ).
The nondiagonal terms proportional to α̂+

k β̂k must vanish.
This leads to the condition

tan(2ϕk ) = −2V na

ε̃(k)
� 0, (70)

and

cos(2ϕk ) = |̃ε(k)|
E (k)

,

2ukvk = sin(2ϕk ) = 2V na

E (k)
,

u2
k = cos2 (ϕ(k)) = 1

2

(
1 + |̃ε(k)|

E (k)

)
,

v2
k = sin2 (ϕ(k)) = 1

2

(
1 − |̃ε(k)|

E (k)

)
,

E (k) =
√

(ε(k) + V b0(k))2 + (2V na)2. (71)

The Hartree-Fock Hamiltonian becomes diagonal in the new
basis,

ĤHF = V L
(
n2 + n2

a + B2
0

) +
∑

k∈RBZ

E (k)(β̂+
k β̂k − α̂+

k α̂k )

(72)
with the dispersion relation E (k). The Hamiltonian paramet-
rically depends on B0(V ) and na(V ).
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C. Minimization of the Hartree-Fock ground-state energy
in the thermodynamic limit

The optimal Hartree-Fock energy can thus be found from
the minimization of the simplified Hartree-Fock energy func-
tional (n = 1/2)

EHF
0 (B0, na,V ) = V L

(
n2 + n2

a + B2
0

) −
∑

k∈RBZ

E (k) (73)

for real B0, na. In the thermodynamic limit, Eq. (73) can be
expressed as

eHF
0 (B0, na,V ) = lim

L→∞
EHF

0 (B0, na,V )

L

= V
(
n2 + n2

a + B2
0

)
− 1

π

√
a2 + b2E [a2/(a2 + b2)], (74)

where E [m] (0 � m � 1) is the complete elliptic integral of
the second kind,

E [m] =
∫ π/2

0
dϕ

√
1 − m sin2(ϕ), (75)

and we defined the abbreviations

a = 2(1 + V B0), b = 2V na. (76)

For general interactions and system sizes, the optimization of
the Hartree-Fock ground-state energy has to be done numeri-
cally.

1. Small interactions

The minimization of eHF
0 (B0, na,V ) can be carried out an-

alytically for small V . The Taylor series up to third order in V
reads

eHF
0 (B0, na,V ) ≈ − 2

π
+

(
1

4
− 2B0

π
+ B2

0 + n2
a

)
V

+V 2n2
a

2π
(−1 − 4 ln(2) + 2 ln(naV ))

+V 3B0n2
a

2π
(−1 + 4 ln(2) − 2 ln(naV ))

+O(V 4). (77)

Its minimization leads to two coupled equations for B0 and na.
The solution for B0 is given by

B0 = 1

4π

(
4 + n2

aV 2(1 − 4 ln(2)) + 2n2
aV 2 ln(naV )

)
. (78)

We insert this result into the minimization equation for na and
expand to third order in V to find the solution

na(V → 0) = 4

V
exp

(
−π

V
− 1

)
. (79)

In Hartree-Fock theory, the order parameter is finite for all
V > 0 and displays an essential singularity at V = 0. The
Fock parameter deviates exponentially from its bare value

B0(V = 0) = 1/π ,

B0(V → 0) = 1

π
− 4(2π + V )

πV
exp

(
−2π

V
− 2

)
. (80)

Consequently, the optimized Hartree-Fock ground-state en-
ergy per site for small interactions becomes

eHF,min
0 (V → 0) = − 2

π
+

(
1

4
− 1

π2

)
V

−8(π − V )

π2
exp

(
−2π

V
− 2

)
−16(2π + V )2

π2V
exp

(
−4π

V
− 4

)
. (81)

This formula agrees with the numerically determined value
with an accuracy of better than 10−3 for V � 1. The error is
only 5% at V = 2.

The Hartree-Fock theory reproduces the exact ground-state
energy and nearest-neighbor single-particle density matrix for
small interactions (19) to first order but lacks the correct
second-order terms.

2. Large interactions

For large interactions, the energy can be expanded in a
power series in 1/V . To find the series, we also expand the
variational parameters B0 and na in inverse powers of V . It
turns out that na (B0) contains only even (odd) powers,

na = 1

2
+ δ2

V 2
+ δ4

V 4
+ δ6

V 6
+ δ8

V 8
+ O(V −10),

B0 = b1

V
+ b3

V 3
+ b5

V 5
+ b7

V 7
+ O(V −9). (82)

Up to the given order we find from the minimization of the
Hartree-Fock ground-state energy

na = 1

2
− 2

V 2
+ 10

V 4
− 64

V 6
+ 466

V 8
+ O(V −10), (83)

B0 = 1

V
− 4

V 3
+ 24

V 5
− 168

V 7
+ O(V −9). (84)

The expansion reproduces the Hartree-Fock result for the or-
der parameter na with an accuracy of at least 6 × 10−3 (6 ×
10−4) for V/t � 4 (V/t � 5), and for B0 with an accuracy of
better than 2 × 10−2 (3 × 10−3) for V/t � 4 (V/t � 5).

Hartree-Fock theory reproduces the exact order parame-
ter in the strong-coupling limit to second order in 1/V , see
Eq. (42). Corrections are of the order 1/V 4. Moreover, it gives
the correct leading order for B0, see Eq. (22), with corrections
of the order 1/V 3.

With these parameters, the Hartree-Fock ground-state en-
ergy can be calculated up to 15th order in t/V ,

eHF
0 (V � 1) = − 1

V
+ 2

V 3
− 8

V 5
+ 42

V 7
− 256

V 9
+ 1712

V 11

−12192

V 13
+ 90858

V 15
+ O(V −17). (85)

The expansion reproduces the Hartree-Fock result for the
ground-state energy with an accuracy of better than 10−2

(10−4) for V/t � 3 (V/t � 4).

205133-8



ACCURATE LOCALIZATION OF … PHYSICAL REVIEW B 106, 205133 (2022)

In the strong-coupling limit, the Hartree-Fock approxima-
tion reproduces the exact ground-state energy to leading order
in 1/V , see Eq. (19), with corrections of the order 1/V 3.

3. Hartree-Fock single-particle gap

When we add a particle or hole to the half-filled state, the
variational parameters do not have to be readjusted because
the Hartree-Fock energy is minimal at n(0)

a and B(0)
0 . Correc-

tions of the form x(0) → x(0) + p/L thus lead to corrections
of the order 1/L in EHF,min

0 whereas the dominant correction
of order unity results from the additional particle or hole.
Therefore, we obtain the Hartree-Fock chemical potentials
from the Hartree-Fock band structure

μ+
1 = EHF,min

0 (L + 1) − EHF,min
0 (L) = V + Ē (π/2),

μ−
1 = EHF,min

0 (L) − EHF,min
0 (L − 1) = V − Ē (π/2) (86)

with Ē (π/2) = 2V na(V ), and the gap for single-particle exci-
tations becomes

�HF
1 (V ) = 4V na(V ), (87)

where na(V ) is the Hartree-Fock order parameter. For explicit
expressions for na(V ) for small and large interactions, see
Eqs. (79) and (83), respectively.

In particular, the leading orders in the strong-coupling ex-
pansion read

�HF
1 (V � t ) = 4V na(V ) ≈ 2V − 8t2

V
. (88)

In strong coupling, Hartree-Fock theory reproduces only the
leading order of the exact single-particle gap, see Eq. (36).
The domain walls in the charge-density wave are mobile in the
exact solution whereas they are localized in the Hartree-Fock
description. Therefore, at strong coupling, the Hartree-Fock
approximation lacks a gap contribution of the order unity.

Since this basic problem is not cured by second-order
perturbation theory, we refrain from a comparison of the
Hartree-Fock and exact single-particle gaps.

D. Density-density correlation function

In Hartree-Fock theory, the four-fermion term in the
density-density correlation function in Eq. (51) factorizes,

CNN
HF (r) = δr,0

L

∑
l

〈n̂l〉(1 − 〈n̂l〉) − (1 − δr,0)

L

∑
l

|Pl+r,l |2,
(89)

where Pl,m is the single-particle density matrix,

Pl,m = 〈ĉ+
l ĉm〉. (90)

For V = 0 the single-particle density matrix is the Fourier
transform of the momentum distribution,

P(0)
l,m = 1

L

∑
k

e−ik(l−m)nk = P(0)
m,l = [

P(0)
l,m

]∗
. (91)

Upon Fourier transformation we thus find

C̃NN
0 (q) = 1

2
− 1

L

∑
k

nknk+q = |q|
2π

(92)

and thus K (V = 0) = 1 for the Luttinger parameter, as ex-
pected.

