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Sample generation for the spin-fermion model using neural networks
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Monte Carlo simulations of hybrid quantum-classical models such as the double exchange Hamiltonian
require calculating the density of states of the quantum degrees of freedom at every step. Unfortunately, the
computational complexity of exact diagonalization grows as a function of the system’s size N , making it
prohibitively expensive for any realistic system. We consider leveraging data-driven methods, namely, neural
networks, to replace the exact diagonalization step in order to speed up sample generation. We explore a model
that learns the free energy for each spin configuration and a second one that learns the Hamiltonian’s eigenvalues.
We implement data augmentation by taking advantage of the Hamiltonian’s symmetries to artificially enlarge
our training set and benchmark the different models by evaluating several thermodynamic quantities. While all
models considered here perform exceedingly well in the one-dimensional case, only the neural network that
outputs the eigenvalues is able to capture the right behavior in two dimensions. The simplicity of the architecture
we use in conjunction with the model agnostic form of the neural networks can enable fast sample generation
without the need of a researcher’s intervention.

DOI: 10.1103/PhysRevB.106.205112

I. INTRODUCTION

Strongly correlated materials are characterized by dom-
inant electron-electron interactions [1–3] with electronic
and magnetic properties that can potentially be tuned
and used for novel technological applications beyond the
silicon/semiconductor paradigm. To understand the proper-
ties of these systems, it is unavoidable to resort to numerical
methods such as quantum Monte Carlo (QMC) [4,5]. In
models unaffected by the infamous sign problem, QMC can
treat very large systems with dozens, if not hundreds, of
degrees of freedom. One such scenario is the case of the
double-exchange Hamiltonian [6–9] (also dubbed, in a dif-
ferent context, as the spin-fermion model) and multiorbital
generalizations. These models have shed light on the physics
of manganites with colossal magnetoresistance [10–12] and
high-temperature superconductivity [13]. In such hybrid
quantum-classical Hamiltonians, conduction electrons are
coupled to classical degrees of freedom, spins in this case.
During the Monte Carlo sample generation for the spin-
fermion model, one needs to calculate the eigenvalues of the
electronic Hamiltonian, a task that can be done exactly us-
ing matrix diagonalization. Unfortunately, the computational
complexity of exact diagonalization scales unfavorably for
a matrix of size N , limiting the simulations to a couple of
hundred orbitals. Furthermore, the number of updates needed
to obtain uncorrelated Monte Carlo samples can be large close
to a phase transition. Thus in order to study larger systems
or systems close to a phase transition we need to find faster
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alternatives to exact diagonalization. There have been various
attempts to overcome this issue, such as expanding the density
of states using Chebyshev polynomials [14–17], obtaining
the Hamiltonian’s eigenspectrum corrections after a local up-
date [18], and combining the kernel polynomial method with
Langevin dynamics [19]. An alternative approach, which is
explored in this paper, is to use data-driven machine learning
methods to assist with this computational task.

In the last five years, machine learning has found many
applications in quantum physics, such as learning thermo-
dynamics [20], finding the ground state of a many-body
system [21], identifying phase transitions [22], conducting
quantum state tomography [23], and calculating spectral func-
tions [24,25]. Moreover, approaches to accelerate Monte
Carlo simulations with machine learning have been explored
in the self-learning Monte Carlo method [26], using restricted
Boltzmann machines [27], deep [28], and autoregressive neu-
ral networks [29]. In this work, we design two neural network
models, both featuring simple architectures, that generate
samples to determine quantities of interest over a range of
temperatures for the spin-fermion/double-exchange model.
The first neural network outputs the free energy associated
with the quantum degrees of freedom, whereas the second
outputs the eigenvalues of the Hamiltonian for a given clas-
sical spin configuration. Both networks are trained using a
data set that is artificially augmented by taking advantage
of the system’s translation and rotation symmetries. The
manuscript is organized as follows: in Sec. II, we present the
spin-fermion/double-exchange model, in Sec. III, we present
the effective models and the training methodology used, in
Secs. IV and V, we present our results, and we finally con-
clude with a discussion in Sec. VI.
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II. SPIN-FERMION MODEL

