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Simulating models for quantum correlated matter unveils the inherent limitations of deterministic classical
computations. In particular, in the case of quantum Monte Carlo methods, this is manifested by the emergence
of negative weight configurations in the sampling, that is, the sign problem (SP). There have been several recent
calculations which exploit the SP to locate underlying critical behavior. Here, utilizing a metric that quantifies
phase-space ergodicity in such sampling, the Hamming distance, we suggest a significant advance on these ideas
to extract the location of quantum critical points in various fermionic models, in spite of the presence of a severe
SP. Combined with other methods, exact diagonalization in our case, it elucidates both the nature of the different
phases as well as their location, as we demonstrate explicitly for the honeycomb and triangular Hubbard models,
in both their U(1) and SU(2) forms. Our approach exemplifies a possible path allowing the exploration of the
phase diagram of a variety of fermionic quantum models hitherto considered to be impractical via quantum
Monte Carlo simulations.
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I. INTRODUCTION

Extracting unbiased properties of quantum many-body
systems exposes the challenge that numerical simulations
in classical computers face in exploring quantum matter.
Roughly put, one is trapped in a tale of two exponentials.
On one side, a constraint arises due to the “exponential wall”
associated with the growing dimension of the Hilbert space
with the system size. On the other side, in avoiding retriev-
ing exact quantum many-body wave functions and settling
instead for a statistical estimation of physical quantities, one
ends up facing the sign problem [1], which also leads to an
exponential scaling of simulation times. Apart from some spe-
cial (albeit important) limits, such as the half-filled fermion
Hubbard model [2], the latter “wall” appears to be a generic
(unavoidable) characteristic of quantum Monte Carlo (QMC)
methods for fermionic and frustrated bosonic systems and is
conjectured to be NP-hard in a class of spin-glass models [3].

While recent studies have in fact suggested that the average
sign of weights in the latter already pinpoints the regimes of
strong quantum fluctuations [4–7], here we focus on other
statistical properties that also aid in locating quantum phase
transitions. In particular, we investigate a specific class of
QMC methods for d-dimensional fermionic systems, referred
to as auxiliary field QMC [2,8,9], which provides a framework
to stochastically average observables by sampling a ficti-
tious field in d + 1 dimensions, introduced in a path integral
formulation of the partition function. Dubbed the Hubbard-
Stratonovich (HS) field [10–13], si,τ carries both space and
imaginary time labels and decouples the interactions, allowing
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an exact integration of the fermionic degrees of freedom (see
Appendix A). The statistical properties of si,τ are the central
object of our analysis.

Recent approaches classified as “machine learning” meth-
ods, including convolutional neural networks for pattern
recognition [14–16] or clustering methods [17–19], have been
applied with the aim of estimating the location of quantum
critical points of many-body models using either the HS field
or metrics related to it (such as matrix elements of the fermion
Green’s function) as an input. The fundamental observation
of this paper is that the sampled Hamming distance, a simple
quantity useful for establishing a separation of two points in
the multidimensional phase space of auxiliary field config-
urations [which we take as discrete; see Fig. 1(a)], already
contains information regarding the onset of an ordered phase.
Our method certainly does not solve the SP, but allows one to
extract quantum critical points in spite of it.

The Hamming distance is generally defined as a metric
for comparing two equal-length data strings, quantifying an
elementwise deviation between them. In the case of binary
strings x = ±1, it can be written in terms of their inner product

HDx,x′ = [1 − 〈x|x′〉/�]/2, (1)

where � is the length of the string and 〈·|·〉 the standard vec-
tor dot product. Identical and opposite (i.e., parity reversed)
strings x, x′ result in HDx,x′ = 0 and HDx,x′ = 1, respec-
tively, whereas completely uncorrelated strings are on average
HDx,x′ = 1/2 apart. In the case of the HS field for local (or
intraorbital) interactions, � = NsLτ , where Ns is the number
of orbitals in the real-space lattice and Lτ gives the number
of imaginary-time slices in the path integral discretization of
inverse temperature β = �τLτ .

Nonlocal (or interorbital) interactions, especially nearest-
neighbor ones, lead to an HS field that resides on the bonds

2469-9950/2022/106(20)/205113(13) 205113-1 ©2022 American Physical Society

https://orcid.org/0000-0001-8005-2297
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.205113&domain=pdf&date_stamp=2022-11-08
https://doi.org/10.1103/PhysRevB.106.205113


YI, SCALETTAR, AND MONDAINI PHYSICAL REVIEW B 106, 205113 (2022)

FIG. 1. Hamming distance and phase space exploration. (a) Representation of the Hamming distance between a pair of binary strings
with length 5. (b) Cartoon illustrating the phase space of auxiliary field configurations, accompanied by the protocol used to extract HD
and a similarity angle θ in respect to fixed points A and B, selected after two consecutive warmup processes. (c) The corresponding polar
probability density of BC Hamming distances for interactions far below (left) and far above (right) the known critical point of the U(1) Hubbard
model on the honeycomb lattice, Vc/t � 1.35 [20,21]. Cross markers depict the uncorrelated point, θ = 60◦ and HDBC = 0.5. (d) Schematic
representation of the 3d lattice, which arises after the introduction of an auxiliary field {S} to decouple the interactions, here on a honeycomb
spatial lattice with linear size L and Lτ imaginary-time slices. In the case of intraorbital interactions, the discrete field {si,τ } lives on the sites
(spheres); for interorbital ones, it resides on the bonds connecting sites i and j, {si j,τ }. Different colored spheres and bonds help identify the
three types of Hamming distance we compute: Total (HDtotal), where all fields {siτ } are considered, HDL , where we restrict auxiliary-field
“strings” to imaginary-time slice τ = β/2, and HDτ , where the HS field on a single site (or unit cell) across the different Lτ ’s is monitored.
Color code schematically identifies those (see Appendix A for the specific definitions). In (c), the parameters are L = 12 and Lτ = 240.

connecting different orbitals [22], whose total number we
denote by Nb. Thus the volume of the phase space composed
by binary strings in these two cases is given by either 2NsLτ

or 2NbLτ . Typical importance samplings span a very small
region of this vast phase space, but, as we shall see, physical
aspects of the model under consideration steer the sampling to
correlated configurations within ordered phases, allowing one
to quantitatively infer their onset.

