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Simplified approach to the magnetic blue shift of Mott gaps
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The antiferromagnetic ordering in Mott insulators upon lowering the temperature is accompanied by a transfer
of the single-particle spectral weight to lower energies and a shift of the Mott gap to higher energies (magnetic
blueshift, MBS). The MBS is governed by the double exchange and the exchange mechanisms. Both mechanisms
enhance the MBS upon increasing the number of orbitals. By performing a polynomial fit to numerical dynamical
mean-field theory data we provide an expansion for the MBS in terms of hopping and exchange coupling of a
prototype Hubbard-Kondo-Heisenberg model and discuss how the results can be generalized for application
to realistic Mott or charge-transfer insulator materials. This allows the estimation of the MBS of the charge
gap in real materials in an extremely simple way that avoids extensive theoretical calculations. The approach
is exemplarily applied to α-MnTe, NiO, and BiFeO3 and a MBS of about 130, 360, and 157 meV is found,
respectively. The values are compared with the previous theoretical calculations and the available experimental
data. Our ready-to-use formula for the MBS will simplify future studies searching for materials with a strong
coupling between the antiferromagnetic ordering and the charge excitations, which is paramount to realizing a
coupled spin-charge coherent dynamics on a femtosecond timescale.
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I. INTRODUCTION

Spintronics utilizes the charge and the spin degrees of
freedom of electrons for data storage and information process-
ing. While it originally relies on ferromagnetic bits, a rapidly
growing interest for developing a spintronic technology based
on antiferromagnetic materials has been witnessed in the last
decade. In contrast with their ferromagnetic counterparts, an-
tiferromagnetic materials combine multiple unique properties
which make them ideal candidates for the construction of
the next-generation spintronic devices. Antiferromagnets are
resilient to disturbing magnetic fields, which supports long-
term data retention, create no stray field allowing high-density
memory integration, and display a spin dynamics up to 1000
times faster than ferromagnets providing access to terahertz
writing speed regime. But the faster dynamics due to substan-
tially larger exchange interactions also represents an obstacle
for efficient probing and manipulating of the magnetic states
[1–3].

In recent years, the interaction of electromagnetic radia-
tion with antiferromagnetic states has been demonstrated as a
powerful tool to detect and to control the magnetic order in
antiferromagnetic materials [3]. A coherent dynamics of the
local magnetization in antiferromagnetic insulators is induced
and manipulated by ultrashort laser pulses [4–6] reaching fre-
quencies as high as 20 THz [7–9]. However, this concerns the
magnetic properties of the material only. An important step for
the further development of this research area is the utilization
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of spin and charge coupling. Aiming at an efficient integration
of magnonics, spintronics, and conventional electronics, the
conversion of magnetic signals to charge signals and vice
versa [10,11] is crucial. This makes ultrafast spin-charge
coupling a cornerstone of future information processing. An
essential first step in this direction is to identify materials
displaying a strong coupling between the spin and the charge
degrees of freedom which does not rely on the typically weak
spin-orbit coupling. One notes that the strength of the spin-
charge coupling determines the characteristic timescale at
which the conversion of spin signals into charge responses can
take place and govern the spin-charge oscillation dynamics.

Mott insulators, or the closely related charge-transfer
insulators, are among the promising materials for antiferro-
magnetic spintronics [2]. In Mott insulators in transition-metal
compounds strong repulsive interaction between electrons in
the 3d shell is responsible for the energy gap opening in the
single-particle spectral function (density of states). This gap
defines the energy necessary to create an electron and a hole
independent from each other in the system and is known as
the charge gap or the Mott gap. Depending on the number of
unpaired electrons in the 3d shell one may realize Mott insula-
tors with different numbers of the relevant orbitals. Most Mott
insulators undergo a transition from a paramagnetic state to an
antiferromagnetic state upon reducing the temperature below
a critical value called Néel temperature TN. The magnetic shift
of the Mott gap is given by

�MG(T ) = GMI(T ) − GPI(T ), (1)

where GMI(T ) stands for the gap in the magnetic insulator
(MI), and GPI(T ) stands for the gap in the paramagnetic
insulator (PI) at the temperature T . A finite value of �MG(T )
represents a direct coupling between the spin and the charge

2469-9950/2022/106(20)/205117(16) 205117-1 ©2022 American Physical Society

https://orcid.org/0000-0002-4024-4558
https://orcid.org/0000-0003-1961-0346
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.205117&domain=pdf&date_stamp=2022-11-09
https://doi.org/10.1103/PhysRevB.106.205117


HAFEZ-TORBATI, ANDERS, AND UHRIG PHYSICAL REVIEW B 106, 205117 (2022)

degrees of freedom. For T < TN the PI is not the stable phase
due to the spin ordering but GPI(T ) can still be analyzed
by extrapolating the results to below TN in experiment or
by enforcing a paramagnetic solution in theory. A magnetic
blueshift (MBS) corresponding to �MG(T ) > 0 is observed in
several previous experimental [12–18] and theoretical investi-
gations [18–24] of antiferromagnetic insulators. We unveiled
in Ref. [24] that the MBS originates from the double exchange
and exchange mechanisms. A strong MBS enables us to go
beyond the local magnetization dynamics [7–9] and induce
an ultrafast coherent manipulation of the transport properties.
This highlights the importance of a systematic analysis of the
influential mechanisms involved in the MBS of the Mott gap
(1).

This paper is devoted to a systematic study of the effect
of antiferromagnetic ordering on the single-particle spectral
function in Mott insulators. We specifically address how such
a spin-charge coupling changes upon changing the number
of orbitals. Our investigation relies on a dynamical mean-
field theory (DMFT) analysis of a generic three-dimensional
Hubbard-Kondo-Heisenberg (HKH) model. This model com-
bines a single-band Hubbard model with localized spins S as
in a Kondo lattice model. The latter also represent electrons
in orbitals so that we achieve an approximate description of a
multi-orbital model with 2S + 1 orbitals in total. The antifer-
romagnetic ordering is accompanied by a transfer of spectral
weight to lower energies and a MBS of the Mott gap. The
double exchange and exchange mechanisms both enhance the
MBS upon increasing the number of orbitals.

For our prototype model we provide an expansion for
the MBS in terms of hopping and exchange coupling by
performing a polynomial fit to numerical DMFT data. We
discuss how the expansion can be generalized for application
to real materials. This allows the estimation of the MBS of
the charge gap in Mott as well as in charge-transfer insulator
materials in an extremely simple way which avoids extensive
theoretical calculations. We exemplarily apply the approach
to α-MnTe, NiO, and BiFeO3 as promising candidates for
antiferromagnetic spintronics. For α-MnTe we find a MBS
of about 130 meV, which is in a very good agreement with
the previous theoretical calculations and experimental data.
For NiO and BiFeO3 we obtain a MBS of about 360 and
157 meV, respectively, which are also compared with the
available experimental data. Our ready-to-use formula for the
MBS simplifies future investigations searching for materials
with strong spin-charge coupling which would then set the
stage to realize a coupled spin-charge coherent dynamics at
the unprecedented high frequencies in the THz region.

The paper is organized as follows: In Sec. II we discuss the
model and the method. The results are presented in Sec. III.
Section IV is devoted to the application of our results to real
materials. The paper is concluded in Sec. V.

II. MODEL AND METHOD

A. Hubbard-Kondo-Heisenberg model

A full description of the charge and the spin degrees of
freedom in strongly correlated multi-orbital systems requires
an analysis of a multi-orbital Hubbard model whose reliable

FIG. 1. Description of a three-orbital Mott insulator as a
Hubbard-Kondo-Heisenberg model (3) with a localized spin S =
1. The itinerant electron is described by the Hubbard model with
nearest-neighbor hopping t and onsite repulsion U > 0. The spin
of the itinerant electron is coupled by the Hund coupling JH to the
localized spin. There are nearest-neighbor exchange interactions J
between electron and localized spins resulting from the exchange
processes.

investigation is a grand challenge for current theoretical re-
search. Some simplifications can be applied in the case that
the system is deep in the Mott regime. In Mott insulators
the charge excitations are high in energy and the low-energy
properties of the system are governed by spin excitations. A
common and successful strategy to address the low-energy
excitations is by mapping the multi-orbital Hubbard model to
the Heisenberg model

H = J
∑

〈i, j〉
�Si · �S j, (2)

with the maximum local quantum spin number S in accord
with Hund’s first rule. The notation 〈i, j〉 limits the exchange
spin-spin interaction to nearest-neighbor sites. However, such
a mapping completely removes the charge degrees of freedom
and prevents any access to the charge excitations, which are
the main focus of this paper.