The spin-fermion model, also known as the double-
exchange model, was first proposed by Zener [6] to explain
ferromagnetism in materials with incomplete d shells and
itinerant conduction electrons. It has been extensively stud-
ied [7–9] due to its relation with colossal magnetoresistance
in manganites [10–12]. In the spin-fermion model, one treats
each atom with its t2g electrons as a classical localized spin
Si ∈ R3 at site i with unit magnitude |Si| = 1. The eg conduc-
tion electrons are treated quantum mechanically and are able
to move freely interacting only with the classical spin at the
site they are located. The Hamiltonian for the spin-fermion
model considered in this work is the following single-orbital
version:

Ĥ (S) = −t
∑
〈i j〉,σ

(ĉ†
iσ ĉ jσ + ĉ†

jσ ĉiσ ) + J

2

∑
i,α,β,γ

Sγ

i ĉ†
iασ

γ

αβ ĉiβ,

(1)

where S = {S1, . . . , SN } is the classical spin configuration, t
is the hopping constant and our unit of energy, ĉ†

iσ (ĉiσ ) is
the fermionic creation (annihilation) operator at the ith site
for fermion with spin σ ∈ {↑,↓}, 〈i j〉 are the pairs of nearest
neighbors, J is the interaction strength between the classical
spins and the electrons (Hund coupling), Sγ

i is the γ th com-
ponent of the classical spin at the ith site, and {σ x, σ y, σ z} are
the Pauli matrices. The spin-fermion Hamiltonian has O(3)
rotational symmetry in the spin sector and, because of the
periodic boundary conditions we imposed, it also has dis-
crete translation invariance. We use these two symmetries to
improve the accuracy of the neural networks performance as
described in Sec. III.

Due to the fact that our system contains both quantum
and classical degrees of freedom, the partition function Z

associated with the spin-fermion model is

Z =
∫

dS Tr[exp(−β(Ĥ − μN̂ ))]

=
∫

dS
∏
ν

[1 + e−β(εν (S)−μ)], (2)

where β = 1/T is the inverse temperature, μ is the chemical
potential, N̂ is the number operator, and εν (S) are the single-
particle eigenenergies corresponding to the Hamiltonian with
spin configuration S. The second equality follows from the
fact that the electronic degrees of freedom are noninteracting
and we are treating them with the grand-canonical ensemble.
Given Eq. (2), one can define the probability of finding the
system in a given classical spin configuration S as

p(β, S) = e−βF (β,S)

Z
, (3)

with F (β, S) being the fermionic free energy given by

F (β, S) = − 1

β

∑
ν

ln[1 + e−β(εν (S)−μ)]. (4)

Knowing the partition function enables us to determine the
expected values for different quantities at various tempera-
tures such as the average energy

〈E〉 = −∂ ln(Z )

∂β

= 1

Z

∫
dS e−βF (β,S)

∑
ξ

εξ (S) − μ

1 + eβ(εξ (S)−μ)

= 1

Z

∫
dS e−βF (β,S)

∑
ξ

[εξ (S) − μ]ρ(β, εξ , μ), (5)

and the specific heat

CV = −∂〈E〉
∂T

= kβ2

{
1

Z

∫
dS e−βF (β,S)

[(∑
ξ

(εξ (S) − μ)ρ(β, εξ , μ)

)2

+
∑

ξ

(
εξ (S) − μ

)2

ρ(β, εξ , μ)(1 − ρ(β, εξ , μ)

]
− 〈E〉2

}
, (6)

where ρ(β, ε, μ) is the Fermi-Dirac distribution. Further-
more, using Eqs. (2) and (3), we can calculate the magnitude
of the average magnetization

|M| = 1

Z

∫
dS e−βF (β,S)

∣∣∣∣∣ 1

N

(∑
i

x̂Sx
i + ŷSy

i + ẑSz
i

)∣∣∣∣∣, (7)

and the staggered magnetization of our system

|Ms| = 1

Z

∫
dS e−βF (β,S)

×
∣∣∣∣∣ 1

N

∑
i

(−1)
∑d

j=1 x j
(
x̂Sx

i + ŷSy
i + ẑSz

i

)∣∣∣∣∣, (8)

where x j in the sum
∑d

j=1 x j indicates the site index in the
jth dimension. The parameters used in this paper favor an-
tiferromagnetic order at low temperatures and this behavior
should be captured by the staggered magnetization. Based on
how we chose to define staggered magnetization, a |Ms| = 1
will indicate a situation where each site has spin with the
opposite sign compared with its nearest neighbors. Lastly, it
is customary to calculate the spin correlation