This becomes apparent by recalling that the HS field,
and in particular correlations between its constituents, serves
as a proxy for correlations in real space. As demonstrated
by Hirsch for the Hubbard model [12,23], the interorbital
fermionic spin correlations 〈m̂i(τ )m̂ j (0)〉 (where m̂i ≡ n̂i↑ −
n̂i↓ is the local magnetization) are directly proportional to the
interspin correlations of the auxiliary bosonic field, 〈si,τ s j,0〉,
with the proportionality constant α = [1 − exp(−�τU )]−1

and U the strength of the electron-electron interaction.
On an extreme case, when heading towards the atomic limit

(U → ∞), for example, the fermionic spin correlations have
a one-to-one mapping to the correlations among the “spins” of
the HS field (i.e., α = 1), provided that the convergence to the
continuous of the path integral discretization is slower than the
one-site limit is approached [24]. In the case of one fermion
per lattice site, the effective Hamiltonian leads to a spin pat-
tern mimicking a Néel state in this regime. As a consequence,
field configurations that follow this spin texture have a much
larger weight in the sampling, driving it to a vanishingly small
region of the phase space [25]. In practice, similar reasoning
can be applied to classical spin models, although in such cases
the spins are to be interpreted as physically relevant quantities;
see Appendix B.

To understand how this reasoning translates to regimes far
from the classical one, we investigate two models, the U(1)
and SU(2) Hubbard models, in two different geometries—
honeycomb and triangular lattices. The former serves as a
benchmark in which the quantum critical points separating
unordered and ordered phases are well established [20,21,26–
31]. We then build on that benchmark and show that an

investigation of the model on a triangular lattice allows us
to predict the location of quantum critical points which are
mostly under debate. These are the cases where known results
come from methods that try to conquer the first exponential
(the growing size of the Hilbert space), either via bound-
ing the entanglement as in matrix product-states methods in
quasi-one-dimensional geometries [32–35] or via exact diag-
onalization (ED) in small lattices [36–38], including its cluster
derivatives [39,40].

II. MODELS

We investigate the spinful,

Ĥ = −t
∑
〈i j〉σ

ĉ†
iσ ĉ jσ − μ

∑
iσ

n̂iσ + U
∑

i

n̂i↑n̂i↓, (2)

and the spinless,

Ĥ = −t
∑
〈i j〉

ĉ†
i ĉ j − μ

∑
i

n̂i + V
∑
〈i j〉

n̂in̂ j, (3)

Hubbard Hamiltonians, where ĉiσ (ĉi ) is the pseudospin-σ
(spinless) fermion annihilation operator on site i and n̂iσ =
ĉ†

iσ ĉiσ (n̂i = ĉ†
i ci) is the corresponding number density op-

erator. Nearest-neighbor hoppings, chemical potential, and
repulsive interactions are given by t , μ, and U (V ), respec-
tively. The honeycomb and triangular geometries have a total
number of sites Ns = 2L2 and Ns = L2; imaginary-time dis-
cretization is set at t�τ = 0.1.

The models on the (bipartite) honeycomb lattice are in-
vestigated at μ = U/2 and 3V , which yields “half filling” in
the SU(2) and U(1) versions of the Hamiltonian, respectively.
For the triangular lattice, on the other hand, the chemical
potential is systematically tuned in the [T ≡ 1/β,U (V ), Ns]
set of parameters to yield one fermion per site in the spinful
formulation and one fermion per elemental triangle in its
spinless version. The latter is chosen such as to render a sharp
quantum phase transition to a 1/3-filled charge density wave
(CDW) state that emerges as the interactions V are increased.
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III. U(1) HONEYCOMB HUBBARD MODEL

The computation of the Hamming distance between con-
figurations of the phase space is equivalent to a projection
2NbLτ → 1 on the number of degrees of freedom. This scaling-
down process is prone to miss significant features of the
sampled fields and eventually not fully characterize what is
driving the sampling to become correlated. An improvement
in this approach is to investigate projections to two degrees of
freedom instead. For that we take two points in the generated
Markov chain, each after a significant warmup in the QMC
sweeps. Thus proceeding with the usual importance sampling,
while storing the distances between such points in the phase
space, as illustrated in Fig. 1(b), one can define a similarity
metric between configurations, i.e., an angle θ in phase space
encompassed by the Hamming distance between two points in
respect to a third one, i.e.,

θ = cos−1

(HD2
AB + HD2

AC − HD2
BC

2HDABHDAC

)
. (4)

Uncorrelated configurations form equilateral triangles in
{si j,τ } (i.e., θ = 60◦) and deviations from this signal a certain
degree of correlations in the sampling.

Figure 1(c) tests this for the case of the U(1) honeycomb
Hubbard model, at interactions far above and far below the
known critical point Vc/t � 1.35 [20,21], separating a Dirac
semimetal from a charge density-wave (CDW) Mott insulator.
While the majority of the angles still denote uncorrelation at
either side of the transition, the typical Hamming distance
significantly departs from 1/2 for V > Vc. For that reason,
we hereafter focus primarily on HD ≡ HDBC , the average
Hamming distance, aiming at observing a signature of the
known QCP location for this model. In addition, we also com-
pute the average Hamming distance selecting fields within
a fixed real space unit cell across Lτ (HDτ ) or within fixed
imaginary-time “layers” over real space (HDL)—see Fig. 1(d)
for a schematic representation [41]. The goal is to understand
if the appearance of structure in the manifold of typical field
configurations visited in the course of the sampling has a
preferential dimension.

