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Hydrodynamics of charged Dirac electrons in two dimensions. II. Role of collective modes
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We study the hydrodynamic properties of ultraclean interacting two-dimensional Dirac electrons with Keldysh
quantum field theory. We study it from a weak-coupling and a strong-coupling perspective. We demonstrate that
long-range Coulomb interactions play two independent roles: (i) they provide the inelastic and momentum-
conserving scattering mechanism that leads to fast local equilibration; (ii) they facilitate the emergence of
collective excitations, for instance plasmons, that contribute to transport properties on equal footing with
electrons. Our approach is based on an effective field theory of the collective field coupled to electrons. Within
a conserving approximation for the coupled system we derive a set of coupled quantum-kinetic equations. This
builds the foundation of the derivation of the Boltzmann equations for the interacting system of electrons and
plasmons. From this, we explicitly derive all the conservation laws and identify the extra contributions of energy
density and pressure from the plasmons. We demonstrate that plasmons show up in thermoelectric transport
properties as well as in quantities that enter the energy-momentum tensor, such as the viscosity. In a parallel
paper [K. Pongsangangan et al., Phys. Rev. B 106, 205126 (2022)] we discuss some of the phenomenology of

the corresponding hydrodynamic equations with an eye on thermoelectric transport properties.
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I. INTRODUCTION

The conventional theory of electronic transport in a solid-
state setting describes the motion of electrons in the following
way: individual electrons diffuse on the background of a dis-
ordered lattice, primarily scattering from impurities and/or
lattice vibrations [1-3]. However, recent years have seen
tremendous progress in realizing electronic transport that fol-
lows a different paradigm: hydrodynamic electrons, meaning
electrons flowing collectively like a viscous liquid, such as
water or honey. This idea has first been discussed in the
1960s by Gurzhi [4]. However, the subject has only recently
picked up a lot of pace. This is mostly due to recent ad-
vances in the preparation of ultrapure monolayer and bilayer
graphene samples with sufficiently strong interactions [5—10].
The prerequisite for the experimental observation of electron
hydrodynamics is that microscopic momentum-conserving
electron-electron collisions due to Coulomb interactions must
be considerably faster than momentum-relaxing scatterings
of electrons from impurities and/or phonons. This allows
to locally establish equilibrium. In that situation, it is jus-
tified to speak of approximate conservation laws, sufficient
to open the door for the observation of electron hydrody-
namics [11-16]. The theoretical method used to investigate
this hydrodynamic flow is usually based on the traditional
Navier-Stokes equation which expresses conservation of mo-
mentum, energy and electric charge [15,17,18]. One way
to derive these hydrodynamic equations from microscopics
starts from the Boltzmann equation [16,19]. There, usually,
the effect of the Coulomb interactions enters only through
electron-electron collisions leading to local equilibrium. This
effect is usually calculated from a weak-coupling perspective
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within second-order perturbation theory in the interaction
strength, referred to as the Born approximation for the cross
section [11,13,20,21]. However, hydrodynamics of a charged
liquid must be expected to behave differently in many respects
from the archetypal example of fluid like water flow. The
reason is that for a charged electronic system, in addition to
said inelastic scatterings, Coulomb interactions provide also
long-range mean-field forces between electrons. This facil-
itates the emergence of collective excitations, for instance
plasma oscillations or plasmons [22-24]. Under the correct
circumstances, as present in the situation studied here, these
plasmons behave as bona fide quasiparticles that have their
own dynamics. This effect is usually not considered in the
context of electron hydrodynamics.

Background and main idea. Strongly correlated many-
particle systems can often be regarded as a collection of
weakly interacting excitations. One of the prime examples
of this kind is the Landau Fermi liquid [25]. Its excitations
behave as well-defined entities, called quasiparticles. This
means the following conditions must be fulfilled: (i) an ex-
citation with momentum j possesses a well-defined complex
energy spectrum, say w(p) = €(p) — iy (p), where the imag-
inary part of the energy y(p) describes the decay rate of
the particle, inversely proportional to the lifetime of the ex-
citation; (ii) an excitation must be long lived which means
that the decay must be at least underdamped y (p) < €(p).
These requirements usually limit one to the low-frequency
and/or long-wavelength behavior of the system. Under such
circumstances, it is justified to consider the complicated in-
teracting system as a collection of independent elementary
quasiparticles [26]. Once this paradigm is adopted for a given
many-body system, there are two main questions in need of

©2022 American Physical Society


https://orcid.org/0000-0003-3619-6706
https://orcid.org/0000-0003-3678-0785
https://orcid.org/0000-0002-2444-084X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.205127&domain=pdf&date_stamp=2022-11-15
https://doi.org/10.1103/PhysRevB.106.205126
https://doi.org/10.1103/PhysRevB.106.205127

PONGSANGANGAN, LUDWIG, STOOF, AND FRITZ

PHYSICAL REVIEW B 106, 205127 (2022)

answer: (i) What are the quasiparticles involved in physical
phenomena of interest at the relevant energy scale? (ii) What
is the population of these quasiparticles in each momentum
state especially when the system is exposed to external dis-
turbances? The latter is quantified by a distribution function
f(X,t, p) which gives the probability density that the parti-
cle in a momentum state p is found in a neighborhood of
a spatial position X at time ¢. For a given nonequilibrium
situation, the time evolution of the distribution function is
described by the Boltzmann equation. The knowledge of the
distribution function and the energy spectrum is vital to de-
termine all thermodynamic as well as transport properties of
the system in a straightforward fashion. The main questions
we address in this paper are as follows: (i) What are the quasi-
particles involved in hydrodynamical transport phenomena of
ultraclean two-dimensional Dirac electrons at an accessible
temperature? (ii) How do they equilibrate? The conventional
theory for hydrodynamic behavior in two-dimensional Dirac
systems is a version of a two-component hydrodynamics,
consisting of electronic and holelike excitations, henceforth
referred to as electrons and holes [11,14,18]. This scenario
is very popular and can formally be derived from a weak-
coupling analysis using a Hartree-Fock-Born approximation.
In that framework, Coulomb interaction plays two different
roles: (i) it is seen by an electron as an internal potential
produced by all the other electrons in the system through
the Hartree term; (ii) Coulomb interaction manifests itself
as an inelastic and momentum-conserving scattering mech-
anism [11-13,20,21] which locally equilibrates the system.
This process is an important requirement for observing the
electron hydrodynamical regime with its fascinating transport
properties [14-16].

Perturbation theory up to, in this case, second order in the
coupling constant is unfortunately unable to describe many
important physical phenomena, such as the emergence of
collective modes. Collective modes, however, are the hall-
mark of interacting electronic systems. One such mode is
plasma oscillations, also called plasmons. In conventional
three-dimensional metals, plasmons are a gapped degree of
freedom with a large energy gap, larger than the Fermi en-
ergy. This implies that thermal plasmons cannot be excited
at realistic experimental temperatures and hence are largely
irrelevant, both for thermodynamic as well as transport prop-
erties. As an example, aluminum at room temperature has a
ratio of the plasmon gap to the thermal energy hw,/kgT =~
16 eV/0.25 eV = 64. Consequently, the plasmon occupation
number is negligibly small, ng(w,) ~ 1028, where ng is
the equilibrium Bose-Einstein distribution function [27]. In
contrast, in two dimensions, plasmons are massless and
have a square-root dispersion, i.e., @ o< /g [28-30]. This
is not only true for Dirac fermions but for a generic two-
dimensional electronic system. Consequently, at accessible
temperatures, plasmons can be excited and thus constitute
proper low-energy elementary excitations. There might be
various effects that potentially destabilize the plasmon and
broaden their spectral function such as disorder, electron-
phonon, and electron-electron collision [31,32]. However, it
turns out that the plasmons are typically remarkably stable.

The main result in this paper is that we offer a unique
derivation of the equations of hydrodynamics from a strong-

coupling perspective. This results in a combined description
of electrons, holes, and plasmons, that are coupled to each
other. In this description, plasmons enter on equal footing
with the electronic degrees of freedom: we find that plasmons
make a contribution of the same order of magnitude as the
fermionic degrees of freedom to heat currents as well as
the energy-momentum tensor and consequently should show
up in measurements that measure thermal transport but also
viscous effects. The results presented here provide a start-
ing point for more phenomenological descriptions, including
transport properties, which we present in a parallel paper [33].

Organization of the paper. We start with Sec. I where
we introduce the model of interacting Dirac fermions and
describe how it connects, for instance, to graphene. We
then proceed to a technical section, Sec. III, where we re-
view the formalism of real-time quantum field theory. It is
a summary of the most important steps that lead from a
fully quantum mechanical treatment towards the semiclassi-
cal Boltzmann equation. This includes the partition function
on the Schwinger-Keldysh time contour, Sec. IIT A, as well
as the structure of the Green functions on the closed time
contour in Sec. IIIB. We then discuss the Dyson equa-
tion, including the Keldysh or quantum-kinetic equation in
Sec. IIIC. We proceed to introduce the Wigner transform
and the Moyal product in Sec. III D which allows to perform
the gradient expansion on the Keldysh equation in Sec. III E.
More detailed accounts of the formalism can be found in
Refs. [21,34-36]. This section can be skipped by a reader
familiar with the Schwinger-Keldsyh or Kadanoff-Baym
approach. In Sec. IV, we discuss two-component hydrody-
namics as currently used for the description of graphene.
We derive all the equations from the Schwinger-Keldysh
approach and show how the two-component fluid picture
emerges within a weak-coupling approach to second order
in the Coulomb interaction. We start with introducing the
noninteracting Green functions in Sec. IV A. Within weak
coupling, a Coulomb interaction plays two different roles: (i)
It is seen by an electron as an internal potential produced
by all the other electrons in the system. This is the result
of perturbation theory to first order, called the Hartree-Fock
scheme [37], where the Fock term leads to a renormalization
of the Fermi velocity [38,39]. The potential energy, on the
other hand, is referred to as the Hartree potential. In thermal
equilibrium, it is canceled by a potential from the underlying
positively charged background in which the particles move.
However, it builds the basis for a derivation of the collective
excitations of the fluid [24,26]. This aspect is discussed in
Sec. IVB. (ii) The Coulomb interaction manifests itself as
an inelastic and momentum-conserving scattering mechanism
[11-13,20,21]. This process is an important requirement for
observing the electron hydrodynamical regime since it leads
to local equilibration. In Sec. IV C we discuss the scattering
process in detail. We then derive the ensuing conservation
laws starting from the Boltzmann equation in Sec. IV D and
finish the section with a discussion of collective modes in
Sec. IVE. We find a collective mode that we later identify
with the plasmon. We show explicitly that it matches with the
strong-coupling treatment if interpreted correctly.

Low-order perturbation theory is unable to describe
many important physical phenomena, for instance, collective
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modes, such as plasmons. We address this situation in Sec. V.
We start with a formalized version of the random-phase ap-
proximation (RPA) in Sec. V A. To this end, we introduce a
quantum field associated with a plasmon excitation by means
of a Hubbard-Stratonovich transformation [40,41], which is
an exact rewriting of the theory. After integrating out the
fermions, the plasmons acquire their own dynamics, which
is discussed in Sec. V B. The numerical details of this are
discussed in Sec. VB 1 whereas in Sec. VB2 we discuss
an analytical approximation that allows us to make further
progress. An important side product is that we show that there
is also a feedback effect, that renormalizes the fermions and
provides scattering for them, despite having integrated them
out at an earlier stage. Importantly, we can show explicitly
that this is not an instance of double counting, as one might
suspect, but is indeed required to preserve conservation laws.
In Sec. V C we find a set of coupled kinetic equations for elec-
trons, holes, and the plasmons [42—44]. It is important that,
within the conserving approximation, the electrons scatter
from plasmons and vice versa. Using a series of approxima-
tions, we derive Boltzmann equations from this effective field
theory. Based on this, we derive the conservation laws of the
system in Sec. V D which indeed show that the fermion dy-
namics is strongly influenced by the plasmons. Furthermore,
we observe that the plasmons make a sizable contribution
to the heat current (this provides an alternative derivation of
the heat-current operator starting from the quantum-kinetic
equation) and energy density. Additionally, it makes similar
contributions to the momentum flux and therefore shows up in
quantities related to the viscosity. This section also confirms
that RPA is indeed a conserving approximation. We conclude
our results in Sec. VI as well as provide an outlook for fu-
ture works. The most technical details of the calculations are
usually presented in a number of Appendixes.

II. MODEL

We study a theory of charged Dirac electrons in two spatial
dimensions interacting via long-range Coulomb interactions.
The Hamiltonian is given by

ﬁ:ﬁ0+ﬁex +I§l’ (1)

with A, being the noninteracting part. In coordinate space, it
reads as

By Y / 43 8}, OO Y@ Q)

i=1 AN =

Here I-?D,Mr X) = (—ihvgo - V- ) is the Dirac Hamilto-
nian with a Fermi velocity vr and chemical potential u, and
\fJZ 5, () [\ifi, 5 (X)] creates (annihilates) an electron at a position
X. The flavor index denoted by i ranges from i =1,..., N.
The symbols A, 2" € {4+, —} denote spinor indices. This model
is applicable, for instance, to low-energy electrons in graphene
where momenta are measured with respect to the K (K')
point in the Brillouin zone. In this case, A and A’ denote the
pseudospin degree of freedom taking into account the A and B
sublattices of the hexagonal lattice. The number of fermions
is then N = 4 and it corresponds to spin and valley degrees of
freedom. It was found that vy &~ 10° m/s.

The static potential energy Vi (¥) is added in order to take
into account the positively charged background in which the
electrons move, i.e.,

Vex(X) = —nyp / dx'v(x — X)), 3)

where np is the average density of the background ions,
identical to the electron density in thermal equilibrium. The
interaction of the electrons with the inert positively charged
background is explained by

B =YY [ axgeveminm. @

i=1 A=+

In addition, H, is the interaction part of the Hamiltonian.
The electrons interact via a long-range Coulomb interaction,
which is included in our model by the term

H =~ Z Z v/‘dxd)?’\lﬁk(x)\ll LE@WE-F

i=1 M=
x W, 5 (@)W (3). 5

Let us emphasize that we assume that the fermions of different
flavors are decoupled. The interaction potential between two

electrons of charge e separated by a distance [X — X'| is given
by the instantaneous Coulomb interaction
VE—7) = ¢ 6)
T dmelx =X

where € is the average dielectric constant. After a Fourier
transformation, the noninteracting Hamiltonian acquires the
form

B=y Y f s UL P (PP, (D)
i=1 A\ =

where ’;QD,,W (p) = (ivpo - p — u);, and the interaction part
of the Hamiltonian becomes

_ dq
- 'Z 2 /(2n)2 (m)? @n)?

i=1 A=

Wl &k — DU, (5 + DV (@) i ) F;(P). (8)

The Fourier transformation of the 1/ Coulomb interaction
between electrons in two dimensions reads as

& 2movg

V(p) = Yen =, ©))
epp

where p = |p| denotes the norm of the two-dimensional mo-
mentum vector. The strength of the Coulomb interaction is
usually characterized by the ratio of the potential energy to
the kinetic energy. For the Dirac fermion, this ratio boils
down to the fine-structure constant o« = ¢?/4mwehvg. The the-
ory is identical for each flavor i = 1, ..., N. Here € = ¢pe¢,
measures the average value of the dielectric constant of mate-
rials above and below it, e.g., € = 1 for suspended graphene
in vacuum and € &~ 7 for graphene sandwiched in hBN
layers. Thus, for these two cases, « =2.2 and o« =~ 0.3,
respectively [16].