For V � 0 and r �= 0, Hartree-Fock theory gives

Pr+l,l = 1

L

∑
k∈RBZ

e−ikr[〈â+
k âk〉 + (−1)r〈â+

k+π âk+π 〉

× (−1)l [1 + (−1)r]〈â+
k+π âk〉], (93)

where 〈â+
k+π

âk〉 = 〈â+
k âk+π

〉 = ukvk is real, 〈â+
k âk〉 = u2

k , and
〈â+

k+π
âk+π

〉 = v2
k = 1 − u2

k = 1 − 〈â+
k âk〉, in agreement with

Eq. (29). Then, for r �= 0,

1

L

∑
l

|Pl+r,l |2 = |P1(r)|2 + |P2(r)|2,

P1(r) = (−1)r 1

L

∑
k∈RBZ

e−ikr

+ ro

L

∑
k∈RBZ

e−ikr

(
1 + |ε̃(k)|

E (k)

)

= ro

L

∑
k∈RBZ

e−ikr |ε̃(k)|
E (k)

,

P2(r) = re

L

∑
k∈RBZ

e−ikr 2V na

E (k)
, (94)

where ro = (1 − (−1)r )/2 and re = (1 + (−1)r )/2 are unity
when r is odd or even, respectively, and zero else. Perform-
ing the Fourier transformation, the density-density correlation
function in the Hartree-Fock approximation becomes

C̃NN
HF (q) = 1

4
− 1

2

∫ π/2

−π/2

dk

2π
F (k, q),

F (k, q) = ε̃(k)

E (k)

ε̃(k + q)

E (k + q)
+ 2V na

E (k)

2V na

E (k + q)
(95)

in the thermodynamic limit. For V = 0, the result (92) is
recovered; note that E (k + q) is always positive but ε̃(k + q)
changes its sign at k = π/2 − q (k = −π/2 − q) when q > 0
(q < 0).

In the limit of strong coupling, the Hartree-Fock ground-
state becomes exact to leading order in 1/V . Therefore, the
strong-coupling result for the spin-spin correlation functions
becomes

C̃NN(q,V � 1) = 2(1 − cos(q))
V 2

. (96)

This corresponds to the fact that, to leading order in 1/V ,
the single-particle density matrix is finite only for nearest
neighbors.

V. SECOND-ORDER HARTREE-FOCK APPROXIMATION

In this section, we calculate the second-order correction
in the interaction around the Hartree-Fock solution presented
in the previous section. This concept was applied earlier
to the extended Hubbard model around the limit of high
dimensions [32].

First, we formally expand the ground-state energy and
the momentum distribution to second order, and identify
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the required excited states. Next, we argue that second-
order Hartree-Fock theory is applicable for spinless fermions
for all interaction strengths, and calculate the second-order
corrections to the ground-state energy and the momentum
distribution. Finally, we discuss the metal-insulator transition
in second-order Hartree-Fock theory.

A. Formal expansion

For the derivation of the formal second-order expansion,
we assume that na and B0 are fixed [31].

1. Perturbation operator

We write

Ĥ = T̂ + V̂ = ĤHF + V̂⊥ (97)

with the perturbation operator

V̂⊥ = V̂ − V̂ H − V̂ F. (98)

2. Ground state to first order

The ground state to first order in the perturbation reads

|ψ0〉(1) = |0〉 +
∑

|n〉�=|0〉
|n〉 〈n|V̂⊥|0〉

E (0)
0 − E (0)

n

. (99)

Here,

|0〉 =
∏

k∈RBZ

α̂+
k |vac〉 (100)

is the Hartree-Fock ground state for given parameters B0 and
na. Moreover, |n〉 are exact excited states of the Hartree-Fock
Hamiltonian ĤHF, see Eq. (72) for its diagonalized form.

3. Ground-state energy to second order

To second order in V , the ground-state energy reads

E (2)
0 (V ) = EHF

0 (V ) +
∑

|n〉�=|0〉

|〈n|V̂⊥|0〉|2
E (0)

0 − E (0)
n

. (101)

All first-order contributions are contained in the Hartree-Fock
energy, i.e.,

〈0|V̂⊥|0〉 = 〈0|V̂ − V̂ H − V̂ F|0〉 = 0 (102)

by construction.

4. Quasiparticle occupation numbers

We are interested in the expectation values of the occupa-
tion number operators in the Hartree-Fock basis, n̂p,α = α̂+

p α̂p

and n̂p,β = β̂+
p β̂p,

np,α = (1)〈ψ0|n̂p,α|ψ0〉(1),

np,β = (1)〈ψ0|n̂p,β |ψ0〉(1). (103)

We know that (p ∈ RBZ)

α̂+
p α̂p + β̂+

p β̂p = â+
p âp + â+

p+π âp+π . (104)

We can use particle-hole symmetry at half band-filling, see
Eq. (29), to show that

â+
p âp + â+

p+π âp+π = 1. (105)

Therefore,

np,α = 1 − np,β (106)

for all interactions so that it is sufficient to calculate np,β .
Since the excited states |n〉 in Eq. (99) are eigenstates of the

occupation number operators we have 〈0|n〉 = 0 and n(0)
p,β = 0.

Thus, we readily find

np,β (V ) =
∑

|n〉�=|0〉

|〈n|V̂⊥|0〉|2(
E (0)

0 − E (0)
n

)2 〈n|n̂p,β |n〉. (107)

An important quantity is the density of quasiparticle excita-
tions of the bare Hartree-Fock ground state,

nβ (V ) = 1

L

∑
p∈RBZ

np,β (V ) (108)

with 0 � nβ � 1/2. Second-order perturbation theory re-
mains meaningful for all interaction strengths if nβ (V ) � 1/2
for all V , see Sec. V B.

5. Excited states

Since V̂ contains two creation and two annihilation opera-
tors, the intermediate excited states |n〉 can contain one or at
most two particle-hole excitations,

|n1〉 ≡ |k; p〉 = β̂+
k α̂p|0〉,

|n2〉 ≡ |k1, k2; p1, p2〉 = β̂+
k1
α̂p1

β̂+
k2

α̂p2
|0〉 (109)

with k1 < k2 and p1 < p2. The excitation energies are

E (0)
0 − E (0)

n1
= −(E (k) + E (p)),

E (0)
0 − E (0)

n2
= −(E (k1) + E (k2) + E (p1) + E (p2)).

(110)

The matrix elements are calculated in the Supplemental
Material [36]. In particular, we have

〈0|V̂⊥|n1〉 = 0 (111)

so that only two-particle excitations need to be taken into
account.

6. Momentum distribution

It is sufficient to calculate the momentum distribution nk

for |k| � π/2 because particle-hole symmetry leads to nk =
1 − nk±π , see Eq. (29). Using Eq. (68) we find in second-order
Hartree-Fock theory

nk = u2
k〈α̂+

k α̂k〉 + v2
k 〈β̂+

k β̂k〉

= 1

2

(
1 + |̃ε(k)|

E (k)

)
− |̃ε(k)|

E (k)
nk,β , (112)

where we employed Eqs. (71) and (111). Therefore, it is
sufficient to calculate the quasiparticle density nk,β to derive
the Hartree-Fock momentum distribution.

We can use this relation to prove Eq. (49) for the mo-
mentum distribution in the strong-coupling limit. Since the
Hartree-Fock ground state becomes exact to leading order in
1/V , we use in Eq. (112) that nk,β = O(1/V 2), E (k) ≈ V , and
ε̃(k) ≈ 2ε(k) because V B0 ≈ 1.
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Note that weak-coupling perturbation theory in the absence
of CDW order leads to a logarithmically divergent momen-
tum distribution in the thermodynamic limit for |k| → π/2.
This divergence signals that the Fermi gas breaks down and
must be replaced by a Luttinger liquid [27]. To circumvent
this singularity, we later show the second-order Hartree-Fock
momentum distribution for a small but finite CDW order pa-
rameter, ninf

a = 10−6, even though the minimization leads to
na = 0 in the thermodynamic limit.

B. Almost-variational property

The Hartree-Fock approximation is a variational theory
that gives an upper bound to the exact ground-state energy for
all interaction strengths. For fixed na and B0, the second-order
Hartree-Fock energy provides a systematic energy correction
for weak interactions. Apparently, one would rather minimize
the full energy expression including the second-order term to
optimize the parameters B0 and na (“second-order Hartree-
Fock approximation”). Before we shall follow this route, we
give some arguments how this approach can be justified. In
fact, the optimal second-order Hartree-Fock energy does not
necessarily provide a true variational bound for all interaction
strengths but corrections are small in the limit nβ (V ) � 1/2,
which is the case for spinless fermions in one dimension for
all V where nβ (Vmax) ≈ 0.01, see Sec. VI.