Figure 2(a) exhibits these different quantities for a lattice
with linear size L = 12 at T/t = 1/24. Remarkably, a sharp
departure from HD = 1/2 is obtained around Vc/t , a feature
largely system size independent [Fig. 2(c)] when approaching
the T → 0 limit [Fig. 2(b)]. Furthermore, except for minor
statistical fluctuations, no significant deviations are found be-
tween the different types of averaged Hamming distances in
this model, as the onset of structure in the data set simultane-
ously occurs in all three.

IV. SU(2) HONEYCOMB HUBBARD MODEL

In analogy to the spinless version, its spinful general-
ization features the onset of a Mott insulator at sufficiently
large (local) interactions, supplanting a Dirac semimetal
phase. The insulating phase, however, exhibits a spin-density
wave (SDW), i.e., antiferromagnetic order that is triggered
at Uc/t � 3.8 [28–31]. Figure 3 displays the equivalent of
Fig. 2 for this Hamiltonian. Apart from larger fluctuations
(even more pronounced for HDτ ; see Appendix D), and a less

FIG. 2. Hamming distance for the spinless honeycomb Hubbard
model. (a) The three types of Hamming distance (see text), HDtotal,
HDL , and HDτ vs V/t , as marked. Vertical dashed line displays the
QCP obtained in Ref. [21], Vc/t = 1.355 ± 0.001. (b) Temperature
dependence of HDtotal on the interactions with L = 12. (c) Finite-size
comparison of the total Hamming distance vs V at T/t = 1/24. For
this case with a discrete symmetry breaking, the thermal transition
can also be seen at values of the interactions that HD departs from
1/2 at finite temperatures; see Appendix C. Error bars depict the
standard error of the mean (s.e.m.) over 48 independent Markov
chains.

marked deviation from the uncorrelated sampling regime, the
Hamming distance similarly tracks the onset of the ordered
phase.

FIG. 3. Hamming distance for the spinful honeycomb Hubbard
model. (a) Total and the τ = β/2 Hamming distances when the local
interactions U are swept for a honeycomb lattice with Ns = 288 sites
at T/t = 1/24. Inset displays a zoom-in on the region close to the
know QCP for this model. Panels (b) and (c) give the temperature and
system-size dependence, respectively, with increasing U for HDtotal.
Vertical shaded region depicts a confidence region of the QCP based
on recent results in the literature [28–31]. Error bars display the
s.e.m. for 48 independent realizations.
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Strong fluctuations on this spinful case can be interpreted
by means of the larger cardinality of local degrees of free-
dom (four instead of two for the spinless Hamiltonian) and
that the same bosonic field {si,τ } couples to both fermionic
flavors. Moreover, as the Mermin-Wagner theorem states that
the formation of long-range magnetic order on a system
with continuous symmetry at T �= 0 is precluded for d �
2 [42,43], any finite-temperature departure of HD = 1/2 is
understood in terms of the minimum temperature at which
the quickly decaying correlations reach typical correlation
lengths comparable to the system size. This is not the case
for its U(1) counterpart with a discrete symmetry breaking, in
which a finite-T transition signified by the loci where HD <

1/2 quantitatively matches known results for this model (see
Appendix C).

V. U(1) TRIANGULAR HUBBARD MODEL

Building on those results, we investigate a model in which
there is no known solution to circumvent the sign problem,
i.e., the geometrically frustrated triangular lattice Hubbard
model. Starting from its spinless formulation, we notice that
in between commensurate densities, as 1/3 and 2/3 fillings, a
pinball liquid phase arises, in which CDW order coexists with
metallic behavior [36,38]; this intermediate phase corresponds
to a supersolid in the case of hardcore bosons [44]. With
the goal of exploring a well marked QCP, we study the case
of one fermion for every three lattice sites. As previously
stated at the end of Sec. II, this 1/3-CDW phase is inferred
from the connection to the atomic limit (V/t → ∞), wherein
such a charge configuration minimizes the total energy. In
the presence of quantum fluctuations, one then expects that
sufficiently large interactions trigger an ordered regime.

Even though the specific location of the critical interaction
strength that leads to a form of Wigner solid is currently
not known, the average Hamming distance analysis when
sweeping V shows a well marked transition at Vc/t = 2.85(2)
[Fig. 4(a)]. ED results (see Appendix F) in smaller lattices
(L = 6) can capture a continuous transition to the ordered
regime at V/t � 2.7 instead, highlighting the importance of
finite-size effects in determining the QCP location. Tempera-
ture and lattice size dependence in these results are displayed
in Figs. 4(b) and 4(c), respectively. The former shows a sub-
tle nonmonotonic behavior of HD within the ordered phase
when T is decreased, whose origin will be explored in detail
for the spinful version in what follows. Whether the average
Hamming distance is sufficiently sensitive to be used in the
identification of the regime of coexistence of CDW and metal-
licity (pinball liquid), thought to occur beyond commensurate
densities, will be left for future studies.

VI. SU(2) TRIANGULAR HUBBARD MODEL

The ingredient that allows both insulating and antiferro-
magnetic transitions to concomitantly occur on the SU(2)
Hubbard model with growing interactions, i.e., that the cluster
structure is bipartite, is no longer present in a triangular lattice.
As a result, early studies within approaches that try to con-
quer the first exponential “wall” managed to demonstrate the
existence of an intermediate nonmagnetic insulating (NMI)

FIG. 4. Hamming distance for the spinless triangular Hubbard
model. (a) The different averaged Hamming distances with increas-
ing repulsive nearest-neighbor interactions V . The inset displays a
zoom-in of the location where HD departs from 1/2, accompanied
by a shaded region marking a confidence interval of the ordered
phase onset for an L = 12 lattice at T/t = 1/20. Panel (b) shows
the total Hamming distance with decreasing temperature, while
(c) displays its finite-size effects at T/t = 1/20. ED results give a
transition at V/t � 2.7 on an L = 6 lattice (Appendix F), which can
be approached via a �τ → 0 extrapolation in a similar lattice size
(Appendix E).

phase, separating the metallic regime at small interactions
and the magnetically ordered phase at large values of U/t
[39,40,45,45]. In the latter, the low-energy effective model
maps to the antiferromagnetic Heisenberg model, in which a
120◦ Néel ordered phase has been shown to be stabilized to
compose with the geometric frustration [46,47].