C(r) = 1

Z

∫
dS e−βF (β,S) 1

N

∑
i

Si · Si+r, (9)

and its Fourier transform, the spin structure factor

S(q) = 1

Z

∫
dS e−βF (β,S)

∑
r

e−q·rC(r), (10)
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where q = 2π ( n1
L1

, . . . , nd
Ld

) with ni = 0, 1, . . . , Li − 1 for a
d-dimensional lattice L1 × L2 × · · · × Ld . In all the thermal
averages Eqs. (5)–(10), it is necessary to calculate the proba-
bility distribution given by Eq. (3). Unfortunately, one cannot
find a closed form to Eq. (2), and has to resort to numerical
methods such as Monte Carlo based approaches. The most
straightforward way to do it is using exact diagonalization that
is diagonalizing the Hamiltonian matrix to obtain the spec-
trum of eigenenergies associated with each spin configuration
in order to determine its free energy. Once these are obtained,
one can use the METROPOLIS Hastings algorithm [30] to gener-
ate samples that collectively approximate the real probability
distribution, Eq. (3). The main drawback of exact diagonaliza-
tion is the amount of resources needed scales unfavorably as
the size of the system increases.

III. MODEL TRAINING

In order to compare the different models, in this work
we study the spin-fermion model in one-dimension using a
system with N = 20 lattice sites, and the two-dimensional
counterpart using a system with N = 6 × 6 = 36 lattice sites.
In both cases, we use interaction strength J = −1 (ferromag-
netic), and chemical potential μ = 0. For each temperature,
we generate training, validation, and testing data sets using
three different METROPOLIS Hastings Markov chains to elimi-
nate correlation between the data sets. Each data set contains
spin configurations with their associated normalized free en-
ergy F (β,S)

N and eigenvalues. For every Monte Carlo update,
we use exact diagonalization to determine the free energy of
the proposed spin configuration. Each Markov chain consists
of a warm-up stage followed by a sample generation stage.
During the warm-up stage we generate 1000 · N samples and
determine the acceptance ratio r, which is the number of
accepted over the total number of proposed spin configura-
tions. The samples generated during the warm-up stage are
not saved. In the sample generation stage, we generate NsN/r
samples and save only Ns of them. More specifically, for every
N/r samples generated, we save only the last one. This is done
to minimize correlations between samples. The training data
set contains Ns = 104 samples, whereas the validation and test
data sets contained Ns = 103 samples. We train three differ-
ent models, an effective Heisenberg model and two neural
network models. The effective Heisenberg model is used to
benchmark the two neural networks against a well established
approach based on physical insight.

A. Effective Heisenberg model

A simple model to approximate the free energy at a given
temperature is a linear model inspired by Ruderman-Kittel-
Kasuya-Yosida (RKKY) theory [31,32] where each classical
spin interacts with every other classical spin via a Heisenberg
interaction with a coupling strength that depends on the dis-
tance between the two spins [26,33]. The estimator F̂ (β, S)
of the free energy F (β, S) is given by

F̂ (β, S) = F0 + 1

N

∑
R

JR

∑
r∈{|r|=R}

∑
i

Si · Si+r, (11)

where F0 is a constant, N is the number of sites, JR is the
coupling strength between all classical spins that are separated
by a distance R from the classical spin at site i. The constants
F0 and JR are independent of the classical spin configuration,
but depend on inverse temperature β. This model is linear
due to the linear dependence between the free energy and the
coupling strength constants JR and arises from a perturbative
treatment of the conduction electrons. We fit the model’s
parameters using linear regression for a least-squares problem
whose solution is given by(

F0

J

)
= (C̃ᵀC̃)−1C̃ᵀF, (12)

where J is the vector containing the coupling strength con-
stants JR, C̃m0 ≡ 1, the spin correlation corresponding to the
distance |r| = R for each sample

C̃m,R ≡ 1

N

∑
|r|=R

∑
i

S(m)
i · S(m)

i+r, (13)

and Fm stands for the free energy of training sample m.
The columns of the matrix C̃m,R are organized in ascend-
ing order with the value R they represent. For instance, in
the two-dimensional case, the first column corresponds to
all the vectors with magnitude |r| = 1 (r = {(0, 1), (1, 0)}),
and the second column corresponds to the vectors with
magnitude |r| = √

2 (r = (1, 1)). In essence, this effective
Heisenberg model relates the spin correlation at different
distances with the free energy, effectively tracing over the
electronic degree of freedom and producing a much simpler
approximation that is justified in the perturbative regime [31].