As in quantum chemistry, we make the variational Ansatz
for the exact ground state

|ψ0〉 = |0〉 +
∑
n �=0

�n|n〉, (113)

where �n are complex coefficients and |n〉 are the Hartree-
Fock eigenstates. Since the Hartree-Fock states form a
complete set, the exact ground state can be written in this
form. If we restrict ourselves to the states in Eq. (109), we
recover the singlet-doublet (SD) approximation where up to
two particle-hole excitations of the Hartree-Fock ground state
|0〉 are included in |ψSD

0 〉.
The expectation value for the Hamiltonian reads

H (ψ0) = 〈ψ0|Ĥ |ψ0〉
= EHF

0 +
∑
n �=0

EHF
n |�n|2

+
∑
n �=0

(�∗
n〈n|V̂⊥|0〉 + �n〈0|V̂⊥|n〉)

+
∑

m,n �=0

�∗
n�m〈n|V̂⊥|m〉. (114)

The norm of the state |ψ0〉 is given by

N (ψ0) = 〈ψ0|ψ0〉 = 1 +
∑
n �=0

|�n|2. (115)

Next, we optimize the variational ground-state energy

E0 = H (ψ0)

N (ψ0)
(116)

with respect to �∗
n to find(

E0 − EHF
n

)
�n = 〈n|V̂⊥|0〉 +

∑
m �=0

〈n|V̂⊥|m〉�m, (117)

which is nothing but the Schrödinger equation expressed in
the Hartree-Fock basis.

We now assume that the last term in Eq. (117) is small. This
is justified in weak coupling when the amplitudes �m ∝ V are
small, or when the density of excitations is small for all V , as
is the case for spinless fermions in one dimension. At the same
level of approximation, we must replace E0 by EHF

0 to find(
EHF

0 − EHF
n

)
�̃n = 〈n|V̂⊥|0〉, (118)

which gives �̃n from second-order perturbation theory with
respect to the Hartree-Fock approximation,

�̃n = 〈n|V̂⊥|0〉
EHF

0 − EHF
n

, (119)

so that we recover Eq. (101) that was the basis of our consid-
erations. To be consistent, we had to approximate N (ψ0) ≈ 1.

While N (ψ0) ≈ 1 is guaranteed for small interaction
strengths, this is not obvious for large interactions. In the SD
approximation, we have

N
(
ψSD

0

) = 1 + 1

2
nβ (V ). (120)

Now that nβ (V ) � 1 for all interactions, corrections due to
the norm term are small. For the same reason, the last term in
Eq. (117) is small because it describes the scattering between
dilute quasiparticle excitations.

In sum, a meaningful second-order perturbation theory
around the Hartree-Fock solution requires dilute quasiparticle
excitations above the Hartree-Fock ground-state. For spinless
fermions in one dimension, the condition nβ (V ) � 1 is ful-
filled for all interaction strengths, and the ground-state energy
obeys an “almost-variational” property.

C. Ground-state energy and order parameter

The optimization of the ground-state energy must be done
numerically. The corresponding formulas are derived in the
Supplemental Material [36] for finite system sizes and in the
thermodynamic limit.

1. Hartree-Fock energy functional to second order

For our further analysis of the equations in the thermody-
namic limit, we introduce the variable

u = naV

1 + B0V
(121)

and use u instead of na as variational parameter. The energy
functional in the thermodynamic limit can be written as

e(2)
0 (B0, u,V ) = − 2

π
(1 + B0V )

√
1 + u2E

[
1

1 + u2

]
+V

[
1

4
+ B2

0 +
(

u(1 + B0V )

V

)2]
+ V 2

1 + B0V
ē(u), (122)
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where

ē(u) = −1

2

∫ π/2

−π/2

dk1

2π

∫ k1

−π/2

d p1

2π

∫ π/2

−π/2+k1−p1

d p2

2π

× |Ā(k1, p1 + p2 − k1; p1, p2)|2
Ē (k1) + Ē (p1 + p2 − k1) + Ē (p1) + Ē (p2)

−1

2

∫ π/2

−π/2

dk1

2π

∫ π/2

k1

d p1

2π

∫ π/2

π/2+k1−p1

d p2

2π

× |B̄(k1, p1 + p2 − k1 − π ; p1, p2)|2
Ē (k1) + Ē (p1 + p2 − k1 − π ) + Ē (p1) + Ē (p2)

with

Ē (k) =
√

ε(k)2 + (2u)2 (123)

and ε(k) = −2 cos(k) as before. Again, E [x] in Eq. (122) is
the complete elliptic integral of the second kind, see Eq. (75).
In addition

|Ā(k1, k2; p1, p2)|2 = Q̄1(u; k1, k2)Q̄1(u; p1, p2)

+Q̄2(u; k1, k2)Q̄2(u; p1, p2)

−2Q̄3(u; k1, k2)Q̄3(u; p1, p2),

|B̄(k1, k2; p1, p2)|2 = Q̄1(u; k1, k2)Q̄2(u; p1, p2)

+ Q̄2(u; k1, k2)Q̄1(u; p1, p2)

+ 2Q̄3(u; k1, k2)Q̄3(u; p1, p2) (124)

with

Q̄1(u; k1, k2) = 2 sin2[(k2 − k1)/2]

×
(

1 + ε(k1)ε(k2)

Ē (k1)Ē (k2)
− (2u)2

Ē (k1)Ē (k2)

)
,

Q̄2(u; k1, k2) = 2 cos2[(k2 − k1)/2]

×
(

1 − ε(k1)ε(k2)

Ē (k1)Ē (k2)
− (2u)2

Ē (k1)Ē (k2)

)
,

Q̄3(u; k1, k2) = sin(k2 − k1)

(
2u

Ē (k2)
− 2u

Ē (k1)

)
. (125)

2. Limiting cases

In the absence of a charge-density wave order, na = u = 0,
the energy function reads

e(2)
0 (B0, 0,V ) = − 2

π
(1 + B0V ) +

(
1

4
+ B2

0

)
V

+
(

− 2

3π3
+ 1

36π

)
V 2

1 + V B0
, (126)

see the Supplemental Material [36], with the correct second-
order coefficient, see Eq. (19), and B0 ≈ 1/π for V � 1. Since
the expression (126) leads to a diverging energy for V � 1,
the CDW order must be present above some critical interac-
tion strength.

For large interactions, the second-order correction does not
change the leading-order terms for the order parameter na,
nor for B0, see Eq. (83). However, the Hartree-Fock energy

to third order in 1/V is shifted towards the exact values,

eHF
0 (V � t ) ≈ − 1

V
+ 2

1

V 3
,

eHF,2nd
0 (V � t ) ≈ − 1

V
+

(
2 − 1

4

)
1

V 3
,

eexact
0 (V � t ) ≈ − 1

V
+ 1

V 3
, (127)

see the Supplemental Material [36].

D. Occupation numbers

As shown in the Supplemental Material [36], the occupan-
cies in second-order perturbation theory are given by

ns,β = n(1)
s,β + n(1)

−s,β + n(4)
s,β + n(4)

−s,β (128)

with

n(1)
s,β = V 2

2(1 + V B0)2

∫ π/2

s

d p1

2π

∫ π/2−p1+s

−π/2

d p2

2π

× |Ā(s, p1 + p2 − s; p1, p2)|2
[Ē (s) + Ē (p1 + p2 − s) + Ē (p1) + Ē (p2)]2

(129)

and

n(4)
s,β = V 2

2(1 + V B0)2

∫ π/2

s

d p1

2π

∫ π/2

π/2−p1+s

d p2

2π

× |B̄(s, p1 + p2 − s − π ; p1, p2)|2
[Ē (s) + Ē (p1 + p2 − s − π ) + Ē (p1) + Ē (p2)]2

(130)

in the thermodynamic limit. Apparently, the momentum dis-
tribution is inversion symmetric, ns,β = n−s,β .

For small interactions, the occupations of the upper
Hartree-Fock bands are small, of the order V 2. For large
interactions, they are equally small, of the order 1/V 2, because
Hartree-Fock theory for the ground state becomes exact to
leading order in 1/V . The maximum number of excited quasi-
particles can be expected to occur around the metal-insulator
transition.

E. Metal-insulator transition in second-order
perturbation theory

Here, we shall show that the order parameter is finite for
0 < V < V (2)

c,1 ≈ 0.21, where it is exponentially small. It ex-

actly vanishes in the region V (2)
c,1 < V < V (2)

c,2 ≈ 1.51 where it
jumps to a finite value with discontinuities in all observables,
including the ground-state energy.

