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We consider a laterally confined two-dimensional electron gas (2DEG), placed inside a gyrotropic cavity.
Splitting of the circularly polarized electromagnetic modes leads to the emergence of the ground-state sponta-
neous magnetization, anomalous Hall effect and chiral edge currents in 2DEG. We examine the dependence of
the magnetization and edge current density on the system size for two particular cases of the confining potential:
infinite wall and parabolic potentials. We show that paramagnetic and diamagnetic contributions to the edge
currents have qualitatively different dependences on the system size. For sufficiently large systems the emergent
magnetic moment scales with the number of particles and takes a universal value independent of the system
shape, the form of confining potential, and the presence of interparticle interactions. These findings pave the
route to the design quantum electrodynamic engineering of the material properties of the mesoscopic electron

systems.
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I. INTRODUCTION

In recent years, advances in nanofabrication allowed to
push the characteristic energies of light-matter interaction in
nanosystems embedded in the cavities to the values compa-
rable to cavity photon [1,2] energy. This enabled access to
the regime of the so-called ultrastrong coupling between light
and matter [3]. One of the main consequences of the onset
of ultrastrong coupling is the finite occupation number of
the cavity photons even in the ground state of the system.
This, in turn, may result in a substantial modification of the
material properties when it is embedded in the cavity, which
even triggered the emergence of the new field, Cavity QED
materials engineering [4—6]. The emergent effects include
cavity-mediated superconductivity [7—11], ferroelectric phase
transitions [12], topological phase transitions [13,14], as well
as substantial modification of the chemical reactions inside the
cavity [15-21].

For most of the systems, the dipole approximation, as-
suming that the cavity photon field is spatially homogeneous,
holds since the characteristic wavelength of the cavity photon
is typically orders of magnitude larger than the characteristic
length scale of the material system. At the same time, it has
been anticipated that the superradiant phase transitions are
forbidden in the cavities with spatially homogeneous modes
[22-24], although the debates on the general possibility of
such transition are still ongoing [25]. Therefore, it is of great
interest to investigate the properties of the electronic system
placed inside a gyrotropic cavity which supports nontrivial
phenomena even in the dipole approximation as it is presented
in this paper.
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It has been recently shown that for the macroscopic num-
bers of two-level systems, the cavity-mediated corrections to
macroscopic observables depend only on the effective cou-
pling of a single two-level system to the cavity and, thus,
vanish in the thermodynamic limit [26]. Simultaneously, it
is well known that for a case of a single two-level system
in a cavity, described by the celebrated Rabi model [27],
ultrastrong light-matter coupling may lead to the substantial
modification of the ground state and even to the quantum
phase transitions [28]. Thus, useful results can be obtained by
analyzing the dependence of the cavity-mediated corrections
to the ground state and various observables on the system size.
This utility of such of these results is supported by the fact
that most of the current material systems in the cavity QED
experiments belong to the mesoscopic class comprising large
but finite number of particles.

In this paper, we analyze the cavity-mediated corrections
to the ground state and observables for the case of laterally
confined two-dimensional electron gas placed in a gyrotropic
cavity. We have previously considered this system in the ther-
modynamic limit [29] and showed that gyrotropy of the cavity
leads to the finite Hall conductivity and to the macroscopic
magnetization. Here, we derive the explicit dependence of the
magnetization on the system size and electronic concentration
for the two specific confining potentials: rectangular well and
parabolic potential. Moreover, we derive the expressions for
the frequency-dependent anomalous Hall conductivity for the
case of disordered electron gas and lossy cavity.

The paper is organized as follows. In Sec. II we obtain
the general expressions for the diamagnetic and paramagnetic
contributions for the case of arbitrary confining potential and

©2022 American Physical Society


https://orcid.org/0000-0002-7241-7572
https://orcid.org/0000-0001-6288-0689
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.205114&domain=pdf&date_stamp=2022-11-09
https://doi.org/10.1103/PhysRevB.106.205114

SEDOV, SHIROBOKOYV, IORSH, AND TOKATLY

PHYSICAL REVIEW B 106, 205114 (2022)

FIG. 1. Geometry of the structure. Two-dimensional electron gas
is placed inside a Fabry-Pérot cavity with ferromagnetic mirrors.
Magnetization of the mirrors results in the energy splitting between
circularly polarized cavity modes, which, in its turn induces the
anomalous magnetization of the 2DEG.

apply them to two particular cases of the square well potential
(Sec. IT A) and the harmonic-oscillator potential. In Sec. III
we obtain the expressions for the anomalous Hall conductivity
for the case of disordered electron gas in a lossy cavity. In
Sec. IV we provide the summary of the results, conclusions,
and outlook.

