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We study the photoassisted shot noise (PASN) generated by time-dependent (TD) or random sources and
transmission amplitudes. We show that it obeys a perturbative nonequilibrium (NEQ) fluctuation relation (FR)
that fully extends the lateral-band transmission picture in terms of many-body correlated states. This FR holds
in NEQ strongly correlated systems such as the integer or fractional quantum Hall regime as well as in quantum
circuits formed by a normal or a Josephson junction (JJ) strongly coupled to an electromagnetic environment,
with a possible temperature bias. We then show that the PASN is universally super-Poissonian, giving an
alternative to a theorem by L. Levitov et al. which states that an ac voltage increases the noise. We show that this
theorem is restricted to a linear dc current and that it does not apply to a nonlinear SIS (superconductor-insulator-
superconductor) junction. Then we characterize minimal excitations in nonlinear conductors as those which
ensure a Poissonian PASN, and show that these can carry a nontrivial charge value in the fractional quantum Hall
regime. We also propose methods for shot noise spectroscopy and for a robust determination of the fractional
charge which complement those we have proposed previously and that have been implemented experimentally

[M. Kapfer er al., Science 363, 846 (2019) and R. Bisognin et al., Nat. Commun. 10, 2231 (2019)].
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I. INTRODUCTION

Time-dependent (TD) transport presents a powerful probe
of quantum phenomena by introducing multiple parameters
or functions under control: frequencies for emitted noise gen-
erated by constant forces, or TD forces generating current
or noise at low or finite frequencies [1-6]. It has been an-
alyzed in a mesoscopic context through seminal theoretical
approaches, such as the Tien-Gordon theory [7-10] or the
Landauer-Biittiker scattering approach, associated with the
Floquet theory [11-17]. The effect of a periodic ac volt-
age V,.(t) at a frequency €2 is often addressed within the
so-called lateral-band transmission scheme, where V,.(¢) is
viewed as a coherent radiation with translates one electron en-
ergy by [ for each integer number / of exchanged photons.
This yields a relation between the induced low-frequency
shot noise and a superposition of duplicates over [/ of the
noise in the dc regime. By linking current fluctuations, we
coin it as a fluctuation relation (FR), which we distinguish
from fluctuation-dissipation relations that involve current or
conductance. The noise induced by V,, is called photoassisted
shot noise (PASN); it should be higher than its value in the dc
regime according to a theorem by L. Levitov et al. [18]. While
Poissonian shot noise in the dc regime is common to classical
and quantum particles, the PASN has the interest to provide
a signature of a quantum behavior through rectified current
fluctuations.

The PASN is also an important tool to explore remark-
able collective phenomena and macroscopic manifestation
of quantum physics when strong correlations play a crucial
role, but for which the lateral-band transmission picture has
been claimed to be inappropriate [19]. Nonetheless, such a
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picture was recovered within specific models. For instance,
within the Tomonaga-Luttinger Liquid (TLL) model, relevant
to strongly correlated 1-D systems, unexpected Tien-Gordon
type relations were obeyed either by the photo-assisted current
(PAC) in Refs. [20,21] or by the PASN in Refs. [22,23] though
not compared to its Tien-Gordon form. It turns out that these
works were unified and enlightened by our nonequilibrium
(NEQ) perturbative approach [24-27].

Here the same approach is adopted to extend fully the
lateral-band transmission picture for PASN to many-body cor-
related states. Contrary to a majority of studies restricted to
periodic voltages, we also extend it to nonperiodic tunneling
amplitudes and voltages, which can then be generated by fluc-
tuating sources or pseudo-random Lorentzian pulses [28,29].
Thus the NEQ approach cannot be coined as Tien-Gordon
theory. It unifies many previous works based on specific mod-
els [5,22,23], beyond which it extends to a larger universality
class of strongly correlated circuits and situations. Let us
mention a quantum point contact (QPC) in incompressible
edge states in the integer quantum Hall effect (IQHE) or the
fractional quantum Hall effect (FQHE) (see Fig. 1), as well
as a quantum circuit formed by a QPC (Fig. 2), a Josephson
junction (JJ) [30] (Fig. 3) or a dual phase-slip JJ (Fig. 4)
strongly coupled to an electromagnetic environment. Another
strength of the NEQ approach is that it goes beyond initial
thermalized many-body states to NEQ ones. It covers for in-
stance the SIN (superconductor-insulator-normal) junction in
a NEQ diffusive wire studied in Ref. [31], or a quantum circuit
with a temperature bias we have studied recently [32] (see
Fig. 2). In addition, this approach led to some NEQ FRs not
derived so far [33], even for independent electrons. Although
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FIG. 1. First example. A QPC in the quantum Hall regime at an
integer or fractional filling factor v. One can include arbitrary profile,
range and inhomogeneities of interactions between edge states. It is
possible to have simultaneous time dependence of the voltage reser-
voirs and the gate, as well as different upper and down temperatures
T, T, or imperfect equilibration between edge states. /(x, t) denotes
the average chiral current at a position x along the upper edge.

we consider here the PASN of a current operator, the latter
could refer, depending on the model, to a generalized force
such as a voltage operator in the dual JJ junction [34] or a
spin current in a magnetic junction.

The PASN is especially relevant for two rapidly growing
and fascinating domains where injection and manipulation
of controlled quantum electronic or photonic states is a
challenge: electronic quantum optics and quantum electrody-
namics of mesoscopic circuits.

On the one hand, an ideal test-bed for the former is of-
fered by quantum Hall states. There, Coulomb interactions
are fundamental to understand the FQHE and the emergence
of fractional charges [35-37], while they couple edge states
in the IQHE [38,39]. Electronic quantum optics is associ-
ated with the injection of on-demand electronic excitations
and their time evolution through an interacting region. A
first theoretical step to address this problematic was ini-
tiated by the author [40,41] by implementing a scattering
approach for plasmon modes with time dependent boundary
conditions. The corresponding works showed charge fraction-
alization [38,40—43], which plays, for instance, an important
role in decoherence [44,45], and laid the foundation of NEQ
bosonization [46]. Electronic quantum optics has become an
independent field owing to subsequent pioneering experimen-
tal and theoretical achievements (for a review, see Ref. [39]).
We mention for instance the analog for electrons of a single
photon gun based on a mesoscopic capacitor [47], and im-
plementation of minimal excitations generated by Lorentzian
pulses [18,48,49]. In interferometers such as Hanbury-Brown
and Twiss or Hong-Ou-Mandel (HOM) type setups, PASN
has offered a tool to explore the charge fractionalization
[43,50], to characterize minimal excitations and their statistics
[6,48,51-53], or to perform electronic tomography [54,55].

On the other hand, quantum electrodynamics of
mesoscopic circuits, based for instance on macroscopic
atoms such as JJs, requires understanding of radiation-matter
interactions, where the radiation corresponds to photons
in the electromagnetic environment (for a recent review,
see Ref. [56]). Such interactions give rise to the dynamical

Coulomb blockade phenomena [57], which, in the strong
back-action regime, was shown to offer a quantum simulation
of strongly correlated one dimensional conductors [58—60].
Addressing the statistics of quantum states for both photons
and electrons and the generation of squeezed photonic states
has been based on finite-frequency noise in an ac driven
circuit [61-64]. In particular, minimal excitations might offer
an interesting basis in this framework [65].

It is indeed in an ac driven quantum circuit that some of
the NEQ FRs we have obtained at finite frequencies [24]
have been first tested experimentally [25]. They have been
also used to achieve a robust determination of the fractional
charge [35,36], or for analyzing experimental investigation of
two-particle collisions in a HOM type geometry in the IQHE
and the FQHE [6,66].