1. Energy functional for small order parameter

For small u, we expand the energy functional,

e(2)
0 (B0, u,V ) ≈ − 2

π
(1 + B0V )

+V

[
1

4
+ B2

0 +
(

u(1 + B0V )

V

)2]
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+ (1 + B0V )u2

2π
(2 ln(u) − 1 − 4 ln(2))

+ V 2

1 + B0V
ē(u) (131)

with

ē(u � 1) = e(2)
0 + u2(α[ln(u)]2 + β ln(u) + γ ), (132)

where e(2)
0 = −2/(3π3) + 1/(36π ) from Eq. (19). Correc-

tions are of the order u4[ln(u)]2.
The coefficients are determined from a numerical fit for

(ē(u) − e(2)
0 )/u2 in the interval I = [0.01, 0.1] where the en-

ergy can be calculated with a relative accuracy of 10−10 using
MATHEMATICA [47]. We find

α = 0.1573, β = 0.3726, γ = 0.4121. (133)

Note that the three-parameter fit is fairly sensitive.

2. Nearest-neighbor transfer amplitude

The minimization of the energy expression in Eq. (131) at
u = 0 with respect to B0 leads to the third-order equation for
B0 ≡ B0(0,V ),

−2V

π
(1 + B0V )2 + 2B0V + 4B2

0V 2 − e(2)
0 V 3 + 2B3

0V 3 = 0.

(134)
B0(V ) decreases from its value B0(0, 0) = 1/π ≈ 0.318 to
B0(0,V = 1.6) ≈ 0.311, i.e., it remains essentially constant
up to moderate interactions.

When the order parameter for the charge-density wave is
finite, u > 0, and V < V (2)

c,1 , the corrections to the value at
u = 0 are exponentially small as in Hartree-Fock theory, see
Sec. IV, and we may use B0(u,V ) ≈ B0(0,V ) ≡ B0 in the
following.

3. Order parameter

When u �= 0, the minimization equation for u reduces to a
quadratic equation in y = − ln(u) > 0,

2(1 + B0V )3 + V 3(β + 2γ − 2(α + β )y + 2αy2)

= 2V

π
(1 + B0V )2(y + 2 ln(2)). (135)

The discriminant of the equation is negative in the range
0.231 ≈ V (2)

c,1 < V < V (2)
c,2 ≈ 1.54. Therefore, there is no

charge-density wave order between V (2)
c,1 and V (2)

c,2 .

The region 0 < V < V (2)
c,1 cannot be studied numerically

because the order parameter is exponentially small. Indeed,
for V → 0 we have

na(V � 1) ≈
(

1 + V

π

) 4

V
exp

(
−π

V
− (1 + απ3)

)
(136)

using B0 ≈ 1/π . Corrections in the exponent are of the or-
der of 6V . In comparison with the Hartree-Fock result to
leading order, see Eq. (79), the order parameter is smaller
by the factor exp(−απ3) ≈ 0.008 so that the already expo-
nentially small Hartree-Fock order parameter is reduced in
second-order perturbation theory by additional two orders of
magnitude. Numerically, na(V < V (2)

c,1 ) < 10−8.

While V (2)
c,1 cannot be identified numerically, we find that

V (2)
c,2 ≈ 1.515 (137)

from the numerical minimization of the full energy functional.
This value agrees very well with the value where the discrimi-
nant of the quadratic equation (135) becomes positive. At V (2)

c,2 ,

the order parameter jumps to a finite value, na(V = V (2)
c,2 ) ≈

0.085, in good agreement with the result from the calculation
for small u, nsmall u

a (V = V (2)
c,2 ) ≈ 0.07.

VI. COMPARISON

We start this section with some technical information about
the DMRG implementation. Second, we show the ground-
state energy and the single-particle density matrix for nearest
neighbors that do not signal the charge-density wave transi-
tion. It requires detailed information from Bethe Ansatz and
field theory on the finite-size corrections to the ground-state
energy to estimate the critical interaction from the ground-
state energy.

The metal-to-insulator transition is seen in the single-
particle gap and in the CDW order parameter that we discuss
next. Since both quantities display a Kosterlitz-Thouless be-
havior with an essential singularity at the critical interaction, it
is not possible to extract the critical interaction from finite-size
extrapolations reliably for any choice of boundary conditions.
The DMRG gap data for periodic boundary conditions and
odd particle numbers permit to reproduce the Bethe Ansatz
results for the leading-order finite-size corrections in the
metallic regime from which one can estimate the critical in-
teraction strength.

The correlation energy displays a maximum as a func-
tion of the interaction strength. However, its position is
not identical to the critical interaction. The momentum and
quasiparticle distributions and, finally, the density-density
correlation function provide the necessary information to ex-
trapolate reliably the critical interaction strength from the
Luttinger parameter and from the quasiparticle density.

A. DMRG technicalities

Before we start the comparison of analytic and numerical
results, we compile some technical remarks on the implemen-
tation of our DMRG code. Moreover, we introduce the notion
of natural orbitals and discuss their relation to the Hartree-
Fock levels.

1. Coding

We apply the real-space DMRG algorithm [33–35] to
the Hamiltonian (2). Since the model has a gapless en-
ergy spectrum up to the critical Coulomb coupling Vc = 2
in the thermodynamic limit, its numerical analysis requires
relatively high numerical accuracy for a reliable finite-size
scaling. Therefore, we keep the truncation error below δεTr =
10−8 for the whole range 0 � V � 8, and use a minimum
bond dimension D = 1024 [48,49]. For V > 2.5, the latter
condition results in a much lower truncation error, i.e., we find
δεTr = 10−14 . . . 10−10.
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We run between seven to eleven sweeps to acquire sym-
metric data sets in position space when expectation values of
zero-point and one-point correlation functions are calculated.
We use Davidson and/or Lanczos methods for the diagonal-
ization of the effective Hamiltonian and enforce a very tight
error threshold, i.e., the residual error is set to 10−10.

We apply periodic boundary conditions for system sizes
corresponding to an open-shell ground-state configuration.
To lift the ground-state degeneracy, we employ a very small
pinning field in the range of �pin = 10−4. In order to check
boundary effects, we also perform calculations for closed-
shell configurations, and occasionally for open boundary
conditions. The finite-size scaling analysis is carried out for
systems with up to L = 514 sites.

2. Single-particle density matrix and natural orbitals

DMRG provides the single-particle density matrix in posi-
tion space,

Pl,m = 〈ĉ+
l ĉm〉. (138)

Upon Fourier transformation, we have

P̃k,p = 〈â+
k âp〉. (139)

In the presence of a charge-density wave, the unit cell doubles,
and we thus find for |k|, |p| � π

P̃k,p = 〈â+
k âk〉δp,k + 〈â+

k âk±π 〉δp,k±π . (140)

Numerically, deviations are of the order 10−4.
To find the “natural orbitals”, we have to diagonalize the

2 × 2 matrices

M
k

=
(

1/2 0
0 1/2

)
+

(
nk − 1/2 dk

dk −(nk − 1/2)

)
(141)

in the reduced Brillouin zone, |k| � π/2, where we used
particle-hole symmetry, nk±π = 1 − nk , and abbreviated

dk = 〈â+
k âk±π 〉 = d∗

k . (142)

Note that the order parameter is the sum over the nondiagonal
matrix elements,

na = 1

L

∑
k∈RBZ

(dk + d∗
k ). (143)

The same type of diagonalization is carried out in Hartree-
Fock theory, see Sec. IV B, where nk − 1/2 is replaced by ε̃(k)
and dk by (−2V na), see Eq. (66). Due to this similarity, we
call the natural orbitals as the states in the upper and lower
Hartree-Fock band.

The eigenvalues of the matrix M
k

are the level occupancies
nk,α/β . They obey nk,α = 1 − nk,β due to particle-hole sym-
metry, see Eq. (106). Therefore, we shall only address the
occupation density nk,β of the upper Hartree-Fock band.

B. Ground-state energy at half band filling and
nearest-neighbor single-particle density matrix

1. Ground-state energy

In Table I we give the DMRG ground-state energy per
lattice site for systems with L = 8, 16, 32, 64, 128, 256, 512
sites at half band-filling, and compare it to the exact Bethe

TABLE I. Ground-state energy per lattice site for spinless
fermions for systems with L sites and V = 0, 0.8, 1.4, 2, 4 from
DMRG with a small symmetry-breaking pinning field. The last line
contains the exact ground-state energy obtained in the thermody-
namic limit from Bethe Ansatz.