Hence, we have to go beyond the Heisenberg model (2) and
address the charge gap in multi-orbital Mott insulators within
a tractable model. We follow the idea initially proposed in
Ref. [17] and applied successfully to α-MnTe in Ref. [24].
It is discussed here in detail for the sake of completeness.
The idea relies on considering one orbital as itinerant and the
other orbitals as localized. The electron in the itinerant orbital
feels the existence of the localized electrons via an effective
spin-spin interaction, see Fig. 1. We stress that the itinerant
orbital is a representative for all orbitals. It does not mean we
make a distinction between the orbitals. We discuss below that
this approach takes into account on-site charge fluctuations
±1 around the half filling, but no further ones, such as, e.g.,
±2. The system is described by a HKH model given by

H = HHu + HKo + HHe, (3)

with

HHu = −t
∑

〈i, j〉

∑

σ

(c†
i,σ c j,σ + H.c.) + U

∑

i

ni,↓ni,↑, (4a)

HKo = −2JH

∑

i

�Si · �si, (4b)

HHe = +J
∑

〈i, j〉
(�Si · �s j + �S j · �si + �Si · �S j ), (4c)

where c†
i,σ and ci,σ are the usual fermionic creation and

annihilation operators and ni,σ = c†
i,σ ci,σ is the occupation
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number operator at the lattice site i with spin σ . The Hub-
bard model (4a) with the nearest-neighbor hopping t and the
onsite interaction U between electrons with opposite spins
σ =↑,↓ describes the itinerant electrons, the Kondo term (4b)
describes the ferromagnetic Hund coupling JH > 0 between
the electron spin �si and the localized spin �Si at each lattice
site i, and the Heisenberg term (4c) describes the virtual
exchange interactions between the itinerant and the localized
spins at neighboring sites. The Hamiltonian is schematically
depicted in Fig. 1. The quantum spin number of the local-
ized spin S depends on the number of orbitals. The spin S
represents 2S orbitals so that including the itinerant 2S + 1
orbitals are described in total. Hence, we have S = 0 for
the single-orbital case and S = 2 for the five-orbital case,
which is the maximum value in transition-metal compounds.
To assess the influence of the number of orbitals we vary
S. For the case S = 0 there are already data available in
the literature. Hence, we mainly focus on the representative
values S = 1 and S = 2, leaving other values to interpolation,
although we present data in Sec. III C also for the S = 1/2 and
the S = 3/2 cases.

Throughout this paper we fix the exchange interaction J in
(4c) to J = 4t2/� where � = U + 2SJH is the bare charge
gap, i.e., the charge gap in the absence of any hopping. This
is to guarantee that the low-energy properties of Hamiltonian
(3) for U, JH � t match those of the Heisenberg model (2)
with the spin quantum number S = S + 1/2 and the exchange
interaction J = 4t2/�. The exchange interaction J = 4t2/�

is independent from the number of orbitals; it describes the
exchange coupling between a pair of electrons on linked sites.
We assume equal intra- and inter-orbital hopping elements and
the number of contributing electrons is taken into account by
the size of the local spin S consistent with the low-energy
Heisenberg model (2). The effective interaction (4c) is limited
to the leading contribution as the system is considered to be
deep in the Mott regime.

The Hamiltonian (3) goes beyond the low-energy Heisen-
berg model (2) by providing an appropriate description of
the multi-orbital Mott insulators in the one hole and the one
double-occupancy subspaces, counted relative to half filling of
the orbitals. The states which contain more than one hole and
one double occupancy at the same lattice site are neglected
in the Hamiltonian (3). However, in the limit of large U and
JH, these states are high in energy and are not expected to
contribute to the low-lying charge excitations. In addition,
we assume that the Hund coupling is large enough to ensure
that the spins of the local electrons are aligned parallel. In
Sec. III A we compare the low-energy properties of the HKH
model (3) and the corresponding Heisenberg model (2) and
discuss the effect of the neglected spin states on the thermal
fluctuations.

We point out that, in general multi-orbital systems, the
crystal-field splitting modifies the bare charge gap � = U +
2SJH. However, this contribution is negligible compared with
the intra-orbital interaction U and the Hund coupling JH. In
addition, we only aim at an estimate of the magnetic blueshift
deep in the Mott regime at half filling.

It is already an established and efficient method to deter-
mine the exchange interactions in Mott insulators by fitting
theoretical magnon [25–27] or triplon [28–31] dispersions

computed for Heisenberg models to experimental data, mostly
inelastic neutron-scattering data. The Hubbard interaction and
the Hund coupling can be estimated based on atomic physics
or density-functional theory analysis, which in combination
with the exchange interactions allow us to determine the
hopping via J = 4t2/�. Hence, the HKH model (3) provide
a well-justified way to estimate the charge gap in multi-
orbital Mott insulators. We estimate hopping elements from
the exchange values J . The idea is to use the minimum
of experimental input for the intended estimate. Of course,
density-functional theory input could also be used. But this
would require additional demanding calculations.

One should note that different bare charge gaps � = U +
2SJH (and exchange interactions J = 4t2/�) will be obtained
if the same Hubbard interaction U and the same Hund cou-
pling JH are used for different spin lengths S. This prevents
a direct comparison of the results obtained for different spin
lengths since it is the hopping t and the bare charge �

(or t and J = 4t2/�) which determine the MBS. For this
reason we compare results obtained for JH = 0.3U/S and a
U -independent from S. In this way, the bare charge gap � =
1.6U depends only on U and for constant U the exchange
interaction stays constant. The results for the MBS will reflect
the influence of the spin length only. However, in Sec. III C
we consider also other combinations of the Hund coupling JH

and the Hubbard interaction U in order to show that the MBS
in the Mott regime does not depend on U and JH individually,
but only on their combination through the bare charge gap �.

B. Dynamical mean-field theory

We study the charge gap in both the MI and the PI phases of
the HKH model on the generic three-dimensional cubic lattice
using the DMFT technique. The chosen theoretical approach
of DMFT is an established method for strongly correlated sys-
tems with large coordination numbers which fully takes into
account the local quantum fluctuations [32]. The self-energy
is approximated as local but it can depend on frequency, in
contrast with static mean-field theories. We emphasize that a
frequency-dependent self-energy is essential [33] to describe
the paramagnetic Mott insulator and to address the MBS in
Eq. (1). The DMFT is already employed to address Kondo
lattice systems [34–36]. We applied the method specifically to
the HKH model in Ref. [24]. Here, we review the procedure
for the sake of completeness.

We assume collinear antiferromagnetic Néel order with the
spin polarization in the z direction. In the limit of large coordi-
nation number justifying the DMFT, the effect of the intersite
exchange interactions (4c) can be captured by a mean-field
approximation [37] as

HHe = −
∑

i

hiti
i sz

i −
∑

i

hloc
i Sz

i , (5)

with the effective magnetic fields hiti
i acting on the itinerant

spin and hloc
i acting on the localized spin given by

hiti
i = 6J

〈
Sz

i

〉
, (6a)

hloc
i = 6J

〈
Sz

i + sz
i

〉
. (6b)
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The approximation (5) reduces the Hamiltonian (3) to a
model involving only local interactions in addition to elec-
tron hopping. We expect the mean-field treatment (5) of the
exchange interaction (4c) to be more accurate for larger local-
ized spins, where the fluctuations become less relevant.

Although the DMFT formulated in momentum space is
suitable for the current problem we opt for the real-space
DMFT [38–40] due to its easy adaptability to study the spatial
dependence of the MBS in thin films in the future as well
as due to the efficient and flexible implementation we have
for the method at hand [41] which has already been applied
to multiple problems [24,42–44]. The main disadvantage of
the real-space DMFT is the finiteness of the system. We con-
sider periodic L × L × L clusters with mainly L = 10. But,
we check that the results even close to the Néel temperature
remain the same as the results obtained for L = 20. We stress
that, although we use the real-space DMFT, we fully exploit
the lattice symmetry to compute the lattice Green’s function
and to address the local impurity problem [41]. This is the
reason we can easily reach large system sizes.