The present paper is focused on the PASN at zero fre-
quency, while finite-frequency noise is reported to a separate
one. Here we present some consequences and applications of
the NEQ FRs for the PASN. We express the PASN in terms
of current cumulants of a non-Gaussian source, such as a
quantum conductor in the classical regime we have studied in
Ref. [67]. We also derive relations for the PASN’s differentials
with respect to the ac voltage, then apply them to propose
novel methods for charge determination and shot noise spec-
troscopy. We also derive an important universal inequality,
showing that the PASN is super-Poissonian. This allows us
to state that minimal excitations in nonlinear conductors en-
sure Poissonian PASN. We therefore provide an alternative
characterization to that by L. Levitov et al. [18] which is
rather restricted to a linear system. This gives a more thorough
analysis than the one we presented in Ref. [24], and which was
recovered in the specific model of a TLL [23].

The paper is organized as follows. In Sec. II, we recall the
family of models and the minimal conditions required by the
NEQ perturbative approach, discussing specifically its valid-
ity and limitations for quantum Hall edge states. We derive
NEQ FRs for the PASN and its differentials in Sec. III, then
specify to random sources or an initial thermal equilibrium.
In Sec. IV, we show that the universal lower bound on the
PASN is given by the PAC, and not necessarily by the noise
in the dc regime, rather shown to be higher than the PASN
in a SIS (superconductor-insulator-superconductor) junction.
This leads us to revisit the criteria for minimal excitations
in Sec. V. We finally discuss, in Sec. VI, two other applica-
tions based on differentials of the PASN with respect to the
ac voltage: shot-noise spectroscopy and determination of the
fractional charge.

II. THE PERTURBATIVE APPROACH
A. The model and minimal conditions

We consider the Hamiltonian underlying the NEQ pertur-
bative approach [24,26,27],

H(t) = Ho+ e ™ p(OA + e p"(DAT, (M
where the unperturbed and perturbing terms Ho and A are

not specified, nor is the complex function p(¢), which can be
nonperiodic, and whose phase ¢(¢) as well as its modulus can
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depend on time,

p(t)= |p(t)|e . 2)

We adopt the convention that any constant part of a
global phase derivative is incorporated into w;, so that
[dtd,p(r) = 0.

We focus on transport associated with a given charge op-
erator Q assumed to commute with 7y and to be translated
through A by e*,

[A, O] = €*A, A3)

where e* is a model-dependent charge parameter. Thus the
associated current operator, in view of Eq. (1), reads

Hw=a@n=4%¢“ﬁmm—JWﬁmAU )

Other charge operators not conserved by H, might enter
and couple to other independent constant forces, such as
those associated with an electromagnetic environment. Indeed
the operator A can be a superposition of terms associated
with many positions, channels or circuit elements, A = ZiA,-,
or a continuous integral over spatially extended processes.
Nonetheless, contrary to the dc regime, this generalization is
constrained by the fact that all TD fields must be incorporated
into the single complex function p(¢).

The main other conditions for the approach are: (i) A is
weak, with respect to which second order perturbative theory
is valid and (ii) only correlators implying A and its hermitian
conjugate are finite [see Eq. (A2)]. The condition (ii) leads, for
a family of initial distributions [27], to a vanishing dc current
at w; = 0; in particular, in superconducting junctions, super-
current must be negligible by coupling them to a dissipative
environment or magnetic fields.

Indeed, the approach is not restricted to an initially ther-
malized system [27,33], but extends to any initial stationary
NEQ density matrix py obeying [pg, Ho] = 0. Thus w; can
be superimposed on other constant independent forces, or one
can consider a quantum circuit with a temperature bias [32]
(see Fig. 2).

Generically, although not systematically, the coupling to a
voltage V (¢) can be included into a term OV () that can be
absorbed by a unitary transformation [26] so that w; [Eq. (1)]
and ¢(t) [Eq. (2)] obey the following Josephson-type rela-
tions, determined by e* [in view of Eq. (3)],

*

w=%m, (5a)
e*
Q1) = S Vaclt), (5b)

where V,.(t), V;. are the ac and dc parts of V(¢). But more
generally, the common charge ¢* could be replaced by two
different effective charges, and the above relations can even
be broken for NEQ states, as is the case for the anyon col-
lider [33,68,69]. For generality, we leave w; and p(t) (with
its amplitude and phase) as unspecified parameters of the
model [70].

‘We have previously shown that the average current induced
by p(t), (f3(1)), can be, at any time, fully expressed in terms
of the dc characteristics only, I;.(w;), whether p(¢) is periodic
[26] or not [24,27]. The subscript H refers to the Heisenberg

FIG. 2. Second example. A quantum circuit formed by a QPC
(on the right side of the lower scheme) coupled to an electromagnetic
environment and with a temperature bias, studied in Ref. [32] in
the dc regime to address dynamical Coulomb blockade. The present
NEQ FR extends to the two opposite conducting and insulating
regimes of the quantum phase transition and yields PASN through
the QPC in case both the potential drop and gate voltage are time
dependent.

representation with respect to the Hamiltonian H(¢). In the
zero-frequency limit, one gets the PAC

02 g
Ipn(@y) = f T(lﬂ(t)% (6)
—-1/2 1o
whose expression will be recalled in Eq. (24). Only depen-
dence on the dc frequency w; is made explicit, while that
on p(t) is implicit through the subscript ph. Here Ty is the
period for periodic p(¢), and is a long measurement time for
nonperiodic p(t) for which it forms the key of a regularization
procedure we have proposed in Ref. [27]. We think that this
solves a divergency problem compared by Lee and Levitov
[71] to the orthogonality catastrophe problem, for instance
when V() is formed by a single Lorentzian pulse. A similar
procedure can be carried on for the PASN, defined by

Spn(wy) = /:)//22 dT(: /: dr<8f7-¢(t — %)8i7—[(t + %)),
@)

where 8fy; = Iy () — (F(¢)). We will nonetheless, for sim-
plicity, assume that the Fourier transform of p(t), p(w), is
regular at zero frequency, and we refer to Ref. [27] if not
(replacing current by noise). We will show that S,,(wy) is
determined, through a universal FR given by Eq. (10), by
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FIG. 3. Third example. A JJ with a small Josephson energy E; or
a NIS junction strongly coupled to an electromagnetic environment.
An additional dc voltage V;_ can enter into the Hamiltonian in Eq. (1)
or in the NEQ stationary density matrix py. Also the temperature
junction 7} can be different from that of the environment, ¢, .

Sac(wy), the NEQ shot noise in the dc regime (which will
be coined as the dc noise). It is only when the initial density
matrix is thermal that Sy.(w;) is determined by I,;.(w;) [see
Eq. (13)] and so is the PASN.

Some examples of models for which these relations hold
are detailed in Ref. [27] and are illustrated in Figs. 1-4.
For instance, 1(¢) is a tunneling current in case A refers to
a tunneling operator between strongly correlated conductors
with mutual Coulomb interactions. It is the Josephson current
in a JJ at energies below the superconducting gap A (Fig. 3),
for which one has e* = 2e. Let us now discuss in more details
the validity and limitations of the approach for a QPC in the
quantum Hall regime.

B. Validity of the approach in quantum Hall states

For a QPC in the FQHE or IQHE at a filling factor v, the
perturbative approach applies to two opposite regimes: the
weak backscattering one (when the QPC is almost open, see
Fig. 1), where I(r) in Eq. (4) is a backscattering current, and
the strong backscattering regime (when the QPC is pinched
off), where [(¢) is an electron tunneling current. While one has
e* = e in the latter regime, one expects e*/e to be a fraction in
the former when one deals with the FQHE. Many theoretical
approaches are based on effective bosonized theories, such as
the chiral TLL description for interacting edges in the IQHE

Z(w)
T

env

1(t)

U, §3L

T

FIG. 4. Fourth example. A dual-phase JJ with a small effective
parameter U;. The roles of voltage and current are permuted, so that
one imposes a time dependent current, while the voltage noise across
the junction obeys the NEQ FR. Average voltage was computed in
Ref. [34] and found to obey the relation provided by the perturbative
approach [26,27] [see Eq. (B1)].

or Laughlin series in the FQHE given by v =1/2n+ 1)
with integer n, for which e* = ve. For other v belonging
to hierarchical series, effective theories yield various models
[72] with, possibly, different values of the dominant charge e*
(that for which the quasiparticle field has the smallest scaling
dimension § [73]). It is also frequent that two or more different
quasiparticle fields with the same charge and dimension enter
into A, a situation to which the approach can still be adapted.