205127-3



PONGSANGANGAN, LUDWIG, STOOF, AND FRITZ

PHYSICAL REVIEW B 106, 205127 (2022)

ol

y)
S

(N

C_

FIG. 1. The closed time integration contour C = C, U C_. The
upper branch C; goes forward from the initial time (t = —oo) to the
final time (r = 00) and the lower branch C_ goes backward from the
final time to the initial time.

III. FORMALISM

In this section we review the basics of nonequilibrium
field theory. More detailed accounts can be found in excellent
books (Refs. [21,34-36,45]). In Sec. III A we start with a
discussion of the generating function of the Green functions
on the Schwinger-Keldysh closed time contour. This builds
the basis of the whole approach. We then move on to discuss
the structure of the Green function and the Keldysh repre-
sentation in Sec. IIIB. In Sec. Il C we discuss the Dyson
equation for interacting problems, as well as the quantum-
kinetic or Keldysh equation. In Sec. III D, we discuss the
Wigner transform, including the gradient expansion and the
Moyal product. Finally, in Sec. IITE, we discuss the gradient
expansion of the Keldysh equation, which is essential in the
derivation of the Boltzmann equation.

A. Generating function

The central object in the following Schwinger-Keldysh for-
malism is the generating function. It allows for the derivation
of Green functions and associated physical observables by
means of functional differentiation. In this section we review
the construction of the partition function for the theory in-
troduced in Eq. (1). The main idea is to assume that in the
distant past (f = —o0), the system was in thermal equilibrium
at a specific temperature 7. Its state is fully specified by the
quantum-mechanical density matrix p = e~%/%7  where H,
is the noninteracting Hamiltonian given by Eq. (2), and kg
is the Boltzmann constant. Henceforth, we use 7 = kg =1,
unless stated otherwise. The interaction will be switched on
adiabatically to reach its actual strength before the observa-
tion. In addition, external perturbations might be subsequently
established and drive the system away from equilibrium. The

J

partition function is defined as Z = Tr[Uc,?)]/Tr[,?)] where
Uc =Te exp(—i fc H(t)dt) is the evolution operator along
the closed time integration contour C = C. U C_ depicted
in Fig. 1. The operator J¢ orders the operators according to
the position of their time arguments on the contour C. The
evolution operator describes the evolution of the system from

t = —oo, where the system is noninteracting and in equilib-
rium, towards ¢ = oo, and back to the equilibrium state at
t = —o0, that is again noninteracting. During the evolution,

the system may be exposed to external perturbations, and
its response can be examined. As in the conventional path-
integral approach, one discretizes the closed time contour
into M infinitesimal time intervals and inserts the resolution
of unity in the coherent-state basis at each discrete point in
time along the contour. Subsequently, by taking the continuum
limit, we obtain the generating function written as a functional
integral according to

Z= / Dy Dy exp(SIy ™, v1). (10)

In writing the partition function, we absorb an irrelevant nor-
malization constant into the measure. The total action reads as
ST, ¥l = §.dt LT, ¥), with the Lagrangian

N
Lt = [d5 Y Y vl G Go-AG )

i=1 A=+
1)

It is convenient to split the action into two parts, S [w*, vl =
Je, dt LT, ¥) + [ dt LT, yo). Itis important to note
that, while the two parts seem independent, this is not true
due to the special boundary conditions when the contours
meet (see discussion in Ref. [34]). The first term describes
the fermions on the forward branch of the contour denoted by
C, (the integration over the time variable extends from —oo
to 0o) whereas the second term describes the fermions on the
backward branch denoted by C_. We introduced the subscript
£ for the fermion fields on the different branches. Thus,
wf) and xp(_” denote the fermion fields on the forward and
backward branches of the contour, respectively. Moreover, we
interchange the limits of the time integration on the backward
branch, leading to an extra minus sign as the second integral
then also goes from —oo to co.
Eventually, we find that the action reads as

N
S 1= Y [ drds ol G v = Ve D)

i=1 A=%

N
1 .
_z § § /dt didf/ I/fiTA,+(-£’ l)wi,k’,+(£7 t)V()_é _2/)wi,l,+(£/’t)l//it)\/$+(£/vt)

i=1 A M=%
N

-3 / A3y, _E 0G0 +ivpV -G + i — Vex GV - F. 1)

i=1 A=%

1 N
32 2. f dXd¥ ¥, G OV~ EOVE = Wi @ O], _F. 1) (12)

i=1 A A=%
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B. Structure of the Green functions

For the ensuing discussion we neglect all internal indices
such as flavor and sublattice and only concentrate on the time
arguments. The Green function on the closed time contour is
defined as

iIGE, X, t,0) = (TeWE, v (&, 1)), (13)

where C and 7¢ have been introduced above. The operator at
the earliest time is arranged to the rightmost position. There
are in total four different cases:

iG_ (&%, X, t,1") = (W&, )V @, 1)),

Gy (®, %, 1,0y = —(V' &, 1P, 1),

Gy (3, t,0) = (TY@E, OV @, 1),

iG__(Z X, 1,0y = (TYE OV F,1)). (14)

Here iG_ implies that the first time argument ¢ is on the
branch C_ while the second time argument ¢’ is on the branch
C,. In this case, the operators are already arranged in a cor-
rect order, so 7¢ can be dropped. Similarly, iG,_(X, X', t,t")
means that the first time argument ¢ lies on the forward
branch whereas ¢’ lies on the backward branch. Since in this
case t’' is always further on the contour than ¢, meaning 7¢
switches the annihilation and creation operators together with
giving an extra minus sign due to their fermionic nature. Then
iGy (X, X, t,t") means that both 7 and ¢’ are on the forward
branch of the contour C, and thus the time-contour-ordering
operator 7¢ becomes a normal time-ordering operator 7. This
implies that

iGo (&, %,t,1)
=00 —thiG_ X, X, t,t")Y+ 0@ —1)iG,_(X,¥,1,1),
(15)

where (¢ — t’) denotes the Heaviside theta function. In con-
trast, for iG__(X, X', t,t"), both ¢ and ¢’ are on the backward
branch. Since the dlrectlon of the backward branch is opposite
to the direction of the time axis (the backward branch ex-
tends from —oo to 00), the time-contour-ordering operator 7¢
becomes an anti-time-ordering operator, denoted by 7. This
means that

iG__(%,%,1,1)
=00 —1)iG,_ X, ¥, t, 1)+ 0@ —1)iG_ (& X, t,1).
(16)
These components satisfy the following relation:
Gy (X, X, 1, +iG__(%,%,1,1)
=iG,_ (& X, t,t")+iG_ (X, X, t,1). a7

The Green functions can straightforwardly be calculated
within the functional-integral formalism according to

iGap(X, X l l)
= / DY DY YuaE, OVEE, 1) exp(SIyT, ¥1), (18)

where A, B = =+ here label the branch index of the close time
contour. The generating function Z is defined in Eq. (10) to-
gether with the action in Eq. (12). It is convenient to rotate the

fields using the so-called Larkin-Ovchinnikov transformation

vie@ o) _ L1 1T\ G
<wf<7c,t>> —ﬁ(l —1><w;<x,r)> and
; . 1 . . —
WLED LED) = 2 W@ wz‘@,r))G 11).

After this transformation, Eq. (12) reads as

st v = [ arar [ [ dxds v, (G 0G
XX, X, 1, )W (X 1)
;/dxdxp (&, Doy, X, 1, 1)p"(F, t):|

19)

Additionally, we have introduced a number of shorthand
notations. The inverse of the noninteracting Green function
for the fermion field reads as

—1 = o/, !’
Goapinrif % X351, 1)

Vex (a8 (X — X8t —1').
(20)

= 8:18u(id, + ivFV - G 4 —

The latin letters (a, b, . .. ) take on the values 1 and 2 labeling
the Keldysh indices, the greek letters (A, A’, ...) assume +1
denoting the spinor indices, whereas i, j = 1, ..., N denotes
the flavor indices. All double indices are summed over, unless
stated otherwise.

The main advantages of the Larkin-Ovchinnikov basis is
that the condition (17) is implemented and the remaining
components are independent, meaning

Gy (B3 1,1) = <($§§ 3) W@ Y&, r'>>>

_(iGRE, X, 1,1y iGK@R X1t
- 0 iGAE. %, 1.1))
21

The superscripts R, A, and K stand for the retarded, advanced,
and Keldysh components of the Green function, respectively.
The Green functions are calculable within the functional inte-
gral formalism according to

iGyp®, X, t,1)
= / DY DY Y, &, O] @, 1) exp(S[y T, 1),  (22)

with the action given in Eq. (19). It can be worked out that the
inverse Green function is given by

Gab(* Xt t)

(GOHRE, ¥, 1,1') (GHE, X, 1,1)
< 0 (G I)A()—C" _V,l,[ )>ab’ (23)

where
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FIG. 2. Diagrammatic representation of the Dyson equation in
Eq. (29) for the fermion Green function.

and

Ro(G™HE = —GX o (GTHY. (25)

The convolution operator o is short for the integration over
space and time coordinates as well as the summation over
the spinor indices. The Keldysh component (G = Gf,\,)
is usually parametrized in terms of the retarded and advanced
components according to

GX (7, 7;t,1)=GRoF —F o G". (26)

Here, F is a Hermitian two-point function. By inserting this
equation into Eq. (25), we find

G H =G ' o F —Fo (G (27)

This shows that the Keldysh component of the Green function
and its inverse can be parametrized in the same way.
Furthermore, we introduced the density operator
piX, ) = 1//;;}\’[()?, Yp¥eni(X, 1) (all double indices are
summed over) and the Coulomb interaction in Keldysh space

.1, t)—ab8(t—t)(T_f). (28)

Do ap(¥, X
The vertex operators y are third-rank tensors operating on
the Keldysh space of fermions as well as bosons. They are
defined as y), = 14, and y2, = o,,. Let us emphasize that our
choice of convention gives an extra factor % to the Coulomb

interaction term, i.e., D 45 @

C. Dyson and quantum-kinetic equations
In the presence of interactions, the Green function obeys
the Dyson equation (pictorially represented in Fig. 2)
G = Go + Go®X®G. (29)

Here X denotes the self-energy which is evaluated order
by order from a perturbative expansion in the interaction.
It is represented diagrammatically by a set of one-particle-
irreducible diagrams. The convolution ® denotes integration
over time and space, as well as summation of internal indices,
including the Keldysh indices. One can rewrite Eq. (29) as

G'=G,'-x. (30)

The fermion self-energy inherits the Keldysh matrix structure
of the inverse Green function as

R@ ¥, ) =K@ t))
0 oA @ Xt
€1V

Eab;)\k/(fv 55/1 ty t/) = <

For the retarded and advanced components, it consequently
enters according to

(G—I)R/A — (GEI)R/A _ ER/A. (32)

The self-energy plays two major roles: It can affect the disper-
sion relation and lead to a finite lifetime. This is most easily
seen in frequency-momentum space. The modified pole w =
w(P) — iy (p) is the solution of (G ¥ (p, w) — TR(p, w) =
0. It gives a new dispersion relation w(p), as well as a decay
rate y (p), of the excitation. When the decay rate is sufficiently
small, this excitation is called a quasiparticle.

The Keldysh component of the Dyson equation leads to a
kinetic equation that governs the time evolution of the fermion
distribution function. As a result, we have

K = GHYE =G o F-—Fo(GYH, @33
where we used the fact that (G 1K is a pure regularization
and can be neglected in the presence of interactions [see
Eq. (20)]. To arrive at the second equality, we use Eq. (27)
and parametrize the Keldysh component of the inverse Green
function in terms of the Hermitian function F'. Subsequently,

by substituting Eq. (32) into Eq. (33), one finds
Gy oF —FoG,' =X +2foF —-Fox* (39

The regularization £ié can be omitted from the retarded and
advanced components in the presence of a nonzero imagi-
nary part of the self-energy. The above equation is called the
quantum-kinetic equation for the distribution matrix F. The
solution of the full quantum kinetic equation (34) is usually
exceedingly difficult. However, after some approximations,
discussed below, the quantum-kinetic equation reduces to a
Boltzmann equation. The latter can be solved by, for instance,
a variational method [3].

Later in this paper, we show that the Coulomb interactions
play a role in facilitating the emergence of a boson associated
with the electron density fluctuations. To this end, we also
summarize the salient features of the Keldysh technique for
a bosonic field. Similar to the fermion Green function, the
boson Green function and its inverse have three nonvanishing
components expressed in the following matrix structure:

K->~/ R—>->/
DX@®, X ,t,t") DRQ, tt)) 35)
ab

Dab(ivx},’t’t/): (DA(—' =/ 1, t) 0
and
o (% 1,17)

(DA ¥, 1, r)) G

0
- ((DI)R(;?,)?/J,;’) (DK T 1.1) "

together with the relations
(D~HRA = (DR (37)
and
DR o (D™HK = —DK o (D71, (38)

The interacting Green function is again determined from a
Dyson equation (pictorially represented in Fig. 3)

D = Dy + Dy®I1®D, (39)

with a self-energy I, which is, in general, approximated
in a perturbative series. The self-energy assumes the same
Keldysh matrix structure as the inverse Green function to
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'\/V\Nzw+w@\z\

FIG. 3. Diagrammatic representation of the Dyson equation in
Eq. (39) for the boson Green function.

preserve causality, namely,

0 AR, ¥, 1,1')
Hab(-fv-i!/stst/) = ( R ’ » .
n ( ab

%%, t,t) TOK&E, %, t,t)
(40)

The poles of the retarded and advanced components are again
shifted by interaction effects leading to a new energy disper-
sion and a finite lifetime for the dressed particles by means of

(DO = (Dy ) — . (1

The Keldysh component of the Dyson equation leads to a
kinetic equation for the boson distribution function B:

Dy'oB—BoDy' =-1" + IfoB—BoT*. (42)

The left-hand side again describes a streaming term, whereas
the right-hand side accounts for collision events. The Hermi-
tian function B is employed to parametrize the Keldysh Green
function according to

DX =DRoB—BoD". (43)

Before we continue, it is convenient to rewrite the Keldysh
equations (34) and (42). The rewriting seems arbitrary at this
point, but later it will allow us to identify the left-hand sides
with the streaming terms of a Boltzmann equation, whereas
the right-hand sides will be the collision integrals. We can use
the fact that we can decompose the self-energies according to
YR/A = ReXR 4+ iImXX and ITR/A = Rell¥ 4 iImITR. This

J

dﬁ] da)l

C(H.1, p.w) = / ¥ 2

allows to rewrite Eq. (34) as

[G,! — ReZFoF] = — 2K 4 i{Im=R5F) (44)
and Eq. (42) as

[Dy' — Rell*eB] = —1T¥ + i{(ImIT*:B). (45)

Here, we introduced the notation [VSW] =V oW —WoV
and {VSW} =V oW 4+ W oV, defining the commutator and
anticommutator of the functions V and W with o as defined
before.