The DMFT requires the solution of a self-consistency prob-
lem. Its iteration loops start with an initial guess for the local
polarizations 〈Sz

i 〉 and 〈sz
i 〉 and the local self-energy �i,σ (iωn)

at a single representative lattice site i, which allows us to
determine the effective magnetic fields in Eq. (5) and the
self-energy on the whole lattice because the Néel phase is
invariant under the combination of the spin-up and spin-down
sublattices swap and the spin-flip transformation. The lattice
Green’s function is calculated using the lattice Dyson equation

G(iωn) = [iωn1 − H0 − �(iωn)]−1, (7)

where 1 is the identity matrix, �(iωn) denotes the self-energy
matrix with only nonzero diagonal elements �i,σ (iωn) =
[�(iωn)]i,σ ;i,σ , and H0 is the matrix representation of the
operator

H0 = −
∑

i

(
hiti

i sz
i + μni

) − t
∑

〈i, j〉

∑

σ

(c†
i,σ c j,σ + H.c.) (8)

in the one-particle subspace {i, σ }. The chemical potential
μ = U/2 is used to satisfy the half filling condition. One notes
that the lattice Green’s function (7) is constructed for itinerant
electrons.

To obtain the local Green’s function Gi,σ (iωn) =
[G(iωn)]i,σ ;i,σ we find the two columns of the inverse
matrix in Eq. (7) corresponding to the representative site i
with up spin σ =↑ and down spin σ =↓. The full inversion
in Eq. (7) is not needed because each column of the inverse
matrix can be computed independent from the others. The
inverse dynamical Weiss field G (0)

i,σ (iωn)−1, which is the
local propagator in the auxiliary impurity problem without
interaction, is obtained from the local Dyson equation

G (0)
i,σ (iωn)−1 = Gi,σ (iωn)−1 + �i,σ (iωn). (9)

The local impurity problem at the representative site i is de-
scribed by an effective Anderson-Kondo

model

Hi = −μni − hiti
i sz

i + Uni,↓ni,↑ − hloc
i Sz

i − 2JH
�Si · �si

+
nb∑

�=1

∑

σ

εi
�a†

�,σ a�,σ +
nb∑

�=1

∑

σ

(
a†

�,σV i
�,σ ci,σ + H.c.

)
,

(10)

where a†
�,σ and a�,σ are the fermionic creation and annihilation

operators at the bath site � with the spin σ =↑,↓. The bath
sites approximate the effect of the surrounding sites in the
lattice. The bath parameters εi

� and V i
�,σ are determined by

fitting the inverse dynamical Weiss field (9) to the function
[45]

G̃ (0)
i,σ (iωn)−1 = iωn + μ + sgn(σ )

hiti
i

2
−

nb∑

�=1

∣∣V i
�,σ

∣∣2

iωn − εi
�

, (11)

where sgn(σ ) = +1 for σ =↑ and −1 for σ =↓. We stress
that �si and �Si in Eq. (10) are fully quantum-mechanical spin
operators. The local problem (10) is solved using exact di-
agonalization (ED) with a finite number of bath sites nb.
The local polarizations 〈Sz

i 〉 and 〈sz
i 〉 and the local interacting

Green’s function G̃i,σ (iωn), using the Lehmann representation,
are computed. The self-energy is updated in each recursive
iteration via

�i,σ (iωn) = G̃ (0)
i,σ (iωn)−1 − G̃i,σ (iωn)−1, (12)

and is used together with the local polarizations for the next
iteration. The iterations are continued until the convergence
within a given tolerance is reached.

We perform the DMFT iterations mainly with 200 pos-
itive Matsubara frequencies, ωn = (2n + 1)πT with n =
0, 1, . . . , 199. However, for the paramagnetic phase at low
temperatures we increased the number of positive frequencies
even up to 1000. This is because in the paramagnetic Mott
insulator the self-energy diverges at low temperatures and
more Matsubara frequencies are needed to achieve accurate
results, i.e., to achieve results which no longer depend on the
number of Matsubara frequencies used.

The spin-averaged single-particle spectral function A(ω)
is obtained from the real-frequency Green’s function of the
effective Anderson-Kondo model (10) as

A(ω) = −1

2

1

π

∑

σ

Im[G̃i,σ (ω + iη)], (13)

where η = 0.05t is the broadening factor. The spectral func-
tion A(ω) does not depend on the lattice site i even in the
antiferromagnetic phase since we average over both spin com-
ponents. The ED solver with a finite number of bath sites
approximates a continuous spectral structure by a set of dis-
crete sharp peaks. Although the fine details of the spectral
function are not produced by the ED solver, the method
is considered accurate for the charge gap and is used for
the single-orbital Hubbard model to benchmark the results
obtained by quantum Monte Carlo solver [22] which suffer
from the requirement of analytic continuation to access the
real-frequency dynamics. In the case of the Anderson-Kondo
model, the quantum Monte Carlo solver furthermore suffers
from the notorious fermionic sign problem [34,46] and is
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restricted to the Ising part of the Hund interaction. Therefore,
we opt for the ED solver.

III. RESULTS

A. Néel temperature

Before proceeding to the charge excitations, we first ex-
amine the low-energy properties of the HKH model (3) by
computing the Néel temperature TN and comparing it with the
Néel temperature of the corresponding Heisenberg model (2).

The DMFT takes into account the local quantum fluc-
tuations but neglects the quantum fluctuations which are
nonlocal. The local spin and charge quantum fluctuations in
the HKH model (3) are eliminated in the Heisenberg model
(2). The Heisenberg model involves only nonlocal spin quan-
tum fluctuations. Thus, we expect a DMFT analysis of the
low-energy features of the HKH model (3) to be equivalent to
a mean-field analysis of the corresponding Heisenberg model
(2). This had already been observed in the single-orbital Hub-
bard model [47].

The local mean-field treatment of the Heisenberg model
is the same as the mean-field treatment of the corresponding
Ising model because we consider collinear Néel order. The
mean-field equation for the local spin polarization m of the
spin-S Ising model [48] is given by

m = S −
∑2S

n=0 n exp(−ZJmn/T )
∑2S

n=0 exp(−ZJmn/T )
, (14)

where Z is the coordination number and n takes integer values.
The Néel temperature of the spin-S Ising model in the mean-
field approximation [48] reads

TN = Z

3
JS (S + 1) = 2J (S + 1/2)(S + 3/2), (15)

where the coordination number is given by Z = 6 for the
generic cubic lattice and we substituted S = S + 1/2.

The main plot in Fig. 2 displays the DMFT results (sym-
bols) for the local spin polarization m = |〈Sz

i + sz
i 〉| of the

HKH model for the localized spins S = 1 and S = 2 vs
temperature T . We fixed JH = 0.3U/S and U = 50t which
corresponds to the bare charge gap � = 80t and the exchange
interaction J = 4t2/� = 0.05t . We find no difference in the
results obtained for the number of bath sites nb = 4 and nb =
6 because in both cases a perfect description of the dynamical
Weiss field is achieved.

The mean-field theory results of the corresponding low-
energy Heisenberg model obtained from the solution of
Eq. (14) are included in the main plot of Fig. 2 (lines) for
comparison. The main plot in Fig. 2 indicates perfect agree-
ment between the DMFT solution of the HKH model and the
mean-field theory solution of the corresponding low-energy
Heisenberg model for the local spin polarization corroborat-
ing our expectations and arguments on the various kinds of
fluctuations.

As the exchange interaction J is increased, the high-energy
excitations present in the HKH model (3) and neglected in the
Heisenberg model (2) start to contribute to the thermal fluctu-
ations more and more. This explains the observed deviation of
the DMFT transition temperature from Eq. (15) in the inset of
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FIG. 2. The main plot shows the local spin polarization m =
|〈Sz

i + sz
i 〉| vs temperature T in the Hubbard-Kondo-Heisenberg

(HKH) model (3) for the localized spins S = 1 and S = 2. The
DMFT results of the HKH model (symbols) are compared with the
mean-field theory (MFT) results of the corresponding low-energy
Heisenberg model (lines). The exchange interaction is fixed to J =
4t2/� = 0.05t with the bare charge gap � = U + 2SJH = 1.6U .
The inset compares the DMFT Néel temperature TN of the HKH
model for S = 1 and S = 2 with the MFT Néel temperature given
in Eq. (15) of the corresponding low-energy Heisenberg model, see
the main text. The results remain the same for the number of bath
sites nb = 4 and nb = 6.

