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Multimodal antireflective coatings for perfecting anomalous reflection from arbitrary
periodic structures
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Metasurfaces and metagratings possess vast wave-manipulation capabilities, including reflection and re-
fraction of a plane wave into nonstandard directions. These require meticulously-designed subwavelength
meta-atoms in each period of the metasurface which guarantee unitary coupling to the desired Floquet-Bloch
mode or, equivalently, suppression of the coupling to other modes. Herein, we propose an entirely different
scheme to achieve such modal control. Extending the concept of antireflective coatings to enable simultaneous
manipulation of multiple modes, we show theoretically and experimentally that a simple superstrate consisting
of only several uniform dielectric layers can be modularly applied to arbitrary periodic structures to yield perfect
anomalous reflection. This multimodal antireflective coating (MMARC), designed based on an analytical model,
presents a conceptually and practically simpler paradigm for wave control across a wide range of physical
branches, from electromagnetics and acoustics to seismics and beyond.
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I. INTRODUCTION

Metasurfaces have been shown to possess wave control
capabilities not previously available, both for transmission
through them and for reflection from them [1–3]. These
typically-periodic structures consist of discrete subwave-
length cells (meta-atoms) which are meticulously designed to
provide the desired scattered fields. A higher density of meta-
atoms typically provides fields closer to the design goals at the
expense of increased design and fabrication complexity. The
wave control capabilities are often demonstrated by designs,
which reflect [4,5] or transmit [6–12] an incident plane wave
into a single nonstandard direction (anomalous reflection or
refraction), or into multiple nonstandard directions (beam-
splitting) [13].

Huygens’ metasurfaces (HMSs) [10–12] successfully pro-
duced anomalous refraction for moderate refraction angles,
but at extreme angles wave-impedance mismatch led to the ad-
ditional presence of a specularly reflected wave [12,14]. This
failure was overcome by omega bianisotropic metasurfaces
(OBMSs), which introduced an additional magnetoelec-
tric degree of freedom, leading to a metasurface capable
of producing perfect anomalous reflection, refraction and
beam splitting [13,15–17]; perfect in the sense that all
incident power is transferred to the desired anomalously
scattered wave(s). Comparing analytical solutions for both
the HMS [18] and the OBMS [19], we recently employed
a ray-optics interpretation of the process to demonstrate
the equivalence between an OBMS, and a HMS with a
virtual antireflective coating (ARC) [19,20]. The purpose
of the ARC (be it virtual [19] or real [21–24]) is, of
course, to utilize a planar dielectric surface to suppress a
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single, unwanted specularly reflected mode, which is done
by ensuring the resulting multiply-reflected waves add up
destructively.

In contrast to metasurfaces which generally require dense
meta-atoms, metagratings are characterized by sparse meta-
atoms consisting of individual scatterers distributed periodi-
cally over a surface [25]. By accounting for the interactions of
these scatterers with each other and with an incidence field,
their parameters are designed to produce desired Floquet-
Bloch wave amplitudes with very high efficiency [25–35].
Although metagratings provide an excellent alternative to
metasurfaces with densely packed meta-atoms, it should be
kept in mind that engineering of the periodic structure is still
necessary, and this might be challenging at certain operating
regimes and for certain physical systems [27,36]. In addition,
in many instances, a simplified design approach and/or man-
ufacturing inaccuracies can lead to fabricated devices that are
periodic, but exhibit suboptimal performance.

In this paper, we suggest and demonstrate experimentally
that the ARC principle of utilizing a planar surface to sup-
press a single mode can be broadened to suppressing multiple
modes (Fig. 1). That is, the task of modal suppression that
for metagratings was performed by a periodic array of in-
dividual scatters, can be performed by a simple dielectric
stack which we refer to as a multimodal antireflective coating
(MMARC). Since the dielectric layers of the MMARC are
uniform, the Floquet-Bloch modes must be produced by a
separate periodic surface to which the MMARC is affixed
(Fig. 1). We will refer to this separate surface as a “basic
periodic surface” (BPS). The only requirement on the BPS
is that it be periodic with the desired period, so that it can
produce Floquet-Bloch waves in the desired directions. Once
the BPS is given, it is not tampered with; the design applies
only to the MMARC layers which are adjusted to produce
the desired Floquet-Bloch amplitudes of the scattered wave, a
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FIG. 1. A d-periodic, impenetrable, simple basic periodic sur-
face (BPS) for reflecting a normally incident wave into directions
±θref and 0◦. (a) Without the MMARC, the amplitudes of these FB
reflected waves are finite. (b) With a properly designed MMARC, all
but the desired FB wave are suppressed. The MMARC consists of M
uniform dielectric layers; the thickness of layer m is h(m), its upper
surface is at y = y(m), and its relative permittivity is ε (m)

r . ηρ
p is the

relative power coupled to reflected mode p.

paradigm which can open up a myriad of novel wave-control
possibilities.

This BPS-MMARC approach introduces several appealing
features. First, a MMARC can be designed for any arbitrary
BPS, including surfaces that have not undergone specialized
design procedures; in fact, they can take many forms (in terms
of geometry and material composition), be irregular within the
period, and they certainly need not adhere to homogenization
[37,38]. Second, the MMARC can be applied after-the-fact
to perfect the performance of suboptimal structures, being an
independent superstrate module employed without any modi-
fication to the original BPS. In this sense, the MMARC can be
considered as complementing metasurfaces or metagratings,
since the MMARC can be designed to perfect them in cases of
inferior performance. Third, since the BPS is given and only
then the MMARC is designed to obtain the desired effect, the
BPS is essentially “decoupled” from the design, affecting only
the properties of the MMARC. This is in contrast to standard
devices in which all components of the structure participate
in the design simultaneously. Lastly, and perhaps most impor-
tantly, the elementary wave physics employed in propagation
through layered media, on which MMARC synthesis relies,
makes this solution applicable to a wide variety of physical
systems, ranging from electromagnetic and optical devices to
acoustic components and seismic scenarios.

Before tackling analytical aspects of the MMARC, we
emphasize again that the MMARC concept is not associated
with a specific BPS, nor with a metasurface, nor with a meta-
grating. Instead, it represents a new path towards manipulating
fields by merely adjusting the properties of homogeneous
slabs, a process that is universally applicable to any wave-
based discipline. Only these slabs are adjusted; there is no
tailored periodic configuration that participates in the design
as would be required in metasurface and metagrating synthe-
sis. It is this modular and generally applicable enhancement
approach which, as mentioned above, could certainly com-
plement metasurface and metagrating (as well as other BPS)
design. This essence of the MMARC concept is expected to
provide fresh insights and a useful framework for synthesizing
alternative wave-deflecting systems.

II. ANALYTICAL MODEL

To facilitate this concept and showcase its merits, we begin
by devising an efficient analytical model for determining the
characteristics of the uniform dielectric layers of the MMARC
needed to obtain desired anomalous effects. This model would
calculate the fields scattered from the BPS-MMARC combi-
nation for different layer configurations, and would employ
parametric variation schemes to choose an optimum configu-
ration. Consider, then, a BPS that is invariant in the z direction
with periodicity d along x, coated below by a metallic layer to
assure reflection (Fig. 1). For transverse magnetic (TM) po-
larization, the magnetic field H = Hzẑ, while the electric field
E will not contain a z component. The BPS is coated above
by a MMARC consisting of M dielectric layers, where layer
m is characterized by dielectric constant ε (m)

r and thickness
h(m) = y(m) − y(m−1). In accordance with the Floquet-Bloch

(FB) theorem, a plane wave Hz,inc(x, y) = H0eikx0xe−ik(M+1)
y0 y

incident in region M + 1 on the BPS-MMARC system at
an angle θinc will be scattered into a discrete spectrum of
(propagating and evanescent) waves,

H (M+1)
z (x, y) = Hz,inc +

∞∑
p=−∞

ρpeikxpxeik(M+1)
yp y, y > y(M ), (1)

and the transverse and longitudinal wavenumbers of the pth
mode in the mth layer are given, respectively, by

kxp = k sin θinc + 2pπ/d, k(m)
yp = (

k(m)2 − k2
xp

)1/2
. (2)

d = λ/| sin θref − sin θinc| is the BPS periodicity, θref is the
design anomalous reflection angle given by the p = 1
value of

cos θp = k(M+1)
yp

k(M+1)
=

√
k2 − k2

xp

k
, (3)

the wave number k = 2π/λ, λ is the wavelength in free space,
k(m) = k[ε (m)

r ]1/2 is the wave number in layer m, an e−iωt time
dependence is assumed, and the modal reflection coefficients
ρp are, as yet, unknown.