II. EDGE CURRENTS IN THE LATERALLY CONFINED
TWO-DIMENSIONAL ELECTRON SYSTEM

Previously [29] we have considered the system schemati-
cally depicted in Fig. 1: two-dimensional electron gas (2DEG)
placed inside a gyrotropic cavity which is modeled by the
vacuum layer sandwitched between two semi-infinite ferro-
magnetic metals. Even though magnetic materials provide
a plethora of different megneto-optical phenomena, for our
purposes, the only important thing is that magnetization of
the mirrors results in the energy splitting between circularly
polarized cavity modes and in time-symmetry breaking which
makes it possible to observe spontaneous currents and mag-
netization of 2DEG as will be shown later. The geometry
shown in Fig. 1 comprises two ferromagnetic mirrors induc-
ing the Faraday rotation of the reflected light and as, thus,
inducing the splitting of the circularly polarized modes. At
the same time, there exist a number of alternative geometries
for the chiral and gyrotropic cavities discussed in Ref. [4]. In
Ref. [29] we have derived an effective Hamiltonian for the
cavity shown in Fig. 1 yielding

Q5,1 5 2

Hem = S 4t E[ﬂ + Az x )], (H
where  and & are the canonically conjugated photonic coor-
dinate and the momentum lying on the (xy) plane, [g;, ;] =
i8;j; A is the gyration parameter responsible for lifting de-
generacy between left- and right-polarized photon modes.
The operator of the cavity vector potential is given as A, ,
qx,y®(z), where ¢(z) is the normalized mode profile which
is omitted further by considering the dipole approximation.
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FIG. 2. The diagrammatic representation of (a) diamagnetic and
(b) paramagnetic parts of the current. Here solid lines correspond to
the electron Green’s function G(w, n), and wavy lines stand for the
cavity EM field propagator D,,, (¢).

Two eigenmodes of this Hamiltonian correspond to circu-
larly polarized modes with energy splitting between them
equals A.

The Hamiltonian of 2DEG coupled to the cavity electro-
magnetic (EM) field via a constant A reads

H— A 2
H, = fdzrl/f*(r)[% +U()— u]w(n, (2

where ¥/ (r) is the electron field operator, p = —iV, u is the
chemical potential, and U (r) is a confining potential. In gen-
eral, the Hamiltonian may also include a direct instantaneous
Coulomb interaction between electrons. We should stress here
that the coupling constant is considered to be independent of
the system size so that our analysis is neglecting the depen-
dance of spatially uniform EM field modes on the system size.

We primarily focus on the ground-state current induced by
the cavity EM field which is given as follows:

1
Ju(r) = %(I/f*(r)ﬁm/f(l") — [P (Y (1)
A
——{qu¥" ()Y (), 3
m

where the first and the second terms correspond to the para-
magnetic and diamagnetic contributions, respectively. Herein,
the equilibrium expectation value of an arbitrary operator A is
calculated using the Matsubara functional integral approach,
(A) =1/Z [ DIy*, ¥, qlAeS, Z = [ DIy*, ¥, qle’ with an
action S describing evolution in the imaginary time from 0
to B =1/T. We calculate the perturbative current straight-
forwardly by expanding the exponent ¢’ in the powers of A.
The Matsubara functional integral formalism is described in
details in Appendix A.