L\V 0 0.8 1.4 2 4

8 −0.60357 −0.49729 −0.42832 −0.36857 −0.23184
16 −0.62842 −0.51846 −0.44599 −0.38208 −0.23435
32 −0.63458 −0.52371 −0.45036 −0.38529 −0.23448
64 −0.63611 −0.52502 −0.45145 −0.38606 −0.23448
128 −0.63649 −0.52535 −0.45172 −0.38624 −0.23448
256 −0.63659 −0.52543 −0.45178 −0.38628 −0.23448
512 −0.63661 −0.52545 −0.45180 −0.38629

BA −0.63662 −0.52545 −0.45180 −0.38629 −0.23444

Ansatz results [3,4] at V = 0, 0.8, 1.4, 2, 4. Apparently, the
convergence to the thermodynamic limit is very fast, and
the DMRG data are accurate to five (four) digits for V � 2
(V � 4).

In Table II we compare the ground-state energy per lattice
site from (second-order) Hartree-Fock approximation with
those from DMRG for L = 64 and to those from Bethe Ansatz
in the thermodynamic limit. It is seen that the second-order
Hartree-Fock provides very accurate results for V � 1.4, with
errors of about one percent. Even for large interactions, V =
4, the errors are below five percent. Although unwarranted by
a variational principle, the second-order Hartree-Fock ener-
gies are upper bounds to the exact energies.

Figure 1 shows the ground-state energy per lattice site
in the thermodynamic limit as a function of the interaction
strength. On the scale of the figure, the DMRG data for
L = 512 sites lie on top of the exact results. The Hartree-Fock
approximation becomes exact for small and large interactions,
and provides a very good estimate for the ground-state energy
even for intermediate interactions, see inset. The inclusion
of the second-order corrections improves the energy estimate
systematically for all interaction strengths.

TABLE II. (a) Ground-state energy per lattice site for spinless
fermions for L = 64 sites from Hartree-Fock (HF) and second-
order Hartree-Fock (HF 2nd) approximation and DMRG for V =
0.8, 1.4, 2, 4. (b) As in (a) but for the thermodynamic limit; exact
results are from Bethe Ansatz (BA).

Method\V 0.8 1.4 2 4

(a)
HF −0.51774 −0.43415 −0.36458 −0.22469
2nd HF −0.52368 −0.44502 −0.37339 −0.22729
DMRG −0.52502 −0.45145 −0.38606 −0.23448

(b)
Method\V 0.8 1.4 2 4

HF −0.51784 −0.43415 −0.36458 −0.22469
2nd HF −0.52414 −0.44568 −0.37339 −0.22729
BA −0.52545 −0.45180 −0.38629 −0.23444
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FIG. 1. Ground-state energy density for spinless fermions at half
band filling as a function of the nearest-neighbor interaction V from
Bethe Ansatz (BA), DMRG for L = 512 sites, and (second-order)
Hartree-Fock (HF, HF 2nd). Dashed and dotted lines correspond to
the small-V and large-V expansions in Eq. (19).

2. Nearest-neighbor single-particle density matrix

In Fig. 2 we show the nearest-neighbor single-particle den-
sity matrix B0(V ) from Bethe Ansatz, see Eq. (21), and its
limiting behavior for small and large interactions, see Eq. (22),
together with the results from second-order Hartree-Fock the-
ory and DMRG data for L = 512 sites. As for the ground-state
energy, the DMRG data lie on top the Bethe-Ansatz result on
the scale of the figure. Second-order Hartree-Fock theory is
exact for small and large interactions, and provides a good de-
scription for all interaction strengths. It is a mere coincidence
that second-order Hartree-Fock reproduces the exact value for
B0 right at the critical interaction strength, Vc = 2.

Neither the kinetic energy nor the ground-state energy are
critical quantities, i.e., their values in the thermodynamic are
readily obtained from DMRG with a high accuracy, and also

FIG. 2. Single-particle density matrix B0(V ) between nearest
neighbors as a function of the nearest-neighbor interaction V
from Bethe Ansatz (BA), including the small and large coupling
asymptotes, from DMRG for L = 512 sites, and from second-order
Hartree-Fock (HF 2nd). Dashed and dotted lines correspond to the
small-V and large-V expansions in Eq. (22).

second-order Hartree-Fock theory provides a fair estimate for
these quantities.

3. Finite-size scaling of the ground-state energy

For the XXZ model, the scaling of the ground-state energy
density as a function of system size L is known [50–52],

E0(L,V )

L
= e0(V ) + 1

L2

(
c(V ) + d (V )

ln(L)3
+ . . .

)
. (144)

It is important to note that the approach to the thermodynamic
limit depends on the choice of the boundary conditions. Open
boundary conditions introduce an additional and sizable first-
order term that dominates the terms in 1/L2 for small system
sizes. Therefore, to make use of Eq. (144), it is mandatory to
employ periodic boundary conditions.

For periodic boundary conditions, the ambiguity remains
whether L/2 is even or odd. To see this, we address the case
of noninteracting spinless fermions. For even L/2, the ground
state is doubly degenerate (open shell) while it is unique for
odd L/2 (closed shell). The corresponding expressions for the
ground-state energy for large L are

Eos
0 (L,V = 0)

L
= − 2

L

L/4−1∑
m=−L/4

cos(2πm/L)

= − 2

π
+ 2π

3

1

L2
+ O(1/L4),

E cs
0 (L,V = 0)

L
= − 2

L

(L−2)/4∑
m=−(L−2)/4

cos(2πm/L)

= − 2

π
− π

3

1

L2
+ O(1/L4), (145)

where we used the Euler-MacLaurin sum formula to expand
the finite sums in powers of inverse system size. Apparently,
cos(V = 0) = 2π/3 and ccs(V = 0) = −π/3 disagree.

On the other hand, the leading-order correction for the
XXZ model can be calculated in the metallic regime from
Bethe Ansatz and conformal field theory [50,51]

c(V ) = −c
π

6
u(V ),

u(V ) = 2
√

1 − (V/2)2

[
π

2 arccos(V/2)

]
(146)

with the central charge c = 1 for spinless fermions, and u(V )
as the velocity of the elementary excitations [5,6]. For nonin-
teracting fermions,

u(V = 0) = dε(k)

dk

∣∣∣∣
k=π/2

= 2 (147)

is the particle velocity at the Fermi point k = π/2.
Therefore, we find the slope c(V = 0) = −π/3 ≈ −1.047.
Equations (145) and (146) thus show that a comparison of
field-theory/Bethe-Ansatz predictions for finite-size correc-
tions is only meaningful for DMRG data obtained for odd L/2
(closed shell).

In Fig. 3 we show the quadratic coefficient c(V ) in
Eq. (144) from the extrapolation of the DMRG data
for the ground-state energy E0(L,V )/L for odd L/2,
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FIG. 3. Second-order coefficient c(V ) in Eq. (144) from the ex-
trapolation of DMRG data (L/2 odd, closed shell) in comparison
with the Bethe-Ansatz result (146). The horizontal line indicates the
critical value c(Vc ) = −π 2/6.

L = 10, 30, 66, 130, 258, 514, in comparison with the ana-
lytic result (146). The agreement is very good, and permits to
locate the transition from the criterion c(V = Vc) = −π2/6 ≈
−1.64493. A comparison with the extrapolated numerical
data gives V e

c = 2.02, within about one percent of the exact
value.

Note that this very good result is based on several facts.
First, the logarithmic corrections in Eq. (144) are known ana-
lytically. This decisively stabilizes the extrapolation of c(V ).
Second, the value for the maximal velocity uc = π is used
as input. Therefore, a lot of intelligence from conformal field
theory and from Bethe Ansatz enters the analysis. Thus, in
less fortunate circumstances, the scaling of the ground-state
energy in 1/L cannot be used to locate the quantum phase
transition.

C. Single-particle gap

1. Open-shell systems with periodic boundary conditions

In Fig. 4 we show the single-particle gap �1(L,V ) as a
function of the nearest-neighbor interaction V for system sizes
L = 32, 64, 128, 256, 512. Due to finite-size effects, the gap
is always finite, of the order 1/L, even in the metallic region,
0 < V < Vc = 2, and an extrapolation to the thermodynamic
limit is mandatory to determine the gap in the thermodynamic
limit.

As standard extrapolation scheme, we apply a polynomial
fit,

�1(L,V ) = �1(V ) + a1

L
+ a2

L2
(148)

to the DMRG data for even L/2 with �1(V ), a1, and a2 as
fit parameters. This fit appears to be somewhat naive in view
of the fact that the next-to-leading order corrections in the
Bethe Ansatz solution of the XXZ model are not necessarily
of order 1/L2 but can obey power laws L−γ with γ < 2, or
be of the order 1/(L ln(L)) at criticality [50]. However, the
simple polynomial fit is the least biased. We shall discuss

FIG. 4. Single-particle gap �1(L,V ) as a function of 1/L
for system sizes L = 32, 64, 128, 256, 512 from DMRG for V =
1.4, 1.8, 2.0, 2.3, 3. Lines are second-order polynomial fits, see
Eq. (148).

other extrapolation schemes for DMRG data for open bound-
ary conditions below.