D. The Wigner transform and the gradient expansion

In equilibrium quantum field theory, diagrammatic ap-
proaches are, because of homogeneity, usually carried out
in momentum and energy space instead of coordinate space
and time, meaning it is a simple Fourier transform. The
semiclassical limit, however, is most conveniently accessed
using the Wigner transform, which is a mixed represen-
tation. We briefly summarize it here for convenience. A
generic space-time function g(Xi, X, ?;,%) can be rewrit-
ten in terms of center-of-mass (¥,t) = [(X; +X2)/2, (t; +
;)/2] and relative coordinates (X,t) = (X; —X»,t — t2).
The Wigner transform is now a Fourier transform over
the relative coordinates while the center-of-mass coordinates
are kept intact. Consequently, one obtains a function of
center-of-mass space-time, momentum, and frequency, i.e.,
8(F,t,p,w) = [dXdr g(F,t, % 1) e”P*HT There are two
important Wigner transforms that will be needed later for our
derivation of the Boltzmann equation.

(i) For a two-point function which can be decomposed
into an algebraic product of other two-point functions, i.e.,
C(#1,Pit1, ) = A(Fy, Fasty, 1)B(F1, P23 11, 1), one can show
that its Wigner transform is given by the momentum-
frequency convolution

_A(Fat’ﬁha)l)B(?’tvﬁ_ﬁl’w_w])‘ (46)

(i) The Wigner transform of the space-time convolution of two two-point functions, i.e., D(F, Fa;t1,5) = (Ao

B)(71, P23 11, 1) is given by their Moyal product as

.. o N I I «— — «— =
D, t, p,w) = A(F, t, p,w)x B(F, t, p, w) = A(F, t, P, w) exp <§(8?3ﬁ_ d0507r—

R <~ —
d;0 4+ 8w3,)>B(?,t,ﬁ,w).

47)

t

In the cases we are interested in, the function varies slowly with the center-of-mass coordinates. Consequently, it is legitimate to

keep only the lowest-order gradient terms according to

i
D(;:a t’ ﬁv Cl)) ~ A(7’ t5 ﬁa a))B(?5 t9 ﬁ’ a)) - E[ap‘A(?’ t’ ﬁv w)al‘B(?a t5 ﬁ? w) - BFA(;:7ta ﬁ’ C!))aﬁB(?, t’ ﬁv w)]

—i—%[awA(?, t, p,w)o,B(7,t, p, w) — A7, t, P, 0)0,B(F, t, p,w)] + - . (48)

E. Gradient expansion of the Keldysh equation

The Wigner transform of the Keldysh equation in Eq. (34)
reads as

[Gy' —RezfiF] = —=f +i{lmzfF),.  49)

(

In writing the above equation, we briefly introduced the nota-
tion X,. It accounts for the fact that the self-energy itself has
a gradient expansion according to

LAY+ E A+, (50)
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where ¥ involves no gradients, while X, involves both one
spatial and momentum gradient (or, equivalently, frequency
and time) [46,47]. To leading order in nonvanishing gradients
we find

[Gy' —ReZ¥, F| 4 i{d:(Gy' — RexF) - 05F
—35(Gy' —ReZ®) - 8:F — 3,(G," — Rex)o.F
+9.(Gy' —Rexz®)3,F} = —2F +i{ImxF, F}
—2X 4 i{Imxk, F). (51)

It turns out that the contributions due to X, are of the
nonquasiparticle type and vanish once we perform the quasi-
particle approximation. Consequently, we drop them from our
following discussion.

In order to set up a formalism that accommodates for a
two-band or even multiband scenario we make the following
assumption: There is a transformation U/ (in the case of a
Dirac-type theory we specify it later) that projects the Green
function into a diagonal basis according to

2" (%, p, 0) = ULGE E, p, o)y (52)

with gg/A()'c', P, ) being a diagonal matrix. While in the fol-
lowing we present matrix equations, we only concentrate
on the diagonal elements. Equivalently, we project the self-
energies into the quasiparticle basis according to

AR, p,w) = UsTRAR, B, 0)Us. (53)
This leads to
id:(gy" — Rea®) - (3;F +i[Ap, F1)
—(05(g5" —Reo™) +i[ A, g5' — Reo™]) - &:F
—0,(gy" — Red™)d.F + 0.(g," — Rec™)o,F
= —oX +2iImoRF. (54)

We observe that two additional terms that involve the Berry
connection A; = —iug 03U are obtained. We are interested
here in the solution to zeroth order in Aj that is

Fy = EY) +0(A4p) = (1 = 2£.(F, B, 1)) + O(Ap),
(55)

containing only the diagonal elements of the distribution func-
tion. The function f introduced above will later play the role
of the fermionic distribution function and, in equilibrium, it
reduces to the Fermi-Dirac distribution. Within the quasi-
particle approximation, f; is independent of the frequency
variable. Moreover, it is assumed to be diagonal in the spinor
space. Consequently, only the main diagonal elements of the
self-energies are important. In total, this leads to

Oe (8o 5 (Xo 1, Pr€) —Reofs (R.1, p. €))0, fi (R, 1, P)
+ 0:(go 5, (.1, B, €) —Reafs (.1, p, €)) - 0511 (%. 1. )
— 35(893, (%, 1, P. €) — Reaf (R.1, B, €)) - % (X, 1, P)
i

= —Eo'gh()_é, t, ﬁ, 6) — ImO’R()_(t,ﬁ, t, E)(l - zf()_éa z, I_j))

(56)

The left-hand side will contain the so-called streaming terms,
consisting of three contributions. The first term describes the
time derivative of the distribution function with the quasipar-
ticle weight 3 (g, — Reo®) = 1 — 3.Rea*. The second term
accounts for the change of the distribution function due to a
force a;(go—' — Reo®), whereas the last term tracks the change
of the distribution function due to the diffusion of excitations
with the velocity Bﬁ(gal — Reo®). The right-hand side de-
scribes collisions that drive the system towards equilibrium.
We now consider the Keldysh equation in Eq. (42) of the
plasmon field and we drop the terms from expanding the
self-energies here from the very start. Following the same
steps as for the fermions, we first decompose the retarded
and advanced components of the self-energy according to
[TR/A = ReIlR £ i ImITR. This allows us to write Eq. (42) as

[0y —Re*:B] = —* +i{ImT*sB).  (57)

After a Wigner transformation and keeping the Moyal product
to first nontrivial order, we obtain

i{d:(Dy' —Rell¥) - 9;B — 9;(Dy ' — ReITX) - 3:B
—d,(Dy" — Rell®)0,B + 9, (Dy "' — ReI1*)9,B}
= —I1% + 2i ImIT*B. (58)
Next, we use the parametrization
B =1+2b, (59)

where b plays the role of the bosonic distribution function ex-
actly in equilibrium reduces to the Bose-Einstein distribution.
This leads to

0c(Dy ' (7,1, p, €) — ReTl*(F, 1, p, €))3,b(F, 1, p)
+ 0:(Dy ' (R, 1, B, €) — RelIR (%, 1, p, €)) - 95b(%, 1, p)
— 3;(Dy (.1, p,€) — RelIR*(E, 1, p, €)) - 3:b(%, t, p)

= %n’((x, t, B, €) + ImMNR, p, 1, 1 + 2b(, 1, p)].

(60)

The missing piece to transform Egs. (56) and (60) into
Boltzmann equations is to integrate them over the respective
spectral functions, as we will discuss later on.

IV. PART A: ELECTRON-HOLE HYDRODYNAMICS
IN THE WEAK-COUPLING LIMIT

In this section we review the equations of hydrodynamics
in the weakly interacting limit. We first discuss the nonin-
teracting limit to define the basic Green function and the
projection into the appropriate quasiparticle basis of electrons
and holes. Afterwards, we discuss the Hartree-Fock approx-
imation. We show that this is equivalent to the renormalized
collisionless Boltzmann equation after a series of approxima-
tions.

A. Noninteracting limit

We consider a model of interacting Dirac fermions ac-
cording to Eq. (19) where we first neglect the interactions.
By inserting Eq. (20) into (24), we find the retarded Green
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(a) (b)

FIG. 4. The self-energies at first order in the interaction. The left
diagram is known as the direct or Hartree contribution and the right
diagram is known as the exchange or Fock contribution.

function of the noninteracting Dirac theory according to

— Ve ()17 (61)

It is convenient to work in the quasiparticle basis. There, the
Dirac Hamiltonian as well as the Green function are diagonal.
This leads to

R/A
gO/M’ U(x pw) =

R/A

X, p,w)=[wxid —vpd - p+

(UG &, b, o)),

= [@£i8 —hvpp + 1 — Vex ()] 8100835,
(62)
with
_ 1 [(—exp(—ify) exp(—ify)
Us — ﬁ( | : ) (63)

J

—ix @) = =8, 8@ —X)8(t — 1)) / dr"d

Since Dy ¢ (%, X
f. This gives

1) = o) 8( — 1) L0

T VabDOef(_»/ —,// /

Here, p = |p| and tan(63) = p,/px. The dispersion relation
can be extracted from the poles of the Green function
in Eq. (62): the noninteracting Dirac theory has two lin-
ear dispersing energy bands €i(X, p) = £vpp + Vex(X) —
w with the local electrochemical potential given by @ —
Vex (X). The spectral function, defined by Imggy & pw) =
—m8(w — €, (X, p))d;,, exhibits resonances at w = €4 (X, p).
The Wigner transform of the Keldysh Green function of
Eq. (26) reads as

gl(i)h)\’ ()_é, tv ﬁs C()) = 2l Imglg’A)L” ()_C)a ﬁ’ a))F)»”)n’ (555 ﬁv Cl))
= 2mib(w — (X, p))(1 =2/, (X, B, 1)), (64)

where f (X, p, t) is the Fermi Dirac distribution in equilibrium.
The Keldysh component thus contains the information about
the occupation numbers, whereas the retarded and advanced
components only contain information about the resonances
and the energy levels.

B. Hartree-Fock approximation: The collisionless limit

In what follows, we will discuss the corrections of the
energy spectrum due to the Coulomb interaction. To this end,
we study the Hartree and Fock self-energies [48] depicted in
Figs. 4(a) and 4(b).

1. Hartree diagram

The Hartree diagram in Fig. 4(a) has the following alge-
braic expression:

)VLdGo dc; A\ ll(-x X l‘”, t//)~ (65)

is off diagonal in Keldysh space, only two terms survive when we sum over e and

V(;C'/ _ —'//)
~~H > o/, - - - 1 -
—iZ g B, X5, 11) = =8, 8(F — X)8(1 —t/)/dt”dx//TVabychodcm" i (X317 17)

_ —’//) )

= =/ ! " 3= V(}/ —?// " "
=& —X)o(t —t )/df dx Tyahycdc()d‘ i XX 17 7. (66)

We find that the second term vanishes due to

2 1 =/
VabYea Godeamn,ii(X

The last equality follows because ReG0 vo X' t', P, w) is an
analytic function in either the upper or the lower complex
frequency half-plane. Consequently, we have

—iZh X 1) = =8 8@F —X)8(t — 1w / dx’

Vi —3X)
X—
2

=/ =2

Goww A0 X0 ).

(68)

X, 11 = G B X 00 + Gy iR X 1)

/da) dp
= | ———Re
2w (2m)?

Goorr i 1, P, @) = 0. (67)

(

Finally, after a Wigner transformation, we rotate the self-
energy into the quasiparticle basis. This gives

H - - . H /= -
ioly o (E 1, o) = —z(ugx (F, t, B, 0)Us)

~ V(;CV _ )_CW)
=81 8ap / dX”T

X s i (X X5, 1). (69)

The Wigner transformation of the Keldysh Green function
with the same time and spatial argument is associated with
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the electron density according to

Qo & X5, 1) = 2in(®', 1), (70)

where n(X’,t) =n (X",t)+n_(xX",t) defines the total
charge den51ty at position X” and time ¢. Here n (X', 1) =

N f (27[)2 fr®@, k, t) is the electron density and n_ (X', 1) =

N f (2n)2 (f-(x, k t) — 1) is the hole density. The electron
charge —e is henceforth set to 1. In total, the Hartree
self-energy produces the classical Coulomb potential of all
electrons in the system exerted on an electron located at a
position X according to

a(g;w(ic’, t, p,w) = 5Ax’5abfdflv(f — X, ). (1)

The Hartree term is real valued and independent of the mo-
mentum and frequency variables. Furthermore, it is diagonal
in Keldysh space, meaning its Keldysh component is zero.

2. Fock diagram

Next, we are going to sketch the calculation of the Fock
self-energy diagram depicted in Fig. 4(b). It reads as

—i%l R X511
= YoDoap(X, X'51,1)Go capn (X, X'51, l))/db (72)

After a Wigner transformation followed by a few steps of
algebraic manipulations, we find that

.« F 5> o
—iX 0 (X, Pit, v)

dp V(P p) [ dv
=5ab/ 2 )2 / —Gf 50 @, Prit, ).

(73)

Subsequently, we transform it into the qua51partlcle basis ac-
cording to —iol,;, (X, p;t,v) = —iU; SE @, Bt vVUp )
We are interested in elements on the main diagonal of the
spinor space. They are given by

Oty B, Bit, V) = ol (8, Bit, v) + o3, (R, B, v), (74)

where
. dp V(p—p1)
ol G Bt V) = Saph / ﬁ cos(65, — eﬁ)Tl
(75)
and

ol R Pit,v)

dﬁ] 1+ COS(@ﬁ] — 913) V(ﬁ — ﬁ])

(2m)? 2 2

x (L =24) =2/, (X, 1, pr)), (76)

= 8[1})

where 65 was introduced in Eq. (63). The first term diverges
logarithmically and is responsible for the renormalization of
the Fermi velocity. To see this, we explicitly substitute the
Coulomb potential in Eq. (9) followed by a transformation of
the momentum variable from Cartesian to polar coordinates.