Diagrams corresponding to the lowest-order nonvanishing
contributions to the diamagnetic and paramagnetic currents
are shown in Fig. 2. Since the diamagnetic current by its
origin is proportional to the coupling constant, the simplest
term, quadratic to all fields, can be constructed by connecting
Ag,¥*(r)y (r) with the interaction Aq - [y *(r)(p/2m)¥ (r)].
It evidently results in the diagram describing the diamagnetic
part of the current in Fig. 2(a) which is just the product of the
photon propagator and the density-current response function,

)\'2
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where D, (¢) = (g,,(—&)q.(e))o is the photon Green’s func-
tion, corresponding to the photon Hamiltonian (1),

D™ = (82 4+ 4)8u0 — 26 A€y 5)

Its off-diagonal components, which reflect the gyrotropy of
the cavity, explicitly read

—2As¢

Dy.(e) = —Dyy(e) = (e2+Q2) (2 + Q%)

(6)

where Q4 =+/Qf+ A?>+ A are the frequencies of the
left- and right-polarized modes. Correlator y, j (r,x’, &) =
(n(r, £)j,(r', —e)) is the density-current Matsubara response
function in the system without electron-photon coupling.

By expanding ¢® up to the second order of A and aver-
aging the expression for the paramagnetic current with two
interactions Aq - [v*(r)(p/2m)y (r)], the nontrivial diagram
in Fig. 2(a) can be constructed, thus, we can similarly express
paramagnetic current as

)\’2
Ry =— ) Dy(e) [ dr'dr’y;, ; ; x,x',x" ¢), (7)
a p
e

where x;, ., (0, ¥, 17, &) = (ju(r)j, (¥, &) jo (¥, —&))o is
the nonlinear current response function. The appearance of
nonlinearity here can be understood physically: The current is
created by the fluctuations of the electric-field (E?) interacting
with electrons, not by the electric field itself which is equal to
zero. Apparently the above general expressions for the cur-
rents in terms of response functions are also valid for the
interacting electron gas. Diagrammatically, inclusion of the
Coulomb interaction corresponds to “decorating” graphs in
Fig. 2 by all possible insertions of the interaction lines, which
produces the exact response functions. It is also worth noting
that the sum of the two contributions, Egs. (4) and (7), relates
the equilibrium current in a quantum cavity with a gyrotropic
vacuum to a response function describing a classical photo-
galvanic effect.

As we show in Appendix C, in the case of a system
confined by a potential that is translation invariant in one
direction, the paramagnetic contribution of Eq. (7) vanishes
identically. We, therefore, expect that this part of the cur-
rent will be negligible for any sufficiently large system with
smooth edges.

For some special simple geometries, for example for a
semi-infinite sample bounded by a flat edge, the diamagnetic
contribution to the current density can be calculated exactly.
This can be performed using the following sum rule (so-called
acceleration identity) for the density-current response func-
tion [30]:

/dr'xn,jv(r, ', e)

= %[—V,”n(r)+/dr/xn,n(r, r, s)V,;}U(r’)}, 8)
where n(r) is the electron density, x,,(¢) is the density re-
sponse function, and U is the external potential which may
include both the confining potential and possibly a disorder
potential. Let us consider a confining potential corresponding
to a single edge along the y direction, which separates the

regions of zero density well outside the sample, and a finite
density n(r) = ny deeply inside. The total current along the
edge is calculated by integrating the current density of Eq. (4),
Jy~ [ drjf(r) and using the identity Eq. (8) for the density-
current response function. We can immediately notice that the
second term in Eq. (8) vanishes upon integration because the
gauge invariance requires [ drx, ,(r,r’, &) = 0. The integral
of the first term by partial integration reduces to the difference
of the densities across the edge and, thus, equals ny/me. As
for the translation invariant boundary the paramagnetic cur-
rent of Eq. (7) vanishes the total edge current can then be
expressed as

An Dy, (e
Tose = iy 2 ”8( 5 ©)
&

We note that this result is universal and holds also for in-
teracting electronic systems. The universal result Eq. (9) is
expected to give the edge current of any sufficiently large
system. Therefore, it should determine the emergent magnetic
moment m = % J(r x j)dr of alarge sample as

: AN < Dy (e)

my = =S, = oy Z _yg , (10)
where S is the sample area and N is the total number of
particles. Below, we study the distribution of the equilibrium
current and the magnetization for systems of different sizes
and confirm that the above universal results are indeed ap-
proached asymptotically.