In order to keep the geometry simple, normal incidence
(θinc = 0) will be assumed, along with θref > 30◦, which lead
to three values of p for which kyp is real: p = [−1, 0, 1]
[13], corresponding to waves propagating towards θp =
[−θref, 0, θref] (red arrows in Fig. 1); all other terms in Eq. (1)
represent evanescent waves. The goal of the analytical model
is to determine the efficiencies ηρ

p = |ρp|2 cos θp/ cos θinc with
which power is coupled from the incident wave to each of the
scattered waves. Straightforward optimization algorithms can
then be employed to determine, say, the h(m) for which perfect
anomalous reflection is attained: η

ρ
−1 → 0, η

ρ
0 → 0, η

ρ
1 → 1.

Formulation of the analytical model will be facilitated by
employing an auxiliary air region of thickness h(0) between
the BPS and the MMARC (Fig. 2). Eventually, to match
the actual configuration, the limit h(0) → 0 will be taken.
The mixing of the Floquet-Bloch modes is assumed to occur
within this air region by virtue of the periodicity along its
lower boundary. It is worth noting that this is different from
a configuration in which the auxiliary region material itself
varied periodically [39], the latter being incompatible with
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FIG. 2. FB wave interactions in an auxiliary region between
the MMARC and the BPS. In these interactions, multiply-reflected
waves −1, 0, and 1 (corresponding to the FB indices of propagating
waves in Fig. 1) produce FB discrete Spectrum(−1), Spectrum(0),
and Spectrum(1). The components of these spectra are related to the
terms Sp,q of the scattering matrix.

decoupling the mixing region from the adjacent MMARC
layers.

The general solutions for the H field in the mth MMARC
layer and in the auxiliary (m = 0) region are

H (m)
z (x, y) =

∞∑
p=−∞

eikxpx
[
A(m)

p e−ik(m)
yp y + B(m)

p eik(m)
yp y

]
,

y(m−1) < y � y(m), 0 � m � M, (4)

where y(−1) ≡ 0. Each term in the sum represents a superpo-
sition of a downward wave (the A(m)

p term) and an upward
wave (the B(m)

p term) which satisfy the Helmholtz equation in
each layer. The unknown coefficients A(m)

p , B(m)
p , ρp may be

determined from the boundary conditions that require conti-
nuity of H (m)

z and E (m)
x = [iZ/(kε (m)

r )]∂H (m)
z /∂y across each

interface, where Z is the impedance of free space. The detailed
expressions for E (m)

x are derived in Appendix A as Eqs. (A8),
(A9), and the boundary conditions are given in Eqs. (A14)
to (A17). For layers m > 0 above the auxiliary region, owing
to the orthogonality of the eikxpx functions over the period d ,
these boundary conditions are satisfied separately for each
specific FB mode p. However, these modes are coupled to
each other in the auxiliary region.

From Eq. (4), the H field in the auxiliary region m = 0,
above the BPS, is

H (0)
z (x, y)=

∞∑
p=−∞

eikxpx
[
A(0)

p e−ik(0)
yp y+B(0)

p eik(0)
yp y

]
, 0 � y � y(0).

(5)

Because of the periodicity of the lower boundary (BPS) of
the auxiliary region, an additional condition is required in that
region which serves to describe the coupling of the modes one
to another. This additional condition will be derived with the
aid of a ray optics model. Although the rays in this model
can only represent propagating waves, the generalization to
include evanescent waves will be made clear below. Consider,
then, the downward incident ray of Fig. 2 (green) that has

propagated through the MMARC and the auxiliary region. We
know that this ray is scattered by the BPS into Spectrum(0) of
multiple Floquet-Bloch (FB) rays, with the three propagating
rays labeled by their FB indices −1, 0, and 1. For example, ray
1 (red) may be traced upward to the MMARC. While a branch
of this ray will be transmitted back through the MMARC to
the incidence region, another branch will be reflected from
the MMARC back to the BPS where it will again be multiply-
scattered from the BPS into Spectrum(1). Although the rays of
Spectrum(1) are in the directions of the rays of Spectrum(0),
their magnitudes and phases will be different since they were
excited by “incident” rays in different directions. This would
be the case, as well, for Spectrum(−1) which is excited by
ray −1 (cyan), and for Spectrum(0) which is excited by ray
0 (green). It is clear, then, that the wave in the auxiliary
region that is propagating, say, in direction 1 is composed of
contributions from downward “incident” waves in the −1, 0,
and 1 directions. If these “incident” wave amplitudes were
unitary, then these contributions would simply be the terms
S1,−1, S1,0, S1,1 of the scattering matrix referenced to the ori-
gin (x = 0, y = 0) of our coordinate system (see Fig. 2). Since
these “incident” wave amplitudes are instead A(0)

−1, A(0)
0 , A(0)

1 ,
the amplitude of the wave reflected in the 1 direction from the
surface at x = 0, y = 0 would satisfy

B(0)
1 eikx,1xeik(0)

y,1 y = S1,−1A(0)
−1eikx,−1xe−ik(0)

y,−1y + S1,0A(0)
0 eikx,0xe−ik(0)

y,0 y

+ S1,1A(0)
1 eikx,1xe−ik(0)

y,1 y, x = 0, y = 0 (6)

or more generally

B(0)
p =

∞∑
q=−∞

SpqA(0)
q . (7)

The Sqp are essentially the S parameters de-embedded to the
origin (0,0). It is important to note that Eq. (7) is related to the
region m = 0, or the “auxiliary” region which is composed
of air. It was important to define this region as consisting of
air, since it is only for such a background region that the S
parameters are defined in the full wave computation programs.
Even if the thickness h(0) of the auxiliary region is 0 as in
Fig. 1(b), Eq. (7) still holds.

The result in Eq. (7) is not limited to the propagating
rays used for demonstration purposes in Fig. 2; it includes
evanescent waves as well, which we have found to be essential
for the fidelity of the model. For some surfaces, the Spq can
be found in closed form [18,19,31,34,35,38]; otherwise, they
are readily provided by full-wave commercial programs as
byproducts of their solution for scattering from a periodic
surface [40]. Hence, we consider them as known for a given
BPS, and use them as our starting point for designing the
MMARC. This further highlights the modularity of our solu-
tion: Various MMARCs can be considered for the same BPS
without requiring recalculation of these Spq parameters.

As detailed in Appendix A 4, by truncating the infinite
sums in Eqs. (1), (4), and (7) to sums from −P to P (P =
2 was found to yield sufficient accuracy for our analytical
results), the boundary conditions provide the same number
of equations as the number of unknown coefficients. (Note
that even after the truncation, several evanescent modes are
included in the analysis.) After letting h(0) → 0, this would
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permit all of the unknowns to be found as a solution to a linear
system of simultaneous equations (Appendix A 4), and in par-
ticular the coupling efficiencies ηρ

p that we wish to optimize
for anomalous reflection.

