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Ab initio study on fcc Pr with correlation matrix renormalization theory
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We studied fcc praseodymium (Pr) with the ab initio correlation matrix renormalization theory (CMRT)
explicitly calculating the Coulomb interactions among basis orbitals and without using any adjustable parameters
to work for strongly correlated electron systems. We calculated its total energy in a paramagnetic ground state
and studied the role of the correlated 4 f electrons in the system. Good agreement was obtained between
CMRT and experiments in the pressure volume dependence of the fcc phase. We also compared the CMRT
results against other theoretical methods including local density approximation+dynamical mean-field theory
and showed consistent results among them. Moreover, we found the normalized local charge fluctuation of the
4 f electrons as the function of volume exhibits a clear slope change at the volume collapse region, indicating a
switch in their correlation nature there.
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I. INTRODUCTION

Electron correlation plays a critical role in governing many
important properties of materials (i.e., superconductivity,
magnetism, quantum coherences, etc.) for clean energy ap-
plications and advanced technologies. However, accurate and
efficient calculations and predictions of materials stability and
properties with the presence of strong electron correlations
have been a long-standing challenge. First-principles density-
functional theory (DFT) based on the Kohn-Sham approach
[1,2] has achieved significant success for weakly correlated
materials, but it is not adequate for systems with strong corre-
lation, especially for rare-earth materials containing partially
filled 4 f electron shells [3]. To go beyond DFT, many compu-
tational methods have been explored. While ab initio methods
such as quantum Monte Carlo (QMC) [4,5]or wave function-
based quantum chemistry methods and their improvements
with density-matrix renormalization group (DMRG) [6,7] or
quantum embedding [8,9] techniques can be accurate, the
computational workload in some of these methods remains
very heavy, and the application to real 4 f rare-earth (RE)
materials is limited. Hybrid approaches merging DFT with
many-body techniques for improved treatment on local cor-
relations have also been developed, including DFT+Hubbard
U (DFT+U ) [10,11], DFT+dynamical mean-field theory
(DFT+DMFT) [12], and DFT+Gutzwiller approximation
(DFT+G) [13–15]. These methods are faced with limitations
of exploiting empirical screened Hubbard U and exchange
J parameters [16] and multiple choices of double-counting
corrections [17,18], both of which weaken their predictive
powers. Therefore, robust ab initio theories and computa-
tional methods with accurate and efficient predictive power
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for real correlated materials are still lacking and highly
desired.

Recently, we have been tackling this grand challenge prob-
lem through the development of a fully ab initio correlation
matrix renormalization theory (CMRT) [19–21] with a com-
putational workload similar to minimum basis Hartree-Fock
(HF) calculations. We have shown reasonable performance of
CMRT in both weakly and strongly correlated electron sys-
tems [21,22]. We now apply CMRT to fcc praseodymium (Pr)
to demonstrate its performance against experiments and other
computational methods. As a rare-earth element, Pr is be-
lieved to have its physical properties affected by the strongly
correlated 4 f electrons [3]. Pr has a divalent electronic con-
figuration, [Xe]4 f 36s2, as a free atom and becomes trivalent,
[Xe]4 f 25d16s2, in a lattice environment. The change results
from a competition between energy cost to excite one 4 f elec-
tron to the 5d state and cohesive energy gain of this electron
to participate in bonding and forming lattice [23]. Pr exhibits
polymorphism under temperature and pressure [24]. At am-
bient temperature, Pr undergoes a series of phase transitions
with pressure: Pr-I(dhcp) at ambient pressure → Pr-II(fcc)
→ Pr-III[distorted fcc(dfcc)] → Pr-IV(α-U ) as the pressure
increases, accompanied with a sizable volume collapse (about
10%) between Pr-III and Pr-IV which is interpreted to be
due to 4 f electron delocalization [25]. The density of states
(DOS) of dhcp Pr was measured with high-energy spec-
troscopies such as x-ray photoelectron spectroscopy (XPS)
and bremsstrahlung isochromat spectroscopy (BIS) where the
lower and upper Hubbard peaks are easily seen [26,27].