To explicitly analyze the current density in finite systems,
we neglect the electron-electron interaction and compute the
current given by two diagrams in Fig. 2. The diamagnetic and
paramagnetic contributions can be written as spectral decom-
position,

)\‘2
HOES ey s Y Du(e)Glo + &, m)G(w, n')

w,e nn'

X P ()Y (1), (11

)\2
) = oo Y Du(@)Glw, n)G(w, n')

w,& n,n',n
X G(w — &, n)pi™ ph™ ji" (r), (12)

where w, & are fermionic and bosonic Matsubara fre-
quencies; index n numerates states of the unperturbed
electron system, G(w,n)= — (a,(w)a;(w)), is an elec-
tron Green’s function of the uncoupled system, where
ay(w) is an annihilation operator corresponding to the one-
particle state |n); i, (r) = (rln); pi" = (nlpln), ji" (r) =
1/ @m)[ (0)pyua(X) = (Butr (0)Yrn(0)].

Summation over fermionic Matsubara frequencies can be
performed explicitly, the corresponding result is presented in
Appendix B. It is worth mentioning that for bounded systems
where eigenfunctions can always be chosen as purely real, the
diagonal part of the photonic propagator does not contribute
to the current, and only nondiagonal elements induced by the
system’s gyrotropy result in the nontrivial term.

We now closely examine two particular cases of confining
potentials: square well and parabolic potentials.
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FIG. 3. (a) Spatial distribution of the absolute value of diamagnetic current in the infinite square-well potential for different size parameters
krL. Green arrows show the direction of current density at a given point. (b) Analogous distribution calculated for the paramagnetic current.
(c) and (d) present the y component of diamagnetic and paramagnetic contributions to the current, respectively, taken at y = L/2 vs kpx. Each
dependence is calculated for the following parameters: Qo/u =1, A/u = 0.01, kT /u = 0.01.

A. Square-well potential

First, we apply the described approach to the case when
2DEG is placed inside a square infinite quantum well with
size L x L. An intuitive size parameter for such a system is
krL, where kg is the Fermi wave vector. For large kgL, we
expect that effects of the corners to the integral properties
and even to the current density almost everywhere can be
neglected, the same stands for the the interference between the
different edges of the structure. Thus, the general properties in
the thermodynamic limit (kL — oo, kfr is fixed) can be un-
derstood by considering semi-infinite 2DEG which occupies
half-plane x > 0. In Appendix C, we present the derivation
of both currents. Whereas paramagnetic density is appeared
to be locally zero, diamagnetic current is the nontrivial one
localized near x = 0, and it creates the following edge current
obtained by the integration over x,

2
wall _ Ang A

=207 13
edge 2Q2Q0m? (13)

Q
[1 +ni + X"ng},
where Qo = VQ2+ A%, ng =np(Q-) £ np(Qy), Qt =
Qo £ A, ng is the density of electrons in the system, and
ng is the Bose-Einstein distribution. We note that this re-
sult is very similar to the one obtained for the case of
the edge DC current in the 2DEG under classical circu-
larly polarized optical pump in the case of weak disorder
potential [31]. In Figs. 3(a) and 3(b) we present spatial dis-
tribution of the absolute values of both currents, their vector
plots are depicted with green arrows. We normalize our re-
sults on jr = novp (A/pn)(A2/mu?), where vy = /2pu/m—
electron’s speed on the Fermi surface. Numerical calculations
show that currents have significantly different bahaviors.

Diamagnetic current relatively far away from corners tends
to some distribution which can be clearly see in Fig. 3(c),
whereas paramagnetic current density has nonzero distribu-
tion only near corners.

We also present the convergence of the edge current and
magnetization of the system to Je"(vjal; with respect to krL in
Fig. 4. It proves our considerations that in the thermodynamic
limit the system is mainly defined by the properties of semi-

infinite 2DEG.

B. Harmonic oscillator

Let us consider parabolic confining potential U(r) =
maw?r? /2—another relatively simple system which allows to

1 - - - - -
0.8 I . . . . e . - L oad
06} . =

S TN
: ¢ g/ T
0.4 : : - : :
0 50 100 150 200 250 300
ke

FIG. 4. Convergence of edge current and diamagnetic magneti-
zation of the electron system in the infinite well confining potential
to the edge current in the semi-infinite system. At each plotted point,
chemical potential x and density n = N/S are fixed. The following
parameters are used: Q/u =1, A/u =0.01, T/u = 0.01.
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FIG. 5. (a) Spatial distribution of the diamagnetic part of the current in the parabolic potential for two values of w/w. (b) Analogous
distribution calculated for the paramagnetic current. (c) and (d) present radial distribution of the diamagnetic and paramagnetic contributions
to the current, respectively. Each dependence is calculated for the following parameters: 2o/ =1, A/u = 0.01, kT /pn = 0.01.