For a given BPS (which generally would not provide the
sought-for anomalous reflection), these ηρ

p are clearly related
to the physical characteristics of the MMARC. In particular,
and as mentioned earlier, the modes’ cumulative propagation
throughout the stratified media, and interaction with the BPS,
would determine the result of the modal interference in free
space. For simplicity, and because not all substrate materials
are commercially available, it will be assumed that the mate-
rial properties ε (m)

r of each layer, and the number of layers
M, are given, so that ηρ

p = ηρ
p (h(m) ), 1�m� M. We utilize

this formulation as a basis for solving the inverse problem:
determination of the MMARC layer thicknesses h(m) which
provide the sought-for anomalous reflection values of ηρ

p ,
accomplished via a simple parametric-sweep-based algorithm
(see Appendix B).

We note that although the presented formalism utilizes sim-
ple ray optics, this approach rigorously captures the essence of
a given BPS without requiring details of its underlying struc-
ture. This observation forms an important building block in
facilitating the universal and modular nature of the proposed
solution, and could indeed be useful for similar wave analyses
in other physical domains.

III. RESULTS AND DISCUSSION

To demonstrate the proposed scheme and highlight its ver-
satility, we utilize it to realize MMARCs for various types of
BPSs and anomalous reflection functionalities. It is clear that
each additional layer in the MMARC provides an additional
degree-of-freedom h(m) for attaining the desired anomalous
reflection. Since the ε (m)

r are often limited by available in-
ventory, we constrain ourselves to two types of low-loss
printed-circuit-board (PCB) substrate materials, arranged in
alternate layers: Rogers RO3010 (εr = 10.2) and RO3003
(εr = 3) [41]. All configurations will be investigated for a
reflection angle θref = 70◦ and a frequency of 20 GHz. It is
apparent, though, that the methodology is entirely applicable
to waves in any portion of the electromagnetic spectrum.

Several types of BPS will be considered in this section.
These include printed circuit boards (PCBs) with periodi-
cally distributed metallic strips, blazed surfaces, arrays of
shorted parallel plate waveguides, and periodic arrays of
multiple dielectrics. This will demonstrate the universal
capability of a MMARC to produce perfect anomalous re-
flection, independent of the type of BPS to which it is
applied.

A. Versatile diffraction engineering

We consider first the simple BPS of Fig. 3 consisting of
three metal strips of different widths printed on a grounded
dielectric substrate εr = 3. This configuration is typical of
many recent metasurfaces and metagratings (especially at
microwave frequencies), thus forming a representative case
study for practical applications [28,29,42–45]. As part of the
BPS, we protect the metal strips from above by an additional

FIG. 3. One period of a BPS consisting of three metal strips of
widths s, sa, 3s printed on a grounded dielectric substrate of thickness
T = 60 mil ≈1.524 mm that is covered by a dielectric substrate
with the same material of thickness T1. s = d/9, sb = 3s − sa. Also
shown are the full-wave-calculated mode-coupling results for this
BPS alone (i.e., without a MMARC), for two sets of values of T1

and sa.

substrate with the same dielectric constant. This also plays
the role of distancing the upper face of the BPS from the
thin-metal-induced evanescent waves of higher order, thereby
maintaining the validity of the truncation of Eq. (4) which
accounts only for low-order evanescent modes [46]. Two
configurations are considered for the BPS in Fig. 3, denoted
as PCB-1 and PCB-2 in the figure. These differ in the spe-
cific dimensions of both the metallic strips and the protective
cover. The corresponding coupling efficiencies ηρ

p = |Sp0|2
are shown as well in the inset. It should be emphasized that
the size and locations of the metallic strips in Fig. 3 were
chosen with no operational goal whatsoever. For the PCB-1
configuration, for example, the strip widths are simply s, 2s,
and 3s with a separation of s. The fact that a MMARC will
be found to produce perfect anomalous reflection from such a
simple BPS will demonstrate the versatility of the method.

Since the BPS alone does not produce perfect anoma-
lous reflection (ηρ

1 = 0.45 for PCB-1 and η
ρ
1 = 0.32 for

PCB-2), it is desired to find a MMARC to coat the BPS
so that the combined structure achieves η

ρ
1 →1, η

ρ
−1=η

ρ
0 →0.

The PCB-1 configuration for the BPS shown in Fig. 3 is
first considered for M = 3 [Figs. 4(a) and 4(c)] and M =
5 [Figs. 4(b) and 4(d)] MMARC layers. Resolving the
optimal layer dimensions based on the model and method-
ology outlined in Sec. II (see also Appendix B) leads to
the enhanced BPS-MMARC configurations and resulting
anomalous reflection performance shown in Figs. 4(a) and
4(b): h(m)/λ = [0.452, 0.225, 0.104], η

ρ
1 = 0.94 for M = 3;

h(m)/λ = [0.02, 0.04, 0.08, 0.15, 0.01], η
ρ
1 = 0.99 for M =

5. Indeed, as apparent from the plots, utilizing more de-
grees of freedom (larger M) may lead to improved solutions,
providing η

ρ
1 values closer to unity for smaller overall

thicknesses. The success of the analytical model may be
seen in Figs. 4(c) and 4(d) which compare its Hz(x, y) re-
sults to those of CST in each of the media for these two
MMARCs [47]. For each configuration, the presence of sur-
face waves (white arrows) is apparent. Such surface waves,
which are implicitly excited by our BPS-MMARC solu-
tion, had to be specifically designed into previous solution
methods [13,48].
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FIG. 4. Anomalous reflection solutions for M = 3-layer [(a) and
(c)] and M = 5-layer [(b) and (d)] MMARC configurations, PCB-1
BPS of Fig. 3. [(a),(b)] The MMARC layers and anomalous reflec-
tion results. [(c),(d)] Hz(x, y) as computed by the analytical model
and by full-wave CST simulations. Green and blue layers in the
MMARC correspond to Rogers RO3010 (εr = 10.2) and RO3003
(εr = 3), respectively.

The excellent agreement between the analytical predictions
and the full-wave computations in Fig. 4 demonstrates the
ability to design a MMARC to coat a simple, arbitrarily cho-
sen periodic surface in order to produce the desired anomalous
reflection.

The potpourri of BPS-MMARC configurations in Fig. 5
provides insight into the diversity of functionality and
BPS-types to which the MMARC may be applied. For
example, just as MMARCs coated a BPS in Fig. 4 to
produce perfect anomalous reflection in the θref direction,
Fig. 5(a) displays a MMARC coating the same BPS to
produce a beam that is “perfectly” split into the ±θref

directions.
The BPS in Figs. 5(b) and 5(c) is the PCB-2 BPS config-

uration of Fig. 3, so that for the bare BPS, η
ρ
−1 ≈ 0 which is

one of the requirements for anomalous reflection. It might be
expected that using this BPS would provide a “headstart” for
anomalous reflection, and that a relatively simple MMARC
would suffice. Such a simple MMARC is indeed shown in
Fig. 5(b), where only a single layer of relatively minute thick-
ness 0.058λ provides the anomalous reflection η

ρ
1 = 0.97. It

should be emphasized, though, that this starting point does
not prevent us from devising a MMARC that would actually
reverse the direction of the original beam to the η

ρ
−1 direction.

This stems from contributions to η
ρ
−1 from waves in other

directions that only exist in the presence of the MMARC (see
Fig. 2). To demonstrate this, Fig. 5(c) displays a MMARC,
synthesized using the methodology described above, which
coats the same PCB-2 BPS, and produces η

ρ
−1 = 0.90; almost

enough to be considered oppositely-directed anomalous re-
flection! That is, instead of a “standard” design target η

ρ
1 = 1

for which the reflection angle is 70◦, the MMARC succeeded
in directing the reflection to −70◦, this despite the fact that
without the MMARC the BPS produced practically no wave
in that direction.