The nature of the intermediate NMI phase has been inves-
tigated within density matrix renormalization group (DMRG)
methods [32–35] and recent results have pointed to the pos-
sibility that this phase realizes a gapped chiral spin liquid
[33,35], at least in some of the lattice structures amenable
to computations. Importantly, molecular crystals of the κ-ET
family are known to be close experimental realizations of such
triangular lattice Hubbard models [48,49] and, in particular,
compounds such as κ-(ET)2Cu2(CN)3 have a quasi-isotropic
hopping structure in the lattice [50], which does not exhibit
any magnetic ordering down to 32 mK, indicative that it may
indeed host a spin liquid ground state.

Despite the strong motivation provided by these excit-
ing results, progress has been significantly impeded because
the corresponding model has a drastic sign problem (see
Appendix G) and QMC calculations have large error bars
stemming from the second exponential wall we described
in the Introduction. Nevertheless, as Fig. 5 shows, although
extremely challenging to extract physical quantities, the onset
of the ordered phase can be very successfully observed via the
average Hamming distance. The deviation from the uncorre-
lated case (HD = 1/2) is seen to be reasonably well aligned to
the most recent predictions on this model [33,35]. Finite-size
effects are shown to be small in Fig. 5(c), while, similar to the
spinless fermion counterpart, the average Hamming distance
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FIG. 5. Hamming distance for the spinful triangular Hubbard
model. Similar to Fig. 2, but for the SU(2) Hubbard model on the
triangular lattice. (a) Total and τ = β/2 average Hamming distances,
(b) temperature dependence of the Hamming distance for a fixed
lattice size (Ns = 144), and (c) the finite-size effects obtained at
T/t = 0.05. Shaded vertical regions in all panels display the com-
bined results from Refs. [33,35] obtained for width-4 cylinders with
finite or infinite lengths; they mark transitions at Uc1/t = 8.5–9 and
Uc2/t = 10.6–10.75.

departs from 1/2 in a nonmonotonic fashion with decreasing
temperatures, as seen in Fig. 5(b). An explanation for such
seemingly unexpected behavior is provided in what follows.

Although a clear-cut location of the QCP is likely only
obtained in the �τ → 0 limit [see such analysis for the U(1)
honeycomb Hubbard model in Appendix E], there is manifest
evidence that the Hamming distance does capture physically
relevant information. An argument in this direction can be
put forward by early observations that point out that the in-
terplay of geometric frustration and interactions may lead to
ground states with large thermal entropies S when entering
the ordered regime. In turn, the positive variation of S with
interactions, at fixed T , can be related to the decrease of the
double occupancy D = (1/Ns)

∑
i〈n̂i↑n̂i↓〉 with temperature

(at fixed U ) via a Maxwell relation [34,40,51]

∂S

∂U

∣∣∣∣
T

= −∂D

∂T

∣∣∣∣
U

. (5)

As a consequence, the double occupancy at sufficiently small
T ’s decreases with temperature, an effect at odds with what
one would expect from the connection of D with localization
(in the U/t → ∞ limit, D → 0). This increase of electron
localization upon heating, referred to as order by disorder, can
be similarly seen in Fig. 6, by means of localization in phase
space described by a reduced Hamming distance. A further
confirmation of the unexpected D ↔ HD connection can be
made by noticing that the minima of both quantities are seen
at similar temperatures T/t ≈ 0.5 [34].

VII. DISCUSSION AND OUTLOOK

A common thread in the study of quantum correlated mat-
ter is that if a given model is plagued by the sign problem

FIG. 6. Order-by-disorder effects in the Hamming distance.
Hamming distance for the spinful triangular Hubbard model vs T
for various interaction strengths U in an L = 12 lattice. The decrease
in the Hamming distance upon heating, that is, the increase of local-
ization in the phase space, parallels a similar effect observed for a
physical quantity, the double occupancy, a proxy for electronic local-
ization [34,40], whose minima occur at compatible temperatures.

when utilizing a QMC method, and the aim is to extract
properties close to T = 0, there is not much one can do and
the application of other numerical methods would consist
of a better use of resources. This reasoning is based on the
computationally expensive “wall” that prevents a statistically
convergent estimation of physical quantities within reasonable
time. What we have shown here is that other statistical metrics
host information about the onset of ordered phases, at least on
the limited class of problems we have studied. This is clearly
seen via the average distance in phase space spanned on the
course of the importance sampling, but other complement-
ing metrics, such as the intrinsic dimension or the variance
of nearest-neighbor configurations [17,18] might reveal even
finer details, in particular finite-size scaling exhibiting the
universality class of the transitions by means of the extraction
of critical exponents; statistical fluctuations of the average
Hamming distance elude such analysis in our case. That is,
the Hamming distance is seemingly a less sensitive quantity
in this regard.