Such effective theories predict a power-law behavior and
a crossover energy scale kgTp between the weak and strong
backscattering regimes, leading to a vanishing dc conductance
when both voltages and temperatures vanish. This delimits
the validity of the perturbative approach in both regimes with
respect to Tp.

Nonetheless, in experimental works aiming to determine
fractional charge [35-37] and statistics [74], the measured dc
current is not in accordance with this power-law behavior.
Our approach has the advantage to be valid without specific
Hamiltonian nor voltage dependence of the dc current. This
explains why the NEQ FRs we obtained [24,33,76] provided
robust methods to determine ¢* = ¢/5 at v = 2/5 in Ref. [35]
and ¢* = ¢/3 at v = 2/3 in Ref. [36].

Although bosonization is not even necessary for the
Hamiltonian in Eq. (1), one might require, to end up with
this form, additional conditions. For instance, absorption of
inhomogeneous couplings to ac sources into the function p(t)
might require that H, is a quadratic functional of bosonic
fields (a condition which is not required in the dc regime).

In order to implement such couplings, one might exploit
a useful framework we have initiated [40,41], and which has
been largely adopted in electronic quantum optics [5,43]. It
describes the electronic charge propagation in terms of plas-
mon dynamics dictated by Coulomb interactions, inducing
charge fractionalization. By developing the equation of mo-
tion method for bosonic fields, dynamics is solved for given
time dependent boundary conditions dictated by the sources.
On the one hand, a classical ac source injects a classical
plasmon wave whose time evolution is determined through a
scattering matrix for plasmon modes, providing the ac outgo-
ing electronic currents. On the other hand, for a non-Gaussian
source, such as another QPC different from the central one
(replacing the voltage source in Fig. 1), the NEQ bosonization
we have initiated in Ref. [41] has been extended to take into
account statistical fluctuations of the injected current [46]. Our
present NEQ approach applies to such non-Gaussian sources
in the dc regime [33], and it is plausible that one can still
end up with Eq. (1) in the ac regime, as we allow for a NEQ
stationary density matrix and a time dependent modulus of
p(t) that could incorporate ac boundary conditions. For a more
rigorous justification and determination of p(¢), one needs to
combine our modelization of ac voltages [41] with that of
dc non-Gaussian sources [46], a step not yet achieved to our
knowledge.

The TD chiral current at a point x along the upper edge
reads (see Ref. [77] gives a derivation in the dc regime):

e2

I(x,t) = VZV(I) —6(x) / dt'a(x, t —t) (), (8)

where 0 (x) is the Heaviside function if the QPC is located at
x = 0. Recall that (I3 (t)) is the average of the backscatter-
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ing current in Eq. (4) in the Heisenberg representation. The
function A(x,?) is determined by Hy, and describes chiral
plasmonic propagation between the QPC and x. Denoting its
zero-frequency limit by A, one gets I(x, @ = 0) = ve?/hV,. —
0(x)AI,(wy). One expects A = v for simple fractions, but it
could be renormalized by nonuniversal features such as edge
reconstruction [78].

It is frequent that one measures rather correlations or
cross-correlations between chiral currents, which contain
supplementary terms, similarly to Refs. [80-82] in the dc
regime. This is also the case when sources are formed by
additional QPCs, such as the anyon collider studied in the
dc regime [33,68,69,74] and where application of two ac
voltages with a time delay would form a HOM interferometer
(as suggested in Ref. [53]). It turns out that the perturbative
approach is still useful for the supplementary terms [79].

III. UNIVERSAL FLUCTUATION RELATIONS

In this section, we first derive the central NEQ FR for
the PASN in Eq. (7), then apply it to non-Gaussian random
sources, and finally deduce FRs for the differentials of the
PASN with respect to the ac phase, which we will exploit for
the other applications in Sec. VL.

A. Fluctuation relations between the ac and dc driven regimes

The derivation of the NEQ FR follows two steps, detailed
in Appendix B. The first one yields a second order pertur-
bative expression for the PASN in terms of two correlators
[see Eq. (A2)], which are evaluated with the Hamiltonian H,
and the initial NEQ density matrix pp, so that they depend
only on the time difference 7. Their Fourier transforms at
wy, denoted by I, (wy), I (wy), correspond to dc currents
induced by w; which flow in two opposite directions. They
determine average current and noise in the dc regime,

lac(wy) = I (wy) — I—(wy), (9a)
Sac(wp)/e* = L (o)) + 1 (wy). (9b)

Notice that the NEQ noise Szc(wy) is given by S,,(w;) in
Eq. (7) whenever p(t) = 1 in Eq. (1). In general, I_, (wy) #
I._(—wjy), thus one has not necessarily an odd dc current nor
an even dc noise.

The second step consists into reversing the two above
expressions, so that, alternatively, only the two functions
Lyc(wy), Sgc(wy) determine completely time dependent trans-
port. In particular, we can show that the PASN in Eq. (7) is
fully determined by S;.(wy) in Eq. (9b),

*© da)/ D / /
Spn(wy) = / Q—OP(w )Sdc(@ + wy), (10)
where P(w) = |p(w)|? and Qo = 27 /Tp.

Thus we obtain a universal FR between the ac and dc
regimes, which, to our knowledge, has not been derived so far
within the present large context of strongly correlated circuits
and NEQ initial states. The PASN is a superposition of the
noise evaluated at effective dc voltages w; + ' for all finite
frequencies «’ of the driving photons, modulated by P(w’).
Even at w; = 0, the PASN is determined by the NEQ dc noise
Sic(w') [indeed even S;.(w’ = 0) is a NEQ noise for initial

NEQ states]. The above NEQ FR is independent on the form,
range and force of Coulomb interactions or strong coupling
to an electromagnetic environment; all these intervene only
through the NEQ dc noise. The external ac or classical noise
sources enter through P(w’), which can be viewed as the
transfer rate for the many-body eigenstates of H, to exchange
an energy /iw’ with the ac sources, as can be checked through
a spectral decomposition [83].

Experimentally, one gets rid of undesirable contributions
by considering the excess PASN. Here we define it by sub-
tracting the dc noise in presence of the same dc voltage
S4c.(wy) obtained when one switches off the ac source,

ASpp(wg) = Spn(wy) — Sac(wy). 11)

Let us notice already that AS,;(w;) was shown to be always
positive by L. Levitov et al. [18] [see Eq. (22)], but this is not
true in a nonlinear SIS junction as shown in Sec. IV, leading
us to revisit minimal excitations in Sec. V.

Let us now specify to a periodic p(t) with a frequency €2
(see Appendix B for more details),

+00
Spp(@) = Y PiSuc(wy + 1) (12)

I=—00

Here P, = P(IQ) are the transfer rates for many-body states
to exchange / photons with the source. It is only when |p(¢)| =
1 that P, are probabilities, as Zz P, =1 [see Eq. (B3)].