Fig. 2. The precise location of TN is extracted by performing a
square root fit as expected for mean-field theories to the local
magnetization data close to the transition temperature. The
figure indicates a deviation of TN from Eq. (15) for J > 0.16t .
This deviation is larger for larger localized spin S.

The origin of this deviation is not only the charge excita-
tions but also the spin excitations with the latter playing even
a more important role. In the Heisenberg model (2) the size
of the local spin is always S = S + 1/2. The HKH model
(3), however, involves local spin states with the total spin
S + 1/2 and S − 1/2. The local spin excitation is given by
(2S + 1)JH = 0.3�(2S + 1)/1.6S < � since we fixed JH =
0.3U/S. The ratio of the local spin excitation to the Néel
temperature (15) at J = 0.2t equals ≈2.5 for S = 2 and 7.5 for
S = 1. This explains the larger deviation from the mean-field
Heisenberg results for S = 2 compared with S = 1, which
we observe in the inset of Fig. 2. In addition, we point
out that, due to the intersite couplings, the actual excita-
tions of the system are dispersive and smaller than the local
excitations.

The HKH model (3) takes into account the spin excitations
of order of JH present in multi-orbital Mott systems only
partially. As one can see, for example, for the three-orbital
case sketched in the left panel of Fig. 1 the Hilbert space of
the singly occupied orbitals is given by

H = 1
2 ⊗ 1

2 ⊗ 1
2 = (1 ⊕ 0) ⊗ 1

2 , (16)
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while the HKH model in the right panel of Fig. 1 involves only
the states 1 ⊗ 1

2 , and the state 0 ⊗ 1
2 is neglected. In the case

of more orbitals there are more excited spin states which are
neglected by describing a multi-orbital system by the HKH
model. These neglected excited states have an energy gap of
order of (2S + 1)JH and as long as (2S + 1)JH � T holds,
they are indeed irrelevant and do not contribute substantially
to the thermal fluctuations.

The inset of Fig. 2 in fact signals that for J > 0.16t the
high-energy excitations start to contribute to thermal fluctu-
ations and neither the Heisenberg model (2) nor the HKH
model (3) provide a fully appropriate description of multi-
orbital Mott systems at temperatures T ≈ TN for magnetic
exchange couplings of this size. But, for J < 0.16t the ther-
mal fluctuations are solely due to the low-energy excitations
included in both the Heisenberg model and the HKH model.
In the following, we limit our discussion to J < 0.16t cor-
responding to � > 25t where the HKH model is perfectly
justified and examine how the low-energy excitations, which
are fully taken into account, influence the Mott gap.

Although for the low-energy properties such as the Néel
temperature a simple mean-field treatment of the Heisenberg
model (2) leads to precisely the same results as the DMFT
of the HKH model (3), we emphasize that, for accessing the
charge gap, it is essential to go beyond the Heisenberg model
and the static mean-field approximation and address the HKH
model with the DMFT.

B. Spectral redistribution and magnetic blue shift

In this section we examine how the formation of the
magnetic ordering below TN affects the charge excitations in
multi-orbital Mott insulators. We present data for the spec-
tral function in Eq. (13) for the cases S = 1 and S = 2 and
compare the results with the results obtained for the single-
orbital Hubbard model in previous studies. This allows us to
identify the influence of the number of orbitals on the coupling
between the charge gap and the magnetic ordering.

Figure 3 displays the spectral function A(ω) vs frequency
ω for the HKH model (3) at different temperatures for the
localized spin S = 2, and Fig. 4 depicts the same for the
localized spin S = 1. The Hubbard interaction is given by
U = 32t and the Hund coupling by JH = 0.3U/S leading to
the bare charge gap � = U + 2SJH = 1.6U . The results in
the MI phase [Fig. 3(a)] and in the PI phase [Fig. 3(b)] are
shown separately. Below the Néel temperature TN, the MI
is the stable phase but the metastable PI phase can also be
studied by enforcing a paramagnetic solution of the DMFT
equations. We keep JHS = const. to acquire a bare charge gap
independent from S. This allows us to study the effect which
is solely due to the size of the localized spin on the MBS.
This procedure implies the use of different JH for different
spin sizes.

It is evident from both figures that the spectral function
remains essentially unchanged in the PI phase upon reducing
the temperature from the Néel temperature TN down to zero.
Including nonlocal spin fluctuations beyond DMFT may ap-
proach the spectral functions in the PI phase closer to the one
in the MI phase. However, these contributions are expected
to be negligible in systems with large coordination numbers

FIG. 3. The spectral function A(ω) vs frequency in the magnetic
insulator (MI) phase (a) and in the paramagnetic insulator (PI) phase
(b) for the localized spin S = 2. The Hubbard interaction is given
by U = 32t and the Hund coupling by JH = 0.3U/S implying the
bare charge gap � = 1.6U . The results are for the number of bath
sites nb = 6. The spectral functions for the different temperatures T
are shifted vertically for clarity. The Néel temperature is given by
TN ≈ 1.37t . The black arrows indicate the peaks from which the Mott
gap in the MI phase GMI(T ) and in the PI phase GPI(T ) are read off.

where the DMFT is justified. In contrast to the PI phase,
there is a shift of the electron (ω > 0) and the hole (ω < 0)
peaks denoted by arrows away from the Fermi energy ω = 0
in the MI phase. This leads to a MBS of the Mott gap. We
find no change in the spectral function in the MI phase below

FIG. 4. The same as Fig. 3 but for the localized spin S = 1 with
the Néel temperature TN ≈ 0.59t .
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FIG. 5. Schematic representation of the spectral function A(ω) in
the paramagnetic insulator (PI) and in the magnetic insulator (MI) at
the temperature T → 0. The magnetic blueshift of the Mott gap is
denoted by continuous blue arrows and the magnetic redistribution
of spectral weight by dashed red arrows.

T = 0.2t for S = 2 and below T = 0.1t for S = 1, meaning
that these temperatures can be viewed as equivalent to zero
temperature. Although the results are obtained for the finite
number of bath sites nb = 6 in the ED impurity solver, we
observe a very similar behavior also for nb = 4, which is
shown in the Appendix. The shift of the electron and hole
spectral peaks towards higher energies due to antiferromag-
netic ordering is already realized in the single-orbital Hubbard
model [21–23]. Our findings in Figs. 3 and 4 extend these
studies to the multi-orbital case.

Due to the finite number of bath sites the spectral function
is not smooth but consists of separate sharp peaks whose
weight distribution approximate the one of the continuous
spectral function. Nevertheless, one can still see from Figs. 3
and 4 how the spectral function in the MI phase changes upon
increasing the temperature from 0 to TN and takes a similar
form as the spectral function in the PI phase. For continuity,
one expects the spectral function in the MI and in the PI to
be exactly the same as T → TN. The main difference is that
at T ≈ TN the electron and the hole spectral contributions in
the MI phase are shifted further towards the Fermi energy in
contrast to the PI phase. This slight inconsistency originates
from the finite number of bath sites used in the ED solver
as well as from the generally accepted fact that achieving
accurate results near a transition point is demanding even for
static quantities, let alone dynamical functions. This suggests
that the spectral function in the PI phase should be considered
more accurate for temperatures close to TN.

One can see from Figs. 3 and 4 that for T → 0 the low-
energy electron and hole peaks, indicated by arrows, carry
a spectral weight which is larger in the MI phase than in
the PI phase. Such a difference between the spectral weight
distribution in the MI and in the PI phases was first pointed
out for the single-orbital Hubbard model in Ref. [21]. It
was found qualitatively consistent with photoemission spec-
troscopy measurements on Cr-doped V2O3 [21]. In Ref. [24]
we demonstrated that such a magnetic redistribution of the
spectral weight would result in an increase in the free energy
unless the effect is compensated by a MBS of the Mott gap.
One has to keep in mind that a decrease in the free energy
is the prerequisite for the MI phase to stabilize. The MBS of
the Mott gap (blue arrows) and the magnetic redistribution of
spectral weight (red arrows) are summarized schematically in
Fig. 5. The fact that the magnetic redistribution of the spectral

weight and the MBS of the Mott gap occur in multi-orbital
systems, see Figs. 3 and 4, very similar to the single-orbital
case [24] corroborates the view that they are generic spectral
consequences of antiferromagnetic ordering in Mott insula-
tors. This view is further supported by the connection to the
decrease of the free energy [24].