It should be emphasized that the MMARC can provide
solutions for any type of periodic surface, including complex
surfaces composed of many meta-atoms. Figure 5(d) displays

FIG. 5. MMARC for various purposes and surface types.
For each case, the full-wave-calculated FB spectrum without
the MMARC is shown as an inset that includes the numerical
value of η

ρ

1 . The FB spectrum with the MMARC is shown
above the MMARC. (a) Beam splitting, PCB-1 BPS of
Fig. 3; h(m) = [0.06, 0.16, 0.11, 0.03, 0.18]λ. (b) “Headstart”
anomalous reflection, PCB-2 BPS of Fig. 3; h(1) =0.058λ.
(c) “Headstart” opposite-direction anomalous reflection, same BPS
as (b); h(m) = [0.026, 0.078, 0.107]λ. (d) Anomalous reflection,
phase-gradient BPS; h(m) = [0.025, 0.075, 0.125, 0.075, 0.025]λ.
(e) Anomalous reflection, bilinear sawtooth-shaped BPS;
h(m) = [0.053, 0.179, 0.109, 0.255, 0.094]λ. (f) Anomalous
reflection, tri-dielectric BPS; h(m) = [0.161, 0.054, 0.211]λ.

a phase-gradient metasurface consisting of an array of parallel
plate waveguides of different lengths [49,50] which, like any
phase-gradient metasurface, is incapable of perfect anoma-
lous reflection [16,51]. By itself, this structure produces η

ρ
1 =

0.76. Coating it with the MMARC produces the impressive
anomalous reflection η

ρ
1 = 0.99. Figure 5(e) demonstrates

that the BPS on which the MMARC is placed need not be
smooth. It displays one period of a saw-tooth-shaped con-
ducting surface with a MMARC that again produces perfect
anomalous reflection (ηρ

1 = 0.98). Finally, Fig. 5(f) demon-
strates that the MMARC solution also works well for a
dielectric-based BPS, yielding perfect anomalous reflection
(ηρ

1 = 0.97) for the given “tri-dielectric” composite. For each
configuration above, the optimum layer thicknesses and ηρ

p
values found by the analytical model differed by less than 1%
from the full-wave results, verifying the formulation’s fidelity.

The simulations described above assumed that any metal in
the BPS is zero-thickness PEC, and the dielectrics are lossless.
If 0.5 oz. copper with realistic conductivity is employed in-
stead [41], the full-wave-calculated result remains effectively
unchanged. Frequency response and material losses effects for
BPS-MARC configurations in Figs. 4 and 5 are detailed in
Appendix C. It is shown there that while dielectric loss may
naturally pose a greater challenge to our scheme, considering
its reliance on multiple reflections within the dielectric stack,
this can be mostly mitigated by proper inclusion of the ex-
pected loss into the analytical model itself (see Appendix C 1).
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FIG. 6. The fraction ηρ
p of power coupled from the incident wave

to each propagating FB wave as a function of the distance between
the PCB-2 BPS of Fig. 3 and a single-layer MMARC of thickness
0.053λ, dielectric constant 10.2.

B. Dynamic beam switching

Most of the results discussed above dealt with MMARC
design for anomalous reflection. It will be recalled that
the analytical model presented in Sec. II was derived with
the aid of an auxiliary region of thickness h(0) → 0, so that
the final MMARC location was adjacent to the BPS. Clearly,
since the MMARC principle relies on multiple reflections
between different media, the extent of the air gap h(0) could
have a profound effect on the scattering from the system. In-
deed, for most cases, once the MMARC has been determined
which produces perfect anomalous reflection for h(0) ≈ 0, that
MMARC can be placed at a certain finite distance from the
BPS (i.e., h(0) finite) to provide perfect specular reflection
[52]. That is, the angle of perfect reflection of the beam can
be switched by varying the distance of the MMARC from the
BPS.

This tunability which can be realized with the aid of piezo-
electric actuators that move the MMARC relative to the BPS
[53–55], is applied to two BPS-MMARC combinations in
Figs. 6 and 7. In each case, the power coupling efficiency
ηρ

p for each index p is plotted as a function of the separation
distance h(0) between the MMARC and the BPS. In Fig. 6, the
PCB-2 BPS is used (see Fig. 3) with a MMARC similar to
that of Fig. 5(b), while in Fig. 7, the PCB-1 BPS is used with
the MMARC of Fig. 4(b). Near the top of each figure, the
configuration of the MMARC relative to the BPS is shown
both for anomalous reflection and for specular reflection. In
each figure, the horizontal locations of these configurations
are near their respective h(0) values of the plot.

FIG. 7. The fraction ηρ
p of power coupled from the incident wave

to each propagating FB wave as a function of the distance between
the PCB-1 BPS of Fig. 3 and the five-layer MMARC of Fig. 4(b) with
thicknesses h(m)/λ = [0.02, 0.04, 0.08, 0.15, 0.01].

We note that the MMARC-based steering mechanism can
be devised with different levels of sensitivity, depending also
on the underlying BPS. In particular, in Fig. 6, the change
from anomalous reflection to specular reflection occurs over a
distance h(0) ≈ 0.2λ, while in Fig. 7, that change occurs over
a distance of only 0.8 × 10−3λ. This provides a path towards
integration of the proposed concept in a variety of applications
and operating regimes, where the required offset distances
with respect to the wavelength can be adapted to meet limita-
tions of the available displacement mechanisms in practice. In
spite of these sensitivity differences, the analytical predictions
agree well with the full-wave results. The analytical method is
therefore compatible with this beam switching method which
does not rely on such nonlinear components as diodes that
are associated with non-negligible losses [56–58], especially
at high frequencies [59]. As before, since the principles are
based on wave propagation through the layered MMARC,
they would be applicable to any wave-based discipline, in-
cluding these challenging spectral regions in the mm-wave,
THz, and optical regimes.

C. Experimental validation

Finally, to provide further support for the practical viability
of the proposed concept, we have fabricated a BPS-MMARC
prototype corresponding to that of Fig. 5(b) using commer-
cially available laminates, and characterized it experimentally
in a cylindrical near-field measurement setup. The details of
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FIG. 8. One period of the BPS-MMARC device that was mea-
sured to demonstrate the practical viability of the MMARC concept.
The coupling efficiency shown was computed by CST. 1 mil =.001
inch = 25.4μm.

this BPS-MMARC configuration are shown in Fig. 8, in-
cluding the 2-mil thick (≈0.0508 mm) Rogers 2929 Bondply
characterized by εr = 2.94, tan δ = 0.003 that was used to
bond the substrates together. The thickness of the single-layer
MMARC that was employed in the experiment is 30 mil
≈0.762 mm, or 0.0508λ at 20 GHz, which is the closest
commercially-available Rogers RO3010 laminate thickness
to the optimal value of 0.058λ obtained via our approach
[see Fig. 5(b)]. Note that these minor differences due to real-
istic implementation considerations (dimensions, loss), have
affected mildly the overall device efficiency, now predicted
in simulations to exhibit a 93% anomalous reflection effi-
ciency (Fig. 8) compared to the original 97% of Fig. 5(b).
Nonetheless, these figures of merit still exhibit a dramatic
improvement with respect to the original BPS, by a factor
of ≈2.8.

For comparison, scattering patterns from two prototypes
were measured; one from the BPS alone (PCB-1 BPS,
Fig. 3), and the other from the MMARC-enhanced BPS de-
vice (Fig. 8). Each prototype measured 30 cm × 22.5 cm
≈ 20λ × 15λ, fabricated using standard PCB manufactur-
ing procedures by PCB Technologies Ltd. The cylindrical
near-field measurements [35] were performed in our anechoic
chamber (MVG/Orbit-FR) using the setup shown in Fig. 9.
The device-under-test (DUT) was mounted on a foam stand
at a fixed distance D = 43 cm ≈28.6λ from the Gaussian
beam antenna (Millitech, Inc., GOA-42-S000094). A metal

Probe

R

Probe
Gaussian 

beam
antenna

y
z

x

FIG. 9. Experimental setup for measuring the scattering patterns
of the BPS-MMARC device.