System sizes with an even particle number N = L/2 lead to
an open-shell ground state at V = 0, i.e., it is doubly degener-
ate. Therefore, the gap is exactly zero at V = 0 in the absence
of a symmetry-breaking term. In this way, systems with even
L/2 minimize finite-size effects for small couplings.

In Fig. 5 we show the extrapolated single-particle gap as
a function of V from the polynomial fit together with the
exact result from Bethe Ansatz, see Eq. (34). The polynomial
fit leads to a (very small) finite gap for all V > 0, and the
sharp transition in the exact solution at Vc = 2 is smeared out,
as seen from the inset in Fig. 5, so that it is not possible
to determine Vc with high accuracy from the extrapolated
gaps. The standard polynomial extrapolation scheme does not
permit to locate transitions at finite interaction strengths. This
was shown recently for the Mott-Hubbard transition in the
1/r-Hubbard model [53].

FIG. 5. Single-particle gap �1(V ) in the thermodynamic limit
from the polynomial extrapolation of the gap data from DMRG
(crosses), in comparison with the exact Bethe Ansatz result (line).
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2. Closed-shell systems with periodic boundary conditions

The Bethe Ansatz solution for the XXZ model permits
to extract the finite-size corrections to the single-particle gap
[50,54]. As seen in Sec. II B, these Bethe Ansatz results can
be applied to the model of spinless fermions only for odd
particle numbers. Consequently, we have to study a closed-
shell ground state at half band filling with odd particle number
N = L/2. Now that the excited state must also have an odd
particle number, we must numerically study the ground state
with two additional particles, N = L/2 + 2.

In the XXZ model, the two spin-1 excitations are very far
from each other for large system sizes and we argue that the
two-particle gap

�XXZ
2 (L,V ) = 2

(
EXXZ

0 (S = 2, L,V ) − E0(S = 0, L,V )
)

(149)

is twice as large as the single-particle gap in the thermody-
namic limit,

�XXZ
1 (L,V ) = �XXZ

2 (L,V )

2
+ O(1/Lγ ), (150)

where corrections due the interaction of the excitations are of
order 1/Lγ with γ > 1. If this is the case, we can determine
the 1/L-correction to the single-particle gap from half of the
two-particle gap. To this end, we extrapolate the DMRG data
for spinless fermions

�2(L,V )

2
= E0(N = L/2 + 2, L,V )

− E0(N = L/2, L,V ) − 2V (151)

with a second-order polynomial in 1/L,

�2(L,V )

2
≈ �2(V )

2
+ s1(V )

L
+ s2(V )

L2
, (152)

and compare s1(V ) with the Bethe Ansatz result [50,54]

sBA
1 (V ) = 4π

(
1 − arccos(V/2)

π

)
×

(
2
√

1 − (V/2)2

[
π

2 arccos(V/2)

])
. (153)

Note that we work with the gap whereas the Bethe Ansatz
formulas are derived for μ+,XXZ

1 = �1/2, and we adjusted the
energy scale.

In Fig. 6 we compare the results for the slope s1(V ) in
Eq. (152) from the polynomial fit of the DMRG data for
�2(L,V )/2 and from the Bethe Ansatz expression (153). The
agreement is very good for small interactions but it dete-
riorates close to the transition. The criterion s1(V = Vc) =
(2π )2, corresponding to u(Vc) = π in the ground-state energy,
leads to the estimate V s

c ≈ 2.3 from the extrapolated data for
the slope s1(V ). The result deviates from the exact result by
some 15 percent. Therefore, the slope estimate is not very
accurate, apart from the fact that additional information from
the exact result is necessary to determine the value s1(Vc) at
the transition.

FIG. 6. Slope s1(V )/(2π ) in 1/L of half the two-particle gap
�2(V )/2, see Eqs. (151) and (152) from the extrapolation of the
DMRG data (dots), in comparison with the Bethe Ansatz result
(line) from Eq. (153). The horizontal line indicates the critical value
s1(Vc ) = (2π )2.

3. Open boundary conditions

For open boundary conditions, we must use the particle-
hole symmetric form of the interaction,

V̂phs =
L−1∑
l=1

(n̂l − 1/2)(n̂l+1 − 1/2). (154)

If we used the interaction in Eq. (4) adopted to a chain, excited
states at the boundaries would interfere so that the bulk gap
cannot be calculated from the ground-state energies at half
band filling and with plus/minus one particle. This is most
easily seen in the atomic limit, and will not be discussed any
further.

For the particle-hole symmetric Hamiltonian (2) on a
chain, analytic finite-size corrections to the single-particle gap
are not available. Therefore, we employ three different extrap-
olation schemes: polynomial, see Eq. (148), logarithmic,

�ln
1 (L,V ) = �1(V ) + b1

L

(
1 + b2

ln(L)

)
, (155)

and Mishra, Carrasquilla, and Rigol [55]

�MCR
1 (L,V ) = �1(V ) + c1/L

1 + 1/(2 ln(L) + c2)
, (156)

where b1,2 and c1,2 are fit parameters.
In Fig. 7 we compare the resulting gaps in the critical

region, 1.8 � V � 2.2 with the analytic result. Apparently,
neither of the extrapolations can reliably determine the crit-
ical interaction because the extrapolated gaps always open
smoothly. Without the exact result for comparison, we cannot
decide which of the three schemes is superior to the two oth-
ers. We examine extrapolation schemes for the single-particle
gap in more detail in the Supplemental Material [36] (see,
also, reference [56] therein).

D. Order parameter

In Fig. 8 we show the CDW order parameter from
DMRG as a function of the interaction for system sizes
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FIG. 7. Exact single-particle gap �1(V ) in the thermodynamic
limit in the range 1.8 � V � 2.2, in comparison with the result of
three extrapolations of the DMRG data for open boundary conditions
for L = 64, 128, 256, 512: polynomial (blue), Eq. (148), logarithmic
(red), Eq. (155), and Mishra et al. (green), Eq. (156).

L = 128, 256, 512. It is seen that the finite-size corrections are
large for V � 2.5 but marginal for V � 3. This indicates that
very large system sizes are required to perform an accurate
extrapolation to the thermodynamic limit in the vicinity of the
critical interaction, Vc = 2.

As seen from the inset, Hartree-Fock theory predicts a
continuous increase of the order parameter for V > V HF

c =
0+. Second-order Hartree-Fock theory predicts a jump to a
substantial CDW order at V (2)

c,2 ≈ 1.5. The curves start to
coalesce around V � 4 where the strong-coupling expansion
becomes applicable. In general, second-order Hartree-Fock
theory overestimates the CDW order parameter but less
severely than the standard Hartree-Fock approximation.

Finite-size effects are prominent in the DMRG data for the
charge-density wave order parameter even for systems with
L = 512 sites. This does not come as a surprise because the
CDW order parameter displays the same essential singularity

FIG. 8. Charge-density wave order parameter na(L,V ) as a
function of the nearest-neighbor interaction V from Bethe Ansatz
(BA) and DMRG for L = 128, 256, 512 sites. Inset: Comparison of
(second-order) Hartree-Fock and DMRG data for L = 512 sites.

FIG. 9. Correlation energy at half-band filling as a function of
the nearest-neighbor interaction V from Bethe Ansatz (full line) and
from DMRG for L = 512 sites (crosses).

as the single-particle gap, see Eq. (42). As in the case of the
single-particle gap, the second-order polynomial fit for the
finite-size extrapolation,

na(L,V ) = na(V ) + d1

L
+ d2

L2
(157)

with na(V ), d1, and d2 as fit parameters, leads to a smooth
curve for na(V ), in contrast to the exact solution where the
order sets in at Vc = 2. Therefore, the critical interaction
strength cannot be deduced from the order parameter. We
face the same difficulties for the single-particle gap that also
displays an essential singularity at the transition.

E. Correlation energy

The correlation energy can be calculated exactly from
Bethe Ansatz results, see Sec. III D. It goes to zero both for
small and large interactions because the ground state is given
by a single-particle product state in both cases, namely, a
Slater determinant for free fermions at V = 0 and a charge-
density wave with a particle on every other lattice site for
V → ∞. Therefore, there is (at least) one extremum for finite
V at Vcorr > 0.