In the case of an initial thermal density matrix py o e #H
at a temperature 7 = 1/8 [see Eq. (1)], the dc noise obeys
the general relation, valid even when I;.(w;) # —I;.(—wy)
[24,33,76,84],

ﬁa)J

Sac(wy) = €* coth <2kBT

>1dc(w1)- 13)
The PASN is than detailed in Appendix C. Focusing on a
periodic p(t), on locking values w; = N with an integer
N and on ¢ > kgT /h, we get, from Eq. (12),

Sp(NQ0) = Y Py [Lacl(N + D] + 2P-yksT G (T).
I#-N

(14)

Here G;.(T) = dl;.(wy)/dVy. at €*V,. < kgT, where tem-
perature dependence, generic in nonlinear systems, is made
explicit, while it is implicit in NEQ current average and PASN.
Thus we get a mixture between the NEQ and thermal contribu-
tions (see Appendix C), similarly to the NEQ finite-frequency
noise in the dc regime [76]. Taking the excess noise in Eq. (11)
does not cancel the thermal contribution, even though we are
in the NEQ quantum regime.

The FR in Eq. (14) unifies and goes beyond previous works
restricted to |p(¢)| = 1 and to independent electrons scattered
by a linear QPC [5,48] or to a TLL in Ref. [22]. It allows us
to localize and regularize a divergency in the latter work [79].

Thus the universal FRs in Eqs. (10) and (12) extend fully
the lateral-band transmission for the PASN to TD tunneling
amplitudes and periodic, nonperiodic, or fluctuating sources.
In the large family of strongly correlated circuits covered
by our approach, NEQ many-body states replace thermal

205130-5



INES SAFI

PHYSICAL REVIEW B 106, 205130 (2022)

one-electron states. These FRs are also suited to address two-
particle collisions in a symmetric or asymmetric HOM type
geometry where two ac sources, periodic or not, operate with
a time delay (as we noticed briefly in Ref. [27]). They have
been used in a recent experimental analysis of two-electron
collisions [6,66] in chiral quantum Hall edges.

B. Fluctuating sources

One advantage of considering nonperiodic p(t) is that one
can deal with classical states of radiations. Indeed, if we
assume that |p(7)] = 1, one has [ dw'P(')/ = 1, so that
P(w) becomes a probability [27]. It plays a similar role to
the P(E) function, the probability for a tunneling electron
to exchange photons at a frequency w = E /A with an elec-
tromagnetic environment [57]. Indeed, this is precisely the
meaning of P(w) if ¢(t) is associated with a Gaussian or
non-Gaussian electromagnetic environment in the classical
limit, formed for instance by a quantum conductor we have
studied in Ref. [67].

More generally, if classical fluctuations of ¢(¢#) have a
distribution D(¢), one has to take into account averages over
D(p), denoted by < ... >p,

_ ogr . ,
P(w) = / — < VOO o (15)

o To
Notice that we assume here the stationarity of the distribution
for ¢ so that < ¢#®~¢()) =, depends only on t — ¢/, and
the integral over ¢t + ¢’ can be dropped. One can further write
< £@wO=¢O) - 1 a5 an exponential of cumulants of ¢(t) at
order m (m is an integer; see Ref. [85] for the full expression),

1
In(t) = %((w(t) —¢(0))")p. (16)

If we expand it up to m = 3, justified in the limit of weak
coupling, we obtain

dwdt : ,
Spils) = f / S Sc(w+ @) OO (1)
0

There might be various ways, depending on regimes and se-
tups, to exploit this link, in particular to use the PASN as a way
of detection of cumulants of the quantum conductor, as done
with the PAC [26,27]. Compared to previous works propos-
ing Tunnel junctions or JJs as cumulant detectors [85,86],
the present model opens the path to exploit a larger family
of strongly correlated detectors, which are not necessarily
disconnected, and to drive both the detector and the non-
Gaussian source in stationary NEQ states.

We insist nonetheless that a quantum environmental phase
operator ¢(t) whose dynamics is dictated by the Hamiltonian
H,o can be also encoded into A through e/?®), whose correla-
tions affect the PASN through the dc noise S;.(w;) according
to Eq. (10).

C. Fluctuation relations for differentials of the PASN

An alternative to excess noise, aimed to remove undesir-
able noisy sources, consists into the derivative of the PASN
with respect to the dc voltage, which, in view of the FRs
in Egs. (10) and (12), is determined through the differential
dc noise.

It is also interesting, for some potential applications, to
differentiate the PASN with respect to the ac components of
the voltage V,.(w), or for more generality, ¢(w) [as Eq. (5b) is
not systematic]. Given a nonperiodic or random p(¢), one can
show that § p(w') /8¢ (w) = —ip(w’ — w), so that

3Spn(wy) _ —i/ dw
Sp(w)

/
N p(@)p* (@ + )

X [Sac(wy + & + @) — Sge(wy + )] (18)

Let us now take a second differential with respect to
¢(—w). Then we are back to the PASN through an interesting
closed relation

828 (wy)
m = Spn(wy + @) + Spn(@w; — @) — 28 pn(wy).
(19)

A similar relation holds for the PAC in Eq. (24) [26], as
well as for periodic drives, taking (SZSph(a) 7)/8@rp—i with
or = @(kS2p) for any integer k. We notice however that an
experimental difficulty can arise in case one lacks a precise
knowledge of the effective phase (for instance at the level of
the QPC in the Hall regime), which makes noise spectroscopy
discussed in Sec. VI A useful.

It is indeed easier to consider the limit of the stationary
regime, defined by p(¢) = 1 thus p(w') = §(«') (i.e., the limit
of a vanishing phase, up to multiple of 25, and of a unit modu-
lus). Then the first derivative in Eq. (18) vanishes, and one can
replace, on the right-hand side (rhs) of Eq. (19), S, — Sgc. In
this limit, we can also show that §2S,;,(w;)/8¢(w)8p(—a') —
0 for all @' # w. Thus, assuming furthermore that |p(z)| = 1
so that only functional dependence with respect to ¢(t) enters,
the excess PASN defined through Eq. (11) can be expanded
through the main quadratic correction due a small ac phase:

+00

ASpp(wy) = / do|p(@)*[Ssc(ws + w)

+ Sge(@y — @) — 2Sac(w))] + o(g*).  (20)

This universal relation is coherent with the fact that only
one or zero photon exchange processes enter at a low ac
modulation. It is interesting to notice that, according to the
NEQ FR we derived in the dc regime in Ref. [33], the
sum Sy.(wy + ®) + Sgc(wy — w) corresponds to twice the
symmetrized finite-frequency noise. For periodic drives the
integral is replaced by a discrete sum. In particular, in case
@(t) = @qc cOs Qpt we get

ASp(@))/[Sac(ws + ) + Sac(wy — Q) — 284c(w))] = ¢
(21)

As will be discussed in Secs. VI A and VIB, the above
relations offer methods for shot noise spectroscopy and for
a robust determination of the fractional charge, based on
determining w; and the Josephson-type relation in Eq. (5a)
whenever it holds. Indeed there are also situations where w;
implies other unknown parameters, which can then be deter-
mined consequently. Two have been addressed in Ref. [33]:
either wy is linked to a nonuniversal parameter of fractional
statistics that enters in analyzing the anyon collider, or to the
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wct Qg wy

Qo wWc

FIG. 5. The dc noise associated with the quasiparticle current in
a SIS junction, as a function of the dc frequency w; (in blue), and
the PASN under a small sine voltage (in red). S, vanishes below a
threshold w, = 2A/h where A is the superconducting gap, and has
a linear behavior above, S;.(w;) = €*(aw; — b). The PASN behavior
is sketched (units are arbitrary) by choosing b/a = Q¢ = w¢/2. One
has S, (w;) < Sgc(wy) for all w; > wc.

voltage drop generated by a temperature bias, which yields the
Seebeck coefficient.