Structural properties of Pr have been studied for a long time
using a large variety of electronic structure methods. DFT
with local density approximation (LDA) was applied to fcc
Pr and produced a tentative band structure, Fermi surface, and
magnetic susceptibility [28] as well as too small equilibrium
volumes [29] while DFT with the generalized gradient ap-
proximation (GGA) only mildly improves on LDA. A major
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concern of DFT towards Pr is the excessive DOS, presumably
of 4 f character, at the Fermi level as compared with exper-
imental data inferred from specific-heat measurement [30].
Consequently, any additional treatment which helps remov-
ing 4 f states from the Fermi level would be a reasonable
approach towards improving agreement between theory and
experiment. One way to do so is to add spin polarization plus
spin-orbit coupling (SOC) to GGA and much better cohesive
properties were rendered, including both equilibrium volume
and bulk modulus, towards fcc Pr [31]. Another way is to
introduce additional components to DFT targeting the local-
ized 4 f electrons. The so-called “standard model” towards
RE elements (fcore-DFT) goes one step further beyond DFT
by including 4 f electrons into core electrons thus excluding
them from hybridization with valence electrons nor the for-
mation of chemical bonds [29,32]. Such a simple treatment
greatly improves the predictions of DFT in physical quantities
ranging from cohesive to PES and BIS excited-state properties
albeit outlying performance on light lanthanide including Pr,
confirming the localized nature of 4 f electrons at the equilib-
rium lattice structures of RE [29,32,33]. However, including
4 f electrons into core electrons is ad hoc and does not always
have better results. For example, the volume collapse tran-
sition of Pr captured by the spin-polarized GGA calculation
is missed in the standard model of RE elements [29]. Other
localization-treating enhancements of DFT include adding
orbital polarization (DFT-OP) or self-interaction correction
(SIC-DFT) terms to DFT [34–36]. They were able to produce
the needed localization of 4 f electrons and the accompany-
ing local moments by the localization enforcement within
their formalism [34,37], successfully reduce number of 4 f
electrons at the Fermi level [37], and produce comparable
cohesive properties as the standard model of REs. Meanwhile,
both DFT-OP and SIC-DFT produced the expected volume-
collapse transition [36]. It is worth mentioning a hybrid DFT
calculation, HSE06, on fcc Pr treated all electrons as being
band-like but rendered very good cohesive properties regard-
less of spin polarization [38].

While the localization-enforced DFT methods and the
standard model for RE mentioned above could successfully
produce some properties of the rare-earth material, these
methods pre-assume or produce a rather abrupt delocaliza-
tion of the 4 f electrons likely originated from their static
mean-field nature [39]. While there are ways to get excitation
energies of the XPSand BIS processes, these methods fail
to produce the details of the XPS and BIS spectra due to
lack of accurate description of strong correlation effect of
4 f electrons. Also, the mean-field nature of these methods

causes difficulty in reproducing measured multiplet features
and magnetic properties expected from a Russel-Saunders
ground state [40]. All these concerns can in principle be
properly addressed by carefully treating the local correla-
tion effects, as done in DFT embedding theories including
LDA+DMFT and LDA+G methods. They explicitly incor-
porate a local many-body Hamiltonian in the correlated 4 f
subspace to help capture these effects and were both applied
to the Pr phases. Scattered in several separate research works
with different technical choices of impurity solver and double-
counting term, LDA+DMFT is capable of giving a plethora of
physical quantities ranging from cohesive properties to local
spin and charge properties and to spectral functions at finite
temperature [39–41]. Good agreement was achieved between
theory and experiment [40], giving solid evidence on the
overall validity of this method towards Pr as well as other RE
materials. LDA+G, on the other hand, was able to compute
volume dependence of the total energy of both fcc and α-U
phases and correctly captured the volume collapse transition
between the two phases [15]. However, the model-related
U, J parameters and choices of double-counting terms [40]
limit their predictive power.

