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Flat band based multifractality in the all-band-flat diamond chain
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We study the effect of quasiperiodic Aubry-André disorder on the energy spectrum and eigenstates of a
one-dimensional all-band-flat (ABF) diamond chain. The ABF diamond chain possesses three dispersionless
flat bands with all the eigenstates compactly localized on two unit cells in the zero disorder limit. The fate of
the compact localized states in the presence of the disorder depends on the symmetry of the applied potential.
We consider two cases here: a symmetric one, where the same disorder is applied to the top and bottom
sites of a unit cell and an antisymmetric one, where the disorder applied to the top and bottom sites are of
equal magnitude but with opposite signs. Remarkably, the symmetrically perturbed lattice preserves compact
localization, although the degeneracy is lifted. When the lattice is perturbed antisymmetrically, not only is the
degeneracy is lifted but compact localization is also destroyed. Fascinatingly, all eigenstates exhibit a multifractal
nature below a critical strength of the applied potential. A central band of eigenstates continue to display an
extended yet nonergodic behavior for arbitrarily large strengths of the potential. All other eigenstates exhibit the
familiar Anderson localization above the critical potential strength. We show how the antisymmetric disordered
model can be mapped to a π/4 rotated square lattice with the nearest and selective next-nearest-neighbor
hopping and a staggered magnetic field—such models have been shown to exhibit multifractality. Surprisingly,
the antisymmetric disorder (with an even number of unit cells) preserves chiral symmetry—we show this by
explicitly writing down the chiral operator.
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I. INTRODUCTION

Highly degenerate dispersionless or flat band (FB) [1–5]
systems, which support compact localized eigenstates (CLS)
[6,7] have been of great interest over the last decade. The
localization properties and associated repressed transport have
been discussed in the context of engineered lattices in one,
two, and three dimensions, such as diamond [8–10], cross-
stitch [11–13], dice [14–17], honeycomb [18,19], kagome
[20–22], and pyrochlore lattices [23,24]. The compact lo-
calized states have been experimentally found to exist in a
range of setups such as Hubbard model systems [25,26], pho-
tonic systems [27,28], exciton-polariton condensates [20], and
Bose-Einstein condensates [29].

In the most familiar type of localization, namely, Anderson
localization [30,31], which is induced by on-site disorder,
the “spread” of a state dies down exponentially with a well-
defined notion of a characteristic localization length [32,33].
Compact localization, in contrast, is much stronger with the
span restricted strictly to a few unit cells, with zero probability
amplitude elsewhere. Paradoxically the interplay of both these
types of strong localization results in a drop in localization.
When a tiny amount of uniform disorder is turned on in a
compactly localized all-band-flat (ABF) diamond chain, the
eigenstates exhibit an extremely weak flat band based local-
ization [34]. The disorder, in fact, facilitates the hybridization
of the large-scale degenerate network of compact localized

eigenstates, and we see weak localization that is on the cusp of
delocalization. In this work, we show that when the ABF chain
is subjected instead to a quasiperiodic Aubry-André (AA)
disorder [35,36], the eigenstates are in fact extended but non-
ergodic thus exhibiting multifractality, a delicate phenomenon
that has attracted a wave of interest in recent times [37–55].
The familiar 1-D Aubry-André Harper (AAH) tight-binding
model [48,56,57], which is endowed with self-duality [35,58]
exhibits multifractality [31,59] only at the metal-insulator
transition that occurs at a critical potential strength. Here, we
report a robust flat band based multifractality (FBM) that is
seen in an extensive region of the phase diagram.

Moreover, we find that the symmetry of the applied exter-
nal potential is crucial [60–71]. A symmetric disorder, where
the same disorder is applied to the top and bottom sites of
a unit cell, causes a complete lift of degeneracy; however,
remarkably we find that the CLS remain robust [72]. Although
all the eigenstates are compactly localized over two unit cells,
these cannot be obtained by translating the coefficients by
an integer number of unit cells since the disorder breaks the
translation symmetry. In contrast, when we apply the AA po-
tential in an antisymmetric manner, where the disorder applied
to the top and bottom sites of a unit cell are of equal magnitude
but opposite sign, we find that both the degeneracy and com-
pact localization are destroyed. A tiny disorder hybridizes the
different compact localized states, resulting in flat band based
multifractality. When the strength of the disorder is higher
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than a critical value (where interband hybridization becomes
possible), we recover conventional Anderson localization for
all the eigenstates except those in a central band. Another
of our striking findings is that when the lattice is perturbed
antisymmetrically, the chiral symmetry of the Hamiltonian
is left intact despite the presence of disorder. We show this
with an explicit construction of the chiral symmetry operator
that anticommutes with the Hamiltonian independent of the
strength of the disorder.

The paper is organized as follows. In Sec. II, the ABF
diamond chain, as well as the Aubry-André potential, are
described. In Sec. III, we discuss the effects of applying
the AA potential in the symmetric configuration that leaves
the compact localization robust. In Sec. IV, we discuss the
antisymmetric application of disorder, which supports multi-
fractal states. In Sec. V, we present an analytic treatment in
support of the numerical results discussed in Sec. IV. We then
summarize our results in Sec. VI. The details of the lattice
transformations used in Sec. V and numerical analysis of a
variety of complementary quantities in support of the main
findings are presented in Appendix.

II. MODEL

We consider the ABF diamond lattice [34], where each unit
cell n consists of three sites labeled by un (up), cn (center),
and dn (down), respectively. The corresponding single-particle
states are conveniently represented in Dirac notation as |un〉,
|cn〉, and |dn〉 respectively. The Hamiltonian is given by

Ĥ = − J
N/3∑
n=1

(− |un〉 〈cn| + |dn〉 〈cn| + |cn〉 〈un+1|

+ |cn〉 〈dn+1| + H.c. )

+
N/3∑
n=1

(
ζ u

n |un〉 〈un| + ζ c
n |cn〉 〈cn| + ζ d

n |dn〉 〈dn|
)
. (1)

Since each unit cell has three sites, the total number of sites
denoted by N should be a multiple of 3. All the energy terms
are represented in hopping amplitude J units, assuming J = 1
for simplicity. For each site of the nth unit cell, we include
on-site energy using independent Aubry-André potentials

ζ α
n = λα cos(2πnb + θp), (2)

where the strength of the potential is λα and α can take the
values u, c and d . The quasiperiodicity parameter b must be
an irrational number which we set to be the golden mean
(
√

5 − 1)/2. θp is an arbitrary global phase chosen randomly
from a uniform distribution in the range [0, 2π ]. Also, peri-
odic boundary conditions have been assumed [73].