IV. UNIVERSAL LOWER BOUNDS ON THE PASN

This section gives crucial features that will allow us to
revisit minimal excitations in Sec. V. We will first show that
the universal lower bound provided by L. Levitov et al. [18] is
restricted to linear conductors, by giving the counterexample
of a nonlinear SIS junction with an initial thermal distribution.
Then we show that the PASN is super-Poissonian, as it is
rather the PAC which provides its universal lower bound.

A. Breakdown of the dc noise bound in a nonlinear SIS junction

In an independent-electron picture, the choice for the ex-
cess noise, AS,,(wy) in Eq. (11) is motivated by the fact that
it arises from the cloud of electron-hole excitations gener-
ated by the ac voltage [5,87], thus inducing a positive excess
noise, ASy;(wy) > 0. Indeed, in a more general framework
of strongly correlated systems, the ac voltage was shown to
increase the noise through a theorem by L. Levitov et al.
[18,49],

Spn(wy) 2 Sac(wy). (22)

Nonetheless, we show now that adding an ac voltage to a dc
one could decrease the PASN in a nonlinear SIS junction, so
that these inequalities are reversed.

We adopt, in a similar context as these works, an initial
thermalized distribution in the zero temperature limit, so that
the dc noise is Poissonian [see Eq. (13)]. We also consider
a quasiparticle current I;. [7,8] with a voltage gap 2A/e,
thus a dc frequency gap wc = 2A/h (here e =e), and a
linear behavior above, I;.(w; > 0) = 0(w; — w.)(aw; — b)
where a, b are positive coefficients (see Fig. 5). This gives
in particular G4.(T) = 0. Now we choose the dc and ac

frequencies such that 2y < wc < wy and b/a < w; — Qp <
wc. We consider a weak enough sine voltage so that we
can use the second-order expansion in Eq. (21). As the dc
noise is Poissonian, the sign of AS,, is that of Ij.(w; +
Q) + lagc(wy — Qo) — 2yc(wy) = a(Q — wy) +b < 0 [one
has I;.(wy — 20) =0 as w; — Qy < wc]. Therefore the
PASN is decreased in this dc voltage range,

Spn(@y) < Sac(wy), (23)

which is at odd with the inequality in Eq. (22). We can indeed
plot the PASN for all dc voltages (see Fig. 5), which is also
slightly below the dc noise at w; > w¢ + 2o where it is given
by: Spn(ws) = (Po + 2P1)Sqc(wy). This is due to the weak sine
voltage which yields Py +2P; < 1.

Indeed, for such a weak ac voltage, we can show that the
PASN is Poissonian for all w; > Qo, Spn(w;) = el,n(wy) [see
Eq. (B1)]. Then our result is coherent with the known fact
that Iy (wy) < lje(wy) = Sqc(wy)/e in the Tange we < wy <
wc + Qo [88].

B. Super-Poissonian PASN

Considering again a NEQ density matrix py and nonperi-
odic p(t), let us first recall the relation obtained for the PAC
in Eq. (6) [26,27],

*© da)/ D / /
Ipn(wy) = < Pl@)ie(w + wy). (24)
o 20
Similarly to Eq. (10), it is also interpreted within a lateral-
band transmission picture for correlated NEQ many-body
states. Now we have shown that the dc noise is super-
Poissonian [33]

Sac(wy) 2 € [lac(wy)] (25)

due to the fact that I, (w;) and I._(w;) are positive [see
Egs. (92) and (9b)]. This is obviously verified by Eq. (13) for
an initial thermal equilibrium, which yields a Poissonian dc
noise at low temperatures. Nonetheless, the super-Poissonian
dc noise does not arise necessarily from thermal effects if
the initial NEQ distribution is, for instance, generated by
additional dc voltages (see Fig. 3) rather than by temperature
gradients (as in Fig. 2).

Now by comparing Eq. (10) to Eq. (24), and using Eq. (295),
we obtain also a super-Poissonian PASN [24]:

Spn(wy) = € pn(wy)]. (26)

This is an important inequality, also valid when one has peri-
odic drives, and even when the global system is in the ground
state. Notice that this inequality suggests an alternative for
the excess noise, given by S, (w;) — e*|1,(w;)|, which yields
always a positive sign, although it is not the most relevant
experimentally as discussed in Appendix D.

Let us now comment on the case the dc current is linear
with respect to w; and |p(¢)| = 1. Then Ip(wy) = Lic(wy),
which becomes linear as well. In particular, if Egs. (5a) and
(5b) hold, one has simply

Iph(wj) = Gy Ve, (27)

where Gy = I.(wy)/Vye is the linear conductance. There-
fore, the lower bound on the PASN becomes given by the dc
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current, S, (wy) 2 €*|I;-(wy)l, exactly as is the case for the dc
noise in Eq. (25). Nonetheless, it is only with an initial ground
many-body state, that the dc current can be replaced by the dc
noise [see Eq. (13)], so that one recovers Eq. (22).

The inequality in Eq. (26) offers an alternative to the one
in Eq. (22), and is valid in the SIS junction we addressed
above for all dc voltages. Although restricted to a pertur-
bative regime, it covers a much larger family of nonlinear
systems and quantum circuits. But an important difference
from Eq. (22) is that the PAC, forming the universal lower
bound, is also determined by the ac voltage.

V. REVISITING MINIMAL EXCITATIONS

In view of the above features, we address in this section
the issue of characterizing minimal excitations, whose real-
ization requires a ground many-body state, for instance the
low-temperature limit of an initial thermal equilibrium.

A. L. Levitov’s characterization:
Limitation to linear conductors

Characterization of minimal excitations (we focus here on
“electron” type ones) by L. Levitov et al. [18] through the
PASN is based on the central inequality in Eq. (22).

First, the authors impose an injected charge per pe-
riod Qcycle = Ne. As they assume that I(t) = 9,0(t) =
e’V (t)/h (for a linear ballistic conductance with nonin-
teracting electrons), they obtain Qcycle = & fOT" dtV(t)/h =
e>TyV,./h, controlled by the dc component of the voltage V (¢)
only. This leads to the condition V,;. = Nh/(Tye) or, taking
e¢* = ein Eq. (52), to w; = NQy.

Secondly, according to Eq. (22), the TD voltage, which
minimizes the PASN by injecting well-defined electronic ex-
citations, must ensure the equality Sp,(w;) = Sac(wy), the
lower bound of the PASN. This requires that the Fourier
components p; of p(t) = e~#® obey

| <—N=p =0. (28)

For that, the total voltage must be formed by a series of
Lorentzian pulses centered at KTy with a width 2W, so that the
phase derivative verifies [see Eq. (5b), thus f dto,p(t) = 0],

nd 1

_NQ,
det) = — 2 1+ (t — k)2 /W2

k=—00

—NQy. (29)

Nonetheless, such a characterization requires the current to
be linear, thus does not apply to a QPC in the FQHE with a
nonlinear dc current as claimed in Ref. [18].

Let us give three reasons for that. First, the injected charge
corresponds to the PAC in Eq. (24), which, for a nonlinear
dc current, has a nontrivial functional dependence on the ac
voltage [27].

Second, let us adopt the Lorentzian pulses, and apply
Eq. (28) to the FR in Eq. (12), so that:

Spp(NQ0) = Y PiSac((N + 1)), (30)

I>-N

In order to reach the equality S,,(N2p) = Sq.(N ), given
a dc Poissonian noise, one needs in general a linear dc current

[notice that one has to add 2kgG,.(T )T P_y on its rhs, in view
of Eq. (14)].

Third, the authors were not aware of an implicit hypothesis
underlying the inequality in Eq. (22), the linearity of the dc
current. So it cannot be generalized to nonlinear conductors,
such as the SIS junction addressed in Sec. [V A.