This gives

cosf

\/pz + p? — 2pp) cos O

5 o QVUF
G:;;;IM(x,p;t, v) = )»E/‘pldplde

XVUFp
4

K 1 o
A dp1— = — In(K/p)Avgp.
p pP1 4

(77)

6 = 05, — 6 is the angle of the momentum j; measured with
respect to p. In order to extract the logarithmic divergence
of this integral, we expanded the square root to the first
power in p/pi, i.e., 1/vp? +p% —2ppicost ~ 1/pi(1+
p cosB/py). After the angular integral, we find the result in
the second line of Eq. (77). The divergence of the integral is
cut off at the inverse lattice spacing /C. The lower boundary
of integration is consistently set to p (we require p/p; < 1).
When substituting Eq. (77) into the Dyson equation, we find

g — 0" = — Al +a In(K/p)/41vrp. (78)

The Fermi velocity is renormalized accordingly to vk =
[1 + o In(C/p)/4]vr. Such logarithmic renormalization was
first discussed within the renormalization group approach in
Ref. [38] and measured in graphene in Ref. [39]. The second
contribution, Eq. (76), describes the conventional exchange
energy coming from both electrons and holes. It varies with
the doping w and the temperature 7 of the system. More-
over, different from the exchange energy of a conventional
two-dimensional electron gas, there is a factor [1 & cos(95, —
05)1/2 arising from the wave-function overlap, where 65 — 05
is the angle between p and p; [49]. In total, it reads as

(0 )j:j:(p)
dp, 1£cos(@3 —65) . -
= (Zn; STV (B = PSP
dp; 1Fcos(@ —05)  _ .
(271‘)2 SV (B = B = F250).

(79
After a series of manipulations, we find

@R (D)
i far 5[ ) =1 ()]
2p 2pp1 2ppi
P1 P +P1 P2+P%>:|
— . h
1)+ / 2p[ ( 2pp1 )]F ( 2pp

x (1= f,o(p1)), (80)

with
o de 2T d6 cos b
glx) = ——, h(»)= —0
0 /x—cosd VX —cosf

We proceed by evaluating the p; integral numerically. We
show in Fig. 5 the exchange energies for electrons (o©2)R
and holes (07?)R _ at the chemical potential /T = 1 for var-
ious values of momenta. We see that the self-energy becomes
less important at high momenta. In Fig. 6 we show the spectral

function of the electrons with and without the Fock correction.

81
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FIG. 5. Exchange self-energies for Dirac fermions with the
chemical potential u/T =0 (upper panel) and /T =1 (lower
panel) as functions of wave vector g/T. The fine-structure constant
o is chosen to be 1. The blue curve represents (o72)® | showing the
exchange-energy correction of the electrons. The orange curve shows

(oF?)R _ the exchange energy of the holes.

Since the exchange energy is a real-valued function, there
remains the delta-peak feature manifested as the blue line in
the middle of the plot. Compare to the spectral function of
the noninteracting theory in Fig. 6(a), the exchange energy
plays two roles: (i) it shifts the chemical potential and (ii)
it increases the Fermi velocity [49]. However, the effect of
(aFH)R (p) is relatively small compared to the Fermi veloc-
ity renormalization coming from the logarithmic divergence.
Therefore, we keep only the latter effect in the following. In
practice, this leads to replacing vy with vX, the renormalized
Fermi velocity, in all expressions.

3. Energy spectrum

We are now ready to evaluate the energy spectrum
of quasielectrons and quasiholes in equilibrium within the
Hartree-Fock approximation. The dispersion relation of the
excitations can be found from the roots of the inverse Green
function. In the presence of the interaction, the inverse Green
function is the solution of the Dyson equation in Eq. (32). We
first transform the Dyson equation into the quasiparticle basis,
which leads to

€ = (815, — @™k, (82)

100 100
() ’s
75 50
25
g 0
3 50
-25
25 -50
-75
00 ] -100
2 4 6 8 10
oT
100 100
(b) -
75 50
25
= 0
3 50
25
25 50
-75
Y -100
a6 2 4 6 8 10
oT

FIG. 6. Spectral function at /T = 1 and o = 1. (a) The spec-
tral function of the noninteracting electrons follows Imgf (g, w) =
—2mi8(w — vrpq + ). The blue line in the middle of the plot mani-
fests the delta peak at w = vrg — p (vr is set to 1 in the plot). (b) The
spectral function with the inclusion of the exchange conventional en-
ergy in Eq. (79). Since the exchange energy is a real-valued function,
the spectral function still has the delta-peak feature as shown by the
blue line in the middle of the plot.

where the retarded component of the Hartree self-energy is
given by the first row and first column element of Eq. (71)
thatis (6™)f,, = o] ,;,. This gives

g HE @ 1, p, o) = (w +i8 FARp 4 1 — Vi ()

- / dx/V(x’—z’)n(a?/,t)>8Mr, (83)

where n(X, t) is the total electron density. By inserting Ve (X)

from Eq. (3), we find that
@GP o) =0tis —afp+u— VIR ), 84)

where the Hartree potential V7 (%, ¢) is defined as
VA& 1) = / dx'V(x —x)[n@, t) — nol. (85)

The Hartree term represents the potential energy of an electron
at a position X. This potential is produced by all other electrons
with the density n(¥’, t) at the other positions ¥’ through the
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Coulomb interaction. This contribution is partially canceled
by the potential Ve (X) arising from the interaction between
electrons and the underlying jellium background. This fixed
uniformly distributed positively charged background guaran-
tees the overall electrical neutrality of the system. Here ng is
the ion charge density which is identical to the electron charge
density in thermal equilibrium. Hence, in global thermal equi-
librium, the Hartree potential vanishes and thus the energy
spectrum of electrons is given by

.(P) = Avgp, (86)

as expected.

4. Kinetic equation for Dirac fermions

Next, we derive the Boltzmann equation within the
Hartree-Fock approximation. To this end, we consider
Eq. (56). Using the Hartree-Fock approximation in Eq. (84),
we find

dc[gy' — Rea™ ] =1,
I5[g;" — Rea™R] = —avfp,
%[y — Rea™*] = —a:V7 @, 1). (87)

We first substitute these derivatives into Eq. (56) followed
by a multiplication of the resulting equation with the spectral
function Img;)f (P, €) = —2mis(e — AR p). Subsequently, we
integrate it over the frequency which amounts to the quasi-
particle approximation. In the end, we obtain the mean-field
collisionless Boltzmann equation, also known as the Vlasov
equation [24], for electrons (. = +) and holes (A = —)

& (X, 1, P) + Aokp -8 fi (.1, P)
— :VH(®, 1) 051, (%, t, p) =0, (88)

where p denotes the unit vector in the direction of the momen-
tum p. In the above equation, the equilibrium value of the dis-
tribution functions is given by ff @ =01+ exp(“lg%)]’l.
The potential VH(%,1) = [dX'V (¥ — ¥)dn(¥, t) results from
the Hartree self-energy, where én = n — ny is the density
fluctuation. This potential is also the solution of the classical
Poisson equation for the internal electric field.

The Boltzmann equation reads as

SR

()

FIG. 7. Self-energy to second order in the interaction.

To summarize, we found that the Hartree-Fock diagrams
lead to the Vlasov equation.

C. Second-order perturbation theory: Born approximation

An important role in hydrodynamic systems is played
by the relaxation processes towards local equilibrium that
conserve particle number, momentum, and energy. These col-
lisions occur beyond first order in the interaction (5). The
lowest nonvanishing order is second order and the contri-
butions are pictorially shown in Fig. 7. This is called the
Born approximation for the cross section [11,13,20,21]. In
principle, these diagrams play two roles: (i) they describe
the aforementioned relaxations due to collisions and (ii) they
renormalize the quasiparticle properties [48,50].

The calculation of these diagrams is tedious but straight-
forward. Here we summarize our final results and present the
full derivation in Appendix A.

iR, 1, )+ Avpp - 0:fi (R, t, P) — RV 1) - 35£.(R, 1, P)

dky  dg

= 2ﬂ5(k6z — )\161274 - )‘26121+q + )‘36E1)RU»1}»3)»2 (/_é, ]_él ,q)

) @rnyreny

X[ fi, k(1 = fr, (K — D)(1 = fi, ki + ) — (A = LENA = fi, k) fr, k — D frn (ki + D] (89)

where we introduced the shorthand notation

RAA,A3A2(z, ki, §) = 2[|TAA]A3A2 — Douiiig |2 + (N — 1)(|TAA1A3A2

In this expression, we have used

2o V@
T (K, K, @) = —= M5 M oD

2 + |TAA2A1A3 ’2)] (90)

(

where the coherence factor M comes from the overlap of the
single-particle wave functions. It is defined according to

= (U,

k., ki k kl)k)»l : (92)
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For brevity, we suppress the space and time variables of the
distribution functions in the collision terms and have in mind
that they all depend on the same set of variables that is (X, ).
The collision does not shift the center-of-mass and time coor-
dinates. This effect indeed exists, but it will show up at higher
order in the gradient expansion [51]. We can understand this
collision integral in the following way: an electron in band A
with momentum k is scattered into band A1 and momentum
k + ¢ by a collision with another electron in band A3 and
state k; which is itself scattered into the energy band A, and
state Ky — q. For this event to take place, the initial states k
and k; have to be filled and the final states k — g and ki + q
must be empty. Thus, the factors f,\(lz) and f, (%1) are the
occupation numbers of these states and 1 — fM(E —¢g) and
1 - f, (ky + G) are the probabilities for the final states to be
unoccupied. The conservation of energy is taken into account
by the delta function. The transition probability of this event is
Rjx,2:1,- In total, we find that Coulomb interaction enters the
Boltzmann transport equation in two ways: (i) as the Hartree
potential produced by all the other particles in the system
and (ii) inelastic and momentum-conserving electron-electron
scatterings leading to local equilibration. Let us note that
within this approximation, the contribution from the real part
of the second-order diagrams to the left-hand side of Eq. (89)
is neglected.

Finally, let us note that the Born approximation is valid
only when the kinetic energy of the electrons is large com-
pared to the Coulomb interaction potential [3]. For the Dirac
system, the ratio of the potential energy to the kinetic energy
is characterized by the fine-structure constant o = ¢ /4 evg.
In condensed-matter systems, this constant is not necessarily
small (for graphene o ~ 0.3-2.2). In such a strong interaction
limit, a perturbative series expansion in o may break down.
Instead, one can employ an alternative perturbative expansion
in the other parameters. In the subsequent section, we will
employ the random-phase approximation (RPA) and show
that it gives a different, more complicated picture than the
Hartree-Fock-Born result presented in this section.

D. Conservation laws

The collision integral on the right-hand side of the Boltz-
mann equation in Eq. (89), henceforth denoted C; [f ](12), has
conservation laws encoded in it. These conservation laws are
important for two reasons: (i) They allow for an identification
or derivation of physical quantities such as charge and current
densities; (ii) they provide the basis of the derivation of con-
servation laws and even transport phenomena. When a system
is driven away from equilibrium, the first thing that happens
is that collisions drive the system to local equilibrium. After-
wards, there is a much slower return to global equilibrium.
The latter describes transport processes and is governed by
the conservation laws. The conserved quantities in the system
under consideration are particle number, momentum, and en-
ergy. The conservation laws of electric charge, momentum,
and energy are obtained by multiplying the Boltzmann equa-
tion in Eq. (89) by 1, p, and €,(%, p) = AvRp + VH(X) and
then integrating the resulting equations over all momentum p

as well as summing over energy bands + and flavors. This
leads to the following collisional invariants:

ap ]
vy / @ A1) =0, ©3)

Z / Gy PO = (94)

and
VY [ o aapoinm =0 09
= (27.[)2 ’ .

(i) The continuity equation of charge can be obtained by inte-
grating the Boltzmann equation in Eq. (89), over momentum
p followed by a summation over the band index and flavor
index [see Eq. (93)]. In contrast to the case of a one-band
system, there is a subtle point here relating to the infinite num-
ber of particles in the filled band which is unbounded from
below. This infinite constant vanishes upon differentiation and
does not contribute to the continuity equation. Therefore, we
can subtract the infinite contribution coming from the Dirac
sea and instead consider the population of holes defined as
fi&,t, E) — 1. First, we consider the time-derivative term. In-
tegrating this term over all states gives

dp S
N};f Warfk(%tap)

s
- azN/ P fe Gt )+ (-Gt )~ DL (96)
@n)

We denote the charge density by

o
n(E 1) = N/ Gt )+ (-Gt ) — DL (97)
(27)

The second term can be integrated in a similar fashion and
gives

dp
Ny f 5 vgp- = fi R 1, )
= 2m)

dp R = . -
= 0s - N/ (2ﬂ)2v£p[f+(x’t’p)_

(f—(-?’ z, ﬁ) - 1)]'
98)
This term can be identified with the charge current density
J@& 1) = Nf Ar vpplfy (Fo 1, p) — (f-(F, 1, ) = D]
@u) "
99

The momentum-derivative term vanishes upon integration

dp
-N / s
=)

- AP
N};/(Zn)zap [B:VH (&, )£ (E 1, )1 =0 (100)

VA& 1) - 054, 1, P)

since it is a total derivative. Combining the above equations to-
gether with Eq. (93), we find the continuity equation for the
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electric charge according to

onE, 1)+ d; - j(X,1)=0. (101)

It is worthwhile noting here that the particle density is con-
served locally.

(il)) Momentum conservation can be obtained by multiply-
ing the Boltzmann equation in Eq. (89) by momentum before
integrating the resulting equation over all states [see Eq. (94)].
The time-derivative term yields

3 dp
N 59 ﬂ’ t, -
)tz:l:/ (27T)2p ff)u(x p)

-

d
=0 N [ ST RGP+ (G P~ D (102)
(2m)
This allows to define the momentum density
L dp L
n (X,t)=N _zp[f+(x9t7p)+(f—(xvtvp)_1)]'
(2m)
(103)

The space-derivative term can be similarly integrated and
gives

dp R
N 530k p - 0 f Rt B
;:i / QP MVrP LR, t, p)

dB
(104)

From this result, we define the momentum-flux tensor

—u

- dp . o

G0 =N [ ST Rl P = (Gt ) = DL
(105)

The momentum-derivative term yields

dp .y o
—N;:E/(zn)zpﬁw X, 1) G fi(® 1. )

.
_ aszoz,z)N/ s UGt P+ (-Gt ) = D)

= VA&, Hn@, 1), (106)

which defines a force term. Finally, combining the above
equations, we find the momentum equation according to

3P (%, 1) + 05 - 131(55, 1) = —3:VH &, t)n@,1). (107)

This has a straightforward interpretation. The momentum of
the electron fluid in any given volume element can be changed
in two ways: (i) by means of momentum flow through the vol-
ume boundary accounting for the space-gradient term and (ii)
by the internal electric field. Locally, the momentum density
is not conserved and changed by the internal electric force
—3:VH (%, t). This internal force, however, does not affect the
total momentum of the entire system. We still expect that
the total momentum of the system is conserved. This can be
shown explicitly by integrating the momentum equation over
all space. The integration of the momentum-flux gradient
results in a surface term which vanishes. The Hartree force

term also vanishes. To see this, we consider the property of
the Coulomb potential
1 X=X 1
R-w E-XP S TR-F

(108)
Based on this, one can show explicitly that
/ d 9:VH (%, n(x, 1)

= fdic’dic"f);V(ic’ =X [nE, 1) — noln(x, 1) = 0. (109)

Combining all the above equations, we obtain
8P =0, (110)
where the total momentum of the entire system is given by

P(t) = /dx’ﬁﬁ(z,z). (111)

(iii) Similarly, energy conservation is obtained by multiply-
ing the Boltzmann equation (89) by energy €(X, p) followed

by integrating and summing the equation over all states [see
Eq. (95)]. The time-derivative term yields

s
N};/ WGA(X, p)atf)\(x’t’p)

.
— 4N / Gl Pt )

e (&, P~ 1, p) — D). (112)
This defines the energy density according to
A5
w0 =N [ STl PGP
+ e, (-, 1, p) — D] (113)

The spatial derivative leads to

ap . . . -
N f r O ® P D Af 0, )
r=% T
dp O
= 8)? N/#Ufp[&.(&p)ﬂ.(&t,p)

— e E PG t,p)— DI — VA& )] (114)

We find that it consists of two terms. The first term describes
a divergence of an energy current density defined as

% dp o
J@&, 1) =N/ # vRples R, P)fr(E, ¢, p)

- E,()_C), ﬁ)(f*(iv z, ﬁ) - 1)]7

whereas the second term describes Joule heating due to the
internal force. Next, we consider the momentum-derivative
term and find that it can also be rewritten as Joule heating
due to the internal Coulomb force:

(115)

AP (= ooy s Lo
_N);t\/\(zn)zé)n(xvp) 8)-(‘/ (X,l‘)-aﬁf)\(x,t,p)

=0VIE 1) -] (116)
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This term will thus be canceled by the second term on the
right-hand side of Eq. (114). Combining these equations, we
find the continuity equation of energy:

(%, 1)+ 0z - J(F, 1) =0. (117)

Equations (101), (107), and (117) constitute the main equa-
tions of electron hydrodynamics and can be used to derive
the Navier-Stokes equations. Let us emphasize once again
that, in contrast to the hydrodynamic equations of usual fluids,
electrons interact among themselves via long-range Coulomb
interactions and this effect shows up on the right side of the
momentum equation in Eq. (107).