(a) (b)

FIG. 10. Experimentally measured frequency response for the
configuration of Fig. 8. (a) Metal frame to prevent unwanted trans-
missions. (b) Simulated (solid) and measured (circles) η

ρ

1 with (red)
and without (blue) the MMARC. The lowest frequency in the plot is
near the cutoff frequency for the plotted mode.

frame with internal dimensions 22 cm × 17.5 cm ≈ 14.67λ ×
11.67λ was fastened to the stand in front of the DUT, to pre-
vent unwanted transmissions through the unpatterned edges of
the fabricated boards from hindering the measurements [see
Fig. 10(a)]. This 14.67λ dimension was sufficient to expose
about 9 periods of the BPS-MMARC device of Fig. 8 to
the Gaussian beam illumination. An open-ended waveguide
nearfield probe is located at a horizontal distance R = 79 cm
≈52.67λ from the DUT. The measurement is carried out with
the aid of a data acquisition module programed to azimuthally
rotate the DUT and the Gaussian beam antenna together from
−145◦ to 145◦ relative to the probe which is moved up and
down periodically. Thus, the probe effectively measures the
field over a cylindrical surface of radius R, the vertical axis
of which is centered at the prototype. This recorded nearfield
data is finally postprocessed with MiDAS data acquisition and
analysis software to produce the desired far-field pattern based
on the equivalence principle.

The measurements performed on the DUT were repeated
with the DUT removed, but with the limiting metal frame
in place. This provided a reference radiation pattern of the
Gaussian beam antenna, allowing the calculation of total in-
cident power on the DUT required for efficiency calculations.
All the measurements were performed in the frequency range
of 18 GHz to 22 GHz. The measured coupling efficiency for
mode p at frequency f was evaluated via [34],

ηρ
p ( f ) = Gp( f )

Gref( f )

1

cos θp
, (8)

where Gref( f ) denotes the measured reference gain (i.e.,
without the DUT) in the incidence (θin = 0) direction for
frequency f , and Gp( f ) denotes the gain of the wave scattered
from the DUT in the direction θp of Floquet-Bloch mode
p [see Eq. (3)]. This produced the measured frequency re-
sponses for p = 1 given in Fig. 10(b).

Comparing in Fig. 10(b) the full-wave simulated (solid)
and experimentally measured (circles) η

ρ
1 as a function of

frequency for the bare BPS (blue) and the MMARC-enhanced
device (red) clearly shows the substantial boost in anoma-
lous reflection efficiency facilitated by the MMARC super-
strate. The measured and simulated results display the same
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broadband behavior, providing further evidence of the ve-
racity of our approach. This relatively broadband behavior
may derive from the structural simplicity of only a single
MMARC layer (see Fig. 8). It is apparent that the MMARC-
enhanced measured coupling efficiency is about 10% lower
than the CST-simulated efficiency. (This number fluctuates
a bit over the measured frequency range.) We associate this
discrepancy with material parameter tolerances of the DUT.
Indeed, it was found that if the permittivity of the simulated
BPS and MMARC materials were reduced by 10% (a plau-
sible possibility considering previously reported permittivity
variations of similar Rogers laminates [60–62]), the simulated
efficiency would agree with the measured efficiency. Over-
all, we conclude that the MMARC performs well across the
band, increasing the measured (simulated) fraction of inci-
dent power coupled to the anomalous mode from η

ρ
1 = 0.33

(ηρ
1 = 0.31) to η

ρ
1 = 0.83 (ηρ

1 = 0.93) at the design frequency,
thus validating our concept.

IV. CONCLUSION

In summary, we have shown that multimodal antireflective
coatings (MMARCs) can be designed for arbitrary types of
periodic surfaces (BPS) to achieve perfect or near-perfect
anomalous reflection effects. Despite the simplicity of the
concept, we have demonstrated theoretically and experimen-
tally that such a rudimentary stack of homogeneous layers
can interfere strongly enough with the complex diffraction
pattern of the BPS to significantly change its spectral behav-
ior. This conclusion is not trivial, and reveals a mechanism
of interlaced Fabry-Perot resonators. The proposed modular
solution, circumventing the need for high-resolution structural
engineering, merely requires utilization of multiple reflections
in slabs with different wave velocities. Thus, it is expected to
allow similar “corrections” to beam deflecting devices in other
physical fields dominated by wave phenomena, e.g., acous-
tics or seismics, and provide an appealing route to enhance
applications in frequency regimes where subwavelength fab-
rication is challenging (optics, x-rays).

APPENDIX A: ANALYTICAL DERIVATIONS

1. The H field

For TM polarization, the H field is in the z direction. In the
uppermost (M + 1) region, this field is given by Eq. (1), and
in the other regions m, this field is given by Eq. (4). The ρp in
Eq. (1) and the A(m)

p , B(m)
p in Eq. (4) are unknowns to be deter-

mined by satisfying the boundary conditions. Equation (1) can
be placed in the form of Eq. (4) by recalling that it relates to
region number m = M + 1, letting ρp = B(M+1)

p , and setting
A(M+1)

p = 0. Then Eq. (1) becomes

Hz
(M+1)(x, y) = H0eikx0xe−ik(M+1)

y0 y

+
∞∑

p=−∞
B(M+1)

p eikxpxeik(M+1)
yp y, y > y(M ).

(A1)

2. Derivation of the E field

In general, the E field in medium m may be found from

E(m) = iZ

kε
(m)
r

∇ × H(m), (A2)

where Z = √
μ0/ε0 is the impedance of free space, and μ0, ε0

are the permeability and permittivity of free space. We will
be interested in the x component of E(m) since that is the
component parallel to the material interfaces. In medium m,
since there is only a z component of H,

Ex
(m)(x, y) = Z

∞∑
p=−∞

eikxpxC(m)
p

[
A(m)

p e−ik(m)
yp y − B(m)

p eik(m)
yp y

]
,

(A3)

where

C(m)
p ≡ k(m)

yp

kε
(m)
r

. (A4)

Then

E (M+1)
x (x, y) = ZC(M+1)

0 H0eikx0xe−ik(M+1)
y0 y

− Z
∞∑

p=−∞
C(M+1)

p B(M+1)
p eikxpxeik(M+1)

yp y. (A5)

The field equations (4), (A1), (A3), and (A5) may be summa-
rized as

H (m)
z (x, y) =

∞∑
p=−∞

eikxpx
[
A(m)

p e−ik(m)
yp y + B(m)

p eik(m)
yp y

]
,

y(m−1) � y � y(m), 0 � m � M, (A6)

Hz
(M+1)(x, y) = H0eikx0xe−ik(M+1)

y0 y

+
∞∑

p=−∞
B(M+1)

p eikxpxeik(M+1)
yp y, y > y(M ),

(A7)

Ex
(m)(x, y) = Z

∞∑
p=−∞

eikxpxC(m)
p

[
A(m)

p e−ik(m)
yp y − B(m)

p eik(m)
yp y

]
,

y(m−1) � y � y(m), 0 � m � M, (A8)

Ex
(M+1)(x, y) = ZC(M+1)

0 H0eikx0xe−ik(M+1)
y0 y

− Z
∞∑

p=−∞
C(M+1)

p B(M+1)
p eikxpxeik(M+1)

yp y, y > y(M ).