The above-mentioned methods suffer from artificial lo-
calization enforcement in the modified DFT methods or the
standard model of REs, ad hoc mixing parameters in the hy-
brid DFT, adjustable energy parameters, and double-counting
issues in LDA+DMFT and LDA+G, not to mention the
self-interaction issue in DFT itself. None of these exist in
the CMRT method, being a fully ab initio method working
directly with real Coulomb interactions [20,21,42]. Further-
more, CMRT intrinsically includes local spin and charge
fluctuation effects in its formalism and preserves local mo-
ment physics. It is capable of describing similar physics as
LDA+DMFT as far as their theoretical descriptions are con-
cerned. In this work, we will perform the CMRT calculation
on fcc Pr in a paramagnetic ground state and compare it with
LDA+DMFT as well as other methods. We will discuss pro-
ducing the experimental pressure volume curve, calculating
the local 4 f occupational probability and its local charge-
fluctuation effect.

II. METHODS

CMRT is a fully ab initio variational theory specifically
designed for strongly correlated electron systems by taking a
multiband Gutzwiller wave function as its trial wave function
[21]. For a periodic bulk system with one atom per unit cell in
a paramagnetic state, the CMRT ground-state total energy is

Etotal =
∑

i j
αβ,σ

tiα, jβ〈c†
iασ c jβσ 〉 + 1

2

∑
i jkl

αβγ δ,σσ ′

(
U αβγ δ

i jkl − λ
αβγ δ

i jkl

)
(〈c†

iασ ckγ σ 〉〈c†
jβσ ′clδσ ′ 〉 − δσσ ′ 〈c†

iασ clδσ ′ 〉〈c†
jβσ ′ckγ σ 〉)

+
∑

i

∑
�

Ei� (pi� − pi�0 ), (1)

with i, j, k, l for site indices, α, β, γ , δ for orbital indices,
σ, σ ′ for spin indices, and � labeling the Fock states in

the occupation-number representation of local correlated or-
bitals (e.g., 4 f orbitals in rare-earth systems). The energy
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parameters, tiα, jβ , U αβγ δ

i jkl , and Ei� represent bare hopping, bare
Coulomb integrals, and eigenvalues of a bare local correlated
Hamiltonian, respectively. Specifically, the local Coulomb in-
tegral is defined with the orbital basis set {φiα (r)} as

U αβγ δ

iiii =
∫

φ∗
iα (r)φ∗

iβ (r′)
1

|r − r′|φiγ (r)φiδ (r′)drdr′ (2)

by taking the atomic units (a.u.) while the nonlocal tiα, jβ and
U αβγ δ

i jkl are implicitly evaluated during code implementation.

Note the orbital index convention, U αβαβ
iiii is the energy co-

efficient of the two-body direct Coulomb interaction term of
n̂iασ n̂iβσ ′ in the second quantization.

The first two terms in Eq. (1) give the expectation value of
the bare lattice Hamiltonian under the CMRT approximation,
where the one-particle density matrix is evaluated as

〈c†
iασ ciβσ 〉 = f (zασ ) f (zβσ )〈c†

iασ ciβσ 〉0

+ [1 − δαβ f 2(zασ )]n0
iασ . (3)

Here, zασ is the Gutzwiller renormalization factor while 〈. . .〉0

is the one-particle noninteracting density matrix. f (zασ ) is
introduced to ensure that CMRT reaches the solution of an
exactly solvable model [20] at a certain limit. The third term
in Eq. (1) serves the sole purpose of preserving dominant local
physics in CMRT by rigorously evaluating the local correlated
Hamiltonian in terms of pi� and pi�0 as true correlation-
renormalized and noninteracting Fock state probabilities. In
particular, this term helps preserve local spin and charge fluc-
tuation effects and renders the local moment as needed. The
sum-rule correction coefficients associated with the correlated
orbitals, λ

αβγ δ

i jkl = λα
i δikδ jl (1 − δi j )δαγ δβδ , are uniquely intro-

duced in CMRT to define a set of null sum rule Hamiltonians
constructed on charge conservation and included in the bare
lattice Hamiltonian. They are defined for a paramagnetic state
in this work as [21]