E. Collective modes

Now that we have the fundamental equations of hydro-
dynamics of weakly interacting charged Dirac electrons,
let us study some of its properties. As will be presented
in Appendix B, there are three independent hydrodynamic
variables. Here we choose the set of independent variables
consisting of the charge density (n), the energy density (n°),
and the hydrodynamic velocity # in terms of which the other
quantities can be written. To linear order in #, we find that the
charge current density is given by j = nii. The momentum
flux is associated with the pressure by means of I1;; = P§;;
where the pressure is in turn proportional to the energy density
according to P = n¢/2. One of the consequences of the linear
spectrum of Dirac electrons is that the momentum density is
decoupled from the charge current. Instead, it is proportional
to the energy currents according to n? = j¢/ v2 where the en-
ergy current is given by j¢ = (P + n®)ii. We now consider an
electron fluid at rest with constant n = ng, n° = nj, and ii = 0.
We are interested in small fluctuations around the constant and
homogeneous solution, and put n = ng + én n® = nj + on¢
and assume small . We insert this solution into the hydrody-
namic equations in Egs. (101), (107), and (117). By keeping
terms up to linear order in the fluctuations, we obtain

8,8n(%, 1) + nods - (%, 1) = 0,
(Po + nf)d,ii(X, 1)/vy + 8:8P (X, 1) = —3:V" (&, t)no,
38n (%, 1) + (Po + n§)ds - (%, 1) = 0. (118)

The solutions to these equations are propagating waves. As an
ansatz, we insert

én(x, 1) én(p,w)\
U e) | = @p,w) | (119)
dnc(X,t) 5nc(p, w)

into the linearized hydrodynamic equations in Eq. (118). This
leads to

—iwdn(p, w)+ingpuy(p, w) = 0,

Py+ng

. . . R2rovEp
u(p, 0)+ip P(p, w) = ————

—iw (Sn(ﬁa Cl))n(),

F

—iwdn®(p, a))+(P0+n6)ipu|| (P, w) = 0. (120)

Here, we define u; = ii - p/p which gives the component of
the hydrodynamic velocity in the direction of the momentum
p. We are interested in the longitudinal propagating modes,

so we project the momentum equation on the momentum
direction p/p. This gives

P €
w2 t"ou” (B, ) + ip SP(p, ) = —i2wavrdn(p, o)no.
Uk
(121)
Together with the other two equations, we find that
—iw in([))p ) 0 sn(p, ) 0
2raveng —ia)% ip/2 u(p,w) | =10
0 ip(Po + nf]) —iw) \8n“(P, ®) 0
(122)

These equations have three solutions when the frequencies of
the fluctuations satisfy the dispersion relations

w(p) =0,
wi(p) = i\/zmv;ngp/(Po + n§) + vip?/2. (123)

We observe that, in the long-wavelength limit, there is a
square-root dispersion which represents the hydrodynamic
plasmon. At charge neutrality ny = 0, the dispersion becomes
linear representing sound waves with a velocity given by
VF / \/E

This result, as we will see later, is in disagreement with
the calculation within the RPA. The RPA calculation predicts
the existence of thermal plasmons at charge neutrality and at
nonzero temperature. The key step to reconcile these results
relies on the observation that, for Dirac electrons, the mo-
mentum density and charge current are decoupled. This is in
stark contrast to one-band systems with a parabolic dispersion
where the momentum density is proportional to the charge
current. To this end, let us additionally consider an equation of
motion for the charge current, which is obtained by multiply-
ing the Boltzmann equation (89) by the corresponding group
velocity dz€, (%, p) = AvR p and integrating the resulting equa-
tion over all states. The time-derivative term yields

.
N Z/ —(2:)2Av§p8,fx(x, t,p) =0, 1) (124)
rA=%

The space-derivative term can be similarly integrated and
gives

dp | p\244 L =
NAZJ W(vF) pp-d:fi (31, B) = 8: - BE, 1), (125)

where we define a second-rank tensor according to
B 1)
=Ny f PR pplfL Gt )+ (Gt ) — D
= 2m)
(126)
The momentum-derivative term yields

AP | g ow - L
-N> / G PV @ 1) 0 iRt )
A==

= VIR, 1) AR 1), (127)
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where another second-rank tensor has components given by
NG, 1)
dp

8 pipj o o
~V] @y (?J_p;])[ﬂ(xmp)ﬂf(x,t,p)—l)].
(128)

In contrast to the conserved quantities discussed in the previ-
ous section, the group velocity is not a collisional invariant.
Therefore, the current density is not conserved by electron-
electron interactions. This is particularly true at charge
neutrality. The integration of the collision term is, in general,
very complicated, especially since the distribution function is
unknown. For the purpose of this discussion, we resort to the
relaxation-time approximation and assume that

dp . x B}
—— MR pCUFI(P) ~ —
;/ Qrye F

The value of the relaxation time t may be approximated by
the corresponding element of the collision operator in the
Boltzmann equation (see, for example, in Ref. [11]). Finally,
combining the above calculations, we find the equation of
motion for the charge current as

|~

. (129)

- 3 3 j&, 1
8,71+ 3 EG 1) + 0V & ARG ) = ~ L0

(130)

To linear order in i, we find that E;; =nv;/2§;
which is proportional to the charge density and A;; =
wN&ij where N = [dp[f0(p) — (f2(p) = DI =T In(2 +
2 coshpt/T). Here f2(p)=[1+exp(*ZL=)]~1 is the
Fermi-Dirac distribution function.

We are again interested in small density fluctuations around
the constant and homogeneous value. Consequently, we as-
sume n = ng + én and small ii. We insert this solution into
the current (130) and keep the terms to linear order in the
fluctuations. This gives

v2

1
nod (%, t) + %ajan(g’ )+ 0VHE 1) _ noii(X )_

N
=N =
(131)

The solution to this equation are propagating waves of the

form

Sn(x, 1)\ _ (on(p, ®)\ ipi-ior

ik ) = \ap.w) )¢
We insert this solution into the linearized current (131) and
obtain

(132)

v 2 g p

N
—iwnii(p, ®) + i—X pén(p, w) + i——8n(p, ) —N
2 p 4
noii(p,
— _M. (133)
T
Next, we project the equation on the momentum direction
P/ p, This gives
. R VR . . N
—iwnouy (P, w) + 17p8n(p, W) + 2ravedn(p, a))EJ\/‘

_ nouy (P, @)
—

(134)

3
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FIG. 8. The figure shows the real and imaginary parts of the
frequency of the density fluctuations as a function of momentum at
the charge neutrality point. In the plot, the momentum and frequency
are in the units of 7. The values of the parameters are chosen for
illustrative purpose: « = 0.3, 1/t =T, and N = 4. In the case of
graphene N = 4 counting spin and valley degrees of freedom.

Together with the continuity equation, we find that

—iw , ingp sn(p,w)\ _ (0
iovp SN +i%Lp  —iong+no/t)\w(B.®))  \0)°
(135)

For this equation to be valid, the frequency of the density
fluctuations has to satisfy the dispersion relation

i

wi(p) = — o
N 2 p? 1
+ \/EavFTp In(2+4 2 cosh u/T) + % 1
(136)

Figure 8 shows the real and imaginary part of the frequency
of the density fluctuation at the charge neutrality point. Note
that, in the long-wavelength limit, we recover the previous
hydrodynamic result.

V. PART B: ELECTRON-HOLE-PLASMON
HYDRODYNAMICS IN THE STRONG-COUPLING LIMIT

In the previous section we focused on the weak-interaction
limit of the action in Eq. (19). We analyzed the theory
by a straightforward perturbative expansion in the coupling
constant. We now consider a system of fermions interact-
ing strongly via long-range Coulomb interactions. It is well
known that the interactions between electrons can gener-
ate plasma oscillations. Under certain circumstances, these
plasma oscillations act as proper quasiparticles, as we will
show below. Describing these oscillations starting from
Eq. (19) requires to go beyond pure perturbation theory and
to resort to a resummation scheme, such as the random-phase
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approximation (RPA) [22]. Formally, this can be achieved
by a Hubbard-Stratonovich transformation [40], which is the

A. Effective field theory: The random-phase approximation

We introduce a real scalar boson field ¢,(7,¢) to de-

formulation we choose here. The results in the following

. . . couple the quartic Coulomb interaction using the Hubbard-
sections are the most important results of this paper.

Stratonovich identity

i

exp <— 5 / dt dt'd% dX' p® (X, 1)Do (X, X', 1, 1)p? (¥, ﬂ))

= fD¢ exp (%fdt dt’d)?dfc’q)a(?c,t)Dalbqb;,(fc/, ') — i/dt dx ¢, (X, 1)p* (X, t)). (137)
All the manipulations in this section are performed on the Schwinger-Keldysh closed time contour, meaning the indices a and
b are the previously defined Keldysh indices. In writing Eq. (137), we absorb an irrelevant normalization constant into the
functional integration measure. The real scalar field is conjugate to the electron density and therefore directly captures the
dynamics of the plasmons. Therefore, we henceforth refer to this boson field as the plasmon field. Inserting the identity of

Eq. (137) into the partition function of Eq. (10) leads to

Z=/DW®¢D®mmwiwmx (138)
where the action reads as
ﬂ¢ﬂ%¢]=/‘dnﬁ[/dhﬁWL@JXG@MN—ﬁﬁwwaxw@—?wa—/»mwﬁnﬁ
—00
1
+ Efd)w)?’(pa()?,t)Da‘b(i, it t')¢b()?’,t’)i|. (139)

Philosophically, we have traded a theory of electrons inter-
acting amongst themselves for a field theory where electrons
interact with the electric potential and the plasmon field.

1. Green functions

The bare inverse Green function of the boson field reads
as Da;b()?, X, t, 1) =4e0,6(X —X)(t — )/ —V2/e*. The
square root of the Laplacian, ~/—V?2, can be understood in the
following way: it is the inverse Fourier transform of the abso-
lute value of the momentum p = |p|. The Fourier transform
of Dy, (')b()'c’, X', t,t") consequently is given by

Dyl (B, w) = 032V (B) = o)y 2p/2mavp. (140)

There are two things worthwhile noting here. First, this
zeroth-order Green function has no dynamics. The dynamics
will only be generated upon integrating out fermions or, equiv-
alently, in perturbation theory. Second, it comes with a factor
of 2 due to our choice of convention that Dy 4, x V(X — X')/2
[see Eq. (28)]. There also is the fermionic propagator, that
we have to evaluate in the effective field theory of the plas-
mons. To obtain this field theory, we have to integrate out the
fermions. This suggests that the fermionic propagator is given
by the noninteracting one and all the renormalization effects
are in the plasmon sector. This, however, is not true, and the
generated dynamics feeds back into the fermion sector. To see
this, it proves advantageous to introduce source terms in the

(
action in Eq. (139), according to

&wim=/ﬁmaﬁ@maﬁw+6@0m@ny

(141)
This allows to recover the fermionic Green function for any
level of approximation of the plasmon field, even once the
electrons are integrated out. This is very important in the
section about the coupled quantum-kinetic equations. The
generating function for the fermionic Green function reads as

ZUJW=i/DwWWIWemﬁﬂ%ﬂ%¢}+mdwﬁwh

(142)
From this, we can determine the fermion Green function by
means of a functional derivative with respect to the source
field, according to

—1 82 7[J,J7]

iGF 7/, t,t) = - - .
ZIJ, JT1 8T, t)SJT (%, ¢) lu=ri=0

(143)

We continue to integrate out the fermion fields, which gives an
effective theory of the boson field associated with the density
fluctuations. We find

ZUJW=/D¢wmmm¢Lﬂu (144)

with the effective action given by
Seitl¢.J,J']
= —iTr[In(—iG™ )]
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,a

1
+5 f dt dt'd% dX' ¢ (%, )DL, &, %1, 1 )p(¥, 1)

— / dtdi'dxdz¥J &, )GE, X, 1,1 ;) 7, 1),
(145)

where the Green function G (X, X', 1,15 ¢) is a functional
of the plasmon field [52] as

- o/

—1 . —1 - o
Gab;k)\/('x’ X ’ ta t/s ¢) = G()’ab;)h)h/(-x» x/a lv t/)

— VipPe(E, )88 (X — XN8(t —1').
(146)

While this is formally exact, the presence of the dynamical
field requires an approximation scheme to evaluate it. Using
Eq. (143) and the generating function introduced in Eq. (144),
we find that the fermion Green function can be calculated
according to

Gapprr (X, X', 1,1") = /D¢ Gappry (X, X', 1,15 9)

x exp(iSee [, 0, 0]).

This equation consequently shows in a very explicit man-
ner that the generated plasmon dynamics feeds back into
the fermion dynamics through the field ¢ and its associated
dynamics encoded in Sesr. Consequently, the next step is to
determine Segf.