obtain some analytical results not even in the thermodynamic
limit,

42
i =-on = ;[frm — f W+ W1 ()

gDy, (e)

, 14
2 + w? (14

XY, (Y, Y

4w’ .
;) Z w"ﬂLl(X)an(x)lm[jy«‘+l’ »(y)]

R ==

X/ (ny + D)(ny + Dl fus2 — 2fut1 + ful
o Z eDy,(e)

- (82 +w2)2’ (15)
where v, (x) are eigenfunctions of one-dimensional har-
monic oscillator, f, = f(wn) is Fermi-Dirac distribution.
From the obtained expression one clearly sees that in the low-
temperature limit, 7/ — 0, currents are determined only by
the electrons on the Fermi surface.

We present the distributions of currents in Fig. 5. For both
contributions, the radius of localization, where currents are
not exponentially suppressed, grows as O(1/w). It can be
understood from the quasiclassical approach in which this
radius is given by /2u/(mw?). In the low-temperature limit
T /i — 0, the summation of the eigenstates can be performed
yielding the expression for magnetization,

= (5] 4 ) e 0
my = _wzqgf + SL%J +6) 322;3 Z (a?i(zz)f
(17)

where |-] corresponds to the floor function. We also note
that the prefactor in Eq. (16) is exactly the doubled num-
ber electrons in the system. Interestingly, this result for the
diamagnetic magnetization can be also obtained using the
identity (8) for arbitrary temperature—this is explained ex-
plicitly in Appendix D. The summation over the Matsubara
frequencies can also be taken analytically, and the results are
presented in Appendix E.

These expressions hold for an arbitrary relation p/w and
require only low temperatures relative to the chemical poten-
tial. Since the number of occupied states in the system is equal
to 1/2|u/w]|(lp/w] + 1), we obtain nonzero magnetization
in the limit of vanishing oscillator frequency, o/ — 0, only
for the diamagnetic contribution. It coincides with the results
we have found for the infinite well potential. It is interesting
that the system with completely different potentials inherits
this behavior.

It is worth mentioning that our analysis is neglecting the
dependence of the coupling constant A on the size of the
cavity mode; for the physical systems, this constant behaves
as O(1 /«/V ), where V is the mode size. More specifically,
it means that the cavity should be much larger than the
maximum size of the electron system in the considered se-
ries approaching the thermodynamic limit so that the dipole
approximation is valid for every characteristic size L. Addi-
tional scaling of the cavity size will suppress the observable
magnetization.

III. VACUUM ANOMALOUS HALL EFFECT IN THE
PRESENCE OF DISORDER AND CAVITY LOSSES

In this section we derive the Hall conductivity of the system
from the equations of motions for the observables taking into
account disorder in electron gas and cavity losses. First of
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all, we note the total field E comprises the external field Eg
and the cavity field E.,y. The current is connected to the
total electric field via the Drude formula j = opE, where
op = (ne?/m)(1 — iwt)™', and 7 is the momentum relaxation
time. To find the cavity field we note that it is directly related
to the time derivative of the average cavity photon coordinate
E.., = A{q)/e which can be extracted from the equation of
motion for the photon coordinate derived from the Hamiltoni-
ans (1) and (2),

(@) — 2 Az x (q) + Q5(q) + y(q) = Aj, (18)

where v =j/(e) and y is the cavity losses rate. We as-
sume that cavity losses very weakly depend on frequency.
Since the equation is linear, we can take the Fourier transform
and arrive at a linear system of equations. From Eq. (18) we
find the expression for the cavity field,

Ecyy = —iw)?/(e)Dj, (19)
where D is the cavity photon propagator, [D~'], =

D', = —w@+iy) and [D'y=—[D"].=
—2iwA. The expression for the current then reads

wt M. !
—D| opEy, (20)

i= [i + -
I+wtm
where [ is the unity matrix, and o = (ne’z/m)(1 — iwt)™"
is the Drude conductivity. From Eq. (20) one immediately can
see that that the contribution to the DC current from the cou-
pling to the cavity photon vanishes for any finite 7. This effect
is similar to vanishing of the spin Hall current at any finite
disorder [32-34]. We note that whereas the Hall conductivity

J

vanishes at any finite disorder, the stationary current present
in the absence of the external field is immune to disorder as
shown in Sec. II.