λα
i = −

∑
j �=i

∑
β

U αβαβ
i ji j

(
|〈c†

iα,σ c jβ,σ 〉|4∑
j �=i

∑
β |〈c†

iα,σ c jβ,σ 〉|4

)
. (4)

These sum-rule Hamiltonians help minimize error from the
Fock terms in Eq. (1), a major error source of CMRT, and
redistribute nonlocal Coulomb interactions to local sites to
further improve accuracy. The variational process results in
a Gutzwiller equation set whose solution is shown to be
quantitatively comparable to experiments in weakly correlated
lattice systems [21] and capable of capturing the correlated
nature of 4 f electrons in fcc Ce [22].

CMRT inherited from the Gutzwiller approximation (GA)
[43,44] the central physical idea that the bare and correlated
electronic motions are simply related through a renormal-
ization prefactor. They differ in the following aspects. First,
the renormalization prefactor towards each orbit is redressed
with an extra function in CMRT to better capture correlation
effects on total energy. Second, expectation values of generic
two-body operators are disintegrated into one-body terms by
adopting the Wick theorem, which better helps CMRT for-
mulation as well as its speed. Third, a sum-rule correction
term is included into CMRT to help reduce error coming from
intersite direct Coulomb interactions, which are left untreated
in GA. Last, CMRT is anchored against the exactly solvable

model of a minimum basis hydrogen dimer to fix the theory
for practical considerations. For more details please refer to
Ref. [21].

To probe the local correlation physics and possible changes
in the 4 f electron’s localization status, we have introduced
the normalized local charge fluctuation (NLCF) for target
electrons [22], defined as

NLCF = 〈(n̂ − n)2〉
n2

= 〈n̂2〉
n2

− 1, (5)

with n̂ being the number operator of the electrons of interest
and n its expectation value. A simple derivation shows that
it mainly varies as 1/n in the weak-interacting limit. With a
decreasing charge occupation with lattice constant, it should
show a bell shape which increases when the lattice constant is
small and decays as the lattice constant further increases when
electronic correlation gets stronger and local charge fluctu-
ation gets increasingly suppressed. Both theoretical analysis
and close connection with Ce’s alpha and gamma phases
[22] show the U-turn at the bell top necessarily indicates a
delocalization-to-localization transition or crossover.

Interfaced with the Hartree-Fock (HF) module of the Vi-
enna Ab initio Simulation Package (VASP) [45], CMRT is
efficiently implemented with the quasi-atomic minimal basis
set orbitals (QUAMBO) basis set [46] and has a computa-
tional speed of a minimal basis HF calculation [21,22], a great
speed gain over quantum Monte Carlo methods. The calcula-
tions in this paper use a paramagnetic trial wave function to
facilitate comparison with LDA+DMFT [39,41] and to check
possible magnetic instability towards a magnetic state due to
the Stoner mechanism. Brillouin-zone sampling is done by
VASP with an automatically generated K-point grid taking a
Rk length of 50 (Rk = 50). The total energy and local physical
quantities agree very well with results from a smaller K-point
grid of Rk = 30.

III. RESULTS

A. E-V and P-V curve comparisons among different
methods and against experiments

Energy verses volume (E -V ) curves in a paramagnetic
ground state are collected and compared in Fig. 1, including
LDA [15], GGA, LDA+DMFT [39], and CMRT for fcc Pr.
Included also is a SIC-LSDA [36] energy curve typically
chosen among the methods utilizing a spin-polarized ground
state loaded with local moments. LDA and GGA are stan-
dard DFT calculations with all electrons treated as band-like.
The figure also shows an inferred experimental E -V curve at
T = 632 K [39], the same temperature at which LDA+DMFT
was performed. The equilibrium volume and bulk modulus
from each method are derived from the Birch-Murnaghan
equation of state (BM-EOS) [47] fit on the energy volume
data and are collected in Table I along with experiments.
Taking the experimental equilibrium volume and bulk mod-
ulus as a reference, we can see a progressively improved
performance in total energy from LDA to GGA to SIC-LSDA
and then to LDA+DMFT as electronic correlation and local
magnetic moment is more and more carefully treated. CMRT,
on the other hand, makes correction on top of a Hartree-Fock
Hamiltonian by incorporating nonlocal correlation effects