The ABF diamond chain is a particular case of the Hamil-
tonian for which the on-site energies ζn are zero. This system
possesses three flat bands at energies ±2 and 0 and no disper-
sive bands. Consequently, the system possesses only compact
localized eigenstates. Hence, the system is highly degenerate
and also a good insulator. The Hamiltonian in the zero-
disorder limit possesses chiral symmetry [74–76], which is
represented by a k-independent operator �0 = diag(1, 1,−1).
This operator is unitary since �2

0 = I and �0H†(k)�−1
0 =

(a)

(c) (d) (e)

(b)

FIG. 1. The spectrum of the ABF diamond lattice in the symmet-
ric case with (a) increasing strength of the quasiperiodic potential
λ and (b) uniform uncorrelated random disorder with increasing
strength � on the u and d sites. Schematic representations of the
diamond chain: compact localized states from the (c) lower band
(E = −2.49), (d) middle band (E = −0.025), and (e) upper band
(E = 2.51) at λ = 2 (the amplitudes are obtained numerically). The
system size is N = 126.

−H(k). Since the chiral operator �0 anticommutes with the
Hamiltonian, for each eigenvalue E with eigenvector |φE 〉 the
negative −E is also an eigenvalue with eigenvector �0 |φE 〉.

In upcoming sections, we introduce the quasiperiodic
Aubry-André potential on the ABF diamond chain, and inves-
tigate how it affects the spectrum and the compact localized
states. Broadly there are two natural ways in which the on-site
energies on the up and down sites may be correlated: a sym-
metric configuration in which ζ u

n = ζ d
n and an antisymmetric

configuration in which ζ u
n = −ζ d

n . Furthermore, we discuss
two sub-cases within the symmetric setup: one in which the
Aubry-André potential is applied on the u and d sites, and the
second one in which the Aubry-André potential is applied on
the c sites while keeping the u and d sites at zero potential.

III. SYMMETRIC APPLICATION
OF AUBRY-ANDRÉ POTENTIAL

A. AA potential on the u and d sites

First, we consider the symmetric configuration:

ζ u
n = ζ d

n and ζ c
n = 0. (3)

The introduction of the AA potential, i.e., ζ u
n = λ cos(2πnb +

θp) lifts the degeneracy of all the flat bands, as can be seen
from Fig. 1(a). The eigenstates of the Hamiltonian are found
to reside on two unit cells even in the presence of the AA
potential [see Fig. 1(c)–1(e)]. Remarkably, the compactness of
the eigenstates is preserved at higher strengths of the potential,
even after all the bands mix and the system exhibits a single-
band energy spectrum. Also, although the spectrum appears
to be symmetric with respect to E = 0, a closer look reveals
that this is not quite true. There is no requirement that every
energy E comes with its negative counterpart −E since the
disorder breaks the chiral symmetry.

Interestingly, as shown in Fig. 1(b), when the applied
potential is drawn from a uniform uncorrelated random dis-

205119-2



FLAT BAND BASED MULTIFRACTALITY IN THE … PHYSICAL REVIEW B 106, 205119 (2022)

(a)

(c) (d) (e)

(b)

FIG. 2. The spectrum of the ABF diamond lattice with (a) AA
potential with increasing quasiperiodic strength λ and (b) uniform
uncorrelated random disorder with increasing strength � on the
central c sites. Schematic representations of the diamond chain with
the AA potential only on the c sites. CLSs for the (c) lower band
(E = −2.12), (d) middle band (E = 0) (e) upper band (E = 1.89) at
λ = 5. The system size is N = 126.

tribution [−�,�], the results are similar (to those with
quasiperiodic disorder of the same strength λ). We conclude
that the presence of the compact localized states is a con-
sequence of the symmetric application of the disorder and
not the details of the applied potential. There exists a useful
transformation to a new lattice (see Appendix A 1), which in
the disorder-free limit, takes the system to a set of completely
uncoupled sites. From Fig. 8(a), we observe that the transfor-
mation results in a lattice made of three-site unit cells but with
an absence of intercell hopping, indicating the preservation of
the CLSs (see Appendix A 2).

B. AA potential on the c sites

Next, we consider the case when disorder is introduced
only on the c sites, i.e.,

ζ u
n = ζ d

n = 0 and ζ c
n �= 0. (4)

This is a special type of symmetric configuration. The energy
spectrum with increasing strength of potential has been plot-
ted for both the AA potential, i.e., ζ c

n = λ cos(2πnb + θp) [see
Fig. 2(a)] and for the uniform disorder case [see Fig. 2(b)],
i.e., ζ c

n drawn uniformly from [−�,�]. We observe that in
both the cases, the degeneracies of the eigenstates are broken
for the upper and lower bands, while the flatband at E = 0
remains robust even at higher disorder strengths. Further, the
associated eigenstates preserve compact localization in both
cases. We have numerically verified the same, as shown in
the case of AA potential with λ = 5 in Figs. 2(c)–2(e). With
the help of the transformation discussed in Appendix A 1, we
show that the lattice is made of three-site unit cells but with
an absence of intercell hopping, indicating the preservation of
the CLSs [see Fig. 8(b)]. Additionally, each unit cell has a
decoupled site which strengthens the observation of a robust
flatband even in the presence of the disorder.

IV. ANTISYMMETRIC APPLICATION
OF AUBRY-ANDRÉ POTENTIAL

As a further step, we consider the impact of the application
of the AA potential in an antisymmetric manner, defined by

ζ u
n = −ζ d

n = λ cos(2πnb + θp) and ζ c
n = 0. (5)

Here we observe that the introduction of the tinest of disor-
der results in the loss of compact localization of the energy
eigenstates. Hence we explore the localization characteristics
as a function of the disorder strength λ with the aid of sev-
eral measures: inverse participation ratio (IPR), multifractal
dimensions and level spacings.

The localization characteristics of the eigenstates can be
understood with the help of the inverse participation ratio
(IPR), which is defined as

I2 =
N
3∑

n=1

∑
α=u,c,d

|ψk (αn)|4, (6)

where the kth normalized single-particle eigenstate |ψk〉 =∑
n,α ψk (αn)|αn〉 is written in terms of the Wannier basis

|αn〉, representing the eigenstate of a single-particle localized
at the site α (α = u, c, d ) in the nth unit cell of the lat-
tice. For a completely localized eigenstate I2 = O(1) (when
the state is localized on a few sites), while for a perfectly
delocalized eigenstate I2 = O(1)/N . Figure 3(a) shows the
disorder-averaged IPR as a function of the strength of the
antisymmetric AA potential for the entire spectrum. The de-
tuned spectrum is confined within the limit −2λ � E � 2λ,
with the bandwidth showing a roughly linear relation with λ.
The introduction of the potential lifts the degeneracy of all
the bands and also modifies the localization properties of the
eigenstates. We observe that all the eigenstates for λ � 1.5 as
well as those associated with the central band for any strength
of the potential are extended while the remaining eigenstates
show localization at higher strengths of the potential.

It turns out that the central band of extended eigenstates
are well-described by a fractal mobility edge |E | < 4/λ con-
jectured in a recent preprint [77]. Figure 3(b) shows the IPR
averaged over the eigenstates separated by the fractal mobil-
ity edge λ = 4/|E | [77]. The IPR of states constituting the
inner section shows system-size dependence and is � 10−3,
which is a signature of the extended nature of the eigenstates.
However for the states comprising the outer section, IPR is
independent of the system size and is close to unity, which is
an indication of Anderson localization.