B. Neural network models

An artificial neural network is a function that maps its input
from Rm to its output in Rn. In its simplest form a neural
network consists of an input layer, a set of hidden layers, and
an output layer where each layer consists of a set of nodes.
The ith node of the jth hidden layer, h( j)

i , takes as input the
weighted sum of the outputs from the previous layer’s nodes
y( j)

i = ∑
k w

( j)
ik z( j−1)

k , and applies a nonlinear function f (y),
commonly referred to as the activation function, to generate its
output z( j)

i = f (y( j)
i ). In this work, without loss of generality,

we use the Softplus activation function f (y) = ln(1 + ey). To
train a neural network for regression one needs to choose a
loss function that compares the true value with the neural
network’s predicted value. We use the mean absolute error
(MAE) L = 1

N

∑
i |yi − ŷi| as our loss function and to find its

minimum we use the Adam optimizer [34] with a learning
rate that decays over time. At training epoch t , the learning
rate is given by lr (t ) = lr (0)γ −t , where γ is the decay con-
stant. We use initial learning rate lr (0) = 10−3, decay constant
γ = 0.9995, and train for a total of Ne = 2 × 104 epochs. We
noticed that in some cases neural networks with extremely low
mean squared error generated samples that could accurately
describe the system’s average energy and specific heat, but
the magnitude of the average magnetization departed signif-
icantly from the exact results. This issue is addressed by
splitting the training set in minibatches during training, thus
introducing some stochasticity in the optimization algorithm.
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FIG. 1. Mean squared error between the exact and the predicted
fermionic free energy for an one-dimensional lattice N = 20 sites
(top) and a two-dimensional lattice N = 6 × 6 = 36 sites (bottom).

In general, using a large number of minibatches improves a
neural network’s performance, but the training time grows as
the number of minibatches increases. As a consequence, we
split the training set in as many minibatches possible while
making sure that the training time remains at a reasonable
level.

The spin-fermion Hamiltonian has translational invariance,
due to the periodic boundary conditions, and rotational invari-
ance. We take advantage of these two symmetries to augment
our training data, with the goal of improving the models’
predictive performance. Data augmentation is a well estab-
lished approach in machine learning due to its implementation
simplicity [35]; however, the training time increases since
the training set becomes larger. Through data augmentation
one tries to teach a neural network the system’s symme-
tries, without imposing explicit constraints on the network’s
architecture. In this work, for every spin configuration in
the training set, we apply a global rotation or translation
to get a new spin configuration with the same free energy.
Since the rotation invariance is due to a continuous sym-
metry, in practice we had to choose a discrete set of Euler
angles to implement the rotation-based data augmentation.
More specifically, we use the twenty-three combinations of
Euler angles α = {0, π}, β = {0, π

2 , π, 3π
2 }, and γ = {0, π},

where the {α = 0, β = 0, γ = 0} combination is excluded
since it corresponds to the initial spin configuration. Another
approach to utilize a system’s symmetries is to construct an
equivariant neural network [36,37]. An equivariant neural
network guarantees that the model obeys the system’s sym-
metries using weight sharing and activation functions that
respect those symmetries. An example of an equivariant neu-
ral network is a convolutional neural network which respects
translation invariance. We opted for data augmentation due

FIG. 2. Average energy, specific heat, magnitude of average
magnetization, and staggered magnetization for an one-dimensional
system with N = 20 lattice sites. We generated 105 samples using
exact diagonalization (blue circles), Heisenberg model (red pluses),
N1 (orange crosses), and N1Eigenvalues (green stars). All models
are in excellent agreement with the exact results.

to its much simpler and straightforward implementation. An-
other advantage of data augmentation is the ability to use the
same neural network architecture for Hamiltonians that do not
share the same symmetries.