205124-3



LIU, YAO, ZHANG, ANTROPOV, HO, AND WANG PHYSICAL REVIEW B 106, 205124 (2022)

FIG. 1. E -V curves calculated with LDA [15], GGA, LDA +
DMFT (Uf volume dependent, T = 632 K, with SOI) [39] and
CMRT methods for fcc Pr in a paramagnetic ground state. SIC-LSDA
[36] is included as a typical instance with a spin-polarized ground
state. An experimental E -V curve at T = 632 K [39] is included
and shown by the black dashed line. LDA, GGA, and SIC-LSDA
are shown with dash-dotted lines. CMRT and LDA+DMFT are
presented with dots while the lines are BM-EOS fit with respects
to the dots. The reference experimental equilibrium volume per atom
is taken from the thermodynamically stable dhcp phase of Pr [15].
All the energy curves are shifted to bring their lowest energies
at 0 eV.

through dressed intersite hoppings plus accurate local onsite
correlation treatment, which automatically includes also the
local spin and charge fluctuation effects. As can be seen,
CMRT gives comparable equilibrium volume and bulk mod-
ulus as LDA+DMFT. While having different physical and
computational philosophy considerations behind, CMRT and
LDA+DMFT agree very well on the change of energy as
a function of volume, which might validate use of the spe-
cific values of the volume-dependent effective Uf in the
Refs. [3,39]. Taking the inferred experimental energy curve
as reference, we cannot tell which method performs the best
among SIC-LSDA, CMRT, and LDA+DMFT.

The pressure verses volume (P-V ) curves should pose as
a more stringent validity check on the total-energy calcula-
tion as pressure is the first-order derivative of energy with
respect to volume and meanwhile pressure is directly ac-
cessible from experiments. The fitted P-V curves on fcc Pr
from the above-mentioned methods are presented in Fig. 2

TABLE I. Calculated equilibrium volume Veq and bulk modulus
B0 of fcc Pr in comparison with experimental measurements as well
as other methods. Relevant data are derived or cited from LDA [15],
Expt [15], SIC-LSDA [36], and LDA+DMFT [39] (abbreviated as
DMFT).

Expt(dhcp) LDA GGA SIC-LSDA DMFT CMRT

Veq (Å3) 34.54 21.01 24.03 31.84 34.64 35.13
B0 (GPa) 26–37 59.47 38.70 29.08 31.32 23.71

FIG. 2. The P-V curves fit from CMRT, LDA [15], GGA, SIC-
LSDA [36], and LDA+DMFT (Uf volume dependent, T = 632 K,
with SOI) [39] data on fcc Pr are compared against experiments
[3,48]. LDA, GGA, and SIC-LSDA are shown by dash-dotted lines
but in different colors while CMRT and LDA+DMFT are shown by
blue and brown solid lines. One set of experimental measurements
are shown as dfcc with blue squares, fcc with red diamonds, dhcp
with black circles, α-U with brown plus signs [3]. The other set
of experimental measurements are shown with gray crosses without
phase identification [48]. Included also is the volume dependence
of NLCF out of CMRT, shown with green stars linked with line
segments. The two vertical gray dashed lines delineate the range of
the experimental volume collapse transition. The horizontal dashed
line represents zero pressure.