So far, we discussed the effects common to the represen-
tative values S = 0, S = 1, and S = 2. Next, we turn to the
differences between the results for these cases which indicate
the general trends for varying S, i.e., the number of orbitals
2S + 1. The study of these differences is essential in order
to identify Mott insulators representing a maximum coupling
between the magnetic order and the electronic structure.

As one can see from Figs. 3(b) and 4(b) the electron and
the hole peaks defining the gap GPI(T ) show no strong de-
pendence on the size of the localized spin S although for the
S = 2 case the gap seems a bit larger than for the S = 1 case.
However, in the MI phase the gap GMI(T ) as T → 0 is clearly
larger for the S = 2 case in Fig. 3(a) in contrast with the S = 1
case in Fig. 4(a).

To investigate the gap in more detail and to reveal the de-
pendence of the MBS in Eq. (1) on S, we plot the gap in the PI
phase GPI(T ) and in the MI phase GMI(T ) as a function of T
in Fig. 6(a) for S = 2 and in Fig. 6(b) for S = 1. The local spin
polarization m, right axis, is also shown. The figures contain
the results for the number of bath sites nb = 6 and nb = 4. The
gap is extracted from the positions of the peaks closest to the
Fermi energy specified by arrows for nb = 6 in Figs. 3 and 4
and for nb = 4 in Figs. 12 and 13 in the Appendix.

Figure 6 shows that the gap in the PI phase remains essen-
tially unchanged as a function of temperature while in the MI
phase the gap increases and the spin polarization grows upon
T → 0 for both nb = 6 and nb = 4. The fact that the gaps in
the MI phase and in the PI phase do not continuously join at
the Néel temperature originates from the finite number of bath
sites in the ED solver, as we discussed above for the spectral
function.

For temperatures near zero in Fig. 6 we find a nice
agreement between the results for nb = 4 and nb = 6, which
permits an accurate estimate of the gap and an investigation of
the effect of the size of the localized spin on the MBS. The PI
gap GPI(T ) for the localized spin S = 1 in Fig. 6(b) is around
45t while for the localized spin S = 2 in Fig. 6(a) it is around
45.5t . The MI gap GMI(T ) at T → 0 is around 49.1t for S = 1
in Fig. 6(b) and it is around 50.7t for S = 2 in Fig. 6(a). These
gap values correspond to a MBS �MG(0) ≈ 4.1t for S = 1
and a MBS �MG(0) ≈ 5.2t for S = 2, which are significantly
larger than the MBS �MG(0) ≈ 1.1t we found in Ref. [24]
for the single-orbital case (S = 0) with the same bare charge
gap � ≈ 50t . Hence, we arrive at the summarizing conclusion
that increasing the size of the localized spin increases the Mott
gap in both the PI phase and the MI phase. But, the increase
in the MI phase is larger, leading eventually to a larger MBS
for larger localized spin or, equivalently, a larger number of
involved orbitals.

C. Hopping and exchange contributions to magnetic blueshift

The double exchange mechanism has been well known
since the 1950s to be responsible for the ferromagnetic
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FIG. 6. The Mott gap in the magnetic insulator (MI) phase
GMI(T ) and in the paramagnetic insulator (PI) phase GPI(T ) plotted
vs temperature T for the localized spin (a) S = 2 and (b) S = 1.
We set the Hubbard interaction to U = 32t and the Hund coupling
to JH = 0.3U/S. The bare charge gap is given by � = U + 2SJH =
1.6U . The figure also includes the local spin polarization m = |〈Sz

i +
sz

i 〉|, see right axis for its scale. The results for the number of bath
sites nb = 6 and nb = 4 are compared.

ordering in doped perovskite manganites. The strong ferro-
magnetic Hund coupling (Hund’s first rule) forces the spin of
the itinerant electron to be aligned with the localized spin at
each lattice site. Hence, the electron motion is strongly hin-
dered if the adjacent local spins are antiparallel while parallel
orientation allows the electron to move [37,49–52].

In Ref. [24] we revealed that, in ferromagnetic Kondo
lattice systems, the double exchange mechanism reduces the
effective hopping upon transition from a paramagnetic in-
sulator to an antiferromagnetic insulator, which narrows the
spectral bandwidth and results in a MBS which is enhanced
relative to its value in a pure Hubbard model. For the Hubbard-
Kondo model consisting of the terms (4a) and (4b),

HHK = HHu + HKo, (17)

with a localized spin S = 2 and a bare charge gap � ≈ 50t , we
identified a MBS �MG(0) ≈ 3.2t larger than �MG(0) ≈ 1.1t
in the single-orbital Hubbard model (4a) alone. Nevertheless,
the MBS �MG(0) ≈ 3.2t is still considerably smaller than
�MG(0) ≈ 5.2t as we found for the full HKH model (3) with
the same localized spin S = 2. Since the double exchange
mechanism plays the same role in the HK model as in the
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FIG. 7. The spectral function A(ω) vs frequency ω at T = 0 for
various values of the Hubbard U . The bare charge gap is given by
� = U + 2SJH = 1.6U which corresponds to the Hund coupling
JH = 0.3U for the localized spin S = 1 and JH = 0.15U for S = 2.
The results are for the number of bath sites nb = 6. The frequency
range is restricted to the range of the hole contribution of the spectral
function. The electron contribution is the mirror image of the hole
contribution with respect to the Fermi energy ω = 0. At each panel
the results for the magnetic insulator (MI) phase and for the para-
magnetic insulator (PI) phase with different localized spins S = 2
and S = 1 are shown for comparison. The results in the MI phase
are shifted vertically for clarity. The arrows are used in panel (b) to
illustrate the magnetic blueshift, in panel (c) to show the shift of the
spectral function in the MI phase relative to the PI phase, and in panel
(d) to specify the spectral bandwidth in the MI phase (see the main
text).

HKH model we attribute this additional enhancement to the
exchange interaction (4c).

To unveil the role of the exchange interaction and of the
double exchange mechanism in the MBS in the HKH model
we plot the hole contribution (ω < 0) of the spectral function
in Fig. 7 at T = 0 for different values of U . The bare charge
gap is given by � = U + 2SJH = 1.6U . The spectral func-
tions in the PI and MI phase for localized spins S = 1 and
S = 2 are shown for comparison. The results in the MI phase
are shifted vertically for clarity. We display only the hole con-
tribution for a better visibility of the differences. The electron
contribution is the mirror image of the hole contribution with
respect to the Fermi energy ω = 0 due to the electron-hole
symmetry of the studied model. This symmetry of the HKH
model is always perfectly realized in our results, as one can
see, for instance, from Figs. 3 and 4.
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The difference between the peaks closest to the Fermi
energy (the rightmost peaks) in the MI phase and in the PI
phase in Fig. 7 equals half of the MBS, �MG(0)/2. This
difference is illustrated by double-headed arrows in Fig. 7(b)
for the different localized spins S. The message of Fig. 7 is
very clear: Increasing the bare charge gap � from Fig. 7(a) to
Fig. 7(d) decreases the MBS. Concerning the dependence on
S the larger S entails a larger MBS.

One can identify two main origins behind the MBS, which
become more and more distinct as � becomes larger in Fig. 7.
One contribution is a shift of the spectral function in the MI
phase towards higher energies (away from the Fermi energy)
relative to the spectral function in the PI phase. This can be
seen especially from Figs. 7(c) and 7(d) where the middle
peak of the spectral function in the MI phase is shifted with
respect to the middle peak of the spectral function in the
PI phase. This shift is indicated in Fig. 7(c) by arrows and
is larger for the larger localized spin and it decreases upon
increasing the bare charge gap �. A similar but smaller shift
of the spectral function can be seen in our results for the
single-orbital Hubbard model and for the Hubbard-Kondo
model in Ref. [24]. This shift stems from the effective an-
tiferromagnetic exchange interaction which results from the
second-order lowering in energy by the virtual hopping of a
spin-↑ electron onto a site with a spin-↓ electron or vice versa.
For parallel spins this lowering does not occur due to Pauli’s
principle [52,53]. The exchange interaction can be described
in the MI phase by a mean-field effective magnetic field with
the strength

hi = 6J
〈
Sz

i + sz
i

〉
(18)

at the lattice site i. One notes that the term 6J〈sz
i 〉, absent in

(6a), is due to the itinerant Hamiltonian (4a). The effective
magnetic field (18) induces a shift of the electron and the hole
spectral contributions away from the Fermi energy in the MI
phase. The relation (18) explains the larger shift of the spectral
function we observe for the larger localized spin, and the
smaller shift we observe for larger � because it corresponds
to a smaller J = 4t2/�. We refer to this contribution to the
MBS as the exchange contribution.