Additionally, it is important to emphasize that while our re-
sults quantitatively point out regimes in which the connection
exists, i.e., quantum critical point location being identified by
the onset of a reduced Hamming distance, by no means does
this solve the sign problem. One could potentially study even
a wider class of models plagued by the occurrence of negative
weights in the sampling in which a statistical analysis of the
auxiliary fields may not point out the occurrence of a quantum
ordered regime. Here, in the cases in which the sign problem
is most dramatic, the triangular lattice versions of the mod-
els, either the comparison to exact diagonalization in small
systems (Appendix F) and existing results using large scale
calculations in cylinders [32–35] indicate that such connection
holds, but again the issue of the generality of these results
remains.
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Models featuring deconfined quantum critical points
(DQCPs) [52], that is, separating two symmetry-incompatible
ordered phases [53], are likely challenging to investigate using
our approach. Nonetheless, a possible approach is to compare
the average Hamming distance between configurations using
slightly different Hamiltonian parameters. A likely outcome
is that, at sufficiently low temperatures, typical configurations
sampled in parallel are on average far apart if the parameters
are chosen such that they belong to different ordered phases.
By systematically reducing the parameter’s deviation, the
point at which the HD decreases potentially signals the DQCP
location. We leave this line of inquiry for future studies.

Lastly, it remains to be seen if the highly nonlocal action
for the resulting HS fields that arises after the fermionic
integration may define a spin glass at sufficiently low tem-
peratures and its eventual connection to negative weight
configurations. The Hamming distance, intimately related to
the spin-glass order parameter [54], has been used to quantify
the ultrametricity of the phase space in classical models [55],
a characteristic feature of glassy behavior [56].
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APPENDIX A: METHODS

Numerical calculations employ the Blanckenbecler-
Scalapino-Sugar (BSS) algorithm [2,8] for QMC calculations:
The partition is written as a path integral, in which a sequence
of Trotter decomposition, HS transformation, and integration
of the resulting fermionic bilinear forms allows one to express
it as a sum over auxiliary field configurations of determinants
of fermionic matrices on a single-particle basis. The sign
problem thus arises as the determinants are not guaranteed
to be positive definite for arbitrary configurations of the
fields. We apply the standard spin decomposition in the HS
transformation for the SU(2) models [12],

e−�τU (n̂i↑− 1
2 )(n̂i↓− 1

2 ) = 1

2
e−U�τ/4

∑
si=±1

eλsi (n̂i↑−n̂i↓ ),

or its corresponding on the U(1) Hamiltonians [22],

e−�τV (n̂i− 1
2 )(n̂ j− 1

2 ) = 1

2
e−V �τ/4

∑
si j=±1

eλsi j (n̂i−n̂ j ),

where cosh λ = eU�τ/2 and cosh λ = eV �τ/2, respectively.
Note that the auxiliary fields that decouple the interactions
have a double index in the latter and reside on the bonds
connecting orbitals i and j. The total number of bonds and cor-
responding number of auxiliary field configurations in a single
imaginary-time slice is Nb = 3L2 in either the honeycomb or
triangular lattices. We do not make use of the Majorana repre-
sentation [21]; thus our simulations are affected by the sign

problem in the U(1) honeycomb Hubbard model, which is
irrelevant for our results, and highlight the predictive power of
statistical properties of the importance sampling. Simulations
are carried out employing typically thousands of QMC sweeps
with independently seeded Markov chains ranging from 20
to 48, with Hamming distances with respect to a fixed con-
figuration stored at the end of the warmup process extracted
after a full sweep in the space-imaginary-time lattice. For
example, for the data presented in Fig. 1, we performed two
consecutive 1000 warmup sweeps, storing the correspond-
ing Hubbard-Stratonovich configurations at the end of each
warmup, and subsequently computed the Hamming distance
to those configurations along 8000 measurement sweeps, us-
ing 48 independent realizations. In Appendix F, we further
employ ED for the triangular Hubbard model in small clusters,
featuring 36 (18) sites in its spinless (spinful) formulation.

Definitions. The various Hamming distances we compute
in the manuscript can be written in terms of the inner products
as explained in the Introduction or equivalently by means of
the L1 norm,

HD = 1

2V
∑
i,τ

∣∣si,τ − sref
i,τ

∣∣, (A1)

where {sref
i,τ } represents a reference configuration (the one ob-

tained after the warmup sweeps) and the V denotes the number
of elements in the corresponding Hubbard-Stratonovich field.
For example, in the case of the SU(2) Hubbard models we
study, V = � = NsLτ and the summation is over the whole
space-imaginary-time lattice for the “total” Hamming dis-
tance, HDtotal. HDL, which takes a single layer at τ = β/2,
has then V = Ns and summation in Eq. (A1) is constrained
to that imaginary-time slice across the real-space lattice. In
turn, HDτ , the Hamming distance across imaginary time,
takes V = 2Lτ for the SU(2) honeycomb Hubbard model and
V = Lτ in its triangular lattice counterpart; the summation
over i in this case is constrained to the central unit cell of the
real-space lattice.

Similar definitions hold, for the U(1) Hubbard model,
where now the fields {si j,τ } are on the bonds connecting in-
teracting orbitals i and j,

HD = 1

2V
∑
〈i j〉,τ

∣∣si j,τ − sref
i j,τ

∣∣. (A2)

HDtotal takes an unconstrained summation in Eq. (A2), where
V = 3L2Lτ in either honeycomb or triangular lattices. HDL

constrains the summation within τ = β/2; thus V = 3L2 for
both geometries, whereas in HDτ , V = 3Lτ , with bond fields
departing from the real-space central site (one site of the
central unit cell) across imaginary time for the triangular
(honeycomb) lattice.