(147)

2. Saddle-point equation

The effective action S, introduced formally in Eq. (145),
can be obtained after integrating out the fermions. It is exact
but also very complicated. The problem is that the trace cannot

J

Gl @ X 0,059) = Gl B, 1,15(8) — yS8LE )8 8E — X8t —1).

be evaluated in an easy manner due to the presence of the plas-
mon field in the Green function of the fermions. Consequently,
we require an approximation scheme. The saddle-point con-
tribution to the partition function is given by the configuration
that minimizes the action Se[¢, 0, 0] (formally this manipu-
lation is equivalent to Hartree or mean-field approximation).
This can be obtained from the condition

8S ,0,0
eft[@ ]‘ _o. (148)
8¢ (9)
This directly leads to
(B (X, 1)) = — i/dt/d?c/Do,cd(fc, Xt t)
X Gappo B3 X1, 1 ($)) e (149)

This is a self-consistency equation for the local charge density.
Philosophically, Eq. (149) corresponds to a self-consistent
version of the Hartree diagram previously discussed in
Sec. IV B. The fermion propagator at this level of approxi-
mation reads as

1 o o= . 1 .
G & X 1,15(8)) = G gy (%, X' 1, 1)

— V(@ (X, 1)) 8(X—X")5(r — 1').
(150)

The expectation value of the plasmon field can now be iden-

tified with the self-energy within the Hartree approximation,
already given in Eq. (65). It thus recovers the dispersion of
Eq. (86). We proceed to expand the plasmon field in devia-
tions from the mean-field value, i.e., ¢,(X, 1) = (P, (X, 1)) +
¢, (X, 1) where (¢, (%, 1)) is the saddle-point configuration and
¢, is associated with fluctuations around the saddle point. As
a result, we have

(151)

We proceed to expand the effective action (145) to second order in the fluctuations ¢’. Substituting Eq. (151) into (145) and
using the series expansion of the logarithm schematically, we suppress the Keldysh indices here, we find to second order in

fluctuations that

1
Sert[@, 0, 0] = =i Tr{In(—iG ™" ((¢) + ¢")] + 3 / dr dr'd3 dX'[{¢a(%, 1)) + ¢,F. DIDy & 1, 1OUGE . 1) + ¢, 1]

%

1
+iTr|:§G(<¢>))¢/G((¢))¢/}

Here, we use for brevity the shorthand notation G~'({¢)) =
G;bl;u, (X, X', t,1";(¢)). The first term gives an irrelevant con-
stant which will be absorbed in the functional integration
measure. The linear terms in the fluctuations sum to zero
at the saddle point. Their cancellation is equivalent to the
saddle-point condition in Eq. (149). The remaining term,
consequently, is the last term in Eq. (152). It is the term
that accounts for quadratic fluctuations around the saddle
point. At the same time, however, it determines the effective
plasmon propagator with the RPA approximation according

—i Tr[In(=iG ™' ((p))] + i TH[G(($))¢'] + / dt di'd% d5 (§a(%, 1)Dy ), (%, X5 1,1 )%, 1)

(152)
(
to
Serr[¢']
1
=5 > / dt dtdX d¥' ¢, (%, )D,,} (%, ¥t 1)p(F, 1),
a,b=1,2
(153)

where the inverse plasmon Green function satisfies

—1/=2 = —1 /= o/, = o
Dab (.x,.x,,t,t,) :DO;ab( 7x,7t7t,) - Hab(x’x,7t5t/)' (154)
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(Dl d)/ G‘)/

FIG. 9. Diagram representing the solution of the Dyson
equation (151) in terms of a series expansion of the quantum
fluctuation ¢’.

The self-energy IT has the diagrammatic representation shown
in Fig. 10(b). It is commonly referred to as the polarization
diagram. The corresponding algebraic expression reads as

M = —iN Tr[y“GE ¥, 1,1, ($))y"GE %, 1, t, ($))].
(155)

The retarded component of Eq. (154) gives dynamics to the
plasmon: it allows to determine the dispersion and decay rate
of the plasmons in the next section. Its Keldysh components
have the form of Eq. (42) which will be the starting point for
the derivation of the Boltzmann equation for the plasmons.
Now that we have the above effective action of the plasmon
and its dynamics, it is time to return to the fermion Green
function G (X, X', t,¢') in Eq. (147). We can graphically
represent the fermion Green function expansion in terms of ¢’
according to Fig. 9. We now have to “average” this fermion
propagator over the Gaussian action of the bosons and resum
it. It turns out that we have to choose the series corresponding
to the Fock-type diagram, Fig. 10(a), to obtain a conserving
approximation [53]. This is also known as the GW approx-
imation. The resulting Green function is the solution of the
Dyson equation

Gab o & X 11

= G G T () — Sapun B, X, 1,1, (156)

where
Eab'k)»’(iv )_5/ t, t/)
=i(y*G@E X, t. 1 (d)VVapsrDap @ X, 1,1'). (157)

The Dyson equations in Egs. (154) and (156), together with
the self-energies in Egs. (155) and (157), are the minimal set
of equations that describe the interplay between the collective
modes and the single-particle components of the interacting
Dirac electron. This approximation can be derived from a
single free-energy diagram. It was shown in Ref. [53] that
this implies that it constitutes a conserving approximation. As
such, it respects the conservation laws of total energy and mo-

O+ IO

(a) electron self-energy (b) Boson self-energy

FIG. 10. Self-energy for electron and plasmon fields within the
RPA approximation. The set of the GW diagram and polarization
function constitutes a conserving approximation.

mentum in the combined system of electrons and plasmons,
as we show explicitly in Sec. V D.

B. Plasmons

In this section we discuss the plasmon dynamics at nonzero
temperature and nonzero chemical potential. To that end, we
analyze the polarization function numerically. We then pro-
ceed to find an approximate analytical description that we
use to determine the plasmon spectrum and the quasiparticle
lifetimes.

1. Nonzero temperature polarization function

Here, we consider the retarded component of the polariza-
tion function (155) at nonzero temperature. After a Wigner
transformation, we obtain

*(p, w)
dg d
=N [ q)zz”[ R (543G, o+ v, (#)GK,
X(, v, ($) + Gu(F+ G, @+ v, ($)G), (G, v, (@)]-

(158)

Here, for brevity, we suppress the space and time variables of
the functions involved. Next, we use the transformation matrix
in Eq. (63) to transform the objects within the polarization
function into the quasiparticle basis. After that, we integrate
over the frequency variable v by making use of the Dirac
delta function coming from gX. Finally, by a straightforward
algebraic manipulation, we find the polarization function ex-
pressed in the form of the Lindhard formula

*(p, w)

_oN Z / dgqg  Fou (P, DUHG) — fu(P+ §)]
2n)? w + 0T + Avkg — AR5+ gl

=
(159)
The coherence factor is defined according to
Fou (B, @ = 511+ A1 cos(0p1.5 — 07)]. (160)

Let us note that, strictly speaking, compared to the conven-
tional Lindhard formula, there is an extra factor 2 in our
result. This is consistent within our convention that the inverse
bare boson Green function comes with the same factor, i.e.,
Dy x V(X —X)/2.

The polarization function at zero temperature and arbitrary
chemical potential (T, o) can be calculated exactly. Here, we
focus on nonzero temperatures. There is no analytical ex-
pression for the nonzero temperature polarization. However,
there exists a relation between zero temperature and nonzero
temperature polarization functions [28],

/o(ll w)
e (b w) = / dp' Yy —— (161)
! 5, AT cosh® (B572)

Using this, we numerically solve the polarization function
at arbitrary temperatures and subsequently replace it in the
Dyson equation in Eq. (154). This allows us to determine the
energy dispersion (w,) and the decay rate (y,,) of the plasmon
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mode. The plasmon frequency (w = w, — iy,) is obtained by
equating the inverse Green function to zero:

“1\R, = _I\R, . L
D™ B, w) = (D) (B, 0) ~ (B, w) =0.  (162)
Defined this way, the decay rate y,, is positive. If the damping
is sufficiently weak (y, < ), one can expand the polariza-
tion function to leading order in y,,:

(P, wp — iyp)
~ Rell(p, wp) — inawRen(ﬁ, (U)|w=w,, + i ImII(p, @p).
(163)

The energy of the plasmon can be determined from the real
part of Eq. (162),

(D3")" (5. p) — ReT1(B. wp) = 0, (164)

whereas the decay rate is a solution of the imaginary part

Yy = mllp.w) | (165)

0,ReTl(p, w) o=,
In general, the noninteracting Green function Dy, ! can be
a function of both momentum p and frequency w. How-
ever, in our case Dy ! describes the bare Coulomb potential
which is nondynamical and hence does not depend on the
frequency variable. Figure 11(a) shows the real part of the
polarization function at nonzero chemical potential in the
momentum-frequency plane. Solutions to Eq. (164) exist only
when Rell > 0. This is the case in the upper triangle of
the plot in Fig. 11(a). As discussed before, a stable plasmon
requires ImIT =~ 0. In Fig. 11(b) we plot the imaginary part
of the polarization function at the same value of parameters
as in Fig. 11(a). Although it is not zero, it is still negligi-
bly small in the low-momentum limit. As a result, one may
expect a long-wavelength underdamped plasmon mode with
for all practical purposes almost infinitely long lifetime. This
implies that plasmons behave like quasiparticles for practical
matters.

In the next section, we find an approximate description
of the dispersion of the plasmon and its decay rate in the
low-momentum limit. We furthermore determine the value of
the momentum cutoff beyond which the plasmons are over-
damped.

2. Analytical approximation

In this section, we will evaluate the energy spectrum and
decay rate of the plasmon in the long-wavelength limit. To
this end, we first decompose the polarization function into
a sum of two terms accordingly to IT*(5, w) = NIX (p, w) +
M2 (B, w). The first term, I1,(p, w), describes the contri-
bution from intraband particle-hole pairs (A’ = 1), whereas
I1_(p, w) comes from the interband transitions (A" = —X\).
The imaginary part of the polarization function accordingly
reads as

ImIT*(p, w) = ImIX (7, 1) + ImI1_ (P, ) (166)
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FIG. 11. Polarization function, (a) real part and (b) imaginary
part, at a nonzero temperature and chemical potential. We show the
polarization function when the chemical potential ©/7T = 1.

and it amounts to a decay rate of the plasmon mode with

Iml'[’i(ﬁ, )

d‘?
= —_ION7 2 R p+3d.q
A==l ./ (271 )2 g il( )

X [(@) — fr.(P+ PN6(w + €,(G) — €xn (P + §)).
(167)

The conservation of energy enters through the delta function
with the argument @ + AvRg — A'vR|p + g|. This function
forms either an ellipse or a hyperbola in the g.g, plane. It
may be easy to see this by means of a transformation of
the momentum variables into the elliptic coordinate system
(@, w), where 6 € [0,27) and u € [0, c0). When A = — and
A" = +, this equation forms an ellipse with the value of u
determined by cosh © = w/p. The size of the ellipse depends
on the value of cosh u < 1. We find that when w is slightly
bigger than p, the available phase space is restricted since the
size of the ellipse is small whereas when @ is much bigger
than p, the available phase space in turn grows bigger and
allows the decay process more likely to occur. However, when
A’ = A, this equation becomes an equation of a hyperbola
centered at (—p,/2, —py/2). The width of the hyperbola is
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determined from the ratio of the frequency to the momentum
given by cos 6 = Aw/p. Therefore, the available phase space
for a plasmon with the energy w to decay into two fermions
with the energies Ap and A|p + §| is extended. This process is
thus the main mechanism for plasmon decay. We expand all
the quantities appearing in the polarization function up to first
order in p. This gives

Fie(P,q) = 314 cos (055 — 0)] ~ 1,

Fir(P.§) = 311 — cos (Opq — 0] ~ 1(B - V)%,
LB+~ [.@)+ P Vifi@)
&P+ 9 ~ @)+ b Ve d. (168)

By substituting Eq. (168) into the imaginary part of the po-
larization followed by a straightforward calculation, we find

2N p?
ImITR (5, ) ~ —E%(ﬂ(lwﬂl) — f-(/2).  (169)

which provides the main contribution to the decay rate
whereas Iml'[fr(ﬁ, w) gives an unimportant correction. In
thermal equilibrium, the distribution function becomes the
Fermi-Dirac distribution function at a temperature 7 and

chemical potential w, i.e., f,(w) = m. We present
more details of the calculation in Appendix D.
At zero temperature, this becomes
R 2N p?
ImITZ (p, ) & ————0O(lw| — 2|u|). (170)

16 w

It vanishes when |w| < 2|u|, meaning in that region a long-
lived plasmon mode exists. The real part of the polarization
function is given by

Rell% (5, )

Jé
=2N2f 1 Fr+2.(D, §)

2
A=%1 (2ﬂ)

@) — fu(P+§)
w4+ 2RgF rRp+ Gl
(171)

We substitute these expressions into Eq. (168) followed by
expanding its denominator to first order in p/w. Based on
numerics, we expect to find a stable plasmon mode in this
limit. We can approximate the expression as

RelT? (5, w)

dg —p-Vif(@)
%ZNZ/(ZH)Z a7 [1+

w
A==%1

p- %ex@}
w

(172)
which results in
2Np?
drw?”
where N'= T In(2 + 2 cosh u/T). When the Dirac system

is exposed to external perturbations, the polarization function
varies in position and time via the distribution function. In

that case N = [dq[f(§) — (f-(§) — 1)]. In contrast, the
interband term gives a logarithmic correction which will be

Rell? (5, w) ~ (173)

wp(q)/T

1 2 3 4
q/T

(a) Energy dispersion

0.08

0.06

Yp/T

0.04

0.02

0-00 1 2 3 4

q/T

(b) decay rate

FIG. 12. Numerical solution of the Dyson equation (162) at
w/T = 3. Here we choose a relatively small value of the fine-
structure constant o = 0.3.

neglected from evaluating the plasmon energy as

. Np? _ _
ReHR (p, w) =~ E/dQ[]q-(Q) )]

1
[4(v§)2q2 — w2i|.
(174)

At nonzero doping and zero temperature, we find that

Rel (B, w) = ,ijfw 1n(|3;§g|). If we substitute Egs. (173)

and (140) into Eq. (164), we obtain the dispersion relation of
the plasmon at nonzero 7',

N
w,(P) = \/Ean In (2 + 2 cosh u/T), (175)

with the decay rate

_ nwp(ﬁ)z
16 In(2 4+ 2 cosh u/T)

(f+(@p(P)/2) = f~(@p(D)/2)).
(176)

Vp

It is worthwhile pointing out that Eq. (175) agrees with the
plasmon dispersion from the beyond hydrodynamic treatment
in Eq. (136) in the collisionless regime. In Figs. 12(a) and
12(b), we show the dispersion relation and the decay rate
of the plasmon for a relatively small fine-structure constant
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FIG. 13. Spectral function of the plasmon at a nonzero temper-
ature and chemical potential u/T = 4. The value of fine-structure
constant is chosen to mimic graphene device sandwiched in hBN
(¢ =0.3).

of a = 0.3, solved numerically from the Dyson equation in
Eq. (162). The dispersion follows a square-root relation in the
small momentum limit, as in the approximate solution. In that
limit, the plasmon becomes one of the relevant quasiparticles
for the interacting Dirac electron since its decay rate is para-
metrically small. Figure 12(b) shows that the decay rate as
obtained from Eq. (165) is much smaller than the plasmon
energy [see Fig. 12(a)]. Additionally, we plot the spectral
functions of the plasmons at nonzero chemical potential in
the gw plane in Fig. 13. It shows that the spectral function
is pronounced in the small momentum region. Therefore, it is
possible to treat the plasmon as a proper quasiparticle emerg-
ing from the interacting Dirac electron gas. This also allows
to define a cutoff. It follows from the condition that at the

momentum cutoff p., we have w”—(‘ﬁ) = 1 which invalidates the
'p

quasiparticle picture. As a result, we find p. = %’aT In(2 +
2 cosh u/T). It is interesting to note that the combination of
the linear dispersion relation for electrons and the plasmon
dispersion kinematically allows a plasmon to decay into two
electrons and hence contribute to its lifetime. Moreover, we
observe that the plasmon decay rate decreases significantly
and therefore our quasiparticle assumption is more accurate
as the electron density increases. This can be clearly seen
in Fig. 14. We show the spectral function of the plasmons
at various electron chemical potentials (/7). We find that
the spectral function at a high doping away from the Dirac
point manifests a narrow spike shape resemble the Dirac delta
function.