In Fig. 9 we show the correlation energy as a function of
the interaction strength from Bethe Ansatz and from DMRG
for L = 512 sites. The overall agreement is very good. It is
seen that the correlation energy is always negative. The single-
particle contributions generically overestimate the interaction
because they do not take the correlation hole into account that
forms around the particles but only the exchange hole. The
correlation energy has a (single) minimum but it is not located
at the critical interaction but at Vcorr,min ≈ 2.4, larger than Vc =
2 by some twenty percent.

Equation (45) shows that various quantities contribute to
the correlation energy. The ground-state energy and its deriva-
tive do not signal the metal-insulator transition whereas the
order parameter na(V ) is finite for V > Vc. The mixture of
regular and critical quantities shifts the minimum of the cor-
relation energy away from Vc. This example shows that not
every extremum in a physical quantity can be used to locate
Vc with high precision.
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(a)

(b)

FIG. 10. Momentum distribution nk for V = 1.4, 1.8, 2.3, 4
(a) from DMRG for L = 512 lattice sites and (b) from second-order
Hartree-Fock approximation.

F. Momentum distribution

Next, we discuss the momentum distributions, which have
not been determined analytically from Bethe Ansatz for all
k and V thus far. In Fig. 10 we show the momentum distri-
bution nk = 〈â+

k âk〉. The points are dense enough to warrant
continuous lines. It is known that the curves for V > 0 are
continuous in the thermodynamic limit with nk=±π/2 = 1/2
due to particle-hole symmetry, see Eq. (29) in Sec. III E.
The momentum distributions from DMRG in Fig. 10(a) and
from second-order Hartree-Fock theory in Fig. 10(b) look
very similar for V = 1.4, 1.8, 2.3, 4 but deviations close to the
Fermi wave numbers ±π/2 are clearly visible. Only for weak
interactions, V � 1, and for large interactions, V � 6, the
curves for nk (V ) in DMRG and (second-order) Hartree-Fock
theory coalesce.

To identify the quantum phase transition from the DMRG
data for the momentum distribution, we analyze nk (V ) in the
vicinity of the Fermi point kF = π/2. We rewrite Eq. (50) as

ln (1/2 − nπ/2+2π/L (V )) = ln[b(V )] + α(V ) ln (2π/L),
(158)

and extrapolate the DMRG data for the left-hand-side of
Eq. (158) in ln(L) to determine the fit parameters α(V ) and
b(V ). The result is shown if Fig. 11.

The analytic Luttinger exponent α(V ) from Eqs. (46) and
(47) is reproduced from DMRG for V � 1.9 but it is un-

FIG. 11. Generalized Luttinger liquid exponent α(V ) for spinless
fermions at half-band filling as a function of the nearest-neighbor
interaction V extrapolated from DMRG and Bethe Ansatz (full line
for 0 � V � Vc = 2). Inset: parameter b(V ).

derestimated close to the transition so that the condition
αDMRG(V α

c ) = 1/4 leads to V α
c = 2.2. Likewise, the param-

eter b(V ) = 1/2 is observed with an accuracy of 10−3 deep in
the Luttinger liquid but deviations of more than one percent
occur for V � V β

c = 1.8. In this way, we locate the transition
in the region 1.8 = V β

c < Vc < V α
c = 2.2, within ten percent

of the critical interaction.

G. Quasiparticle distribution

More intriguing than the momentum distribution is the
quasiparticle distribution nk,β . As we discussed in Sec. VIA2,
nk,α/β describes the occupation numbers for the natural or-
bitals that we identify with the lower (k, α) and upper (k, β )
Hartree-Fock bands.

We show the quasiparticle distribution from DMRG in
Fig. 12(a) and from second-order Hartree-Fock in Fig. 12(b).
For V < Vc the DMRG data in Fig. 12(a) display a maximum
at the band edges whereas in the insulating phase there are
two maxima. Therefore, the onset of two maxima indicates the
CDW transition, and a first estimate for the critical interaction
strength can be deduced from the finite-size data, V tm

c ≈ 2.15.
The inset shows that the second-order results are in quanti-

tative agreement with those from DMRG at weak coupling,
V = 0.8, which serves as a significant consistency check
for both methods. As seen from a comparison of the main
Figs. 12(a) and 12(b), the agreement between DMRG and
second-order Hartree-Fock rapidly deteriorates for larger in-
teractions, V � 1. Even in the limit of strong interactions, the
second-order Hartree-Fock approximation does not reproduce
the DMRG data for the quasiparticle distribution. Although
the curves look similar, they substantially differ quantitatively,
by a factor of ten and more for V � 2. In essence, Hartree-
Fock severely underestimates the total density of quasiparticle
excitations nβ (V ) defined in Eq. (108).

To see this in more detail, we show the density of quasi-
particle excitations nβ (V ) as a function of the interaction
V in Fig. 13. It is seen that the second-order Hartree-Fock
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(a)

(b)

FIG. 12. Quasiparticle distribution function nk,β for V =
1.4, 1.8, 2.3, 4 (a) from DMRG for L = 512 lattice sites and (b) from
second-order Hartree-Fock approximation. Note the factor ten differ-
ence in the values on the ordinate. Inset: DMRG and second-order
Hartree-Fock for V = 0.8.

theory is reliable only for V � 1. The quasiparticle density in
Hartree-Fock theory displays a maximum just before and a
jump discontinuity right at V (2)

c,2 ≈ 1.5, in agreement with the
results in Sec. V E. This observation indicates that nβ (V ) is a
sensitive quantity to locate the CDW transition. Moreover, we
see that n(2)

β (V ) < 0.011 so that the condition for a dilute gas

of quasiparticles, n(2)
β (V ) � 1/2 is always fulfilled. There-

fore, second-order Hartree-Fock theory is applicable for all
interaction strength and is “almost variational”, see Sec. V B.

The DMRG data for the quasiparticle density in Fig. 13
show that nβ (V ) < 0.035, i.e., it is never more than seven
percent of its maximal value of one half. Therefore, the sys-
tem can be viewed as a vacuum state with a dilute gas of
quasiparticle excitations, even though second-order Hartree-
Fock theory is not sufficient for its description beyond weak
interactions.

As seen in Fig. 13, the quasiparticle density is maximal
close to the critical interaction strength, Vc = 2, so that we
could use the maximum of the quasiparticle density to locate
the exact CDW transition from a finite-size extrapolation. It

FIG. 13. Quasiparticle density nβ (V ) as a function of V from
DMRG for L = 128, 256, 512, and from second-order Hartree-Fock
theory.

turns out, however, that the finite-size scaling is logarithmic,
which limits the accuracy to several percent.

To determine Vc more accurately, we recall that

na(V ) = 1

L

∑
k∈RBZ

(〈â+
k âk+π 〉 − 〈â+

k+π âk〉). (159)

The exponential behavior of na(V ) close to the transition
implies that most terms in the sum have a logarithmic de-
pendence on system size. However, this does not exclude that
some terms have an algebraic scaling in 1/L that is more
suitable for finite-size extrapolations. In our analysis, we use
the maximal value of the quasiparticle distribution

nmax,k
β (L,V ) = Max

k
nk,β (L,V ) (160)

to locate such special k values for a given interaction strength,
see Fig. 12.

As seen in Fig. 14, the maximal value nmax,k
β (L,V ) in-

creases from zero for weak interactions up to a maximal value
near the critical interaction strength and decreases down to
zero for large interactions. We thus determine the maximum

FIG. 14. Values of the maxima in the quasiparticle den-
sity nmax,k

β (L,V ) as a function of V from DMRG for L =
32, 64, 128, 256, 512. The continuous lines are a sixth-order poly-
nomial fit for the region around the maximum.
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FIG. 15. Extrapolation of the maxima position in the quasi-
particle density as a function of 1/L from DMRG for L =
64, 128, 256, 512. The continuous line is a fit to a second-order
polynomial in

√
1/L.

of nmax,k
β (L,V ),

V max
β (L) = Max

V
nmax,k

β (L,V ). (161)

In Fig. 14 we show nmax,k
β (L,V ) together with a sixth-order

polynomial fit in the vicinity of V = 2 to locate the positions
V max

β (L) for system sizes L = 32, 64, 128, 256, 512. In this
way, we locate V max

β (L) with high accuracy.
Next, we extrapolate the positions of the maxima to the

thermodynamic limit. In Fig. 15 we show V max
β (L) as a func-

tion of inverse system size together with a square-root fit,

V max
β (L) = V qp

c + v1√
L

+ v2

L
, (162)

where V qp
c , v1, and v2 are fit parameters. The square-root ex-

trapolation is motivated by the fact that the Luttinger liquid is
characterized by algebraic singularities. Indeed, the Luttinger
parameter is K (Vc) = 1/2 at the transition. The extrapolation
results in V qp

c = 2.0008 ± 0.019, in agreement with the exact
value for the critical interaction with at most one percent
deviation. The extrapolation of the maxima position in the
quasiparticle density provides a successful route to determine
the critical interaction strength with high accuracy.