APPENDIX B: CLASSICAL VS QUANTUM MODELS

To verify that the Hamming distance can be indeed used as
a proxy to locate phase transitions either in classical or quan-
tum models, we contrast the results for the U(1) honeycomb
Hubbard model, originally presented in the main text, with the
ones from the classical Ising model on a square lattice (Fig. 7).
The energetics in the latter is given by E = −J

∑
〈i, j〉 SiS j ,
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FIG. 7. (a) Average Hamming distance over eight independently
seeded Markov chains for the two-dimensional classical Ising model.
The distances are computed at the end of a full sweep (Nsweeps =
10 000) in respect to a fixed configuration, selected after 1000
warmup sweeps at each temperature T , in a cooling process from the
largest temperature. The critical point at T/J ≈ 2.269 is marked by
the vertical dashed line. Here, to parallel the scheme in its quantum
counterpart, we use a single-flip update (Metropolis) in opposition to
cluster update schemes. (b) Average total Hamming distance of the
U(1) honeycomb Hubbard model [similar to Fig. 2(c)]. The vertical
dashed line gives the location of the QCP obtained in Refs. [20,21].

where Si = ±1 are classical spins. As the linear lattice size L
is increased, the drop of the average Hamming distance from
its uncorrelated value HD = 0.5 systematically approaches
the known critical temperature Tc = 2/ ln(1 + √

2), much
in line with what occurs on the quantum U(1) honeycomb
Hubbard model. The difference here is that although in the
classical Ising model the spins are physical, in the quantum
model they are auxiliary variables. In both, however, they are
sampled on and single-flip updates are performed. While in
the classical case there are more sensitive quantities to iden-
tify the transition location (e.g., magnetic susceptibilities or
Binder cumulants), this analysis highlights the ability of using
metrics related to the fields, other than physical quantities, to
locate phase transitions.

APPENDIX C: FINITE-TEMPERATURE TRANSITIONS

The U(1) Hubbard model displays a finite-temperature
transition to an ordered phase, which has been classified on the
honeycomb lattice by means of the continuous-time interac-
tion expansion method [57] or in a hybrid SSE/determinantal
approach [58], both of which result in sign-problem free
simulations. Here we argue that the metric of phase space
exploration we introduced in the main text, the average Ham-
ming distance, similarly captures the thermal transition in
the original BSS type algorithm for this model [22]. Fig-
ure 8 displays the “phase diagram” of this quantity in the
temperature–interactions plane, overlaying it with the results
extracted from Ref. [57]. Agreement between these results
and the (T,V ) parameters at which HD deviates from 1/2
is reasonably good, presenting an even closer matching when
increasing the system size.

FIG. 8. Thermal transitions via the Hamming distance. Con-
tour plot of the average Hamming distance in the temperature–
interactions plane for the t-V Hubbard model on the honeycomb
lattice, with linear size L = 9 (left) and L = 12 (right). Markers are
extracted from the results of Ref. [57] and the star at the lowest
temperature describes the known QCP location [20,21].

APPENDIX D: LARGE STATISTICAL
FLUCTUATIONS IN HDτ

As described in the main text, statistical fluctuations in the
average Hamming distance within a site (or unit cell) across
different imaginary time slices, HDτ , are sensibly large, as
seen in Fig. 9 for the two SU(2) models we investigate. There
are two reasons that can explain such behavior. The first is
that the HS field is a massless bosonic field that mediates
instantaneous interactions between the fermions traversing
the real-space imaginary-time lattice; a consequence of being
massless is that wild fluctuations occur in imaginary time
(even if the field were to be made continuous [9]). A direct
contrast is the case of the Holstein model, where massive
phonons play the role that mediate the electronic interac-
tions. In this case, their mass controls the “velocity” of the
phonon field in the action, taming the large oscillations in
imaginary time. In the absence of such kinetic energy term
in the action for the Hubbard model, the field configurations
in consecutive imaginary-time slices are not directly coupled.
Second, spin orientation patterns for the fermions in approach-
ing the atomic limit are more easily seen through equal-time
correlations. Consequently, selecting one unit cell or site to
monitor the auxiliary-field configurations does not render a

FIG. 9. Fluctuations of the Hamming distance across imaginary
time. (a) Average Hamming distance HDτ in the spinful honeycomb
Hubbard model while sweeping the interactions and (b) the same
but for the spinful triangular Hubbard model. Although fluctuations
are much larger than the other metrics we investigate, it qualitatively
captures the onset of the ordered phase. In both cases the linear lattice
size is L = 12; the inverse temperature is set at βt = 24 and 20,
respectively.
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well defined string that uniquely captures such patterns owing
to quantum fluctuations which inherently occur.

APPENDIX E: APPROACHING A CONTINUOUS
IMAGINARY TIME

Apart from statistical uncertainties, which are always con-
trollable by the sampling extent, certain QMC simulations
(auxiliary-field versions, in particular) are subjected to a
single approximation that stems from the Trotter decompo-
sition employed when splitting the exponential operators in
the partition function. For the Hubbard model, for example,
the simplest decomposition leads to an error O[tU (�τ )2].
Nonetheless, this approximation can be made controllable by
taking the limit �τ → 0 (at the expense of increasing the
number of imaginary-time slices at a fixed temperature) such
that it becomes indistinguishable from the statistical fluctua-
tions.

Here in the case of the statistics of the sampling, namely the
average Hamming distance, there is another complication that
was exposed in the main text when describing the connection
between fermionic correlations and correlations between the
auxiliary field components. This can be seen via the relation
connecting bosonic field correlations and the fermionic ones
[12,23]:

〈[n̂i↑(τ ) − n̂i↓(τ )][n̂ j↑(0) − n̂ j↓(0)]〉 = 1

1 − e−�τU
〈si,τ s j,0〉,

(E1)
with the exception i = j, τ = 0. As we argued there, for the
proportionality constant to approach 1 in the atomic limit, it
is necessary that the imaginary-time discretization go to zero
slower than that. As a result, a relevant analysis is to under-
stand the effect of the imaginary-time discretization on the
average Hamming distance. We do so for the U(1) honeycomb
Hubbard model, where a crisp connection of the correlated
sampling to the onset of the ordered phase was drawn. We
notice that in this case of a spinless Hamiltonian, a similar re-
lation as Eq. (E1) can be derived, involving the correlation of
density operators (n̂i − n̂ j ) and the corresponding decoupling
field si j,τ at that bond.