(A9)

3. The boundary conditions: Material interfaces

The boundary conditions require that the tangential com-
ponent of each field be continuous across each interface
y = y(m),

H (m)
z (x, y(m) ) = H (m+1)

z (x, y(m) ), 0 � m � M, (A10)

E (m)
x (x, y(m) ) = E (m+1)

x (x, y(m) ), 0 � m � M. (A11)
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The boundary condition along the top of the BPS at y = 0
will be discussed below. It is desired to utilize these boundary
conditions in the form of a linear system of simultaneous

equations that can be solved for the unknowns A(m)
p , B(m)

p .
Using Eq. (A6) in Eq. (A10) yields

∞∑
p=−∞

ei2π px/d
[
A(m)

p e−ik(m)
yp y(m)+B(m)

p eik(m)
yp y(m)−A(m+1)

p e−ik(m+1)
yp y(m) − B(m+1)

p eik(m+1)
yp y(m)] = 0, 0 � m � M − 1, (A12)

where Eq. (2) was used. Using Eq. (A6) and Eq. (A7) in Eq. (A10) yields
∞∑

p=−∞
ei2π px/d

[
A(m)

p e−ik(m)
yp y(m) + B(m)

p eik(m)
yp y(m) − B(m+1)

p eik(m+1)
yp y(m)] = H0e−ik(m+1)

y0 y(m)
, m = M. (A13)

But these equations must hold separately for the different orders of ei2πx/d . Therefore, Eqs. (A12) and (A13) may be written

A(m)
p e−ik(m)

yp y(m) + B(m)
p eik(m)

yp y(m) − A(m+1)
p e−ik(m+1)

yp y(m) − B(m+1)
p eik(m+1)

yp y(m) = 0, 0 � m � M − 1,−∞ < p < ∞, (A14)

A(m)
p e−ik(m)

yp y(m) + B(m)
p eik(m)

yp y(m) − B(m+1)
p eik(m+1)

yp y(m) = δp0H0e−ik(m+1)
y0 y(m)

, m = M,−∞ < p < ∞, (A15)

where δpq is the Kronecker delta function. These equations implement the continuity of the H field across the material interfaces.
The continuity of the E field across these interfaces will now be addressed.

Using Eq. (A8) in Eq. (A11) yields

A(m)
p C(m)

p e−ik(m)
yp y(m) − B(m)

p C(m)
p eik(m)

yp y(m) − A(m+1)
p C(m+1)

p e−ik(m+1)
yp y(m) + B(m+1)

p C(m+1)
p eik(m+1)

yp y(m) = 0, 0 � m � M − 1,−∞ < p < ∞.

(A16)

Using Eqs. (A8) and (A9) in Eq. (A11) yields

A(m)
p C(m)

p e−ik(m)
yp y(m) − B(m)

p C(m)
p eik(m)

yp y(m) + B(m+1)
p C(m+1)

p eik(m+1)
yp y(m) = δp0H0C

(m+1)
0 e−ik(m+1)

y0 y(m)
, m = M,−∞ < p < ∞. (A17)

The interface boundary conditions are therefore given by Eqs. (A14) to (A17).

4. Analytical solution

The linear equations which must be solved are Eqs. (A14) to (A17) and (7). Each of these contain infinite sums which must
be truncated in order to obtain a solution,

∞∑
p=−∞

→
P∑

p=−P

. (A18)

This implies that the “B” unknowns are B(m)
p , 0 � m � M + 1,−P < p < P, so that there are (M + 2)(2P + 1) unknowns for

“B”. The “A” unknowns are A(m)
p , 0 � m � M,−P < p < P, so that there are (M + 1)(2P + 1) unknowns for “A”. The total

number of unknowns is therefore (2M + 3)(2P + 1). The number of equations in Eqs. (A14) and (A15) is (M + 1)(2P + 1).
The number of equations in Eqs. (A16) and (A17) is also (M + 1)(2P + 1). The number of equations in Eqs. (7) is
2P + 1. Therefore, the total number of equations is (2M + 3)(2P + 1) which is the same as the number of unknowns,
so that the unknowns may be determined using standard methods for solving a system of simultaneous linear equations.
The equations are

A(m)
p e−ik(m)

yp y(m) + B(m)
p eik(m)

yp y(m) − A(m+1)
p e−ik(m+1)

yp y(m) − B(m+1)
p eik(m+1)

yp y(m) = 0, 0 � m � M − 1,−P � p � P, (A19)

A(m)
p e−ik(m)

yp y(m) + B(m)
p eik(m)

yp y(m) − B(m+1)
p eik(m+1)

yp y(m) = δp0H0e−ik(m+1)
y0 y(m)

, m = M,−P � p � P, (A20)

A(m)
p C(m)

p e−ik(m)
yp y(m) − B(m)

p C(m)
p eik(m)

yp y(m) − A(m+1)
p C(m+1)

p e−ik(m+1)
yp y(m) + B(m+1)

p C(m+1)
p eik(m+1)

yp y(m) = 0, 0 � m � M − 1,−P � p � P,

(A21)

A(m)
p C(m)

p e−ik(m)
yp y(m) − B(m)

p C(m)
p eik(m)

yp y(m) + B(m+1)
p C(m+1)

p eik(m+1)
yp y(m) = δp0H0C

(m+1)
0 e−ik(m+1)

y0 y(m)
, m = M,−P � p � P, (A22)

∞∑
q=−∞

SqpA(0)
q − B(0)

p = 0,−P � p � P. (A23)

The unknowns of greatest interest are the B(M+1)
p be-

cause they are equivalent to the amplitudes ρp of the
Floquet-Bloch field components in Eq. (1) which govern
the scattered field. For FB propagating components, instead
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of ρp it is preferable to employ the efficiency ηρ
p of cou-

pling of power from the incident wave to the FB reflected
wave p,

ηρ
p = |ρp|2 cos θp/ cos θinc. (A24)

The angle θp between the direction of propagation of the pth
FB wave and the y axis is defined by Eq. (3). From Eqs. (1)
to (2), a component of the FB series will be propagating (in

contrast to being evanescent) if k(M+1)
yp =

√
k2 − k2

xp is real.

For θinc = 0 and θref > 30◦, k(M+1)
yp is real for three values

of p,

p = [−1, 0, 1], θinc = 0, θref > 30◦. (A25)

For the cases considered herein, P = 2. The computations
required to compute the solutions of A(m)

p , B(m)
p , and sub-

sequently the fields and the power coupling efficiencies,
were performed by a Matlab program. This program requires
a data file containing the S parameters Sqp,−P � q � P,

−P � p � P.

APPENDIX B: OPTIMIZATION SCHEME

As stated, it is assumed that the number M of MMARC
layers is given, and these layers arranged alternately
from the bottom up with material with dielectric con-
stant 10.2, dielectric constant 3, dielectric constant 10.2,
etc. Therefore, the only degrees of freedom in the ma-
terial are the layer thicknesses h(m). The coupling effi-
ciencies in Eq. (A24) are therefore functions of these
thicknesses,

ηρ
p = ηρ

p (h(m) ), 1 � m � M. (B1)

The goal of the optimization process is to solve the inverse
problem: To determine the h(m) which produce desired values
of ηρ

p , where the possible values of p are given in Eq. (A25).
For the case of anomalous reflection, the target values of
ηρ

p are

η
ρ
1 = 1, η

ρ
−1 = η

ρ
0 = 0. (B2)

Since the sum of these efficiencies is unity, it is sufficient to
find the h(m) which produce

η
ρ
1 (h(m) ) = 1. (B3)

We employ a simple in-house algorithm for accomplish-
ing this in two stages: a low-resolution stage followed by a
high-resolution stage. These stages will now be considered
separately. They will be applied to the two MMARC config-
urations of Fig. 4—one for which M = 3 [Fig. 4(a)], and the
other for which M = 5 [Fig. 4(b)]—both MMARCs applied
to the PCB-1 BPS shown in Fig. 3.

1. Low-resolution stage

A low-resolution sweep is performed to find the η
ρ
1 for all

possible layer thickness combinations for which each h(m) is
some integer multiple of an elementary thickness unit �a,
where 0 � h(m) � 0.5λ. The configurations which produce
η

ρ
1 closest to the target value 1 are used as starting values

in the high-resolution stage. As an illustrative example of

FIG. 11. Anomalous reflection solutions for (a) M = 3-layer,
and (b) M = 5-layer MMARC configurations, PCB-1 BPS of Fig. 3.
For each M, “Lo-res” solutions are indicated as points in η

ρ

1 -htot

space. For each M, the red-circled solution is chosen for “Hi-res”
processing, leading to the final solution indicated by a red-filled-
square. For each M, the MMARC configurations produced by the
Lo-res solution and by the Hi-res solution are shown below the
respective plot.

the low-resolution stage, consider �a = 0.01λ applied to the
MMARCs in Figs. 4(a) and 4(b). The thickness combina-
tions which produce η

ρ
1 > 0.9 are shown in Figs. 11(a) and

11(b) as black dots on an η
ρ
1 vs htot graph, where htot =∑M

m=1 h(m) is the total MMARC thickness. Each such dot
represents an entire M-layer configuration for the MMARC.
Comparing Figs. 11(a) and 11(b) clearly indicates that the
two additional degrees of freedom provided by M = 5 not
only increase the solution density, but also improve solution
quality, providing η

ρ
1 values closer to unity for smaller overall

thicknesses htot.