A. Multifractal analysis

We also analyze a quantity called the fractal dimension Dq

[31,78,79] which is defined as

Dq = Sq

ln(N )
, (7)

where N is the dimension of the Hilbert space and Sq are
the participation entropies obtained from the kth eigenstate
|ψk〉 = ∑

n,α ψk (αn)|αn〉 using the relation Sq = 1
1−q ln Iq,

205119-3



AAMNA AHMED et al. PHYSICAL REVIEW B 106, 205119 (2022)

(a) (b) (c)

FIG. 3. I2 and D2 in the antisymmetric case. (a) The spectrum as a function of increasing strength λ, where the color denotes the value
of I2. The system size is N = 6000. (b) I2 averaged over the eigenstates with increasing strength of AA potential λ for various system sizes
averaged over 50 values of θp. Inset of (b) shows the scaling of 〈I2〉 with system size for λ = 0.01 and 10. Here the fitting for the multifractal
states at λ = 0.01 (〈I2〉0.01 ∼ N−0.63) is shown with red color and the fitting for the states at λ = 10 (〈I2〉10 ∼ N−0.54) is shown with black color.
(c) The spectrum as a function of increasing strength λ, where the color denotes the value of the fractal dimension D2, defined in Eq. (7), for all
the single-particle eigenstates. The system size is N = 6000. The red solid line in (a) and (c) given by λ = 4/|E | shows the transition between
multifractal and localized states, conjectured in Ref. [77] from the analogy to the extended Harper problem (see Sec. V for more details). In
(b), I2 averaged over the eigenstates drawn from the inner and outer regions separated by the fractal mobility edge are shown separately. Solid
lines with filled symbols correspond to states in the inner region and dashed lines with open symbols to states in the outer region. We observe
that the open symbols corresponding to different system sizes overlap indicating that these states are localized.

where

Iq =
N
3∑

n=1

∑
α=u,c,d

|ψk (αn)|2q (8)

are the qth order moments. While considering the ensemble
average, the fractal dimension can be defined in two forms
[80,81]; the first one uses arithmetically ensemble-averaged
moments 〈Iq〉 after which the logarithm is taken:

D̃q = 1

1 − q

1

ln N
ln〈Iq〉. (9)

In the second approach, the averaging is done in a geometric
fashion, i.e., after taking the logarithm:

Dq = 1

1 − q

1

ln N
〈ln Iq〉. (10)

Also, D̃q is a lower bound to Dq from Jensen’s inequality, i.e.,
D̃q � Dq, since logarithm is a concave function. For q = 2,
one obtains S2 = − ln(I2). Figure 3(c) shows D2 as a function
of the strength of the antisymmetric AA potential for the entire
spectrum. We observe the presence of the fractal mobility
edge conjectured recently [77] using an analogy to the ex-
tended Harper problem (see Sec V). The fractal mobility edge
(λ � 4/|E |) is shown by the red curves in Fig. 3(c), separating
the multifractal wave functions (extended but nonergodic)
with 0 < D2 < 1, from the Anderson localized eigenstates
(red color signifies D2 ≈ 0). Here we also study the scal-
ing of IPR (〈I2〉) with system size (see inset of Fig. 3(b)).
The IPR scales as N−D̃2 [82]. We observe from the inset of
Fig. 3(b) that for λ = 0.01, IPR scales as N−0.63, which reaf-
firms the multifractal nature of the eigenstates at low potential
strengths.

The fractal dimension in the limit N → ∞ is given by [31]

D∞
q = limN→∞Dq. (11)

For a perfectly delocalized state, D∞
q = 1 while for a localized

state Sq is a constant, as observed for Anderson localization
and results in vanishing D∞

q for all q > 0. For intermediate
cases, 0 < D∞

q < 1, which is a sign that the state is extended
but nonergodic. Further, the eigenstates are multifractal if
D∞

q depends nontrivially on q > 0 while for a constant 0 <

D∞
q < 1, the states are fractal. The q dependence of the fractal

dimension Dq is shown in Fig. 4(a). We observe that for
all q > 0, 0 < Dq < 1 with a nontrivial dependence on the
moment q. This indicates that all the eigenstates in the low-λ
region exhibit multifractal nature.

For large enough N , the IPR is given by the expression

Iq = cqN−D∞
q , (12)

with a certain cq, weakly dependent on N . This leads to the
finite-size Dq being linear in 1/ ln N [see Fig. 4(b)] and allows
one to extract D∞

q via a linear extrapolation in 1/ ln N [81].
We observe that in the limit of N → ∞, the fractal dimen-
sion tends to a value significantly lower than unity. It can be
concluded that the multifractality seen here is robust against
increasing system sizes. Moreover, we have also verified that
the system size dependence of Dq seen here is very similar to
what is displayed by the AAH model at the critical point.

Another useful method to distinguish between localized,
multifractal and delocalized phases is to carry out an analysis
of the even-odd (odd-even) spacings of the energy eigenval-
ues Ek (arranged in ascending order) [49]. They are defined
as se−o

k = E2k − E2k−1 and so−e
k = E2k+1 − E2k for even-odd

and odd-even cases, respectively. For a localized state, the
gap vanishes as both the spacings exhibit the same form. In
the multifractal case, the distributions of both spacings are
strongly scattered. We observe from Fig. 5(a) that at λ = 0.01,
both the spacings are scattered for the entire energy spectrum,
indicating that all the eigenstates are multifractal in the low
potential regime. From Fig. 5(b), we observe that while there
is strong scattering corresponding to the states at the center
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FIG. 4. In the antisymmetric case, (a) fractal dimension Dq vs
q for various system sizes. (b) Fractal dimension Dq vs 1

ln(N ) for
various q values and system sizes ranging from N = 60 to 6000.
Here quasiperiodic strength λ = 0.01 and Dq is averaged over all the
eigenstates for at least 50 values of θp.

(|E | < 4/λ), the gap begins to vanish as one move toward the
edges. At higher potential strengths, for example λ = 100 [see
Fig. 5(c)], except for the level spacing at the center, the gap
completely disappears, indicating localization.

It is well known that multifractal states are characterized
by a broad distribution in energy gaps [83,84]. To study this
aspect, we show plots of Ek and sk = Ek+1 − Ek for various λ,
in Figs. 5(d)–5(i). We observe that at low potential strength,
i.e., λ = 0.01, the energy spectrum has a large number of
subbands [see inset of Fig. 5(d)], and fluctuations are observed
in the spacing of these gaps [see Fig. 5(g)]. We also observe
that the level spacing distribution of all the eigenstates at
λ = 0.01 follows an inverse power law [56], indicating that
all the eigenstates are multifractal in the low potential regime.
From Fig. 3(c), the transition point from the fully extended
regime to the mixed one with the mobility edge, |E | = 4/λ,
is is observed to be around λ � 1.5. The magnitude of the
gap between the energy levels becomes larger as one moves
toward the edges [Fig. 5(e)], which is accompanied by a
decrease in the magnitude of fluctuations in those gaps [see
Fig. 5(h)]. At higher potential strengths, for example, λ = 10
[see Fig. 5(f)], the spectrum is completely pure pointlike,
and all the eigenstates except those in the central band show
reduced fluctuations, indicating localization [see Fig. 5(i)].