IV. CONCLUSION

We have considered the generation of the chiral edge
currents and spontaneous magnetization in the mesoscopic
system comprising a laterally confined 2D electron gas
placed inside a gyrotropic cavity. It has been shown that the
diamagnetic and paramagnetic contributions to the edge cur-
rent density have qualitatively different asymptotic behaviors
when approaching the thermodynamics limit: whereas para-
magnetic current density vanishes locally, the diamagnetic
contribution approaches the finite value which results in the
finite magnetization in the thermodynamic limit. We have also
shown using semiclassical equations that the arbitrarily small
disorder in 2DEG destroys the DC Hall conductivity, whereas
leaving the AC Hall conductivity finite. These results suggest
the cavity engineering of the material properties can serve as
a powerful tool for controlling the transport properties in the
mesoscopic systems.
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APPENDIX A: FUNCTIONAL INTEGRAL FORMALISM

The expectation value of an arbitrary operator A, which in a general case depends on both fermionic and photonic operators,

can be calculated as

AW™ Y. @) = % / DIY™, . gAY, YtV dl, (AD)
where Z is the partition function given by
z= [ Dy qe v, (A2)
f D[vy*, ¥, q] denotes integration over all realizations of the fields; S[v*, ¥, q] is the thermal action,
SWy*. vr.ql = /_oﬂd{/dzr{w*(—af o= )| - S~ 2 a1 - %5&], (A3)

Let Sy = S|s—o, then by expanding the exponent e’ near e% in the powers of A we can write an arbitrary expectation value in
terms of the uncoupled fermionic and photonic Green’s functions. Let us highlight that since Sy is quadratic, only operators
containing even powers of the fields can give a nonzero contribution after averaging, therefore, Z = Zy + O(A?). For the same
reason, expression [ D[y*, ¥, qlj,e5V" V-4 is, at least, proportional to A%. It means that one can take the zero-order partition
function when calculating currents up to the second order of X.
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APPENDIX B: EXPLICIT EXPRESSIONS FOR CURRENTS

The explicit expression for the electron Green’s function G(w, n) = (iw 4+ 1 — E,)~" and summation over fermionic Mat-
subara frequencies w = w(2s + 1)T, s € Z, allows to rewrite (11) in the following way:

o(e)
Ju®) = — 3 ZZ P +Z_ 7 L ED — FEW, ()Y (r)p" (B1)

where f(E,) is the Fermi-Dirac distribution. Considering that an unperturbed system has time-reversal symmetry, and, therefore,
both ¥, (r) and v, (r) are eigenfunctions corresponding to the same energy, we get

v EI‘L
jar) = 2m2 3 ZZLU@) FENYE @) — Yo (0P (0)p"]

2 2
e € + (Ey — E)
ZSDMV(e) / * 7, n'n
m2 5 ZZ T gy ED — FEN[Y Y0P — Y () (0)p) "], (B2)
where we used (V| p,|¥5) = — (¥ |Pu|¥n). The first line gives zero after summation over n, n’ since the function under the

sum is antisymmetric with respect to interchanging n <> n’. The second line has a nontrivial contribution only for the nondi-
agonal element of the photonic propagator, which follows directly from its time-reversal properties Dy, (¢) = D,y(¢), Dy (¢) =

—Dy, (=€) = —D,y(¢). Thus, the diamagnetic part of the current reads
A2 eD,,(8)| ,
.d v VFEU * nn
= — —— 7 [f(Ey) — f(E)]] ; ,, . B3
J® = o5 Z T (B = By En) = FEm[Y (0 (0)p))] (B3)

With analogous considerations one can obtain the following expression for the paramagnetic part of the current:

s 33 [ B ) T ) L
— E (En — En] )2 _|_€2 (En/ _ En] )2 + 2 m{p, Py

HOES ). (B4)

V#£0,& n,n',ny

If the variables can be separated, and the basis can be chosen as ¥/, (r) = ¥, ()Y, (v) with n = (n,, n,) being a multi-index, the
Eq. (B4) simplifies