.,

b, 5.0+ 20 b ahix, o)
P

. Zanzpr(ﬁ)/ aq

B p Q)

XA = fu (B +@)b(p) — (1 = fi.(@)fir (P + (1 + b(p))].

O ——— ﬂ T
— WT=15
—W/T=10
—WT=5
-1t WT=1
_2 L
-3t
_4 L
—5 L L . .
0 2 4 6

w/T

FIG. 14. Spectral function of the plasmons at various electron
chemical potentials at a small value of momentum g/7 = 2.5. Here
the fine-structure constant o« = 0.3.

C. Coupled kinetic equations

The starting point of our discussion is the gradient-
expanded version of the plasmon Keldysh equation (60). We
have estimated the real part of the polarization in the long-
wavelength limit given by Eq. (173). Using it here leads to

2N p?
Dyt —Remf = £ _ 228 pr P
T 4w Taw

5 (a)z — w,z,(ﬁ)).

77
As a result, the derivatives appearing on the left-hand side of
the above Keldysh equation are obtained as follows:

N 2
Bw(Dal—ReHR)z—p3 :

Tw
35(D;! — RellR) = p Npﬁ/\/
p(Do" = Rellt) = =0 = = 2

sz
—1 R

d(Dy" — Rell*) = —2mza;N. (178)

We substitute these expressions into Eq. (60). Next, we di-
vide the resulting equation by the spectral weight that is
0,(Dy ! — ReIT®) and evaluate the resulting equation on shell
at the frequency w = w,(p). We assume that the excitations
are long lived and therefore the spectral function is sharply
peaked at the energy dispersion w, (). Finally, we obtain the
Boltzmann equation for the plasmons according to

wp(P)
2N

N - 95b(X, P, 1)

For(P+ 4, §)8(w,(P) + €.(G) — € (P+ §))

179)
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The left-hand side of the equation describes the changes of the distribution function by the streaming of the plasmon distribution

with the group velocity ¥, = w,(p)p/2p. This is consistently identical to calculating the group velocity from taking a derivative
of the plasmon energy with respect to its momentum, i.e., ¥, = dw,(p). The fluctuations of the underlying electron density have
an effect on the plasmon dispersion and enter as a force given by F = —*Z EN Next, let us examine how the plasmon and the
electrons coexist in the system. To this end, we consider the Keldysh equation of the fermions given by Eq. (156). We proceed
in exactly the same steps as in the previous section to arrive at the kinetic equation for the fermions in Eq. (56). Below, we only
show the final result and give its full derivation in Appendix E. We find that

& fo(E 1, P) + (Mvpp + 29;Rec®(E, 1, P)) - d: fi (R, 1, P) — :(VH (%, 1) + ARea® (X, 1, p)) - 9; /. (%, 1, P)
dG ,(§)

_ 2
- e / ()2

For (P + 4, )8(wp(§) + €,(P) — €x(P+ §))

x [f(P)A = fu(B+ PIb(G) — (1 = frPNfrr (P + (1 + b(G))]

dg wp(‘?)

—2ar?
(2 )?

x [AP)A = fu(p— @)1+ b)) — (A = fiPNfir (P — Db(G))-

In this expression, V¥ (%, t) is the Hartree potential as defined
in Eq. (85) and
R, A dg q

ReoR ~ —— —[1 +2b(3)]sin* 0
2p ] @Yo, 1

is the correction to the fermion energy resulting from the
electron-plasmon interactions in the GW approximation. We
evaluate this self-energy using the long-wavelength approxi-
mation of the plasmon dispersion (175). We define the angle
0 between p and §. Details of the calculation are presented
in Appendix E. The collision term comes from the Fock-type
diagram shown in Fig. 10(a). It is a sum of two terms. The
first term describes a scattering process of an electron from
the momentum state p into another momentum state p + ¢
by absorbing a plasmon of momentum §. The second term
describes an emission of a plasmon of momentum g from an
electron of momentum 5 and as a result the electron scatters
into the momentum state j — g. We need to write these two
terms of the collision integral separately because from the
perspective of the electron in k, the two events, the emis-
sion and absorption of a plasmon, are essentially different.
The coupled system of Boltzmann equations in Eqgs. (179)
and (180) constitutes one of the central results of this

paper.

(181)

D. Conservation laws

In this section we check whether our level of approxima-
tion indeed respects all the conservation laws. Compared to
the weak-coupling consideration based on Eq. (89) we now
have two coupled Boltzmann equations (179) and (180). Let
us denote the collision integrals, i.e., the right-hand side of the
Boltzmann equations of Eqs. (179) and (180) by C?[f, b](p)
and C{ Lf, bl(p), respectively. The collision integrals again
have three collisional invariants that correspond to the con-
servation of electric charge, momentum, and energy. In that
order, they read as

dp o
cJ1f.bI(p) =0,
2/ @2

(182)

Fow (P — G, PI(—wp(§) + 1(P) — €2 (P — )

(180)

(

ap . ¢ - / ap . -
PGS DIP)+ pCLf, bI(p) =0,
A:Zi/(zﬂ2 g (2n)?
(183)

and

dp g
&.(HC]Lf. bI(P)
é/ @r) -

+f AP wp(P)CLLF, bI(P) = 0 (184)
Qm)2 P ’

and these statements can be checked in a straightforward
manner. By integrating Eq. (180) over all momenta j and then
summing over the energy bands + we obtain the continuity

equation of charge
on(E, 1)+ 0z - j(%,1) =0, (185)

where the total charge density is given by

a
n, 1) =N/ s UGt )+ (-Gt ) = D)

(186)
whereas the total charge current density reads as
< dp . R
7.0 =N [ 25 wrp+ dpReat)
x[f+@ 1, p) — (f~(X, 1, p) — D] (187)

In writing the above expression, we again subtract the infinite
contribution from the Dirac sea and define the distribution
function of holes as f_(X,¢) — 1. This is allowed since sub-
tracting this infinite constant does not affect the conservation
law.

In addition, we multiply Egs. (179) and (180) by mo-
mentum p and then integrate the resulting equations over
all momentum p. We add them together and find the law of
momentum conservation as

Ol (%, t)+0; - TI(X, 1)

dp w,(p) N

—_— )= H-» X -
=—a:VI® n@E, 1) 2R 2 N

b(x,t, p)
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dp Ry, =
—N/W(%‘CReU (.X',l,p)

x [f+G 1, p)+ (1 = f-(X, 1, p))]. (188)

The right-hand side of the equation has three terms. The first
term is an internal force due to the Hartree potential from
the other electrons. The second term describes a force on a
plasmon due to electron inhomogeneity. It is proportional to
a gradient of the electron distribution function via 3; /N where
N = [dqlfi(Z,t,G)+ (1 — f-(, 1, §))]. The third term is a
reaction on the force in the second term. The total momentum
density is

- dp
A1) = N/ AP P ~ (= Gt )

+/ P51, ) (189)
Qup P70

and the total momentum flux is

S dp . aip e
(x,1)= N/ e (vrp + 95Re0)plf+ (X, 8, P)

jom 103

o dp .
(= G P+ / s PbE1. D)
(190)

Here ¥, = w,(p)p/2p defines the group velocity of a plas-
mon. We find that the total momentum density is not locally
conserved but changed by the internal electric forces on the
right-hand side of the equation. However, integrating over
all space X, the force terms vanish and the Hartree potential
cancels by virtue of being a total derivative,

/d?c VHEE, Hn(E, 1) =0. (191)
In contrast, the other two forces do not vanish individually,
but instead cancel each other as

[ AP 0P HN,
—/dx/(zﬂ)z b p)

.
N / . f P Rea @1, P+t )
@n Y

+(1 - f—()_é’ t, ﬁ))] =0.

On general grounds, this is a result of the Kadanoff-Baym
conditions for approximate Green function to maintain the
macroscopic conservation laws [53]. As we discussed earlier,
a self-energy included in the approximate Green function
must be generated from a diagram of a free-energy functional
and the contributions from those self-energies generated from
the same free-energy diagram will cancel out to ensure the
conservation laws. We find the conservation of total momen-
tum of the electrons

(192)

%P =0, (193)
where the total momentum of the whole system
P= /dmﬁ(fc, ). (194)

Next, we multiply the electron Boltzmann equation of
Eq. (179) by the energy e, (%, t,p)=Ap+ VA&, 1)+
AReoR (%, ¢, p), integrate the resulting equation over all mo-
mentum p and then sum over the energy bands +. Similarly,
we multiply the plasmon Boltzmann equation of Eq. (179)

JSapN (@&, 1)
and integrate over the momentum. We add the resulting equa-

tions together, and find the conservation law of energy for the
total system,

by its energy dispersion given by w(X, p,t) =

nt (%, 1) + 0z - J(F, 1) =0, (195)

where the total energy density is

n(x, 1)

dp
:N\/# [€+(iat9ﬁ).f+(i’t7ﬁ)_6—()?’t’ﬁ)

o a5
(1= fo Gt )] + f 5wl b1, ).

(196)

and the total-energy current density is

N dp
FEn=N [ ST e G P
_ﬁ—()_é’ tv ﬁ)e—()—év t’ ﬁ)(l - .f—()—é’ t’ ﬁ))]

+ / (;Tp)zﬁpwpb(ié, 1, B). (197)
It should be noted that, in a real material, impurities are
usually present. To lowest order, disorder couples to electrons
and holes only. It breaks translational symmetry and thereby
momentum conservation but respects particle number and
energy conservation. Within a relaxation time approximation,
one can account for the presence of impurities by introducing
arelaxation time for electron-impurity scattering denoted here
by ta4is- The collision between electron (hole) and impurity is
captured by a collision term given by —% This effect will
be discussed in a companion paper [33].

VI. CONCLUSION AND OUTLOOK

In this work we have studied the basic equations of hy-
drodynamics in ultraclean interacting two-dimensional Dirac
systems. Our approach was based on nonequilibrium quantum
field theory. We first derived the hydrodynamic equations in
weakly interacting systems, based on low-order perturbation
theory. This allows to recover mostly known literature ex-
pressions. In the second part we go beyond a weak-coupling
analysis. We use the random-phase approximation which nat-
urally leads to the notion of a coupled field theory of electrons,
holes, and plasmons. Contrary to in three-dimensional metals,
the emerging plasmons constitute proper low-energy degrees
of freedom without an excitation gap. Furthermore, these
plasmons are stable and do not decay easily. Based on this,
we study a set of coupled Boltzmann equations. We explic-
itly establish in that framework, that the approach provides
a consistent conserving approximation which respects the
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conservation of electrical charge, momentum, and energy. Our
main findings are that, compared to weak-coupling theories,
there are direct low-energy contributions of the plasmons to
the heat current and the energy-momentum tensor that have
to be treated on equal footing with electronic excitations. In
a companion paper [33] we show that this implies that they
should be measurable in transport experiments in encapsu-
lated graphene devices that achieve the hydrodynamic regime.
While we do not expect a similar effect in three-dimensional
metals, we expect an enhancement close to the Dirac point
of three-dimensional Dirac and Weyl systems or in bilayer
graphene systems. A study of the thermoelectric transport
properties of this theory has appeared recently [43]. There also
is part I [33] of this paper that studies the most salient features
of the coupled theory on a phenomenological level.
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APPENDIX A: DERIVATION OF THE COLLISION INTEGRAL OF EQ. (89)

The algebraic expression for the diagram in Fig. 7(a) is given by

-~ (20) = o, . B B B — —
—lzéha)(X,x',f, ') = —lN/dﬁdldeldXz VabYeaVerVenDo.aw (&, X15t, 11)Do y5(F2, X512, 1)

X Go po(X, X'51,1)Go,ae(X1, X203 11, 12)Go, e (2, X132, 11).

(A

After a Wigner transformation, its Keldysh component in the quasiparticle basis reads as

dk;  dg
(2m)* 2m)?

(02 ® K 1, 0) = iN /

x(Fy G 1, k) — F,G, 1,k +§) + F, G, 1,k — P[F,G 1,k + PFLE 1, k) — 1]).

JT(S(CL) — )\.16127(? — )Lzel_éHrt? + A;e,;])’TMl,\zh(E /_é], C?)’z

(A2)

Here we assume that the distribution function within the quasiparticle approximation has no off-diagonal elements in the spinor
space. Furthermore, we introduce the shorthand notation for the Coulomb interaction transition probability amplitude

77 > V(q) AA XAz
T)\.)\.IAZ)\.S (k, klv Cl) - TMI-C‘J;*L?ME%EHHZ, (A3)
where the coherence factor coming from the overlap of the wave function is defined according to
M _ (1
=), (A4)
The retarded component of the self-energy is given by
S GaR T [ dk dg Py
2iIm(0,"")" (k, w) = iN szms(w — h€g_g — haeg g+ Aa€g )| T (ks ki, )|
(Bt b+ DF,E 1, k) = 1+ B Gt k= D[F,GE 1, k) = FByE .k +9)]). (A3
The algebraic expression for the diagram in Fig. 7(b) is given by
—iTE ) =i / dtdnd%d%yy, v2 v Ve Dowe (%, %2t 0)Doya (1, %311, 1)
X Go pe(X, X131, 11)Go,ae(X1, X203 11, 12)Go, (X2, X 312, 1), (A6)

After a Wigner transformation, the Keldysh component of the self-energy in the quasiparticle basis reads as

(2b) K. _ 7 _ . dz] dq
(OA ) Xk, t,w) = —i 2n) 2n )

X(F)q('?’t’l_él)_F)uz(X’tvl_él +q))+F)\1()_é7tal_é_q)[FK2(27t7£1 +q)F)\3(5éatal_él)_ 1])5

whereas the retarded component of the self-energy is given by

. @2b©\R 7 _ . dl_él dc_j
2i Im(aA ) (k, w) = —i 2n R an P

x(F, (&, t, ki + PF,E 1, k) — 1+ B, G 1,k — §[F G, t, k) — F,Gt, ki + §)]).