We conclude that the presence of the AA potential in the an-
tisymmetric case transforms the CLSs into multifractal states
at low potential strengths below a critical value (i.e., below
λ � 1.5, which is about the gap between the flat bands in the
zero disorder limit). At higher potential strengths where the
bands hybridize, we observe that all the eigenstates localize
except those in the central part of the spectrum, which display
multifractal nature.

B. Chiral symmetry

The addition of diagonal disorder in the ABF diamond
lattice breaks translational invariance. One would also expect
diagonal disorder to break the chiral symmetry [85–87] as
observed in the symmetric case. However, remarkably in the
antisymmetric case, when N is even, we observe pairs of
eigenvalues ±E , despite the on-site disorder. We infer that
the chiral symmetry of the lattice is not broken. Indeed this is
confirmed explicitly by the identification of the chiral operator
� which is required to be a local operator [74]:

� = γ1 ⊕ −γ2 ⊕ γ3 · · · =
n⊕

i=1

(−1)i−1γi, (13)

where each of the matrices γi =
(

0 1 0
1 0 0
0 0 1

)
i

acts on the ith

unit cell and n is the total number of unit cells. We can verify
that �−1H†� = −H , and that � is involutory since ��† = I.
When periodic boundary conditions are imposed, the chiral
symmetry is valid only for an even number of unit cells.

Before we conclude, we remark that multifractal states
have been reported to exist in systems with chiral symme-
try. For the Anderson model in 2D [88] and 3D [89], chiral
symmetry is known to induce multifractal states near the band
center, the origin of which can be traced back to the power-
law decay of the eigenstates. It has been observed that chiral
symmetry tends to delocalize eigenstates close to the origin
[90]. In 1D [91], it has been proved that eigenstates at the
band center are not localized exponentially. Chiral symmetry
combined with strong disorder induces power-law localization
and multifractal states near the origin [89].

V. MULTIFRACTALITY IN ANTISYMMETRIC CASE:
ANALYTICAL TREATMENT

In this section, we analytically uncover the origin of the
multifractality in the antisymmetric case. The diamond lattice
in the disorder-free limit can be described through matrices V
and T which capture the intra-cell and intercell information
respectively:

V =
⎛
⎝ 0 0 −1

0 0 1
−1 1 0

⎞
⎠, T =

⎛
⎝0 0 0

0 0 0
1 1 0

⎞
⎠. (14)

For the on-site disorder, we introduce another matrix Wn

given by

Wn =
⎛
⎝ζ u

n 0 0
0 ζ d

n 0
0 0 ζ c

n

⎞
⎠. (15)
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FIG. 5. In the antisymmetric case, (a)–(c) level spacing se−o
k (red) and so−e

k (blue) at quasiperiodic strength λ = 0.01, 2 and 10 respectively
with averaging done over 50 values of θp. [(d)–(f)] Single-particle energy spectra Ek for λ = 0.01, 2, and 10, respectively. Inset shows the
broken degeneracy for the states in the central band and (g)–(i) are corresponding level spacing sk . Here index is the serial number of energy
(gap) levels divided by the total number of gaps, and system size is N = 6000. For λ = 2 and 10, the indices corresponding to the fractal
mobility edges |E | = 4/λ, are determined from (e)–(f). We have plotted them in the corresponding (b)–(c) and (h)–(i) using the vertical red
lines.

The unitary matrix

U1 = 1√
2

⎛
⎜⎜⎝

1√
2

− 1√
2

1

− 1√
2

1√
2

1

1 1 0

⎞
⎟⎟⎠, (16)

diagonalizes the V matrix when we carry out the transforma-
tion V1 = U1VU1

†. The same transformation can be applied
to the T matrix to obtain T1 = U1TU1

†. The transformed
matrices are

V1 =

⎛
⎜⎝

−√
2 0 0

0
√

2 0

0 0 0

⎞
⎟⎠, T1 =

⎛
⎝0 0 1

0 0 1
0 0 0

⎞
⎠. (17)

Applying the same transformation on the matrix Wn, we obtain
(W1)n given by U1WnU1

†:

(W1)n=

⎛
⎜⎜⎜⎜⎝

ζ u
n
4 + ζ d

n
4 + ζ c

n
2

−ζ u
n

4 + −ζ d
n

4 + ζ c
n
2

ζ u
n

2
√

2
− ζ d

n

2
√

2

−ζ u
n

4 + −ζ d
n

4 + ζ c
n
2

ζ u
n
4 + ζ d

n
4 + ζ c

n
2

−ζ u
n

2
√

2
+ ζ d

n

2
√

2

ζ u
n

2
√

2
− ζ d

n

2
√

2

−ζ u
n

2
√

2
+ ζ d

n

2
√

2

ζ u
n
2 + ζ d

n
2

⎞
⎟⎟⎟⎟⎠.

(18)

In the antisymmetric case, ζ c
n = 0, ζ u

n = −ζ d
n = ζn, yielding

a simplification:

(W1)n = ζn√
2

⎛
⎝0 0 1

0 0 −1
1 −1 0

⎞
⎠. (19)

The above transformation is a part of a series of lattice
transformations shown in Appendix A 1. Using the lattice
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equation:

(W1)nψn − V1ψn − T1ψn+1 − T †
1 ψn−1 = Eψn, (20)

the corresponding equation for the components ψn =
(un, dn, cn)T can be written as

Eun = ζn√
2

cn − (−
√

2un + cn+1), (21)

Edn = − ζn√
2

cn − (
√

2dn + cn+1), (22)

Ecn = ζn√
2

(un − dn) − (un−1 + dn−1). (23)

Substituting un and dn into Eq. (23), we get

E [E2 − 4]cn = ζ 2
n Ecn − 2ζncn+1 − 2ζn−1cn−1. (24)

Substituting ζn = λ cos(2πnb + θ ), we have

2

λ2

[
E2 − 4 − λ2

2

]
cn = cos(4πnb + 2θ )cn

− 4

λE
[λ cos(2πnb + θ )cn+1

+ λ cos(2π (n − 1)b + θ )cn−1].
(25)

The above equation resembles the extended Harper model
[92], but with a doubled frequency of the on-site po-
tential. Following the recent preprint [77], we compare
the hopping amplitude 4/(λ|E |) with the level spac-
ing amplitude maxn[cos(4πnb + 2θ ) − cos(4π (n + 1)b +
2θ )] � 2 sin(2πb) and conjecture that the transition between
nonergodic extended and localized states should be at [93]

λc = 4

|E | . (26)

An alternative way to see the emergence of multifractality
in this model is provided by Thouless in his consideration
of the Harper model [58,94]. Indeed, by taking the discrete
Fourier transform:

cm,n = 1√
N

∑
k

cn (θ= 2πk
N +πb)e

2π i
N km, (27)

we get a 2D model without on-site potential, but with an
effective magnetic flux, penetrating some of the plaquettes:

E

[
E2 − 4 − λ2

2

]
cn,m

= Eλ2

4

(
e4iπb(n+ 1

2 )cn,m+2 + e−4iπb(n+ 1
2 )cn,m−2

)

− λ
(
e2iπb(n+ 1

2 )cn+1,m+1 + e−2iπb(n+ 1
2 )cn+1,m−1

)
− λ

(
e2iπb(n− 1

2 )cn−1,m+1 + e−2iπb(n− 1
2 )cn−1,m−1

)
, (28)

which is the π/4 rotated square lattice with nearest-neighbor
and selected next-nearest-neighbor hoppings and a staggered
magnetic field (see Fig. 6). Such models are also known to
host multifractal states in an extended region of parameter
space [95–97].