€Dy (&) f(En)|En, — En(,
(r) = Z Z . > [ ) ] 5 m
ﬂ & (ny,ny), (1, ny ) [ 2 + (Enx - E"’v) ][82 + (E"" B E"S) ]

[y g 2 (o), (BS)

where E, ’s are eigenenergies of the Hamiltonian projected on the subspace corresponding to coordinate x(y), and pz; g

(1,011” [Pryl an)

APPENDIX C: CALCULATION OF EDGE CURRENT FOR THE SEMI-INFINITE 2DEG

Eigenfunctions of the semi-infinite 2DEG which occupies half-plane x > 0 can be parametrized by the wave vector, and they
are given as Y = +/2/7 sin(k,x)e’. From Eq. (B1) we can see that the diagonal element of the photonic Green’s function does
not have any contribution to the current since (k|p,|k’) = 6(k — k)k,, and the § function leads to the trivial result. (k.|p.|k;) =
—i (k|0 U|k.) /(Exr — Ex), and using the parity of the photonic Green’s function, we obtain

4 eDy(8) (k10U k) fie — fi
b(r)-%é(k k)g ? B B BB V@OVL). (C1)

Now we want to calculate the integral edge current created Jegee = fooo dx j;‘(x). Integration over x results in §(k, — k), and,
therefore, we have

eDy.(e) of

Jedoe = ————— (k|0 U |ky . C2

e §k8:82+(Ek/_Ek)2< 0.U k) 5 E (€2)
N :k

Observing now that (k,|0,U |k,) = 2k§ /m = 2k,dEx /0k,, we can perform summation over k and arrive at

A1y < Dy(e)
Jedge ==~ ) = (C3)

&

where ny is the density of electrons in the bulk. Summation over ¢ results in the expression (13). We can see that this result
coincides with the universal result from Eq. (9) in the main text.
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The paramagnetic contribution is locally zero. This can be immediately seen from Eq. (BS) in the clean limit the momentum
matrix element for the momentum along the translationally invariant direction is just a § function, and this leads to vanishing of

the term E,,, — Ey in the numerator.

APPENDIX D: DIAMAGNETIC CONTRIBUTION TO THE MAGNETIC MOMENT FOR A HARMONIC CONFINEMENT

In the case of a harmonic confinement with U (r) =

Ema) r? the diamagnetic part of the magnetic moment can be calculated

exactly using the sum rule Eq. (8). Starting from the general expression Eq. (4) for the diamagnetic current in terms of the
density-current response function we represent the magnetic moment as follows:

1 d 1 a2 , ,
e KO 2w g Y Dua(e) | drdr'ryx, ;,(x,x' ¢). (D1)
&
Inserting here the identity Eq. (8) and performing the partial integration in the first term containing Vn we get
1 e D, ()
md = 2 g Z | Ve + mae? / drdr'r, (v, v, &)ry |. (D2)

The second therm in the square brackets is readily found from the linear-response version of the harmonic potential theorem

(301,

/drdr’rvxn,n(r, r/v g = —

N

m(e? + w?)’ (D3)

By inserting this identity into the previous equation we arrive at the following final result,

4 AN
mZ:W

eDy,(e)

, D4
&2 + o? (D4)

which, in the limit @ — 0 reduces to the universal limiting form of the magnetization Eq. (10).

APPENDIX E: SUMMATION OVER BOSONIC MATSUBARA FREQUENCIES FOR THE PARABOLIC
CONFINING POTENTIAL

We have shown that currents and magnetization for the parabolic potential are proportional to the following summation over

Matsubara frequencies that can be calculated explicitly,

Q_[1 + 2np(Q2_)]

1 Z eDy(e) _ A [ Q4 [1 + 2n5(24)]

&2 + ?

Q- Q) - Q) (- —-Q2) (22

[1+ 2np(w) + wi,ng(w)]

o[l + 2ng(w)]
B — ) (Q2 — aﬂ)} ED

(292 — w1 + 2np(Q)]

20(w? —

1 gDy, (e) _é B
E;m_ 2[

Q_[1 + 2np(Q_)]

Q2)(w? — Q2) w(w? —

LR - B

(w? — Q2 (Q% —

Q[+ 2np(24)] } )

Q1) (0 — Q)2 -Q2)
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