A more traditional route to determine the transition traces
the breakdown of the Luttinger liquid, as already utilized for
the finite-size corrections of the ground-state energy and of
the gap. The Luttinger parameter K (V ) directly monitors the
Luttinger liquid, as seen from the momentum distribution.
Indeed, an accurate calculation of Luttinger exponent K (V )
from the density-density correlation function permits to locate
the transition with an accuracy of three percent, as we shall
show next.

H. Density-density correlation function

Lastly, we address the density-density correlation func-
tion, Eq. (51). We show its Fourier transform, Eq. (53), from
DMRG for L = 512 sites and V = 1.8, 2.3, 4 in Fig. 16. It is
seen that the structure factor C̃NN(q,V ) shows the expected
behavior, see Sec. III F. It vanishes at q = 0 with a finite slope

FIG. 16. Structure factor C̃NN(q,V ) from DMRG for L = 512
sites for V = 1.4 (black), V = 2.3 (green), and V = 4 (blue). Left
inset: Structure factor C̃NN

0 (q) from DMRG for L = 32 sites and the
analytic result (92) for V = 0 (red line). Right inset: Structure factor
C̃NN(q,V ) from DMRG for L = 512 sites for V = 6 and the analytic
result (96) for strong coupling (red line).

for all V . It diverges for |q| → π in the Luttinger-liquid phase,
and remains finite for all q in the CDW phase.

The insets of Fig. 16 show C̃NN(q,V ) for V = 0 and for
V = 6, in comparison with the leading-order results for weak
and strong coupling, see Eqs. (92) and (96). At V = 0, the
agreement is excellent already for L = 32 sites. For strong
coupling, the agreement at V = 6 is already very good but
it is clearly seen that the corrections to order 1/V 3 are impor-
tant. This not only quantitatively applies at the Brillouin zone
boundaries, q = ±π , but also qualitatively close to q = 0.
Within Hartree-Fock theory, C̃NN

BA (q → 0) ∼ q2 whereas the
exact density-density correlation function displays a kink at
q = 0, C̃NN

HF (q → 0) ∼ |q|. This reflects the fact that the do-
main walls are mobile in the exact solution but rigid within the

FIG. 17. Luttinger parameter K (V ) as a function of the in-
teraction from the Fourier-transformed density-density correlation
function at small q from DMRG, Eq. (54), for L = 256 sites (blue
crosses) and L = 512 sites (red crosses), in comparison with the
exact result (47) from Bethe Ansatz for 0 � V � Vc = 2 (black line).

205133-21



GEBHARD, BAUERBACH, AND LEGEZA PHYSICAL REVIEW B 106, 205133 (2022)

Hartree-Fock approximation. The freely mobile quasiparticles
lead to a small-q behavior resembling that of free fermions.

The main advantage of the density-density correlation
function lies in the fact that it permits to determine the Lut-
tinger parameter K (V ) with high accuracy. In Fig. 17 we
show the exact result for K (V ) as a function of V from Bethe
Ansatz, Eq. (47), in comparison with DMRG data for L = 256
and L = 512 sites. It is seen that the finite-size effects are of
the same order of magnitude as the accuracy of the data. The
agreement with the exact result is very good for V � 1.95,
with deviations close to the transition. The field-theory cri-
terion, K (Vc) = 1/2 [27], leads to V LL

c = 2.06. The analysis
of K (V ) permits to locate the critical interaction with an
accuracy of three percent.

VII. CONCLUSIONS

A summary and a short outlook close our presentation on
the charge-density wave transition for spinless fermions in one
dimension.

A. Summary

In this paper, we study spinless fermions in one dimen-
sion with nearest-neighbor interaction V and nearest-neighbor
transfer matrix element (−t ) (t ≡ 1) at half band filling.
We use the Hartree-Fock approximation to first and second
order in the interaction and the numerical density-matrix
renormalization group (DMRG) for rings with up to 514
sites and compare the data with exact results from Bethe
Ansatz in the thermodynamic limit. In particular, we in-
vestigate the ground-state energy per lattice site e0(V ), the
nearest-neighbor single-particle density matrix B0(V ), the
single-particle gap �1(V ), and the charge-density wave order
parameter na(V ). For the ground-state energy and the gap, ex-
act analytical formulas are available for the leading finite-size
corrections in the metallic phase.

In addition, DMRG and second-order Hartree-Fock theory
permit to calculate the single-particle density matrix and the
density-density correlation function for all distances and thus
provide the momentum distribution nk , the quasiparticle dis-
tribution nk,β , and the structure factor C̃NN(q,V ).

Hartree-Fock theory provides a good upper bound to
the ground-state energy that is improved for all interaction
strengths by including second-order corrections. Second-
order Hartree-Fock theory is applicable for all interaction
strengths because the density of quasiparticles is very small so
that second-order Hartree-Fock theory is almost variational.

In contrast to other exactly solvable one-dimensional mod-
els, spinless fermions display a charge-density-wave (CDW)
transition at a finite value, Vc = 2. In standard Hartree-Fock
theory, the CDW transition is predicted to set in at any fi-
nite interaction, reflecting the perfect nesting situation at half
band-filling. Second-order Hartree-Fock theory predicts a dis-
continuous CDW transition at V (2)

c,2 ≈ 1.51; the ordered phase

around V = 0 is reduced to the region 0 < V < V (2)
c,1 ≈ 0.21

and is characterized by a tiny order parameter. Therefore,
second-order Hartree-Fock theory improves the description of
spinless fermions considerably, both qualitatively and quanti-
tatively.

Quantitatively reliable information about the CDW tran-
sition is obtained from DMRG on large systems. The exact
ground-state energy density and nearest-neighbor single-
particle density matrix do not display any singularities and
are almost perfectly reproduced for all interaction strengths
by DMRG for up to 514 sites. Likewise, the gap and the
CDW order parameter are obtained with good accuracy from
a finite-size extrapolation of the DMRG data, except for the
critical region where the gap and the CDW order parameter
display essential singularities. Therefore, different strategies
have to be designed to locate the quantum phase transition
accurately.

In this paper, two strategies are designed that permit to de-
termine the critical interaction strength. The traditional route
focuses on the breakdown of the Luttinger liquid. Results from
conformal field theory and the Bethe Ansatz for the finite-size
corrections of the ground-state energy and the gap lead to
useful but not very accurate estimates for Vc. Moreover, these
estimates require a lot of a priori knowledge from the exact
solution. Instead, the traditional derivation of the Luttinger
parameter from the momentum distribution, nk (L,V ), and,
more accurately, from the structure factor at small momenta,
C̃NN(q → 0,V ), leads to V LL

c = 2.06, only three percent off
the exact result. The second strategy to determine the CDW
transition point with high accuracy utilizes the maxima of the
quasiparticle distribution nk,β (L,V ). For L → ∞, nmax,k

β (V )
peaks at Vc. The finite-size extrapolation of DMRG data for
up to L = 512 sites leads to an agreement with one percent
accuracy, V qp

c = 2.0008 ± 0.019.
The density of quasiparticles is small also for the exact

solution, nmax,k
β (V ) � 0.035 � 0.5. This implies that the sys-

tem may be viewed as a vacuum state with a dilute gas of
excitations. This observation ties in with the fact that dynamic
correlation functions for the XXZ model can be expressed in
terms as a series of 2n-spinon excitations that is dominated by
the first few terms.

B. Outlook

The comparison with exact results from the Bethe Ansatz
for spinless fermions in one dimension demonstrates that
it is possible to locate Kosterlitz-Thouless transitions at fi-
nite interaction strengths from sophisticated extrapolations
of DMRG data. Therefore, the strategies and extrapolation
schemes proposed here can reliably be applied to noninte-
grable models in one dimension. The gapless phase of such
models is described by a Luttinger liquid. As shown in this
paper, the quantum phase transition to a gapped phase can be
detected by monitoring the Luttinger parameter obtained from
the static density-density correlation function. Moreover, the
quasiparticle densities depend on the ground-state phase, so
that the occupation numbers of the natural orbitals provide
a sensitive probe for locating Kosterlitz-Thouless-type phase
transitions in generic one-dimensional many-particle models.

Our analysis also shows that second-order Hartree-Fock
theory provides a reasonable description for all interaction
strengths even in one spatial dimension. Therefore, we expect
that it is useful to extend and apply the method to two and
three dimensions where some peculiarities of one dimension
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are absent, e.g., freely moving domain walls in the strong-
coupling limit. Work in this direction is in progress.
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