27‘[5(&) — )»16,2_5 — )»261;]4_‘7 + K36;])TAA]A3A2(%, %1, é))T):;LZ)\l)L} (]_é, %1, ]_é — q — El)

(A7)

7é(w— M€g_g — Ma€g izt )»361;'1)7")\}\1,\312(%, ki, CY)T)\SRZ,\]M(%, ki, k—g—k)

(A8)
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The algebraic expression for the diagram Fig. 7(c) is given by

- o o e d W d - o 5 o,
—lz(c)( HEMES l/dlldlzdxldxz VabYeaVerVenDo.wa (R, X', t,1)Do yer (R1, 2311, 12)

X Go pe (X, X131, 11)Go,4e (X1, X203 11, 12)Go, (X1, X5 12, 1). (A9)
This contribution to the collision intergral is omitted because 2i Im(of”))R and (ofzc))K are both zero. After combining these

contributions from the diagram in Figs. 2(a)-2(c) and substituting the distribution function to zero order in the Berry connection
given by Eq. (55), we find the collision integral for electron-electron scattering within the Born approximation. Hereafter, we for
brevity suppress space and time variables in the distribution function since the collision integral is local in space-time:

o (B) = 2iImad ()1 = 2£(P)] (A10)
[ dk, dg
= —&i m(zn)zan((x)_)\,lélz_q»
X[N|TAA1A3A2(E, ki, DI = T (K, Ky, cY)T;;zM}(l_é, ki k—g—ki )]
x[A®) fis C)(1 = fr R = D)(1 = fr, G + ) = (1 = LE)(1 = fis k) fu, k= D fs, K + D). (A1D)
We make connection to the golden rule result by shifting the variables appropriately, This gives
of (§) = 2ilmaf (P)(1 = 2£,.(P))

P L 8(w — 2
=— i €;
@up @y T

X[|Tkk1A3A2(kv ki, @) — T (K, iéh k-

—ha€g ot }‘36121)

)\26;1+(7 =+ )»36121)

G— k)P + N = D(1T & Kty DI + [ Tognn K, ki, & — G — k)IP)]

x[AEfia®)(1 = & = D)1~ futii + D) = (1 = LE) (1= fr k) fi (& = DKy + D). (A12)
We then multiply Eq. (A12) by the spectral function followed by an integration over the frequency. In the end, we obtain a
coupled system of Boltzmann equations for electrons (A = +) and holes (A = —).

APPENDIX B: HYDRODYNAMIC VARIABLES

The underlying assumption for the electron hydrodynamics is that inelastic electron-electron collisions occur much faster
than momentum-relaxing scatterings of electrons against impurities and/or phonons. As a result, electrons establish the local
equilibrium and the corresponding distribution function can be written as

. 1
fH(P) = o (AW - up) s (B1)
We insert this distribution function into the charge density defined in Eq. (97):
- dp . .
n(-xat):N _2[f+(-xvt1p)_(1_ff(-x’tvp))]
(2m)
. N/ dp [ 1 1 ]
(2m)? _exp("”’*}“'w)+1 exp(—”Fp+“+”p)+1
dp 1 1 } oW
= u
2m)? Lexp (U”}_") +1 exp (”F’H'“) +1
d ! ! ] + 0w
u
Tox ] PP Lexp (Z27£) + 1 exp("”’J’”“) +1
NT?
= 5 (~Liz(=¢"/") + Lip(—e/")). (B2)
2 g
To arrive at the third line, we expand the distribution functions to linear order in u:
1 1 ex VEP— KL =2
~ p(Hrt) Ep 0. (B3)

exp (—U”’_’T‘_f"ﬁ) +1  exp () +1 [ex
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After performing the angular integral, the terms linear in # vanish. The remaining integrals can be written in terms of the
polylogarithmic function by means of

oo xnfl
J S —— 1 (—eM
/0 dxex_u_‘rl = —T'(n)Li,(—e"). (B4)

Next, let us evaluate the charge current density defined in Eq. (99):
- ap . L. S
Jj&, 1) =N Gn P vrplf+ (X, 1, p) + (1 — f-(X, 1, P))]

/ a5 |: ! exp(va u) i p N 1 3 exp(vpp-s-u) Ziﬁi|
o) Fp exp (Z22) £ 1 [exp(va+”)+1]2 T exp (L) + 1 [exp(va+“)+1]2 rl

The terms of zeroth order in i vanish after the angular integration. We observe that the charge current is parallel to the
hydrodynamic velocity i. Its component is given by

VED—4 -2 vrpti = o
](xt)_](xt) uu—N/ > Fﬁ~ﬁﬁ[ exp( ) 2u |2 exp( ) 2u p]
Q2m) [exp(””’ u) + 1] T [exp(vaJru) + 1] T
= Nogu /pzdpde 00529[ eXp(UFP M) — eXp(vFHM) ]ﬁ
47T [exp(””’ u) + 1]2 [exp(va+”) + 1]2

Nugii 5 exp (“£-4) exp (L)
- A7 T /pdp VF 2 vE pt+ 2

d [exp (52) +1]7 [exp (#5*) +1]
NTzﬁ/xzd |: exp(x — u/T) exp(x + u/T) ]

4mvp lexp(x — u/T) + 112 [exp(x + p/T) + 112

NTZQ./ ,, d |: 1 1 i|
= — x“dx— —
47'[1)1% dx|exp(x —u/T)+1 expx+pu/T)+1

NT?i 1 1
=—— [ xdx — —
2 g exp(x —u/T)+1  expx+u/T)+1
NT?ii
= L [~Lip(—e"") 4 Lip(—e /)]
2w

= n(x, t)i. (B5)

The other quantities can be calculated in a similar way. We find that to linear order in ii the energy density is given by
3

né(% 1) = 5 ['(3)[Liz(—e"/T) 4 Liz(—e #/T)). (B6)
F
The momentum flux defines the pressure by means of
- X . . n(x, t)
MF, 1) = =~ T@)Lis(=e"") + Lis (e "NI8y; = =518 = PE, 8. (B7)
F
The momentum density and the energy current read as
ﬁ NT3* 1)+ P(X,t
WG, 1) = — L) Lis(—et/T + Lig(—e /Ty = LD PE D (B8)
471 vF
% o NTX_' . w/T . —u/T 2 Dz
J @& 1) = I I'4)[Liz(—e"’" ) + Liz(—e )N =vpnf (%, 1). B9
F

APPENDIX C: PROPERTIES OF REAL BOSON GREEN FUNCTIONS

According to Eq. (35), the Keldysh component of the boson Green function is in the first row and the first column. By making
use of the reality of the fields, one concludes from the definition that

DX, 3%, t,1) = /Dd:d)l()'c'l,t1)¢](5c’2,t2)exp(iS[¢])=fD¢¢1(5c'2,t2)¢1()?],t1)exp(iS[¢])
:DK(fz,fl,lz,ll). (C1)
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Consider their Wigner transformation

S dp dow i —X)—iw(t;—
DK(Xl, X2, 1, lz) — (275))2 > DK( t p’ w)e ip- (%1 —X2)—iw(t tz), (Cz)
DK(_, Rl hy) = dp deK( t ) —ip-(X1 =X )+iw(ti —12) (C3)
x25x]7 25t - (27[)22 p’we E)
which implies that
DX, t, p,w) = DX, 1, —p, —w). (C4)

We find that, in the long-wavelength limit, the plasmon retarded Green function reads as
DR@G. v) rav? 1 Tav ( 1 N 1 ) ©5)
’ V)= . - = . - . - M
i g (+i8)? —wi(g) 2g \v+i8+wp(q) v+id—w,(q)

As aresult, the imaginary part is given by

2

DA, ) = =5 =G0 + @) + 50 = 0p(@)) (C6)
which is an odd function of the frequency and momentum variables
ImDR(—g, —v) = —ImDR(G, v). (C7)
It follows that
B(—g, —v) = —B(q, v). (C8)

APPENDIX D: DERIVATION OF THE POLARIZATION FUNCTION IN THE LONG-WAVELENGTH LIMIT

In this Appendix, we derive the polarization function in the long-wavelength limit presented in the main text. Our starting
point is the Lindhard formula in Eq. (159). Let us first calculate the real part of the polarization. The main contribution is from
the intraband transition, when A = A’. It reads as

RelT# (5, ) ~ NZf(dq —p- qu/\(CI)|: +ﬁ'qu(67)}

2
= 2m) w w
= % [ 3@ e @ - (1 - @) FaPe-@n
N p qdqdb . . _.sin?6
= L@+ (= @)
(2m)
sz _ _
= oo [ dalf+@ + (0 = f(@)]
Tw
N
T an P TILis(-e) 4 Lis(—e )
N
= p +e M)
drw
N 2
= P 7{n@ + 2 cosh u/T)). (D1)
47 ?
In contrast, the interband contribution, when A = —A’, gives a logarithmic correction which will be neglected in evaluating
the plasmon energy dispersion. For the case of nonzero dopings, at zero temperature, this interband contribution reads as

Np? w—2u
16w 10g(| w+21 l)
Next, we consider the imaginary part of the polarization function. The main contribution to the imaginary part is from the

interband transition, when A = —2’. This gives

1
ImM (5, @) ~ ~N7 Y / o 4(p V0 L@ — f-1(@13(0 + (@) — €_.(@),
r==1

/ o )2 <= cos’ O+ — [-( @)@ + €)= (D)@ — [+(@)N3(@ + €-(§) — €4(@))]
(D2)
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N d
=~1¢? / f[(ﬂ(@) — [-(@)8(@ +2q) + (f-(§) — f+(@)3(w — 2q)]

N dq . _
= ~1¢? f 7(f+(q) — [ (@)@ +2q) — §(w — 2q))

N d 1
=7 f(ﬁ@ — F-@)3(O(-w)8(g +0/2) — O@)3(g — ©/2))
N , [dq . o1
=167 | 7§ U@~ S @3O-0a + /)~ 0@)ilg — w/2) (D3)
N q 1 1
- ]6 w ( \w\/Z I + 1 e Iw\/2 " + 1) (D4)

In the limit of zero temperature, this becomes

R N ¢*
ImIT%(G, ») ~ _EZG)('CU' = 2|ul), (D5)

which was found previously in [29]. It vanishes when |w| < 2|u|, consequently, the long-lived plasmon mode exists in this
region. By substituting the real part in Eq. (D1) and the imaginary part in Eq. (D4) into Eq. (165), we find the decay of plasmon.

It reads as
R mw,(§)° 1 1
__ i _ . D6
7D = g @ + 2 cosh ) T) <e<;/2 L1 IR (O)

APPENDIX E: DERIVATION OF EQ. (180)

The GW diagram in Fig. 10(a) is interpreted into the expression in Eq. (157). From that, we obtain the retarded and Keldysh
components

SR ¥, 1,0) = i[DXR X1, 0)GhE ¥ 1, 0) + DRE X 1, 1)GE (R, ¥ 1,1)] (E1)
and
SXGF 01) = i[DX@F, 0, )G @, 1.1) + (DR R, 1,0) - DME R 1, 0)(GEE. T 1, 1) — Gy, T 1.1)]. (B2)

In writing the Keldysh component of the self-energy above, we use again the fact that a product of retarded and advanced Green
functions vanishes. We proceed with a Wigner transformation followed by transforming the self-energy into the quasiparticle
basis. Within such a basis, the off-diagonal elements are irrelevant. This gives

_ ~ [ _dd_dv . L
oh 50 = U G oW lis =1 [ L5 Fo 5= 0 PIDF @) 5= 8.0 = )+ DG (5= G = )
s (B, ) = U X (B, U155
. dg dv 2
= —4i 2n 2 2 ~=Fu (P — G, PImDR (G, WImgl . (P — §, @ — v)[(1 +2b(F, v))(1 = 2fu(F — §, @ — v)) + 1],
(E3)
where the retarded component of the plasmon Green function DF is determined by an inverse of Eq. (177):
2
1
DR(@G.v) =" (E4)

g 0+ —2@)’
The Keldysh component is calculated by the Wigner transform of Eq. (43):
DX(G,v) = 2iImD*(g, v)[1 + 2b(§)]. (E5)

By substituting the self-energy into the right-hand side of the Keldysh equation, we obtain the collision terms in Eq. (180).

Next, we consider the right-hand side of the equation on which there are two renormalization effects arising from the real part
of the self-energy: (i) Fermi velocity renormalization given by Avpp + d3Reaf (X, 1) and (ii) internal forces among electrons
themselves and from plasmons given by —d;Reo s (%, 1). We will evaluate the self-energy here using the same approximation as
we use for plasmon. To this end, let us consider

off (P 0) = WU =R (B, U] 1

dg dv

=i (2n)? 27 = Fu(P— G, PID*(G. v)g§ (P — G, @ — v) + DG, v)gh 1, (P — G, 0 — v)]. (E6)
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The real part of the self-energy is written as a sum of two terms

Reaf (5, @) = o V(p, w) + 0P (p, »), (E7)
where below we evaluate it on shell at w = €, (p):
dg dv 1
)= - _ _
VPPN = | G e TP p)[ (50 + wp(@) + 5(v — 0,(@)B(G. v) Va7
dg rawy(q) - 1
= F P~ —B@. - -~ - ——
/(2 R (P—G,P) ] wp(c]))q(prp(q)_q/(p_q)
dq L L L Tawp(§) N 1
+ Fw(P— ¢, p)—=—B(q, - - p—
/ P I L PR e Lo ey
Taw,(q) . . 1
Fu(P+ 4, —pB -q,— = = —
/(2 R (P+ G, P) (—q wp(q))GA(P)+wp(CI)_Ek’(p+4)
dq o o oo mep(f?) - N 1
+ | —5FwP—4, p)——=—B(, - = p—
/ P I L v B Loy pp
dg roaw,(q) . 1
= ——Fuw(P+§, p)———B(@, — —
@ny WPt P B e ) e S e 1 D
Taw,(q) . . 1
——F \ ” — 7B, . ES
/ e A L e e D w7 pp 8
Now, we expand the denominators in both terms and find that
L dg mwawy(q), . .. 1 [ aP)—ea@+4q9) —e(p) +e(p— 57)}
M5, ~ — B, — |1 - = -1+ =
PN [ g @@ )wp( ) wop@) wop@)
~ [ 49 _mew,(@) a2 (B
[ o S T B ) 2( S5 e )
L B(G. 0p(§)) sin* 6, (E9)

@r) o p( 7)

where 6 is an angle between p and 4. This is the result correct up to the lowest order in g/, (g) where g and w,(§) are plasmon

momentum and energy:

o@)(*e(*))—/ 949 &y G-ap"(—L [278(6.(F) — v — (B — D)1 — 2£:(p — §)]
P &\p)) = Qn )22 Fuw(P—q, p 20 \v+0,@ V=) p vP—q vAP = 4q))]
(E10)
The second term is of next order in ¢/w,(g), and we therefore neglect it:
L dg ma g - 9€,(P) G - 9p€.(P) G - 95€,(P) Lo
oD (P, 6.(p) ~ ——= (1_+_ —”—)(1—2 (P — )
Pl Q7)Y 2q @@ (@) 0@ pp-a
dg na(@aﬁex(ﬁ))z L
— - (1 =2/(5—9)). (E11)
Q) q p(q) A
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