and compared directly against experimental measurements on
a set of Pr crystal phases. The agreement between CMRT
and LDA+DMFT [39] and between CMRT and experiments
[3,48] nearby the fcc and dfcc phases are exceptionally good.
On the other hand, the pressure behavior out of SIC-LSDA
shows marked deviation from the fcc and dfcc phases, al-
though it is already quite good for a qualitative description.
The volume-collapse transition between the dfcc and α-U
phases is not explicitly investigated in this study because
further CMRT development is still needed to better handle the
calculation for the latter phase. But surprisingly, NLCF of 4 f
electrons evaluated within the fcc phase signals a sharp turn
right within the narrow volume range bracketing the volume-
collapse transition across the two different phases. This sharp
turn in NLCF calculated with local 4 f electrons in fcc Pr re-
flects qualitative change in the nature of electronic correlation
of the local 4 f electron and its localization status across some
threshold volume. Without looking into α-U phase in this
study, we are still able to glean some physical origin of the
volume-collapse phase transition. This seemingly controver-
sial fact might actually reflect the local nature of the correlated
4 f electrons and their minor role played in participating in the
directional bonding forming a specific lattice, thus rendering
NLCF a physical quantity insensitive to environment. The
consistency between NLCF and the volume collapse transition
is also seen in Ce [22]. The possible connection between the
correlated 4 f electrons and the localization physics reflected
in NLCF will be elaborated in a future publication.
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B. Onsite f occupational probability comparisons among
different methods and against experiments

Local correlated Fock state occupational probability p�

is the next set of physical quantities directly accessible in
CMRT through defining the exact local onsite energy of the
correlated 4 f electrons in terms of p� . By grouping the Fock
states in the 4 f subspace into disjoint subsets f n, with n
being the number of electrons filling a Fock state, the onsite
f occupational probability Wf equals the sum of p� over
all Fock states in a given subset. Experimentally, however,
Wf is only indirectly obtained through, say, x-ray absorp-
tion experiments [49]. Wf is meaningful in that it provides a
unique way to look into a theoretical description of correlation
effects at the multi-electron wave function level. Its value
cannot be correctly produced in static mean-field methods
like DFT without exploiting special tricks setting electronic
occupation [50] but comes out readily with CMRT. Given
a set of slowly varying orbital occupation of quasiparticles,
Wf in the noninteracting limit can be shown to be nearly
featureless across a certain volume range, while its interacting
counterpart can have more pronounced features as volume
or pressure varies [15]. These pronounced features are also
observed in CMRT, as shown in Fig. 3. Figure 3(a) gives
a comparison of Wf 3/Wf 2 , the dominant two components of
Wf of fcc Pr, among CMRT, LDA+DMFT, and experiments
and attests to the qualitative agreement among these different
approaches. Figure 3(b) presents the pressure dependence of
Wf in each dominant subset of Fock states between CMRT
and LDA+DMFT [41]. Both the trends of Wf and the sig-
nature crossing between f 2 and f 3 reported in LDA+DMFT
are reasonably well reproduced in CMRT. Figure 3(c) com-
pares total 4 f electron occupation n f between CMRT and
LDA+DMFT as well as pressure dependence of renormal-
ization prefactor of local 4 f orbits, z f , obtained with CMRT.
The overall agreement on n f between the two methods are
more or less consistent with the deviation of Wf in Fig. 3(b).
The correlation strength reflected with z f is also consistent
with the expected behavior of 4 f electron correlation with
increasing volume. Considering that the two methods utilize
different choices for local orbital construction and disparate
self-consistent formulation framework to solve two seemingly
different correlated Hamiltonians yet describing roughly the
same physical problem, the nice overall agreement of the
dominant features of Wf and energy-volume curves between
CMRT and LDA+DMFT on fcc Pr should not be considered
simply as a coincidence but suggests that the essential strong
correlation physics were captured by both theories although
their formalism and frameworks are different.

IV. DISCUSSION

A quick comparison on different energy parameters might
be helpful in giving one an overview on the typical magnitudes
of different Coulomb interactions in fcc Pr. We compiled
volume dependence of bare local direct Coulomb interaction
coefficients, U αβαβ

iiii defined in Eq. (2), within the same and
between different 4 f orbits, and bare nearest (nn) and next-
nearest (nnn) neighboring U αβαβ

i ji j for i �= j in Fig. 4. These
data are averaged over 4 f orbits to simplify their display. The