For that end, Fig. 10 shows the average total Hamming
distance with decreasing �τ , at a low fixed temperature
T/t = 1/16 on an L = 9 lattice. An asymptotic approach to
the known critical point is obtained in the limit �τ → 0
and values of �τ = 0.1 are sufficiently close to describing
the onset of the ordered phase. Similarly, the results for the
triangular lattice version are also shown in Fig. 10, bottom,
with T/t = 1/20 and L = 6. This lattice size is amenable to
exact numerical computations and the location of the quantum
phase transition can be reliably extracted. As for the honey-
comb lattice, the departure from HD = 1/2 with decreasing
�τ systematically approaches the exact results.

APPENDIX F: EXACT DIAGONALIZATION RESULTS

Despite being a useful tool to infer the onset of ordered
phases, the average Hamming distance does not aid in under-
standing the precise nature of those phases. The honeycomb
lattice models we study are well understood, but the triangular
lattice versions are slightly less explored. For that reason,

FIG. 10. Hamming distance dependence on the imaginary-time
discretization. (a) Total Hamming distance HDtotal in the spinless
honeycomb Hubbard model, with a range of imaginary-time dis-
cretizations �τ as marked. Vertical dashed lines give the known
critical interaction Vc = 1.355t [20,21] related to the onset of the
ordered phase. The inset gives a zoom-in depicting the asymptotic
approach to the transition. The linear lattice size is L = 9 and the
temperature is fixed at T/t = 1/16. (b) The same for the spinless
triangular Hubbard model, but in an L = 6 lattice where the ED
results for the quantum critical point location, marked by the vertical
dashed line, are extracted by us (see Appendix F); here T/t = 1/20.

we make use of exact diagonalization (ED) to corroborate
some of these phase transitions and ensuing ordered phases.
Constrained by the first exponential wall, we are limited to
calculations on small cluster sizes, which we set at 6 × 6 and
6 × 3 in the spinless and spinful Hamiltonians, respectively.

We start with the U(1) case, with filling 1/3 (12 fermions
in 36 orbitals), as shown in Fig. 11. When sweeping the inter-
actions V we observe a first order phase transition at around
V/t � 1.7, where the ground state changes from the pseudo-
momentum �q = (0, 2π/3) sector to �q = (0, 0). This leads to
discontinuities in several observables, including the average
nearest-neighbor density correlations 〈n̂in̂ j〉〈i j〉 [Fig. 11(a)].
We believe that such a transition is cluster dependent. More
importantly, there is a clear signal in physical quantities of
an actual continuous phase transition at larger interactions,
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FIG. 11. ED results for the spinless triangular Hubbard model
on a 6 × 6 lattice. (a) Average nearest-neighbor correlation function
(left y axis) and its corresponding derivative (right y axis). (b) The
vertical dashed lines across all panels mark the location of the first
order phase transition observed for this cluster size and where the
momentum sector ground state resides changes with V .

likely associated to the onset of the 1/3-CDW phase. A first
indication is seen by means of the potential energy εpot =
V

∑
〈i, j〉〈n̂in̂ j〉, which displays a peak at around V/t � 2.7

[Fig. 11(b)]; past this point one expects that quantum fluctu-
ations are necessarily reduced in heading towards the atomic
limit and εpot decreases. Similar information about the transi-
tion can be inferred by the fidelity susceptibility [59],

χF = 2

Ns

1 − |〈�0(V )|�0(V + dV )〉|
dV 2

, (F1)

where |�0(V )〉 is the ground state with interaction magnitudes
V and dV = 10−3t is a small parameter deviation. Extensive
peaks (with the system size) signify locations of QCP for con-
tinuous transitions, whereas discontinuities are seen within
first-order ones. For our specific case of a 36-sites lattice, we
observe a peak at around V/t � 2.5 [Fig. 11(c)].

FIG. 12. ED results for the spinful triangular Hubbard model
on a 6 × 3 cluster. (a) The many-body gap � = |EGS

(0,0) − EGS
(0,4π/3)|

comparing the lowest energy states at different momentum sectors.
The inset magnifies the results showing a first order phase transition
occurring at U/t � 1.9. (b) The double occupancy at the ground state
and (c) the potential energy vs U/t . The inflection point in the latter
likely gives the metal-insulating transition point (U/t � 7.6) which
coincides with the peak of the fidelity susceptibility shown in (d). (e)
The spin structure factor at different high symmetry points and (f)
the difference of the results for K and M points in the Brillouin zone.
They point to enhanced stripy antiferromagnetic correlations which
give way to a Néel 120◦ order at U/t � 10 (see text).
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FIG. 13. Extra results for the triangular Hubbard model: The sign problem. (a)–(c) [(d)–(f)] From top to bottom, the average total Hamming
distance, the averaged density subtracted by the target one, and the average sign of the weights in the Monte Carlo sampling for the U(1) [SU(2)]
triangular Hubbard model. Results are shown for different temperatures as marked; in both cases, the results are for lattices with L = 12 and
t�τ = 0.1. The vertical shaded regions in (d)–(f) have the same characteristics as in the main text, marking the best known locations of the
two consecutive phase transitions.

A precise characterization of this phase can be obtained by
the charge structure factor,

Sc
k = 1

Ns

Ns∑
l,m

eik·(rl −rm )〈(n̂l − 1/3)(n̂m − 1/3)〉. (F2)

For k = (2π/
√

3, 2π/3) ≡ K , a three-sublattice pattern oc-
cupancy is favored, whereas k = (2π/

√
3, 0) ≡ M describes

a stripe density pattern. Figure 11(d) shows the structure fac-
tor at these two points, where both grow with V , but the K
channel always has larger amplitude [Figs. 11(d) and 11(e)].
We thus conclude that there is a tendency of three-sublattice
charge occupation, but a system-size scaling may clarify how
these result on a finite-order parameter when approaching the
thermodynamic limit.