The other contribution to the MBS originates from a nar-
rower spectral bandwidth in the MI phase in contrast with the
spectral bandwidth in the PI phase due to the double exchange
mechanism. This can best be seen in Fig. 7(d). In this panel
we exemplarily depict the spectral bandwidth in the MI phase
for S = 1 and S = 2 by double-headed arrows. In Ref. [24]
we discussed how the double exchange mechanism shrinks
the spectral bandwidth upon transition from the PI to the MI
phase leading to a contribution proportional to the hopping to
the MBS. We refer to this contribution as the double exchange
contribution or the hopping contribution.

The additional aspect one can read off from Fig. 7 is that
how the hopping contribution depends on the size of the lo-
calized spin S. Upon increasing the size of the localized spin
from S = 1 to S = 2 the spectral bandwidth in both the PI
phase and the MI phase decreases. However, this decrease is
larger in the MI phase than in the PI phase which results in
a larger hopping contribution to the MBS for larger localized
spin.
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FIG. 8. The magnetic blueshift �MG(T ) given by Eq. (1) at T =
0 vs the inverse bare charge gap � = U + 2SJH in the Hubbard-
Kondo-Heisenberg (HKH) model (3) with the localized spin S =
1
2 , 1, 2. The hopping parameter t is used as the unit of energy on both
axes. The results for the Hubbard-Kondo (HK) model with S = 2 and
for the Hubbard model from Ref. [24] are included for comparison.
The results are obtained for JH = 0.3U/S varying U , except for the
filled circles (HKH model with S = 2) and the filled squares (HKH
model with S = 1) which are for JH = 0.225U independent from S.

To extract quantitative values of the hopping and the ex-
change contributions to the MBS for the localized spins S =
1
2 , 1, 2 in the HKH model (3) we plot the MBS �MG(0) vs the
inverse bare charge gap � in Fig. 8. The hopping parameter
t is used as the unit of energy on both axes. A quadratic fit
shown by a continuous line nicely describes the data leading
to the following expansion for the MBS in the HKH model in
powers of J/t = 4t/�,

�MG(0)

t
= C0 + C1

4t

�
+ C2

16t2

�2
+ · · ·

= C0 + C1
J

t
+ C2

J2

t2
+ · · · . (19)

One can see from Eq. (19) that there is a hopping contribution
�

(t )
MG(0) = C0t and an exchange contribution �

(J )
MG(0) = C1J

to the MBS. The hopping contribution is proportional to the
offset and the exchange contribution is proportional to the
slope in Fig. 8 in the limit t/� → 0. The expansion coeffi-
cients in Eq. (19) are provided in Table I for different spin S.
Note that Table I provides the expansion coefficients also for
the S = 3/2 case. The data for S = 3/2 are not included in
Fig. 8 in order not to overload the figure. In Fig. 8, we also
included our results for the Hubbard model (4a) and the HK
model (17) with the localized spin S = 2 from Ref. [24] and
their linear fit for comparison. The results in Fig. 8 are ob-
tained for JH = 0.3U/S varying U , except for the filled circles
(HKH model with S = 2) and the filled squares (HKH model
with S = 1) which are computed for a fixed JH = 0.225U
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TABLE I. The expansion coefficients for the MBS of the Mott
gap in Eq. (19). The results are for the HKH model in Eq. (3) with
the localized spin S. One notes that the localized spin S in the HKH
model corresponds to a Mott insulator with the number of orbitals
2S + 1.

S = 0 S = 1/2 S = 1 S = 3/2 S = 2

C0 0 1.16 1.84 2.30 2.64
C1 14.4 28.3 33.0 38.5 42.4
C2 0 −33.5 −50.4 −73.6 −86.8

independent from S. The fit is performed for the data with
JH = 0.3U/S but nicely describes also the data obtained for
JH = 0.225U . This confirms that the MBS depends only on
the bare charge gap � = U + 2SJH and not on JH and U
individually.

One can see from Table I that the hopping C0 and the
exchange C1 coefficients both increase upon increasing the
size of the localized spin in the HKH model (3). One notes
that there is also a negative quadratic contribution C2 which
becomes larger for larger localized spins and suppresses the
MBS as t/� increases. The exchange coefficient C1 = 28.3
for S = 1/2 is almost just twice the exchange coefficient C1 =
14.4 for S = 0. This is nicely consistent with our explanation
of the origin of the exchange contribution of the MBS based
on the mean-field effective magnetic field in Eq. (18), which
suggests a proportionality of C1 to S + 1/2. For larger local-
ized spins, however, the exchange coefficient starts to deviate
from the value (2S + 1) × 14.4. We associate such a deviation
to higher-order terms beyond the mean-field effective mag-
netic field (18) which become more and more important for
larger localized spins.

An equal hopping contribution in the HKH model (3) and
in the HK model (17) having the same localized spin S is
expected since, in the limit t/� → 0, the Heisenberg term
(4c) vanishes [since we have fixed J = 4t2/� in Eq. (4c)].
Indeed, Fig. 8 shows a nice agreement between the hopping
contribution in the HKH model (C0 ≈ 2.64) and in the HK
model (C0 ≈ 2.74) for the localized spin S = 2. This provides
a corroborating consistency test for our results. As t/� is
increased from zero in Fig. 8, the MBS in the HKH model
with S = 2 increases much faster than the MBS in the HK
model due to the additional exchange interaction (4c).

IV. APPLICATION

The expansion for the MBS of the Mott gap in Eq. (19) is
obtained for the simple cubic lattice with the hopping and the
exchange interactions limited to nearest-neighbor sites. In real
materials, however, one needs to deal with various kinds of
lattice structures and long-range terms beyond nearest neigh-
bor are commonly involved. The aim of this section is to
generalize Eq. (19) such that it can be employed to estimate
the MBS for a larger variety of antiferromagnetic compounds.

As we discussed in the previous section, one contribution
to the MBS originates from the exchange interaction and can
be understood based on the effective mean-field magnetic field
in Eq. (18). This suggests to substitute the exchange J in
Eq. (19), which holds for Z = 6 neighbors, by an effective

value J̃ ,

ZJ −→ ZJ̃ =
∑

i

σiZiJi, (20)

for a system with exchange interactions represented by Ji for
the ith neighbor and the corresponding coordination number
Zi. The sign factor σi = ±1 depends on the spin orientation
on the lattice sites linked by Ji. It takes the positive value +1
if the sites linked by Ji have antiparallel spin ordering and
the negative value −1 if the sites linked by Ji have parallel
spin ordering. This is because an antiferromagnetic exchange
interaction Ji > 0 linking sites with antiparallel spin ordering
or a ferromagnetic exchange interaction Ji < 0 linking sites
with parallel spin ordering enhance the effective mean-field
magnetic field while an antiferromagnetic exchange interac-
tion linking sites with parallel spin ordering or a ferromagnetic
exchange interaction linking sites with antiparallel spin or-
dering suppress the effective mean-field magnetic field. This
accumulates the energetically favored spin alignment in the
mean-field theory.

The expansion in Eq. (19) is obtained for an ideal antifer-
romagnetic system, i.e., the exchange interaction is always
antiferromagnetic linking only sites with antiparallel spin
ordering. Accordingly, we expect the generalization to be
valid for a system which contains no or weak ferromagnetic
exchange interactions in contrast with the antiferromagnetic
ones. In addition, the antiferromagnetic exchange interactions
linking sites with parallel spin ordering should be weak.

As we discussed in the previous section and also in
Ref. [24], the hopping contribution to the MBS stems from the
narrowing of the spectral bandwidth by the double exchange
mechanism. The double exchange mechanism reduces the
effective hopping between sites with antiparallel spin ordering
upon transition from the PI to the MI phase. If the sites have
parallel spin ordering, the double exchange mechanism en-
hances the effective hopping [24], which is expected to induce
a decrease in the MBS. This suggests the substitution of the
hopping t in Eq. (19) by an effective hopping t̃ according to

Zt −→ Zt̃ =
∑

i

σiZiti, (21)

where ti is the hopping to the ith neighbor given by ti =√
�Ji/2 for the antiferromagnetic exchange interaction Ji >

0. The bare charge gap is computed from the Hubbard U and
the Hund coupling JH as � = U + 2SJH. We set ti = 0 for the
ferromagnetic exchange interaction Ji < 0 which is supposed
to be weak. The sign factor σi = ±1 has the same definition
as above, i.e., it is +1 if ti is between sites with antiparallel
spins and −1 if ti is between sites with parallel spins.