While our manuscript was under review, we came across
a preprint [77] where the effect of quasiperiodic pertur-
bations on one-dimensional all-band-flat lattice models has

FIG. 6. A unit cell of the π/4 rotated square lattice with nearest-
neighbor and selected next-nearest-neighbor hopping and staggered
magnetic field showing the phases of the hopping on each link. The
alternating fluxes 0 and Q = 4πb are derived by summing the phases
in the clockwise direction over each separate loop.

been investigated. There the authors discuss the presence
of an energy-dependent critical-to-insulating transition where
“fractality edges” separate localized states from critical states.
In the case of the ABF diamond lattice with an antisymmetric
application of disorder, they observed a critical-to-insulating
transition at |E | = 4/λ. In the current version, we have con-
firmed the above conjecture with the aid of our numerical data
as well as by a mapping of the Hamiltonian to other models
known to host multifractal states from the literature before.
Further, the substitution of E = 0 in Eq. (25) gives

0 = −2λ cos(2πnb + θ )cn+1 − 2λ cos(2π (n − 1)b + θ )cn−1.

(29)

This model is equivalent to the off-diagonal Harper model
[94,98] where the zero energy modes remain critical at all
disorder strengths.

VI. CONCLUSION

This paper explores the effects of a quasiperiodic AA po-
tential on a one-dimensional ABF diamond lattice. We find
that the fate of the compact localized states is strongly de-
pendent on the manner in which the potential is applied. We
discuss the consequences when the potential is applied in two
specific ways: symmetric and antisymmetric. When the diag-
onal disorder is applied symmetrically, the chiral symmetry
of the lattice is broken. Although the large-scale degeneracy
is destroyed, all the eigenstates remain compactly localized. It
is also observed that the compact localization is independent
of the precise nature of the applied perturbation, as long as
it is applied in a symmetric manner. The inclusion of the
potential only on the c sites is a particular case where CLSs
are observed and the degeneracy of the central flat band is
preserved.

In the antisymmetric case, the tiniest perturbation lifts the
degeneracy, and the eigenstates no longer remain compactly
localized. An exploration of the nature of the eigenvalues
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and eigenfunctions through various observables shows the
appearance of flatband-based multifractal states. Here all the
wave functions are extended but nonergodic in the low dis-
order regime. All the bands start to hybridize at a critical
potential strength, leading to conventional Anderson localiza-
tion at higher magnitudes of λ. However, a central band is
observed whose states continue to display extended behavior
at all strengths of λ. A systematic study of the spectrum and
the spacing between consecutive energy values is performed
and compared with the AAH model. The robust existence of
multifractal states with increasing disorder strength is a re-
markable finding. Another interesting finding is that the chiral
symmetry of the Hamiltonian is preserved in the presence of
antisymmetric disorder when the total number of unit cells is
even. In support of this finding, we are able to write down
explicitly the chiral operator �.

The diamond lattice model in the zero-disorder limit can
be converted through a series of transformations into a new
lattice with decoupled sites. We study the effect of the same
set of transformations for the diamond lattice model in the
presence of disorder. We find that in the symmetric case,
these transformations yield a lattice which displays an absence
of intercell hopping, indicating the preservation of compact
localization. On the other hand, the antisymmetric configura-
tion of disorder supports the loss of CLSs owing to intercell
hopping in the transformed lattice. Further, we demonstrate
that our lattice transformations convert our Hamiltonian (with
antisymmetric disorder) into a close relative of the extended
Harper model and into a π/4 rotated square lattice with the
nearest-neighbor and selective next-nearest-neighbor hopping
and staggered magnetic field, both of which support the mul-
tifractality observed in the antisymmetric case.

We have seen that the introduction of the AA potential in
a flat-band diamond chain yields interesting results within a
single-particle setup. An exciting direction for research would
be to explore the physics of such systems in the presence
of interactions, and in particular, to look for flat band based
many-body localization phenomena. We also look forward to
future studies that can extend these ideas to two and three
dimensional systems.
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APPENDIX A: LATTICE TRANSFORMATION

In this section, a series of transformations are pre-
sented, whose application to the Hamiltonian of the diamond
chain gives a new lattice which has decoupled sites in the

zero-disorder limit. We utilize a similarity transformation to
obtain a new Hamiltonian whose spacial arrangement of the
sites significantly differs from the original lattice following
the work of Danieli et al. [99]. On the one hand, this process
identifies new flat band lattices and, on the other hand, helps
in understanding the influence of the symmetry of the applied
potential. We first present the transformation of the unper-
turbed ABF diamond chain. We then discuss the effect of the
symmetric and antisymmetric configuration of disorder on the
ABF diamond chain with the help of these transformations.

1. Transformation of unperturbed ABF diamond chain

The unperturbed diamond chain shown in Fig. 7(a) consists
of three sites per unit cell. The intracell and intercell infor-
mation of the Hamiltonian can be represented by V and T
respectively and is given by

V =
⎛
⎝ 0 0 −1

0 0 1
−1 1 0

⎞
⎠, T =

⎛
⎝0 0 0

0 0 0
1 1 0

⎞
⎠. (A1)

Thus the lattice equation is

−V ψn − T ψn+1 − T †ψn−1 = Eψn, (A2)

with ψn = (un, dn, cn)T being the tight binding representation
of the wave function for the nth unit cell. Considering the
unitary matrix

U1 = 1√
2

⎛
⎝

1√
2

− 1√
2

1

− 1√
2

1√
2

1
1 1 0

⎞
⎠, (A3)

we perform the transformations V1 = U1VU1
† and T1 =

U1TU1
† yielding new matrices

V1 =
⎛
⎝−√

2 0 0
0

√
2 0

0 0 0

⎞
⎠, T1 =

⎛
⎝0 0 1

0 0 1
0 0 0

⎞
⎠. (A4)

The resulting lattice is shown in Fig. 7(b). A new unit
cell can be identified considering the connected lattice sites
(un, cn+1, dn), which affirms that the CLS stays in one unit cell
and the class of the CLS is U = 1 in this representation. The
corresponding lattice is shown in Fig. 7(c), and the matrices
V2 and T2 are given by

V2 =
⎛
⎝−√

2 1 0
1 0 1
0 1

√
2

⎞
⎠, T2 =

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠. (A5)

Identifying the CLS in the new lattice, an inverse transforma-
tion can be performed to obtain the CLS in the diamond chain,
which matches with Danieli et al. [99]. Hence the class of CLS
is not unique under a transformation.