FIG. 3. Panel (a) shows pressure dependence of Wf 3/Wf 2 for
CMRT, LDA+DMFT (Uf volume dependent, T = 632 K, with SOI)
[41] evaluated on fcc Pr and experimental measurements [49]. A
shift of +1 GPa is applied to the calculations in accordance with
Fig. 3 in Ref. [49]. CMRT data are shown in blue with a solid line
at low pressure and with a dotted line at high pressure separated
by the experimental fcc–α-U phase boundary. Same information
for LDA+DMFT is shown in orange. Panel (b) presents pressure
dependence of Wf n from CMRT in filled symbols and LDA+DMFT
in empty symbols. Different colors denote n = 1, 2, 3, respectively.
Panel (c) presents pressure dependence of renormalization prefactors
of 4 f orbits from CMRT, shown as a dashed line and referring to the
right vertical axis, and total 4 f electron occupation from both CMRT
and LDA+DMFT [39], shown as a line + symbol and referring to
the left vertical axis. Renormalization prefactors are averaged over
4 f orbits to make the presentation less cumbersome.

FIG. 4. Volume dependence of bare local direct Coulomb in-
teraction coefficients within and between orbits, U αβαβ

iiii , as well as
between the nearest and next-nearest neighboring sites, U αβαβ

i ji j (nn)

and U αβαβ

i ji j (nnn). These quantities are averaged across the correlated
4 f orbits to simplify display. Note the broken y axis to show details
of the curves.
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screened local Hubbard interaction, Uf of 4 f orbits for fcc
Pr, is around 7 eV with a weak volume dependence [3]. The
much smaller magnitude of Uf as compared against U αβαβ

iiii
is interpreted to be due to electronic screening effects from
itinerant electrons out of 4 f orbits [16]. Such a reduction in
electronic correlation is utilized to help formulate the DFT
embedding theories to work toward strongly correlated sys-
tems. The bare intersite U αβαβ

i ji j follows the inverse distance
Coulomb decaying behavior and its nearest neighboring value
has a magnitude comparable to Uf . Since these terms are left
untreated in GA due to the infinite dimension limit and can
bring up considerable error in total-energy evaluation, they
have to be corrected for a practically useful theory. Our way
to help with that is to introduce the sum-rule coefficient λα

i ,
which is actually a weighted nonlocal bare direct Coulomb
interaction slightly smaller than U αβαβ

i ji j (nnn) in fcc Pr due to
fast decay of hopping in its definition. Another feature one
might observe from the figure is that these energy parameters
are quite flat throughout the volume range, reflecting the local
nature of the 4 f orbits and their weak participation in bonding
formation of the Pr lattice. Such a feature is consistently
verified in other physical quantities studied here, like NLCF.

The existing theoretical exploration on Pr reveals equivocal
views on the relevant physical mechanisms underlying the
experimental measurements, whether it has phase sensitivity,
many body effects, or a delicate competition among them. A
spin-polarized GGA calculation assuming 4 f band electrons
[31] performed better in total-energy calculations than a very
similar calculation using the standard model of RE treating 4 f
electrons as core electrons [29]. This seems to indicate many
body effects leading to localization play a minor role on Pr.
Meanwhile, LDA+DMFT [39–41] in a paramagnetic ground
state were able to produce a broad range of physical quanti-
ties consistent with experiments. The complicated correlation
effects played out of the many-body interactions seem to say
that a spin-polarized ground state is a nonessential ingredient
for dominant physical properties of Pr, but the existence of
local moment and the local correlation physics producing it is
more relevant. Taking the fact that LDA+DMFT accounts for
many physical facts and is the best calculation so far on Pr, we
thus chose to work with a paramagnetic state in CMRT to have
a fair comparison with LDA+DMFT and consider correlation
effects on how electronic behavior might be affected with
volume change. Figure 3 strongly suggests CMRT also comes
with local moment in its paramagnetic ground state, just like
LDA+DMFT.