The exchange interactions can be extracted adequately
by fitting the inelastic neutron-scattering data of low-energy
excitations to the magnon dispersion obtained by means of
spin-wave theory, for instance. The approach has already
been applied to a variety of magnetic materials and the ex-
change interactions are known. The atomic physics or the
density-functional theory calculations yield an estimate of
the Hubbard interaction U and the Hund coupling JH which
determine the bare charge gap � = U + 2SJH. Hence, the
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FIG. 9. Antiferromagnetic order in α-MnTe. There are ferromag-
netic triangular layers which are stacked antiferromagnetically. The
first, second, third, and fourth neighbors are specified.

relation (19) with the generalizations (20) and (21) reads

�MG(0) = C0t̃ + C1J̃ + C2
J̃2

t̃
(22)

and provides a convenient way of evaluating the MBS of the
Mott gap in antiferromagnetic materials.

In the following we apply the method to the room-
temperature antiferromagnets α-MnTe, NiO, and BiFeO3

which are considered promising candidates [2] for appli-
cations in antiferromagnetic spintronics. These systems are
better described as charge-transfer insulators [54] rather than
Mott insulators. The charge gap, known as the charge-transfer
gap, is defined between the occupied p band and the empty
upper Hubbard band. The MBS of the charge-transfer gap can
be approximated as half the MBS of the Mott gap [24],

�CTG(T ) ≈ 1
2�MG(T ). (23)

This relies on the assumption that the effect of the magnetic
ordering on the p band is negligible because it is only indi-
rectly affected by the magnetic ordering, and that the shifts
of the upper and lower Hubbard bands to higher energies are
equal, which is typical for half filled Mott insulators. For a
more detailed discussion we refer the reader to Ref. [24].

We point out that we neglect vertex corrections in our
calculations of the one-particle propagator and its spectral
density. They enhance the formation of excitons which influ-
ence the charge gap as measured in experiment. But in DMFT
they do not enter in conductivity at all [55] and are expected
to be small anyway for local interactions in large dimensions.
In lower dimensions, this can be different [56,57].

A. α-MnTe

We start with the MBS in α-MnTe for which we per-
formed an extensive analysis in Ref. [24] and for which there
is also experimental data available [16,17]. This permits us
to examine how well the generalization in Eqs. (20) and
(21) is grounded before proceeding to the other compounds.
The antiferromagnetic order in α-MnTe develops below the
Néel temperature TN ≈ 310 K with the magnetic Mn+2 ions
forming triangular ferromagnetic layers which are stacked
antiferromagnetically. The magnetic order and the neighbor-
ing sites up to the fourth neighbor are specified in Fig. 9.

The exchange interactions involving up to third neighbors are
computed by fitting the magnon dispersion to the inelastic
neutron-scattering data [26]. In Ref. [58] the exchange inter-
actions are slightly modified adding also a fourth-neighbor
term in order to attain accurate results for the Néel temper-
ature. We use the exchange couplings of Ref. [58] given by
J1 = 3.072 meV, J2 = 0.0272 meV, J3 = 0.4 meV, and J4 =
0.16 meV [according to our definition of the exchange inter-
action in Eq. (2)] which are all antiferromagnetic allowing
to assign a hopping term to them. One notes that the domi-
nant terms J1 and J3 are between sites with antiparallel spin
order. The terms J2 and J4 linking parallel spins are weak.
We consider a Hubbard interaction U = 5.5 eV and a Hund
coupling JH = 0.8 eV based on the atomic physics [17] and
the density-functional theory [58]. The half filled 3d shell
of Mn+2 ions corresponds to the localized spin S = 2 in the
HKH model (3). These values result in the hopping param-
eters t1 ≈ 81.74 meV, t2 ≈ 7.69 meV, t3 ≈ 29.49 meV, and
t4 ≈ 18.65 meV.

Substituting the hopping and the exchange parameters in
Eqs. (21) and (20) with the coordination numbers Z1 = 2,
Z2 = 6, Z3 = 12, and Z4 = 2 and the spin orientation signs
σ1 = σ3 = 1 and σ2 = σ4 = −1 according to Fig. 9, we
find the effective hopping t̃ = 72.34 meV and the effective
exchange J̃ = 1.74 meV. This leads to the MBS of the charge-
transfer gap

�CTG(0) = C0

2
t̃ + C1

2
J̃ + C2

2

J̃2

t̃

≈ (95 + 37 − 2) meV = 130 meV, (24)

where the expansion coefficients for S = 2 in Table I are used.
In Ref. [24] we performed an extensive explicit analysis of the
HKH model involving hopping and exchange interactions up
to the fourth neighbor with the above parameter values for
α-MnTe. Our results provide a very nice description of the
experimental data [16,17] for the MBS in α-MnTe. We obtain
a MBS of the charge-transfer gap �CTG(0) ≈ 120 meV. This
indicates that Eq. (24) has reproduced the result of the explicit
analysis with only 8% error.

We check further the results in Eq. (24) by comparing the
hopping and the exchange contributions with the results of the
explicit calculations in Ref. [24] individually. In Ref. [24] we
carried out a polynomial fit similar to Eq. (19) and found that
the MBS 120 meV consists of a hopping contribution of about
76 meV and an exchange contribution of about 43 meV. Com-
paring with the results in Eq. (24) we identify an error of 25%
for the hopping contribution and an error of about 14% for
the exchange contribution, which still depicts overall a nice
agreement. We stress that the results in Eq. (24) are achieved
by just some simple substitutions while the results in Ref. [24]
are obtained through extensive theoretical calculations.

We would like to mention that, if the Hubbard interaction
changes from U = 4 eV to U = 7 eV and the Hund cou-
pling from JH = 0.7 eV to JH = 1.0 eV, the MBS in Eq. (24)
changes from �CTG(0) ≈ 120 meV to �CTG(0) ≈ 140 meV.
This change is solely due to the hopping contribution because
the exchange interactions are kept fixed. This shows that there
is no significant dependence of the MBS on the Hubbard
interaction and the Hund coupling. One only needs to have a

205117-11



HAFEZ-TORBATI, ANDERS, AND UHRIG PHYSICAL REVIEW B 106, 205117 (2022)

FIG. 10. Magnetic structure of NiO. The second-neighbor ex-
change interaction (J2) is always between sites with antiparallel spin
orientation. The first-neighbor exchange interaction can link sites
with parallel (J1,p) or antiparallel (J1,ap) spin ordering.

rough estimate of these parameters; the exchange interactions
are the essential ones.

B. NiO

We proceed to the antiferromagnetic insulator NiO which
has the Néel temperature TN ≈ 530 K. The magnetic Ni+2

ions form ferromagnetic (111) planes stacked antiferro-
magnetically on a face-centered cubic lattice [59–61]. The
magnetic structure of NiO is shown in Fig. 10. Each magnetic
ion is surrounded by twelve first neighbors having parallel
alignment with six of them and antiparallel alignment with the
other six. The alignment with the second neighbors is always
antiparallel. The onset of the magnetic ordering is found to
be accompanied by a small rhombohedral distortion which
continues to zero temperature [62,63]. The lattice distortion
is also expected to induce a band gap blueshift [16,17] which
is described by an empirical Varshni function [64].

Measurements of the magnon dispersion by inelastic neu-
tron scattering suggest first neighbor ferromagnetic exchange
interactions J1,p = −1.39 meV and J1,ap = −1.35 meV and a
second neighbor antiferromagnetic exchange interaction J2 =
19.01 meV [65]. The term J1,p links sites with parallel spin
ordering and the term J1,ap links sites with antiparallel spin
ordering, see Fig. 10. The small difference between J1,p and
J1,ap originates from the lattice distortion. The antiferromag-
netic interaction J2 is much larger than the ferromagnetic
interactions J1,p and J1,ap. This suggests our approach to be
applicable to NiO.