A further transformation can be performed to represent the
lattice into a Fano defect form with decoupled sites. For this,
the matrix H2 will be defined as H2 = −V2 − T2eik − T †

2 e−ik

for the lattice in Fig. 7(c). We obtain the transformation matrix
U2 here from the eigenvectors of the matrix H2, which is given
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FIG. 7. Schematic representations of the transformation of the diamond chain into the new lattice with decoupled sites.

by

U2 =

⎛
⎜⎜⎜⎜⎝

3−2
√

2

2
√

6−4
√

2

2−√
2

2
√

6−4
√

2

1

2
√

6−4
√

2

3+2
√

2

2
√

6+4
√

2

−2−√
2

2
√

6+4
√

2

1

2
√

6+4
√

2

− 1
2 − 1√

2
1
2

⎞
⎟⎟⎟⎟⎠. (A6)

The transformed matrices V3 = U2V2U2
† and T3 = U2T2U2

†

are

V3 =
⎛
⎝2 0 0

0 −2 0
0 0 0

⎞
⎠, T3 =

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠. (A7)

The resulting lattice [see Fig. 7(d)] consists of three linear
chains (xn, yn, zn) without any hopping between sites. The
isolated sites represent the flat band lattice in this repre-
sentation, with the eigenstates strictly localized on only one
site.

2. Transformation of ABF diamond chain with on-site potential

In the presence of on-site disorder, in addition to the in-
tracell and intercell matrices, we introduce another matrix Wn

given by

Wn =
⎛
⎝ζ u

n 0 0
0 ζ d

n 0
0 0 ζ c

n

⎞
⎠, (A8)

which is added in the general Hamiltonian: H = W − V −
Teik − T †e−ik . The transformation of the matrix Wn given by
U1WnU1

† results in

(W1)n=

⎛
⎜⎜⎜⎜⎝

ζ u
n
4 + ζ d

n
4 + ζ c

n
2

−ζ u
n

4 + −ζ d
n

4 + ζ c
n
2

ζ u
n

2
√

2
− ζ d

n

2
√

2

−ζ u
n

4 + −ζ d
n

4 + ζ c
n
2

ζ u
n
4 + ζ d

n
4 + ζ c

n
2

−ζ u
n

2
√

2
+ ζ d

n

2
√

2

ζ u
n

2
√

2
− ζ d

n

2
√

2

−ζ u
n

2
√

2
+ ζ d

n

2
√

2

ζ u
n
2 + ζ d

n
2

⎞
⎟⎟⎟⎟⎠,

(A9)

in addition to V1 and T1 for the transformed lattice. As before,
rearranging the unit cell, new matrices incorporating the on-
site contributions can be obtained as

V(W2 )n =

⎛
⎜⎜⎝

ζ u
n
4 + ζ d

n
4 + ζ c

n
2 0 ζ u

n

2
√

2
− ζ d

n

2
√

2

0
ζ u

n+1

2 + ζ d
n+1

2 0
ζ u

n

2
√

2
− ζ d

n

2
√

2
0 ζ u

n
4 + ζ d

n
4 + ζ c

n
2

⎞
⎟⎟⎠,

(A10a)

T(W2 )n =
⎛
⎝

0 0 0
ζ u

n

2
√

2
− ζ d

n

2
√

2
0 − ζ u

n

2
√

2
+ ζ d

n

2
√

2
0 0 0

⎞
⎠, (A10b)

in addition to V2 and T2.
Similarly, we can obtain V(W3 )n = U2V(W2 )nU2

† and T(W3 )n =
U2T(W2 )nU2

† in addition to V3 and T3 as

V(W3 )n =
⎛
⎝ζ1 ζ2 ζ3

ζ2 ζ1 −ζ3

ζ3 −ζ3 ζ4

⎞
⎠, (A11)

T(W3 )n =
⎛
⎝ ζ5 −ζ5 ζ6

−ζ5 ζ5 −ζ6

ζ6 −ζ6 − 1
2ζ5

⎞
⎠, (A12)

where ζ1 = 1
8 (ζ u

n + ζ d
n + 4ζ c

n + ζ u
n+1 + ζ d

n+1), ζ2 = 1
8 (−ζ u

n −
ζ d

n + 4ζ c
n − ζ u

n+1 − ζ d
n+1), ζ3 = 1

4
√

2
(ζ u

n + ζ d
n − ζ u

n+1 − ζ d
n+1),

ζ4 = 1
4 (ζ u

n + ζ d
n + ζ u

n+1 + ζ d
n+1), ζ5 = 1

8 (−ζ u
n+1 + ζ d

n+1), and
ζ6 = 1

4
√

2
(−ζ u

n+1 + ζ d
n+1).

a. Symmetric case

Disorder on u and d sites. First, we consider the case with
ζ u

n = ζ d
n �= 0 and ζ c

n = 0.
Here the effects of on-site disorder incorporated through

Eqs. (A11) and (A12) together with Eq. (A7) of the
unperturbed lattice, result in matrices VS1 and TS1 [100]
which represent the intracell and intercell hopping of the
lattice:

VS1 =

⎛
⎜⎝

1
8

(
2ζ u

n + 2ζ u
n+1

) + 2 1
8

(−2ζ u
n − 2ζ u

n+1

)
1

4
√

2

(
2ζ u

n − 2ζ u
n+1

)
1
8

(−2ζ u
n − 2ζ u

n+1

)
1
8

(
2ζ u

n + 2ζ u
n+1

) − 2 1
4
√

2

(−2ζ u
n + 2ζ u

n+1

)
1

4
√

2

(
2ζ u

n − 2ζ u
n+1

)
1

4
√

2

(−2ζ u
n + 2ζ u

n+1

)
1
4

(
2ζ u

n + 2ζ u
n+1

)
⎞
⎟⎠, TS1 =

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠. (A13)

The corresponding lattice [see Fig. 8(a)] shows that the
symmetric nature of the disorder decouples the unit cells
of the system. The transformed lattice is a linear chain
of uncoupled unit cells, implying that the states do not
hybridize. At the same time, their probability amplitudes

may be rearranged along the sites to satisfy the lattice
equation.

Disorder on c sites. We next consider another type of
symmetric configration where disorder is introduced only on
the c sites, i.e., ζ u

n = ζ d
n = 0 and ζ c

n �= 0. Here Eqs. (A11) and
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(a) (b) (c)

FIG. 8. Schematic representations of the new lattice with disorder in the symmetric case: (a) ζ u
n = ζ d

n �= 0, ζ c
n = 0, (b) ζ u

n = ζ d
n = 0, ζ c

n �=
0, and (c) the antisymmetric case: ζ u

n = −ζ d
n �= 0, ζ c

n = 0

(A12) together with Eq. (A7) for the unperturbed lattice, give
matrices VS2 and TS2 :

VS2 =
⎛
⎝

ζ c
n
2 + 2 ζ c

n
2 0

ζ c
n
2

ζ c
n
2 − 2 0

0 0 0

⎞
⎠, TS2 =

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠.