B. Super-Poissonian to Poissonian PASN: Minimal excitations

We have shown that the PASN is universally super-
Poissonian [see Eq. (26)] whatever is the initial NEQ
distribution. This is a first central ingredient of our alternative
path. The second one is to define minimal excitations as those
for which the PASN becomes Poissonian, thus equality is
reached in Eq. (26). We focus, for simplicity, on a periodic
p(r) with [p(t)| = 1.

Instead of solving for the voltage, we gain generality by
reasoning in terms of ¢(¢) and the dc frequency w; [the
relations in Egs. (5a) and (5b) are not systematic]. Now wy,
which does not fix the transferred charge, is not fixed but has
rather to be determined, on the same level as ¢(¢), by requiring
equality in Eq. (26). For that, we write Egs. (C2) and (B1) in
the limit of a strictly zero temperature,

(31a)
(31b)

Spn(wy) = € Ipp 4 (wy) — Ipn,—(wy)],
Ly(wy) = Iy 4 (@)) + Lo, —(@)).

We have separated I, +(w;) = Zi(a),+190)>0 P I (wy +
1€2p), the contributions to the PAC generated by either positive
or negative effective dc drives. We have used the fact that
Ijc(w; = 0) =0 and w;I;.(wy) = 0 for a thermal distribution
[27], so that £1,, + (w;) = 0. Therefore the Poissonian limit is
reached whenever I, (w;) =0 or I, _(w;) = 0. We focus
here on the condition /,, _(w;) = 0. In order to be ensured
whatever the profile of I, this requires that P, = 0 for all
[ such that w; + [2¢p < 0. Then one can show, using similar
arguments to those by L. Levitov et al. [18], that the phase
must have the form in Eq. (29), and that w; = Ny due to
analytic properties of p(¢) in the complex plane.

Therefore, we get, from Eq. (30)

Spn(NSo) = € |1n(NS0)I. (32)

This Poissonian regime indicates that the PASN reduces to
the average charge given by e*|1,,(NS20)|, now generated
only by photon absorption of the many-body ground state.
Indeed, since temperatures are always finite, and even for the
present NEQ quantum regime with T < /€2y /kg, one has:
Spn(N20) = e*[Ipn(NQ20)| + 2kpT P_yG4c(T) [see Eq. (14)].

Similarly, in case one superimposes a finite dc frequency
wqe on top of Ny, one goes back to a super-Poissonian
PASN. Let us give an example for N = 1 and decrease the dc
drive by a frequency wy,. verifying kgT /h < w4, < 29. Then
we get

Son(Q0 — wae) = € In(Q2 — wae)| + 2" Py [Lge(—wac ).

This analysis provides another example at odd with the
inequality in Eq. (22), by considering again a SIS junction in
the ground state (see Fig. 5). As mentioned in Sec. IV A, a sine
voltage reduces the PAC in the range wc < w; < wc + 2o
compared to I;.(wy) [88], a result we can extend to an arbi-
trary profile of the voltage. Since we showed that Lorentzian
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pulses generate a Poissonian PASN [we do not have any
thermal contribution as G4.(T) = 0], one has S,,(NQ) <
Sac(NQp) if N verifies 0 < NQy — wc < 2. In particular,
Lorentzian pulses with one electron per cycle (N = 1) reduce
the PASN with respect to the dc noise whenever the frequency
of the pulses is above the gap, 2y > wc.

Recall also that a Poissonian PASN can be reached by a
weak sine voltage applied to the SIS junction (see Sec. IV A),
thus is not exclusive to Lorentzian pulses.

Our analysis can be extended to a nonperiodic p(¢) with
a possible time-dependent modulus |p(#)|, where similar ana-
lytic properties of p(w) lead to a Poissonian PASN.

We finally insist that for a NEQ initial distribution, the in-
equality in Eq. (26) remains strict even for Lorentzian pulses.

C. FQHE: Nontrivial charge of minimal excitations and
super-Poissonian PASN

In the FQHE, the renormalization by a fractional charge
e* in front of the current arises from the fact that A translates
the charge by e*, which is chosen as the dominant process
(that which has the lower scaling dimension [73]). But con-
trary to the initial claim of L. Levitov et al., the Lorentzian
pulses cannot carry Qcycle = Ne* per cycle. It was shown, in
Refs. [23,53], that one has still Qcyle = Ne, but the proof
is restricted to Laughlin states, v = 1/(2n 4 1), for which
e* = ve.

Let us consider hierarchical states for other incompress-
ible filling factors. One needs to assume, in order to reach
an almost Poissonian PASN, that the Lorentzian pulses are
not deformed at the level of the QPC. We also assume that
Eqgs. (5a) and (5b) hold, where e* enters, so that the condition
w; = Ny means that the value of V. for a given frequency
Qo depends on e*.

Given this condition, we would like to provide the charge
carried by a minimal injected excitation in the region before
the QPC (see Fig. 1), where the chiral current reduces to the
first term on the rhs of Eq. (8), thus for x < 0. The charge per
cycle is given by (as w; = N2y = 2Nx /Tp)

e (T ve
Qcycle = VE‘/ dtV(l‘) = Nee—*. (33)
0

This suggests that Qcycle gives a possible access to e*, as one
generally determines v from conductance plateaus. Within
effective theories, there are many models whose dominant
backscattering process [73] can carry different charges e*. For
instance, for v = 2/(2n 4 1) with integer n, some models lead
toe* = e/(2n+ 1) [35,36,72], so that Qcycle = 2Ne is integer,
which is the same charge as that in the IQHE at v = 2.

Indeed, the weak backscattering regime holds above kzTp
where the thermal contribution to the PASN in Eq. (14) can-
not be ignored. Therefore we get a strictly super-Poissonian
PASN, contrary to the claim for the TLL in Ref. [23],
Spn(N Q) = €*|I,n(NQ0)| + 2kgT P_yGy.(T ), where G4c(T)
is a power of T'.

VI. OTHER APPLICATIONS

A. Shot-noise spectroscopy

In general, the transfer rates P(w) in Eq. (10) might be un-
known as they can be affected, for instance, by interactions or

by NEQ or fluctuating sources. Thus one possible advantage
of the FR in Eq. (10) would reside in shot-noise spectroscopy.
An interesting protocol has been proposed in Ref. [89], but
is nonetheless restricted to noninteracting electrons, a linear
dc current and periodic voltages. It should be more facilitated
here by the compact form of the FR in Eq. (10) in terms of
the dc noise S,;., which has a nontrivial behavior in nonlinear
systems. There are in addition situations where the sources to
be probed are nonperiodic, such as a random non-Gaussian
radiation [see Eqgs. (15) and (17)]. Without knowledge of
the underlying model, one could measure the noise both in
absence and in presence of the sources, then extract P(w’) by
varying the dc drive ;.

Indeed as P(o') = |p(w')|? in Eq. (10) hides the phase of
p(e'), it would be more efficient to consider PASN at a finite
frequency w, where nondiagonal terms p(«’)p*(«’ + ) enter
(see Ref. [24]). Interestingly, we have also obtained these
nondiagonal terms in the differential of the PASN with respect
to ¢(w), given by Eq. (18) [or the ac voltage in case Eq. (5b)
holds]. In order to evaluate differentials, the phase of p(¢) has
to be known, so that this procedure applies when one needs
to determine its time-dependent amplitude (e.g., for tunneling
or a Josephson energy). Nonetheless, one could superimpose
a controlled phase ¢,(¢) on an unknown phase ¢(t), then take
the differential in Eq. (18) in the limit ¢,(¢) = 0, such that
p(w') on the rhs becomes determined only by ¢(¢). Notice
that one can also superimpose a periodic ¢,(¢) on top of a
nonperiodic ¢(7).