The Hubbard interaction and the Hund coupling in NiO
were estimated from the local density approximation com-
bined with the DMFT as U = 8 eV and JH = 1 eV [66]. The
electron configuration 3d8 of the Ni+2 ions implies that two
orbitals need to be taken into account corresponding to the
HKH model (3) with the localized spin S = 1/2. We set
the first-neighbor hopping t1 = 0 due to the ferromagnetic
exchange interaction and find the second-neighbor hopping
t2 = √

�J2/2 ≈ 206.8 meV. The effective exchange parame-
ter in Eq. (20) and the effective hopping parameter in Eq. (21)

can easily be obtained as J̃ = J2 + J1,ap − J1,p = 19.05 meV
and t̃ = t2 ≈ 206.8 meV. Using the expansion coefficients
provided in Table I for S = 1/2, we find the MBS of the
charge-transfer gap in NiO

�CTG(0) = C0

2
t̃ + C1

2
J̃ + C2

2

J̃2

t̃

≈ (120 + 269 − 29) meV = 360 meV, (25)

which is almost three times larger than the MBS we found for
α-MnTe in Eq. (24). This large MBS in NiO, despite the small
localized spin, stems from the large effective exchange inter-
action J̃ = 19.05 meV in contrast with the effective exchange
interaction J̃ = 1.74 meV in α-MnTe.

The optical absorption spectra of NiO has been the sub-
ject of extensive research in the past decades [67–72] and a
band gap of about 3.5–4.3 eV is suggested depending on the
method used to extract the gap from the experimental data
[73]. The temperature dependence of the band gap measured
from the Néel temperature to the room temperature indicates
an increases of about 350 meV [74]. If we assume based on
our numerical results [24] on the temperature dependencies
that below room temperature there is no significant further
magnetic contribution to the blueshift of the band gap as the
magnetization tends to saturate, the Varshni function fit to the
experimental data [75] captures the band gap blueshift due to
the lattice distortion in NiO. Subtracting the lattice distortion
contribution from the blueshift of the band gap 350 meV one
finds a MBS of about 300 meV. This is in an overall nice
agreement with our estimate 360 meV in Eq. (25).

C. BiFeO3

We now turn to the multiferroic semiconductor BiFeO3

which has a band gap of about 2.7 eV at the room temper-
ature. The transition-metal ions Fe+3 with a half filled 3d
shell develop a Néel antiferromagnetic order on a pseudocu-
bic lattice structure below the Néel temperature TN ≈ 640 K,
see Fig. 11. Each Fe+3 magnetic moment is surrounded by
six first-neighbor Fe+3 with an antiparallel magnetic moment
alignment and twelve second-neighbor Fe+3 with a parallel
magnetic moment alignment [76–78].

The exchange interactions in BiFeO3 are determined by
the inelastic neutron scattering as J1 = 4.38 meV for the first
neighbor and the much weaker J2 = 0.15 meV for the sec-
ond neighbor [78]. A Hubbard interaction U = 5 eV and a
Hund coupling JH = 1 eV sound plausible from the differ-
ent density-functional theory analyses [79–81]. These values
result in a first-neighbor hopping t1 ≈ 99.3 meV and a second-
neighbor hopping t2 ≈ 18.4 meV. The effective hopping and
the effective exchange interaction can be found from Eqs. (21)
and (20) as t̃ ≈ 62.5 meV and J̃ = 4.08 meV. Using the ex-
pansion coefficients for S = 2 in Table I one obtains

�CTG(0) = C0

2
t̃ + C1

2
J̃ + C2

2

J̃2

t̃

≈ (83 + 86 − 12) meV = 157 meV (26)

for the MBS of the charge-transfer gap in BiFeO3.
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FIG. 11. Néel antiferromagnetic order on a simple cubic lattice
describing the magnetic structure in BiFeO3. The first-neighbor ex-
change interaction J1 links sites with antiparallel spin ordering and
the second-neighbor exchange interaction J2 links sites with parallel
spin ordering.

Despite extensive experimental research there are con-
flicting conclusions on the direct or the indirect nature of
the band gap in BiFeO3 and its temperature evolution. A
direct band gap for BiFeO3 is found in Refs. [82–86],
which indicate a blueshift of about 100 meV upon reducing

FIG. 12. The spectral function A(ω) of the Hubbard-Kondo-
Heisenberg model (3) plotted vs frequency ω in (a) the magnetic
insulator (MI) phase and (b) in the paramagnetic insulator (PI) phase
for the localized spin S = 2 and the number of bath sites nb = 4 in
the ED impurity solver. The Hubbard interaction is fixed to U = 32t
and the Hund coupling to JH = 0.3U/S, which result in the bare
charge gap � = 1.6U . The spectral functions for the different tem-
peratures T are shifted vertically for clarity. The Néel temperature is
given by TN ≈ 1.37t . The arrows specify the peaks from which the
Mott gap in the MI phase GMI(T ) and in the PI phase GPI(T ) are
read off.

FIG. 13. The same as Fig. 12 but for the localized spin S = 1
with the Néel temperature TN ≈ 0.59t .

the temperature from TN ≈ 640 K to zero [86]. A much
stronger change in the band gap is reported in Ref. [87].
The change is about 500 meV between the Néel temperature
and the room temperature [87]. A detailed Raman-scattering
study of the electronic band structure of BiFeO3 associates
the strong band gap blueshift observed in Ref. [87] to the
indirect nature of the band gap [88]. Band-structure calcu-
lations based on the density-functional theory also indicate
an indirect band gap in BiFeO3 [79,80,87]. More detailed
investigations are needed to determine the temperature evo-
lution of the band gap in BiFeO3 and its microscopic
origin, specifically including the effect of the antiferromag-
netic ordering on the band-gap blueshift. This will allow
a comparison of the experimental data with our theoretical
result in Eq. (26) and can unveil the direct or the indi-
rect nature of the band gap in this technologically attractive
material.

V. CONCLUSION

We perform a systematic study of the effect of antifer-
romagnetic ordering on the single-particle spectral function
in Mott insulators involving a various number of orbitals.
Our analysis relies on the DMFT of a HKH model. The
model goes far beyond the low-energy Heisenberg model
and permits investigation of charge excitations. The an-
tiferromagnetic ordering is accompanied by a transfer of
the spectral weight to lower energies and a MBS of the
Mott gap. The MBS increases upon increasing the num-
ber of orbitals due to the double exchange and exchange
mechanisms.

We provide an expansion for the MBS of the Mott gap
in terms of the hopping and the exchange coupling in our
prototype model. We show how such an expansion can be
generalized for application to realistic Mott or charge-transfer
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insulator materials. This allows the estimation of the MBS
in real materials in an extremely simple manner avoiding ex-
tensive theoretical calculations. The approach is exemplarily
applied to α-MnTe, NiO, and BiFeO3 as attractive compounds
for antiferromagnetic spintronics application [2]. We find a
MBS of about 130 meV for α-MnTe which is in an overall
very good agreement with the previous theoretical calcula-
tions and experimental data. For NiO and BiFeO3 we obtain a
MBS of about 360 and 157 meV, respectively. Our results for
NiO also match the available experimental data. For BiFeO3

there are currently controversial results in the literature on the
direct or the indirect nature of the band gap and its temperature
dependence. A systematic study of the MBS in BiFeO3 and
its comparison with our theoretical prediction can unveil the
direct or the indirect nature of the band gap in this multiferroic
compound.

We emphasize that the formula (22) is intended to es-
tablish a quick, ready-to-use estimate for the MBS. Our
results pave the way for identifying materials with a strong
spin-charge coupling, which is a prerequisite to go beyond
the pure magnetic state in Refs. [7–9] and to realize a
coupled spin-charge coherent dynamics on the femtosecond
timescale.
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APPENDIX: SPECTRAL FUNCTION FOR nb = 4

We plot the spectral function A(ω) vs frequency at dif-
ferent temperatures T in the MI phase and in the PI phase
in Figs. 12(a) and 12(b), respectively, for the localized spin
S = 2 and in Fig. 13 for the localized spin S = 1. The results
are shown for the bare charge gap � = U + 2SJH = 1.6U
for U = 32t and the number of bath sites nb = 4. Similar
to the results for the number of bath sites nb = 6 in Figs. 3
and 4 discussed in the main text, we find that the spectral
function in the PI phase remains unchanged upon reducing the
temperature, but in the MI phase there is a shift of the Mott gap
specified by arrows to higher energies as the temperature is
reduced from the Néel temperature TN to zero. We also find a
similar magnetic redistribution of spectral weight as observed
in the main text for nb = 6, i.e., there is a larger spectral
weight near the Fermi energy in the MI phase at T → 0 in
contrast to the PI phase.
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