(A14)

As observed from Eq. (A14), there is no intercell hopping
here. However, we find intracell hopping between two sites
and an uncoupled site in a unit cell [see Fig. 8(b)].

b. Antisymmetric case

In the antisymmetric case, ζ u
n = −ζ d

n while ζ c
n = 0. Then

Eqs. (A11) and (A12) in addition to V3 and T3 [see Eq. (A7)]
for the unperturbed lattice, give matrices VA and TA which
represent the intracell and intercell hopping in the lattice:

VA =
⎛
⎝2 0 0

0 −2 0
0 0 0

⎞
⎠, TA =

⎛
⎜⎜⎜⎝

−ζ u
n+1

4
ζ u

n+1

4
−ζ u

n+1

2
√

2

ζ u
n+1

4
−ζ u

n+1

4
ζ u

n+1

2
√

2

ζ u
n+1

2
√

2

−ζ u
n+1

2
√

2

ζ u
n+1

2

⎞
⎟⎟⎟⎠.

(A15)

The lattice corresponding to it is shown in Fig. 8(c). We ob-
serve that the resulting lattice is a three-leg cross-stitch chain.
The intercell hopping in the lattice results in the nonexistence
of the CLSs, unlike the symmetric case. We observe from the
transformed lattice that the potential in the antisymmetric case
leads to coupling between the adjacent unit cells. Still, the
sites in a single unit cell remain decoupled. At low potential
strengths, in the absence of intra-cell coupling, the nearest-
neighbor (NN) intercell coupling leads to the multifractal
nature of the eigenstates. As the strength of λ increases, the
stronger coupling leads to Anderson localization.

APPENDIX B: COMPLEMENTARY QUANTITIES

In this section, we point out the usefulness of discussing
several complementary quantities when the Aubry-Andrè po-
tential is applied in an antisymmetric manner. We also analyze
the effect of the antisymmetric application of the uniform
disorder through various measures.

1. AA disorder

The normalized participation ratio (PR) [101] is closely
related to the inverse participation ratio and is given by

Pk =
⎡
⎣N

N
3∑

n=1

∑
α=u,c,d

|ψk (αn)|4
⎤
⎦

−1

. (B1)

It vanishes for a perfectly localized eigenstate and goes to
unity for a perfectly delocalized eigenstate. In Fig. 9(a), we
have plotted the IPR, and the PR averaged over all the eigen-
states in the inner part (shown with solid line) and the outer
part (shown with dashed line) of the fractal mobility edge
λ = 4/|E | [77], with increasing strength of λ. These two
quantities together help in the identification of the transition
region. The transition from the extended (0 < PR < 1) to
the Anderson localized regime lies around λ � 1.5. This is
because, in the zero disorder limit, the gaps between the flat
bands are precisely of size 2, and thus a disorder strength of
around 1.5–2 allows an interband hybridization.

Another measure that provides an understanding of the
extent of localization in a system is the single-particle von
Neumann entanglement entropy [102]. The von Neumann
entropy associated with site α of the nth unit cell in the kth
eigenstate is given by [103]

Sαn
k = − |ψk (αn))|2 log2(|ψk (αn)|2)

− (1 − |ψk (αn)|2) log2(1 − |ψk (αn)|2).
(B2)

For a delocalized eigenstate |ψk (αn)|2 = 1/N and hence
Sαn

k ≈ 1
N log2 N + 1

N for large values of N whereas for an
eigenstate localized on a single-site Sαn

k = 0. The contribu-
tions from all sites for a particular eigenstate are given by
Sk = ∑

n,α Sαn
k . Thus the average von Neumann entropy over

all the eigenstates is defined as

Ssp =
∑N

k=1 Sk

N
. (B3)

For large values of N , Ssp ≈ (log2 N + 1) in the delocalized
phase whereas Ssp ≈ 0 in an extremely (single-site) localized
phase. Figure 9(b) shows the single-particle entanglement en-
tropy averaged over all the eigenstates in the inner part (shown
with solid line) and the outer part (shown with dashed line)
of the fractal mobility edge λ = 4/|E | [77], with increasing
strength of λ for various system sizes. Here, we observe a
system size dependence in Ssp for the states in the inner region
with its magnitude being marginally less than its maximum
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(a) (b) (c)

FIG. 9. In the antisymmetric case, (a) IPR and PR averaged of all the single-particle eigenstates separated by the fractal mobility edge
λ = 4/|E | (solid lines with filled symbols for states in the inner region and dashed lines with open symbols for states in the outer region) with
increasing strength of AA potential λ for N = 6000 averaged over 50 values of θp. The shaded region signifies the transition of the eigenstates
from extended to Anderson localization. (b) Single-particle von Neumann entropy Ssp averaged over the eigenstates separated by the fractal
mobility edge (solid lines with solid symbols for states in the inner region and dashed lines with open symbols for states in the outer region)
with increasing strength of AA potential λ for various system sizes. Averaging has been done over 50 values of θp for all cases. (c) The spectrum
of the diamond lattice, where the color denotes the value of fidelity F with respect to eigenstates at λ = 0.1. Here the system size considered
is N = 6000. The black solid line in panel (c) shows the transition between multifractal and localized states, conjectured in a recent preprint
[77] using an analogy to the extended Harper problem (see Sec. V for more details).

value, which is a sign of the extended nature of the eigenstates.
Ssp is largely system-size independent with its magnitude ap-
proaching O(10−1), for the states outside the fractal mobility
edge indicating Anderson localization.

We have also plotted the fidelity or overlap between the
eigenstates, which helps distinguish extended and localized
regions in the spectrum. Fidelity between the kth eigenstates
corresponding to two values of λ is given by

F k
12 = |〈ψk (λ1) | ψk (λ2)〉|2. (B4)

By choosing the first parameter λ1 as the reference point, the
second parameter λ2 is varied in Fig. 9(c). We have previously
shown that all the states below λ ≈ 1.5 have multifractal na-
ture. We observe that for larger λ the magnitude of fidelity is
close to zero for all the states (except the central band) indicat-
ing localization. For the central band, for all values of λ, the
fidelity 0 < F < 1. This indicates that though the states are
multifractal in the central band, the amplitude distribution on
the lattice sites does not remain fixed with increasing strength
of the potential λ.

Scaling analysis

The scaling analysis of the distribution of the IPR loga-
rithm P(lnI2) at the critical point shows invariance of shape
or width with increasing system size N [104]. After shifting
the curves along the x axis, they all lie on top of each other,
forming a scale-invariant IPR distribution. We utilize this
measure and analyze all the nonergodic extended states at low
−λ = 0.01 [see Fig. 10(a)] and those separated by the fractal
mobility edge [77] λc = 4

|E | at high −λ = 10 [see Fig. 10(b)]
and observe that the distributions of IPR are indeed scale
invariant. However, for the states outside the fractality edge
at a higher disorder strength (like λ = 10), we observe that
the distribution is independent of N , confirming that the states
are localized [see Fig. 10(c)].