2. High-resolution stage

The highest quality Lo-res solution (circled in red in the
figures) is used as the starting value in the Hi-res stage of
the process, leading to the improved red-filled-square solution
point that is also shown in the figures. In this Hi-res stage,
a smaller resolution �b 	 �a is used in order to converge
on a layer configuration which will produce a value for η

ρ
1

larger than the one obtained in the low-resolution stage. Each
iteration involves the following procedure, starting with layer
m = 1. The thickness of h(1) is increased by �b. If the re-
sulting η

ρ
1 increases, then h(1) is again increased by �b. This

continues until there is no further increase in η
ρ
1 . If there had

been no increase in η
ρ
1 at all, then the h(1) is instead decreased

by �b until no increase in η
ρ
1 is discerned. After doing this

for h(1), the same is done for h(2), and so forth until h(M ) is
completed. If during this entire iteration through all M layers
the η

ρ
1 has increased, then another iteration is performed. This

is continued until there is no further increase in η
ρ
1 .
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FIG. 12. M = 3-layer and M = 5-layer MMARC configurations
for anomalous reflection, PCB-1 BPS of Fig. 3. [(a),(b)] The
MMARC layer thicknesses which provide the CST-calculated cou-
pling efficiencies, with and without losses, that are shown at the
top of each figure. [(c),(d)] The CST-calculated and analytically-
calculated η

ρ

1 frequency response, with and without losses, for the
configurations in (a) and (b), respectively.

When this procedure is applied to the Lo-res results in
Figs. 11(a) and 11(b) using �b = 0.001, the Hi-res solutions
indicated by the red-filled square in each figure are obtained.
In each of these figures, arrows from the Lo-res (red circle)
and Hi-res (red-filled square) solutions in the plots point to
the full MMARC configurations for these solutions. It may
be seen that in obtaining the improved solution (from Lo-res
to Hi-res) for M = 3, discernible changes have been made
to the layer thicknesses; for M = 5, only a slight change
in one of the layers was sufficient to improve the solu-
tion by one percent from η

ρ
1 = 0.98 to 0.99. This is likely

due to the closeness of the Lo-res solution to unity in the
case of M = 5.

APPENDIX C: FREQUENCY RESPONSE AND
DIELECTRIC LOSSES

In Figs. 4 and 5, results are presented which utilize the
MMARC to produce anomalous effects for several types of
BPS. For completeness, we provide here additional techni-
cal details related to these results with particular relevance
to practical realization aspects. These would include the re-
sultant devices’ frequency responses with and without the
presence of dielectric losses in the MMARC, as calcu-
lated using the analytical method and full-wave solvers. To
establish the fundamental concepts and merit of the theoreti-
cal approach, the synthesis process was demonstrated using
two dielectric materials in the MMARC, with permittivity
corresponding to commercially available low-loss laminates
offered by Rogers Corp., and dielectric loss was assumed
negligible. Herein, to probe more accurately the potential for
practical implementation, we consider the complete electro-
magnetic properties of these laminates, including the loss
tangents provided by their specification data sheets: Rogers

FIG. 13. (a) An analytically-optimized (OWL) configuration of
a MMARC coating the PCB-1 BPS for anomalous reflection, pro-
ducing the CST-calculated efficiencies shown near the top of the
figure, with and without losses. The tan δ losses in the MMARC were
analytically accounted for in the optimization process. (b) Frequency
response for configuration in (a).

RO3010 (εr = 10.2, tan δ = 0.0022) and Rogers RO3003
(εr = 3, tan δ = 0.001). The effects of these tan δ losses will
be analyzed for each of the standard anomalous reflection
cases considered [corresponding to Figs. 4, 5(b), 5(d), 5(e),
and 5(f)].

1. Optimization with losses (OWL)

As mentioned, in the applications in Figs. 4 and 5 and
detailed below, the thicknesses of the MMARC layers were
determined assuming negligible dielectric loss. Nonetheless,
since our enhancement methodology relies on a robust an-
alytical model as a basis for the optimization, the effect
of losses can be readily incorporated into the formulation,
thereby enabling resolution of an optimal MMARC in the
presence of dielectric loss as well. This is accomplished
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FIG. 14. Single-layer MMARC for anomalous reflection with
PCB-2 BPS, corresponding to Fig. 5(b). (a) Physical configuration
and reflection spectra with and without material losses. (b) CST
and analytical calculations of frequency response, with and without
losses, for configuration in (a).

directly in the analytical optimization process by replacing
the real relative permittivity in Eq. (2) by the complex relative
permittivity,

ε(m)
r → ε(m)

r (1 + i tan δ(m) ), (C1)

where tan δ(m) is the value of tan δ in layer m of the MMARC.
The analytical optimization process in which realistic lossy
dielectrics are employed will be referred to as “optimization
with losses” (OWL), while the process in which lossless di-
electrics are employed will be referred to as “optimization
without losses” (OWOL). It will be shown that when these
designs yield less-than-optimum anomalous reflection effi-
ciencies, these efficiencies can be improved by re-designing
the MMARC using OWL.

In Figs. 4 and 5(b), the BPS consists of one of two config-
urations of a printed circuit board (PCB). These are denoted
PCB-1 and PCB-2 as shown in Fig. 3. They differ in the
thickness of the upper layer and in the width of the middle
metallic strip, as detailed in Fig. 3. In both cases, the BPS
material corresponds to Rogers RO3003 substrate. Since the
loss tangents of PCB-1 and PCB-2 were found to negligibly
affect the scattering parameters of the bare BPS (<0.02 per

FIG. 15. Phase gradient metasurface-MMARC configuration for
anomalous reflection. (a) The phase gradient metasurface without the
MMARC, and the CST-calculated propagating components of the re-
flected Floquet-Bloch spectrum. (b) The phase gradient metasurface
with the MMARC, and the CST-calculated propagating components
of the reflected Floquet-Bloch spectrum, with and without tan δ

losses. (c) CST and analytical calculations of frequency response,
with and without tan δ losses, for configuration in (b).

channel), the S matrices characterizing these BPSs are used
herein as well.

2. Anomalous reflection, PCB-1 BPS

In Figs. 4(c) and 4(d), the CST-computed fields were
compared with the analytically-computed fields for the
PCB-1 BPS (see Fig. 3) coated by a three-layer and five-layer
MMARC, respectively, for producing anomalous reflection.
The layer thicknesses of the MMARCs in these cases are
shown in Figs. 12(a) and 12(b). (These are the “Hi-res” so-
lutions shown in Fig. 11.) Figures 12(c) and 12(d) display the
respective frequency responses for the anomalously reflected
mode, as calculated by a full-wave solver (CST), and by the
analytical method. In Figs. 12(c) and 12(d), as well as in
subsequent frequency response plots, the analytical results
(circle-markers and square-markers) cover a much narrower
region about the center frequency f0 = 20 GHz. The reason
for this is that the analytical results are based on the S param-
eters that were found at the center frequency. When varying
the frequency f , the analytical model still uses the same
S parameters which were computed for frequency f = f0,
thereby introducing errors in results for other frequencies. It
might be assumed that these S parameters would be acceptable
in a region about the center frequency. Therefore analytical
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FIG. 16. (a) The sawtooth metasurface without the MMARC,
and the CST-calculated coupling efficiencies. (b) The sawtooth
metasurface with the MMARC, and the CST-calculated coupling
efficiencies, with and without tan δ losses. (c) CST and analytical
calculations of frequency response, with and without losses, for
configuration in (b).

results are given only for frequencies within 1% of the center
frequency.