While good agreement (see Figs. 1 and 2) gives us quite
some confidence in the overall validity and practicality of
CMRT, we stress that temperature and SOI effects were not
included in the current calculation. We understand that these
effects can be significant on the details of observed phenom-
ena in the rare-earth compounds, but on this stage, we hope
the energy scale of these physical effects is smaller than the
electronic correlation energy range. On the other hand, the ex-
perimental energy curve given in Fig. 1 was obtained through
postprocessing of data measured at different temperatures and
assumed to fulfill certain requirements [39,48]. Thus, compar-
isons against experiments should be carried out with caution
if the condition and accuracy of the relevant results were hard
to determine. For example, taking the experimental energy

curve as the reference in Fig. 1, SIC-LSDA, CMRT and
LDA+DMFT results should be thought of as being equally
good in their performance. Figure 2 further tells which result
among them performs better.

We might ask a further question on what determines a
feasible theory to describe Pr systems. Unlike fcc Ce and
its isostructural volume collapse transition, which is hard to
reproduce in a theory, quite a few ab initio methods have
claimed to qualitatively reproduce the volume collapse in Pr
[15,31,36,39,51]. The equilibrium volume and bulk modulus
were also quite successfully described [40]. Thus, the P-V
curve is a more stringent criterion than the E -V curve to judge
the quality of a theoretical description on Pr. SIC-LSDA and
LDA+DMFT produced the best description of P-V curves so
far. However, they dealt with different degrees of Coulomb
correlations and corrected different aspects of DFT. Thus their
successes became quite confusing in revealing the role of
electronic correlation as well as the most influential technical
concerns. CMRT avoids all the unnecessary complications:
it does not have self-interaction by its theoretical design,
copes directly with the real Coulomb interactions, gives the
expected trivalent state out of correlation, and self-adjusts
screening through Gutzwiller renormalization prefactors and
local electronic configuration occupations, not to mention it
still maintains the convenience of DFT formalism. As long
as the physics inherent in the Pr systems does not exceed
the description of the current Gutzwiller trial wave function,
CMRT might be a very suitable tool for the Pr systems. Back
towards the question of what makes a trustworthy theory for
Pr: It has to reproduce all the major physical measurements
instead of a selected few of what are usually supposed to be
significant.

CMRT is by design capable of giving as much electronic
structure information as DFT, but more work is needed at
the moment to generate an accurate quasiparticle spectrum to
check against experimental XPS and BIS spectroscopy. Some
pure theoretical inferences might still be made by compar-
ing the currently available electronic structures across similar
phases of Ce and Pr, both sharing very similar physical proper-
ties and effective Hubbard parameters [3]. Specifically, Pr has
a larger DOS at E f than Ce in the CMRT calculation, which
might indicate that Pr is closer to a magnetic instability than
Ce based on the Stoner mechanism [52]. Thus more eminent
local moment or even a spontaneous magnetic phase transition
is expected from Pr, which is consistent with experiments that
fcc Pr has a small ordered magnetic moment and a low Curie
temperature of 8.7 K while fcc Ce is paramagnetic [53,54].

V. SUMMARY

In this work, we have applied CMRT, a fully ab ini-
tio method for correlated electron materials, on fcc Pr to
study the volume dependence of total energy of a paramag-
netic ground state starting from the bare lattice Hamiltonian
without any adjustable energy parameters. We showed that
CMRT produced a pressure volume curve in decent agree-
ment with experiments and generated consistent results with
LDA+DMFT. We also presented volume dependence of nor-
malized local charge fluctuation (NLCF) of 4 f electrons [22]
and showed that its maximum aligns well with the volume
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collapse region of Pr. This is interpreted to be a signature of
a localization-delocalization transition around the dfcc to the
α-U phase transition in Pr. In comparison with LDA+DMFT,
CMRT is option-free from choices of effective U and J
parameters and double-counting terms. It would thus be an
appropriate tool for a strongly correlated electron calculation
if DFT embedding methods are too sensitive to those choices.
Since the computational speed of CMRT is similar to that
of minimal basis HF calculations and computationally much
faster, it is a good approach in case only limited computational
resource is available. In addition, while LDA+DMFT using
QMC as its impurity solver would have a stochastic nature and
thus limited accuracy in a total-energy calculation (currently

0.01 eV or so), CMRT is a deterministic theory and does not
have such a limitation.
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