We also perform a multifractal analysis of the wave func-
tions using the box-counting method. For the AAH model,

it was observed that the wave functions exhibit multifractal
behavior extending to all length scales at the critical point.
For localized states, multifractal features are observed up
to the localization length and for extended states they are
observed up to the correlation length [105]. We analyze the
multifractal properties here by coarse-graining the system into
boxes of length l . Given a normalized wave function |ψk〉 =∑N

i=1 ψk (i)|i〉 defined over a lattice of size N , we divide the
lattice into N/l segments of length l [106]:

χ j (q) =
N/l∑
p=1

⎡
⎣ pl∑

i=(p−1)l+1

|ψk (i)|2
⎤
⎦

q

. (B5)

The average is then considered over the total number of states
in the central band (CB) jCB:

χ (q)CB = 1

jCB

jCB∑
j

χ j (q), (B6)

and the total number of states of the sidebands (SB) jSB:

χ (q)SB = 1

jSB

jSB∑
j

χ j (q). (B7)

Multifractality is characterized by a power-law behavior of
χ (q) ∼ (l/L)τ (q) with the exponent τ (q) determining the
multifractal dimension Dq = τ (q)/(q − 1) where q = 2 gives
τ (2) = D2. In Figs. 10(d)–10(f), we display the change of
ln χ as a function of ln l for different system sizes. In the
critical regime, it is found that ln χ is a linear function of
ln l described by a series of parallel lines for different N with
the same slope D2. We observe this behavior for the all states
at low − λ = 0.01 [see Fig. 10(d)] with D2 = 0.63 ± 0.005
indicating that they are indeed nonergodic extended. The same
is observed at high −λ = 10, for the states comprising the
inner band of the fractal mobility edge [77] λc = 4/|E | with
D2 = 0.61 ± 0.005 [see Fig. 10(e)]. In the localized region,
for lengths less than the localization length l < lc, ln χ is a

205119-11



AAMNA AHMED et al. PHYSICAL REVIEW B 106, 205119 (2022)

(a) (b) (c)

(d) (e) (f)

FIG. 10. In the antisymmetric case, distribution of P(ln I2) for different system sizes computed using (a) all the eigenstates at λ = 0.01
(b) multifractal states comprising the inner region of the fractal mobility edge λ = 4/|E |, conjectured in Ref. [77] at λ = 10 and (c) localized
states that exist in the outer region of the fractal mobility edge at λ = 10. The change of ln χ as a function of ln l for different system
sizes computed using (d) all the eigenstates at λ = 0.01 (e) multifractal eigenstates comprising the inner region of the fractal mobility edge
λ = 4/|E |, at λ = 10 and (f) localized states that exists in the outer region of the fractal mobility edge at λ = 10.

linear function of ln l , which completely superposes together
for different N with an identical slope of D2—so one might
naively conclude that the system exhibits multifractal behav-
ior. However for l > lc the slopes decrease to 0. The same can
be observed for all the states outside the fractal mobility edge
at high −λ [see Fig. 10(f)] with D2 ≈ 0.11 (fitted with the
dotted curves) for l < lc while the slopes decrease to 0 (fitted
with the magenta lines) for l > lc, thus showing that in fact
these states are localized.

2. Uniform uncorrelated random disorder

We have also analyzed the application of the uniform un-
correlated random disorder in an antisymmetric manner. Here
� is the disorder strength. We observe from Fig. 11(a) that
the average gap ratio r [107,108] remains around the Poisson
value (≈0.39) at all strengths of the disorder. Further from the
energy-resolved IPR study [see Fig. 11(b)], it can be observed
that all the eigenstates exhibit low IPR below � ≈ 2. The
presence of a mobility edge is also observed here. Dividing
Eq. (24) by �, we get

E

�
[E2 − 4]cn = wn

�E

2
cn − tncn+1 − tn−1cn−1, (B8)

where tn = ζn/� are i.i.d. random numbers, homogeneously
distributed in a unit interval |tn| < 1, while wn = 4ζ 2

n /�2

are i.i.d. random numbers, whose distribution P(wn) ∼ θ (1 −
wn)/(2

√
wn) is singular but integrable due to the cut tail

for |wn| > 1. From this, one can estimate the finite-size mo-
bility edge as the line where the localization length ξ (E ),

determining the eigenstate exponential decay

|ψE (r)| ∼ e−|r−rE |/ξE (B9)

with respect to the random energy-dependent maximum rE , is
of the order of the system size ξ (E ) � N .

The expression for ξ (E ) can be estimated as (see, e.g.,
Ref. [109])

ξE � F

(
Ettyp

w2
typ

)
t2
typ

w2
typ

, (B10)

where a smooth function F (x) � O(N0) [110] can be replaced
by a constant as it changes by 10 % from x = 0 to x = ∞ and
the typical value wtyp (ttyp) of the on-site disorder wn (hopping
tn) is given by the typical value of the distributions of P(ln wn)
(P(ln tn)). In our case,

wtyp = e〈ln wn〉 = e−2, ttyp = e〈ln tn〉 = e−1 , (B11)

i.e.,

ξE (N ) �
(

2e

�|E |
)2

F . (B12)

Thus, from ξE � N , we get

�c(E ) = 2e

E

√
F

N
. (B13)

This demonstrates that the mobility edge, shown in Fig. 11(b)
for N = 6000 and F = 6000 is a finite-size effect. However,
on the other hand, it also shows why the state at exactly zero
energy E = 0 (which exists for odd N) will not localize. The
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FIG. 11. In the antisymmetric case (a) gap ratio r [107,108] and (c) IPR averaged over all the eigenstates for uniform uncorrelated random
disorder with increasing strength � for various system sizes. The averaging has been done over 50 values of θp. The spectrum of system
size N = 6000 with increasing strength of disorder �, where the color denotes the value of (b) IPR and (e) fractal dimension D2 for all the
single-particle eigenstates. D2 averaged over all the eigenstates with increasing system size when applied disorder is (d) uniform uncorrelated
random disorder and (f) quasiperiodic AA disorder.

latter is related to the conserved chiral symmetry in the sys-
tem, where the low energy states may keep their delocalized
nature even in the 1d chiral Anderson model. In any case
this regime deserves further detailed investigations in future
works.

From the IPR averaged over all the eigenstates [see
Fig. 11(c)], we observe that it is system size-independent,
indicating localization. Thus while the averaged gap ratio and
IPR suggest localization for the entire disorder range, the
same is not observed from the energy-resolved IPR. The spec-
trum resolved fractal dimension D2 is plotted in Fig. 11(e).
While the eigenstates below � ≈ 2 and those belonging to
the central band remain multifractal with D2 ≈ 0.2, they are
less extended when the applied perturbation is AA (D2 ≈ 0.6).

Thus we infer that the localization characteristics of the eigen-
states in the low-disorder regime depends on the nature of
the applied potential. On the other hand, when the strength
of the disorder is sufficient, the different bands hybridize,
conventional Anderson localization takes over, and the details
of the form of the disorder are not important. Figure 11(d)
shows D2 averaged over all the eigenstates when the uniform
disorder is applied. The magnitude of D2 decreases both in
the low and high disorder regime with increasing system size,
indicating a steady decline in the fraction of states exhibiting
multifractality. In contrast, the fraction of states exhibiting
the multifractal behavior remains robust for the AA potential
Fig. 11(f). This suggests that the specific form of the AA
potential has an important role in ensuring multifractality.
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