We now describe the results of the spinful triangular Hub-
bard model at half filling on a lattice with 18 sites (Fig. 12).
This lattice is similar to the YC3 cluster investigated within
DMRG schemes [33,34], albeit with longitudinal size Lx = 6.
As for the U(1) case, there is also a change of the momentum
sector associated to the ground state at a small cluster size,
which leads to a first order phase transition at U/t � 1.9.
This is seen in Fig. 12(a), which gives the gap between
the �q = (0, 0) and �q = (0, 4π/3) momentum sector ground
states, � ≡ |EGS

(0,0) − EGS
(0,4π/3)|, initially at small interactions

at EGS
(0,0) > EGS

(0,4π/3), while EGS
(0,0) < EGS

(0,4π/3) past U/t � 1.9.
Nonetheless, at larger interactions a more smooth behavior

is observed, where the fidelity susceptibility displays a clear
peak at U/t � 7.6 [Fig. 12(d)], which coincides with the
positions at which the potential energy ε = U

∑
i〈n̂i↑n̂i↓〉 has

an inflection point [Fig. 12(c)]. We thus believe this marks

a regime where the metal-Mott insulating transition takes
place. Recent estimations using width-4 cylinders [33,35]
put this transition in the range Uc1/t = 8.5–9. The nature
of the intermediate region, dubbed a nonmagnetic insulator,
is under current debate, which has been converging towards
a gapped chiral spin liquid phase. Yet, recent results using
finite-temperature simulations [34] show stripy antiferromag-
netic spin correlations to be particularly pronounced there. For
that reason, we compute the spin structure factor,

Sk = 1

Ns

Ns∑
l,m

eik·(rl −rm )〈ŝz
l ŝ

z
m〉, (F3)

where ŝz
l ≡ n̂l↑ − n̂l↓ [owing to the SU(2)-symmetric nature

of the Hamiltonian, total spin structure can be obtained by
multiplying the results by three]. The results point out that
although the spin structure factor at different momenta are
all enhanced by the interactions [Fig. 12(e)], at the M point,
which corresponds to the stripy antiferromagnetic spin cor-
relations, a larger magnitude until U/t � 10 indicates that
such spin pattern is favored [Fig. 12(f)]. For values U/t � 10,
the K-spin structure factor dominates and a 120◦ Néel spin
ordered state likely takes place. Again, it remains to be seen
how these results converge when a proper finite-size scaling
is performed, which remains elusive with the limited system
sizes amenable to exact calculations.

APPENDIX G: SIGN PROBLEM IN NONBIPARTITE
GEOMETRIES

It has been recently demonstrated that the average sign
of the weights extracted over the course of the importance
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sampling in quantum Monte Carlo simulations of various
fermionic models can be used to both qualitatively [5] and
quantitatively [6] identify the loci of quantum critical points.
Here, we show that this analysis does not in principle hold
in the case of the Hubbard model in the triangular lattice,
both on its U(1) or SU(2) formulations, at least using the
“standard” Hubbard-Stratonovich transformation described in
Appendix A.

Figure 13 displays the average total Hamming distance,
the average density, and the average total sign of fermionic
weights at decreasing temperatures. First, we observe that
the presence of the sign problem makes the extraction of a
physical observable, such as the electronic density, exhibit
large statistical fluctuations. Yet these are within reasonable
bounds from the target density after systematically adjusting
the chemical potential μ. Second, we note that although the
Hamming distance closely captures the onset of the ordered
phases, the same cannot be said in respect to the onset of
the sign problem, which starts at values of interactions much
smaller than the ones associated to the quantum critical points.
This is a contrast to the results of Refs. [5,6] that deserve
further investigation, in particular an analysis that takes into
account other types of Hubbard-Stratonovich transformations.

APPENDIX H: ALTERNATE HUBBARD-STRATONOVICH
TRANSFORMATION

The transformations that cast the quartic terms in fermionic
operators in bilinear forms are in general not unique [23]. In
particular, for the spinful models we studied, the transforma-
tion highlighted in Appendix A explicitly breaks the SU(2)
symmetry of the Hamiltonian and is only recovered over the
course of the sampling. Here we address how a different
transformation affects the analysis of the Hamming distance.
We employ the transformation [27]

e−�τU (n̂i↑+n̂i↓−1)2/2

=
∑

si,τ =±1,±2

γ (si,τ )
∏
σ

ei
√

�τU/2η(si,τ )(n̂iσ −1/2) + O(�τ 4),

(H1)

which introduces a four-valued discrete field si,τ = ±1,±2,
with the real constants,

γ (±1) = 1 +
√

6/3, η(±1) = ±
√

2(3 −
√

6),

γ (±2) = 1 −
√

6/3, η(±2) = ±
√

2(3 +
√

6). (H2)

FIG. 14. Average Hamming distance in the SU(2) honeycomb
Hubbard model using the Hubbard-Stratonovich transformation of
Eq. (H1). Here, t�τ = 0.1 and vertical shaded region depicts a
confidence region of the QCP based on recent results [28–31]. The
linear lattice sizes L and the number of imaginary-time slices Lτ are
chosen such that Lτ /L0.5 is approximately constant [6].

In this case the transformation is not exact but the error in-
troduced [∝O(�τ 4)] is negligible if compared to the one that
arises from the Trotter decomposition [O(�τ 2)]. Figure 14
shows the average Hamming distance of the SU(2) Hubbard
model on the honeycomb lattice, computed as before, but now
an expression like in Eq. (1) is generalized since the field is no
longer binary. We notice again that a particular feature occurs
in the vicinity of the critical point: A minimum at HDtotal

with overall small finite-size effects. The values are seen sub-
stantially far from the uncorrelated value, 3/4, for this field
with four components, and a reduced span of the phase space
over the sampling is only observed close to Uc. These results
highlight a deeper connection of the phases and the associate
symmetry they break with the type of symmetry encoded on
the Hubbard-Stratonovich transformation. Depending on the
Hamiltonian investigated, types of decomposition that couple
to other degrees of freedom, including fermionic pairs [60],
might be beneficial in the analysis of the onset of other ordered
regimes. Future investigation in further classes of models may
clarify this.
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