As can be seen in Figs. 12(a) and 12(b), the full-wave-
calculated efficiencies with losses for both the three-layer and
the five-layer MMARCs were over 0.40 below the efficiencies
without losses. In Figs. 12(c) and 12(d), similar differences
can be seen in the analytically-calculated efficiencies as well.
This “unacceptable” result for lossy dielectrics was obtained
using the MMARC thicknesses shown in Figs. 12(a) and
12(b) that were optimized for lossless dielectrics (OWOL,
see Appendix C 1). However, as discussed in Appendix C 1,
it is possible to use this analytically-formulated optimization
model to determine MMARC thicknesses when the mate-
rial includes the losses as the imaginary part of the relative
permittivity [OWL, Eq. (C1)]. When OWL is employed, the
completely different MMARC configuration of Fig. 13(a) can
be obtained, and its frequency response is given in Fig. 13(b).
Figure 13(b) includes CST-calculated and analytical results,
with and without losses. Not only do the frequency responses
in Fig. 13(b) have a wider band than those of Figs. 12(c)
and 12(d), but the lossy-MMARC value of η

ρ
1 at the de-

sign frequency exceeds 0.9 in contrast to the less-than 0.6
shown in Figs. 12(c) and 12(d). As can be seen from the
comparison between Figs. 12 and 13, the improvements in
efficiency and bandwidth go hand in hand. Indeed, when
no losses were present in the structure, a highly resonant

FIG. 17. (a) The tri-dielectric metasurface without the MMARC,
and the CST-calculated propagating components of the reflected
Floquet-Bloch spectrum. (b) The tri-dielectric metasurface with the
MMARC, and the CST-calculated propagating components of the
reflected Floquet-Bloch spectrum, with and without tan δ losses.
(c) CST and analytical calculations of frequency response, with and
without losses, for configuration in (b).

(high-Q) stack was chosen for the MMARC, leading, as one
might expect, to narrowband performance and high sensitiv-
ity to losses. However, when losses are considered in the
optimization process, a MMARC featuring a lower quality
factor was found favorable and more resilient to losses, while
at the same time exhibiting a wider operating frequency
range.

Although, as mentioned, analytical frequency responses
are given in Figs. 12 and 13 only for frequencies near the cen-
ter frequency, this might be sufficient to estimate the expected
bandwidth using the analytical model. (These figures clearly
show that the analytical model can at least aid in estimating
the second derivative of the anomalous reflection efficiency
at/near the operating frequency.) In principle, then, it would
be possible to encode bandwidth into the optimization process
to obtain an optimal performance in regards to frequency
response as well.

Clearly, then, the adverse effects of losses can be greatly
alleviated by utilizing the OWL.

3. ”Headstart” anomalous reflection, PCB-2 BPS

In Fig. 5(b), a single-layer MMARC was shown to pro-
duce anomalous reflection when coating the PCB-2 BPS.
The precise dimensions, and the CST-calculated spectrum at
the design frequency, with and without losses, are shown in
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FIG. 18. An analytically-optimized (OWL) configuration of a
lossy MMARC coating the tri-dielectric BPS of Fig. 17(a). The tan δ

losses in the MMARC were analytically considered in the OWL
optimization process. These MMARC layer thicknesses provide the
reflection coupling efficiencies that are shown near the top of the fig-
ure, with and without losses. (b) Frequency responses as calculated
by CST and by the analytical method, with and without losses, for
the configuration in (a).

Fig. 14(a). Even when losses are present, a high anomalous
reflection efficiency of 0.95 is achieved. (The analytically
computed spectrum is about 0.01 greater.) The CST-calculated
and analytically-calculated frequency responses, with and
without dielectric losses, are shown in Fig. 14(b). Even in
the presence of dielectric losses, these frequency responses
demonstrate strong anomalous reflection over a wide band,
and reasonable agreement between the full-wave and ana-
lytical solutions. The fact that our MMARC in this case
contains only a few reflective interfaces probably creates
again a low-Q resonator. This, as mentioned previously, usu-
ally leads to larger bandwidths and reduced sensitivity to
losses.

The reader is again reminded that in the analytical solution,
the S parameters at the center frequency f0 were employed, so
that analytical frequency response results are provided only in
the vicinity of f = f0. Although these results in Fig. 14(b)
display a slight frequency shift relative to the full-wave solu-
tion, these minor discrepancies may be related to the aforesaid
inaccuracy in the S parameters.

4. Phase gradient anomalous reflection

In Fig. 5(d), a five-layer MMARC was shown to pro-
duce anomalous reflection when coating a phase gradient
metasurface formed by parallel plate waveguides that are
shorted at various distances. This is shown in Fig. 15. It
is seen in Fig. 15(a) that without the MMARC, the effi-
ciency in the anomalous direction is 0.76, while with the
MMARC [Fig. 15(b)], this efficiency increases to 0.99 when
the MMARC layers are assumed lossless, and to 0.96 when
losses are present in the MMARC layers. The frequency
responses of the anomalously reflected field component are
shown in Fig. 15(c) as obtained from both the full-wave
and analytical solutions. They demonstrate considerable band-
width. The two solution methods provide essentially the same
results near f = f0. Again, the analytical results are given
only near the frequency f0 = 20 GHz, since the S parameters
used to calculate these results [Eq. (7)] were obtained only for
that frequency.

5. Sawtooth anomalous reflection

In Fig. 5(e), a five-layer MMARC was shown to produce
anomalous reflection when coating a BPS that consists of a
sawtooth-shaped conducting metasurface. The configurations,
with and without the MMARC, are shown in Figs. 16(a) and
16(b). It is seen in Fig. 16(a) that without the MMARC,
the efficiency in the anomalous reflection direction is 0.20,
while with the MMARC [Fig. 16(b)], this efficiency increases
to 0.98 when the MMARC is lossless, and to 0.92 when
dielectric losses are present. The analytical model and CST
computations differ by less than 1%. This may be seen from
the frequency response shown in Fig. 16(c). This case study
further demonstrates the ability of nonresonant MMARC
structures–even in the presence of realistic loss–to provide
dramatic increase of the efficiency, retained over a reasonable
bandwidth.

6. Tri-dielectric anomalous reflection

In Fig. 5(f), a three-layer MMARC was shown to produce
anomalous reflection when coating a tri-dielectric metasur-
face. This is shown in Fig. 17. It is seen in Fig. 17(a) that
without the MMARC, the reflection coupling efficiency in the
anomalous direction is 0.45. With the MMARC [Fig. 17(b)],
this efficiency increases to 0.93 when the MMARC is
lossless, and increases to only 0.86 when the MMARC lay-
ers are lossy. As may be seen in the frequency response
plots in Fig. 17(c), the analytical model and full-wave re-
sults differ from each other by about 1% at the design
frequency.

The relatively low coupling efficiency for anomalous re-
flection with a lossy MMARC (i.e., 0.86) is likely due to
the fact that the OWOL optimization process was used (see
Appendix C 1). Performing these optimizations with the OWL
process instead produces the MMARC shown in Fig. 18(a).
This lossy MMARC now produces a relatively high cou-
pling efficiency of 0.92, while the coupling efficiency if the
MMARC layers were lossless would startlingly be practically
perfect. Both these values are appreciably higher than the
corresponding efficiencies of the configuration in Fig. 17,
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and the frequency band in Fig. 18(b) is wider than that
in Fig. 17(c). The fact that the total thickness 0.73λ of
the Fig. 18(a) MMARC is somewhat larger than the total
thickness 0.43λ of the Fig. 17(b) MMARC is further sup-

porting evidence for relaxed resonant conditions in thicker
layers. The larger phase accumulation facilitated by thick
layers probably reduces the need for excessive multiple
reflections.
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