Now one could probe directly a small enough ¢(¢), using
the second order expansion in Eq. (20). This is especially
easier when one applies a sine phase without knowing its
amplitude ¢,., renormalized for instance by interactions while
keeping the same form, ¢(t) = ¢, cos Qot. Then, given an
arbitrary wy, one needs to measure both the PASN and the dc
noise and to consider the ratio in Eq. (21).

Another spectroscopy scheme, valid in the case of a ther-
mal distribution, could be based on exploiting the thermal
contribution on the rhs of Eq. (14), 2P_ykgT G4.(T). For
each N (thus a dc voltage), looking at the unique term in the
noise which depends on T < 12y /kp provides P_y, once one
measures Gy.(T).

B. Robust determination of the fractional charge

An important family of applications of our approach
consists into robust methods we have proposed for the deter-
mination of the fractional charge in the FQHE [26,27,33,75],
and implemented experimentally to determine e* = e/5 at
v =2/5 in Ref. [35] and ¢* = ¢/3 at v = 2/3 in Ref. [36].
Such methods are more advantageous than those based on
the dc Poissonian noise [37] in Eq. (13). In particular they
do not require thermalized states nor high voltages, which
could induce heating. They are based on looking at the noise
argument rather than a proportionality factor, as the key step
is to determine the Josephson frequency w;, which yields the
charge e* in case the relation in Eq. (5a) holds. The method
based on the NEQ FR in Eq. (10) works better if the dc
noise has a singular behavior close to zero, which corresponds
to a locking w; = N€2p. Such a singularity becomes more
pronounced by taking the second derivative 825, (w;)/8%w;,
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formed by a series of peaks around N€2y. Nonetheless, if one
deals with an initial thermal pg, a low enough temperature is
required to preserve these peaks, which would be otherwise
rounded by thermal effects when |w; — NQ2o| < kgT /i [see
the second term on the rhs of Eq. (14)].

We propose here a more direct method, which does not
rely on such a singular behavior nor low temperatures, and
equally valid for a NEQ distribution py. It is based on the FR
for the second differential of the PASN in Eq. (19). Assuming
that @, = €*v,./h, w; = €*vy./h, one looks for the value of
e* for which both sides, determined only by PASN, become
identical. This would be easier in the limit of a small cosine
modulation, using Eq. (20).

We have also derived a similar relation for the PAC [26].
Nonetheless, the PAC becomes trivial for a linear dc current
[see Eq. (27)], as is often the case for the experimental groups
aiming to determine the fractional charge [35,36], thus mo-
tivating their recourse to the methods based on noise we had
proposed [75,76]. Thus the measured dc current does not obey
a power-law behavior as predicted by the effective theories.
This illustrates precisely the power of the methods based on
the NEQ approach, which are independent on the underlying
microscopic description of the edge states as long as it can be
cast in the form of Eq. (1).

VII. DISCUSSION AND CONCLUSIONS

We have studied the PASN generated by radiation fields
operating in a large family of physical systems, such as a QPC
in the FQHE or the IQHE with interacting edges, as well as
quantum circuits formed by a JJ, NIS, or a dual phase slip JJ
strongly coupled to an electromagnetic environment. We have
related the PASN in a universal manner to its counterpart in
a dc regime characterized by a NEQ distribution, similarly
to relations obeyed by the finite-frequency current for ac
drives [27] and finite-frequency noise in the dc regime [33].
The NEQ FRs unify higher dimensional and one-dimensional
physics, although the latter is atypical as it is drastically af-
fected even by weak interactions. They also unify previous
works based on specific models and an initial thermal equilib-
rium [22,23,53,89].

We have discussed how can these NEQ FRs be poten-
tially relevant to shot-noise spectroscopy. In addition, we can
transpose to the PASN various methods based on the PAC
and addressed in Refs. [26,27,67], in particular to probe the
fractional charge or to detect current cumulants of a non-
Gaussian source, though the implementation is not identical
due to different properties of current and noise. Indeed, in case
the dc current is linear and |p(¢)| = 1, the PAC becomes triv-
ially equal to the dc current and the PASN offers a nontrivial
alternative. This is precisely the case in two situations arising
in the IQHE and FQHE.

On the one hand, interactions between edge states still
play an important role in the IQHE, which is addressed
in many works through the plasmon scattering approach
[40,41,43,90,91]. But bosonized models justify the linearity of
the dc current through a spatially local QPC, thus permitting
the recourse to the scattering approach for independent elec-

trons in those works. Notice that all these hypothesis are not
required within our approach, as we can deal with a possible
nonlinear dc current, which is the signature of the QPC.

On the other hand, in the FQHE, the dc measured current is
quite often weakly nonlinear in experiments aiming to probe
fractional charges [35,36] and statistics [74]. As the PAC is
trivial, the FR for the PASN, already obtained in Ref. [24],
has been fruitful for an experimental determination of the
fractional charge at v = 2/5 [35] as well as for the analysis
of two-particle collision experiments [6,66]. In those exper-
imental works where effective theories such a the TLL are
not in accordance with the observed dc current, our methods
have the advantage to be robust with respect to the underlying
microscopic description and nonuniversal features, such as
edge reconstruction or absence of edge equilibration. In the
present paper, we have proposed a more advantageous method
based on a second differential of the PASN, or on its expansion
for a weak sine voltage.

We have also found that the excess noise can be nega-
tive in a nonlinear SIS junction. Thereby the qualification of
“photoassisted” is not universally relevant: the PASN can be
reduced by an ac voltage superimposed on a dc one. This
feature is at odd with a theorem by L. Levitov et al. [18],
which is restricted to a linear dc current. Such a theorem was
at the heart of characterizing minimal excitations for an initial
thermal equilibrium at low temperatures. We have provided
an alternative characterization. Showing that the PASN is
super-Poissonian whatever is the NEQ initial distribution, the
Lorentzian profile of the voltage is precisely the one which
leads to a Poissonian PASN when the system is in the ground
many-body state. For hierarchical states of the FQHE, we
showed that the charge carried by minimal excitations is still
depending on the fractional charge, and that the PASN is
super-Poissonian.

Finally, compared to the dc regime, additional limitations
of the approach arise. These are mainly due to possible
couplings to time-dependent forces or boundary conditions,
which have to be incorporated into a unique complex func-
tion, for instance through unitary transformations of the
Hamiltonian. Thus the approach might be still justified in
presence of one additional tunneling point between edges, but
not for multiple mixing points (see for instance Ref. [92]).
Also an interferometer with multiple QPCs driven by different
ac voltages is not expected to enter within the domain of
validity of the present approach, but the latter would still offer
a test in the limiting cases of identical ac voltages, or of a
dominant tunneling through one QPC.

In the quantum Hall regime with an almost open QPC, one
usually measures correlations between chiral edge currents.
Such correlations don’t always reduce to the backscatter-
ing PASN, especially in NEQ setups such as the anyon
collider. But the perturbative approach is still useful to ex-
press the additional terms, as will be addressed separately
[79] (in the same spirit as Refs. [77,80-82,93,94] for the dc
regime).

Finally, an important open question consists into character-
izing minimal excitations beyond the second-order perturba-
tion we have carried on.
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APPENDIX A: DERIVATION OF THE NEQ FR

This Appendix provides a detailed derivation of the relation
obtained in Eq. (10). In order to express the PASN in Eq. (7)
to second order of perturbation with respect to A, we do not
need an expansion of the S matrix, as S is already of second
order. Thus we can directly replace 87y (1) by fyo (), or, in
Eq. (4), Ay (t) by Ay, (t) = €' A e="0!  Then the effect of
the ac drive factorizes,

W :e—iwﬂp(r + %)p”‘(r - %)L(—T)

+e,-w,fp*(t+§)p<,_%)ze(f). (AD)

The two correlators I, (t),I.(t) determine all observ-
ables associated with the current in Eq. (4) to second-order
perturbation; they keep track of unspecified Hamiltonian and
initial stationary NEQ density matrix py, thus depend only on
time difference © [27,33],

FL, (1) = €" (A}, (1)A2,(0)),

RPI (1) = €" (A3, (0)A], (T)). (A2)

Notice that the Fourier transforms I_, (w), I._(w) are real
because both functions verify: X*(t) = X(—1) [24,27,83].
Here X(w) = f dte®*X(t), as the measurement time T;
delimits only integration over ¢. This implements the first
important step underlying the derivation of various NEQ per-
turbative relations.

As time-translation invariance is broken, double-Fourier
transform introduces two frequencies, , 2,

To/2 dt

o0
S(wy,w, Q) = / — / dre™ e S(wy:1,1). (A3)
~Ty/2 10 J -0

Focussing here on Q@ =w =0, and letting Sy(w;) =
S(wy; 0, 0), we obtain the PASN in terms of the Fourier trans-
forms of the two correlators in Eq. (A2)

d /
Spn(wy) = e*/ Q—Q;Ip(w’)lz[le (w5 + &)+ (w7 + )]
(A4)

We have defined p(w) = _T"T(/jz ¢ p(t)dt /Ty. An addi-

tional term, not considered here, might arise in presence of a
singularity p,.8(w) (such as is the case for a single Lorenztian
pulse). Such a term has a similar form as that appearing in the
PAC in Ref. [27], replacing the current by the noise.

It is useful to recall that /_,, I determine as well the
expressions of current average and zero-frequency noise in the
dc regime, i.e., at p(t) = 1, given by Egs. (92,9b) [24,33,76].

Thus, we can view I_, and I as transfer rates in opposite
directions, whose difference yields the dc current, while their
superposition yields the dc noise. For a JJ in series with an
electromagnetic environment, I_,, . offer the two counter-
parts, given initial NEQ states, of the P(E) function which
corresponds rather to initial thermal states.

We stress that, contrary to the majority of previous studies
on TD transport, the two correlators I, , I are not necessar-
ily linked: one can have I, (w) # I._(—w) and they do not
obey a detailed balance equation if we do not consider initial
thermal states. Therefore, I_,, I are, in full generality, two
independent functions.

Next, in order to derive the FR relating the PASN under the
drive p(¢) to that in the dc regime, S;., we compare the two
expressions respectively given by Egs. (A4) and (9b).

One can then see that the combination of the NEQ correla-
tors in the integral of Eq. (A4) is nothing but the noise in the
dc regime, evaluated at an effective dc drive given by w; + o'.
This leads to Eq. (10).

APPENDIX B: PERIODIC DRIVES

This Appendix is devoted to detail the PASN and the PAC
in presence of a periodic p(t) at a frequency €2¢. Then the
integral in Eq. (10) reduces to a sum over o’ = [, for integer
[ > 1, which leads to Eq. (12).

This relation is similar to the PAC in Eqs. (6) and (24)
[26,27],

+00
Iph(wl) = Z Pl (w; + ().

[=—00

B

We notice that when |p(¢)| # 1, we have Z;;ofoo PID e =
F.T.[|p(t)|*lx, the Fourier transform at kQo of |p(t)|>. In
particular, for k = 0, we have

[=+00

> P ={p))n,

I=—00

(B2)

where average refers to that over a period (see Ref. [27]
for a nonperiodic p(t)). When |p(t)| = 1, we recover the
orthogonality

+00

POl =1= Y piply =

l=—00

(B3)
where &y is the Kronecker sign.

APPENDIX C: INITIAL THERMAL EQUILIBRIUM
DISTRIBUTION

This Appendix gives a more detailed expression of
the PASN for an initial thermal distribution. By injecting
the expression of the dc noise in Eq. (13) into Eq. (10), the
PASN becomes totally determined by the NEQ dc current,

L [do - ho' ,
Sph(wj)ze /Q—OP(C() —Cl)J)COth m Idc((,() ) (Cl)
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Our expression is different from the one derived by L. Levitov
et al. for a QPC in the FQHE [18], and which we recover only
for a linear dc current I;.(«') = hG,4.w'/e*. For a periodic
drive, we get

=400
N h(w; +120)
Spn(wy) = e I—ZOOPI coth[T Lic(wy + 120).

(C2)

Let us now specify further to the case w; = N€2y. Since we
deal here with an equilibrium thermal distribution, we have
wyl.(wy) > 0 even when I, is not odd (see Ref. [27]). If we
consider now the NEQ quantum regime at Qo > kgT /h, we
obtain Eq. (14) in the text. Though we have a NEQ PASN,
an equilibrium thermal noise weighted by P_y arises, given
by P_nS4.(0). It is due to a vanishing effective dc frequency
when the many-body state at energy N2, emits N photons.
For independent electrons, it was interpreted as a reduced ther-
mal contribution from the reservoirs [48]. Since the dc current
becomes then linear, one has generically G4.(T) = G4, con-
stant, so that the contribution of / = —N =+ 1, proportional to
G4.h2, dominates kgT G4..

Nonetheless one cannot neglect systematically kg7 G4.(T')
in nonlinear conductors, where G;.(7T") depends on T, as is the
case of effective theories for the FQHE [79].

APPENDIX D: THREE CHOICES FOR THE EXCESS PASN

This Appendix aims to discuss the various choices and sign
of the excess noise. In the dc regime, it is often defined as
ASqc(wy) = Sac(@wy) — Sac(0). (DD
Recall that in a NEQ setup with couplings to dc voltages inde-
pendent from wy, S4.(0) is finite even when all temperatures
are set to zero, and is therefore different from the thermal
equilibrium noise.
For the excess PASN, there is not a single convention as it
depends on which reference is chosen in a given experimental

context. In Eq. (11), we have chosen as a reference the dc
noise in presence of the same dc voltage.

One could also adopt a second choice, by subtracting the
same reference as that in Eq. (D1),

ASpi(wy) = Spn(wy) — Sac(0).

This yields, focusing on a periodic drive at a frequency €2
[see Eq. (12)],

D2)

+00
ASpn(@p) = Y PiASge(w; + 192)
|=—00
+00
+ ( > p- 1>Sdc(0). (D3)
I=—00

The relations between the two choices is given by

ASpn(wy) = Spi(wy) = Sac(wy) = ASpn(wy) — ASac(wy).
(D4)

Excess noise is expected to have a positive sign, as noise
should increase with additional voltage sources. This is indeed
not systematic in the dc regime, as we have shown for zero or
finite frequency noise for nonlinear conductors [83,95]. In the
text, Sec. IV A, we showed that the choice in Eq. (11) can
lead to a negative sign in a SIS junction. In a separate paper,
we will show that Eq. (D3) has a negative sign in the FQHE.

In view of the super-Poissonian noise in Eq. (26), a third
choice guarantees a positive sign, Sy, (w;) — e[l (wy)|. But
such a choice is not so advantageous. If the dc current is
nonlinear, one would need to measure the nontrivial PAC. In
addition, subtracting a noise reference is more convenient to
get rid of undesirable sources, which affect the PASN in a
different manner from the PAC. For instance, if one takes the
zero dc voltage limit, one has 7,,;,(0) = 0 in case I, is odd and
P(w'") = P(—w'), but has still a finite S,,(0).

A similar choice was given in Ref. [23]. Restricted to
a thermal equilibrium and to the TLL model, that work
recovered the super-Poissonian PASN of Ref. [24]. This mo-
tivated the authors to define the excess noise as Sp;(w;) —
e* coth[Bw; /21I,4(w;), whose sign is however not well de-
termined. In case the dc current is linear [see Eq. (27)], this
amounts to adopt the second choice, Eq. (11). Such a defini-
tion was intended to cancel thermal contributions, but indeed
cancels only the contribution of / = 0 in Eq. (14), and not the
term P_nS4.(0).
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