At each temperature, we train two different neural net-
works that share the same architecture, as they are both fully
connected feedforward networks with a single hidden layer,
and measure their prediction accuracy using mean squared
error on the test data set. The first network, which we refer
to as N1, takes as input the classical spin components and
outputs the free energy at that specific temperature. The sec-
ond neural network, which we refer to as N1Eigenvalues,
also takes as input the classical spin components, but out-
puts the Hamiltonian’s eigenvalues. For the N1 model, we
compare the predicted free energy and the actual free en-
ergy, whereas for the NEigenvalues model, we compare the
predicted eigenvalues against the actual eigenvalues in the
loss function, which is the MAE for both models. For both
neural networks, we choose the architecture that combines
the smallest mean squared error on a validation set with the
least amount of hidden nodes in order to avoid overfitting and
allow for a fast sample generation. For the one-dimensional
system, we use h = 60 hidden nodes and nb = 20 minibatches
for N1 and h = 80 hidden nodes and nb = 50 minibatches
for N1Eigenvalues. For the two-dimensional system, we
use h = 108 hidden nodes and nb = 20 minibatches for N1
and h = 144 hidden nodes and nb = 20 minibatches for
N1Eigenvalues. In all cases, we observe that the mean
squared error on the test data set decreases by starting at high
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FIG. 3. Average energy, specific heat, magnitude of average
magnetization, and staggered magnetization for a two-dimensional
system with N = 6 × 6 = 36 lattice sites. We generated 105 samples
using exact diagonalization (blue circles), Heisenberg model (red
pluses), N1 (orange crosses), and N1Eigenvalues (green stars). The
N1 model fails to properly describe the system’s behavior in the
low-temperature regime.

temperatures and moving sequentially to lower temperatures,
using the optimized parameters corresponding to the previous
temperature’s model as the initial parameters for the next
temperature’s model.

For the one-dimensional system with N = 20 sites, all
models have a low mean squared error for the entire range
of temperatures, with the linear Heisenberg model having the
smallest over the entire temperature range (see Fig. 1). For
the two-dimensional system with N = 6 × 6 = 36 sites, all
models again have a low mean squared error. The Heisen-
berg model performs the best at high temperatures whereas
the neural networks perform better at lower temperatures
(see Fig. 1). For both systems, the maximum mean squared
error reaches ∼10−6 around T = 0.05 where the average
fermionic free energy is O(1) indicating that our models
are able to predict the fermionic free energy with high
accuracy.

IV. IMPORTANCE SAMPLING

The integrals in Eqs. (2), (5), (6), (7), and (8) cannot be
evaluated in a closed form, requiring us to resort in numerical
methods. If the probability distribution from Eq. (3) is known,
then the expected value 〈O〉 of a function O(S) is

〈O(β )〉 =
∫

dS O(S)p(β, S), (14)

FIG. 4. Average energy, specific heat, magnitude of average
magnetization, and staggered magnetization for an one-dimensional
system with N = 100 lattice sites. We generated 105 samples us-
ing exact diagonalization (blue circles), N1 (orange crosses), and
N1Eigenvalues (green stars). Similarly with its smaller counter-
part (N = 20), all models are in excellent agreement with the exact
results.

and can be approximated with

〈O(β )〉 ≈ 1

N

N∑
i=1

O(Si ), (15)

using spin configurations generated according to Eq. (3).
However, it is computationally expensive to generate samples
according to the exact probability distribution governing our
system, which is why we resort to using an effective model.
More specifically, given the probability distribution according
to the effective model q(β, S), the expected value 〈O(β )〉 is

〈O(β )〉 =
∫

dS O(S) q(S)
p(S)

q(S)
, (16)

and can be approximated with

〈O(β )〉 ≈
∑n

i=1 w(β, Si )O(Si )∑n
i=1 w(β, Si )

, (17)

where we used

w(β, S) = e−β(F (β,S)−F̂ (β,S)), (18)

with F (β, S) and F̂ (β, S) being the fermionic free energy
due to the exact and effective models, respectively. This pro-
cess is referred to as importance sampling in literature [38].
It is worthwhile noting that the estimator in Eq. (17) is
asymptotically unbiased [39]. Calculating Eq. (18) requires
us to diagonalize the Hamiltonian for a given spin configu-
ration. One might reasonably ask what computational gains
do we get by using an effective model if we still need
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FIG. 5. Average energy, specific heat, magnitude of average
magnetization, and staggered magnetization for a two-dimensional
system with N = 10 × 10 = 100 lattice sites. We generated 105 sam-
ples using exact diagonalization (blue circles), N1 (orange crosses),
and N1Eigenvalues (green stars). Similarly with the smaller coun-
terpart of N = 6 × 6 = 36 the N1 model fails to properly describe
the system’s behavior in the low-temperature regime.

to perform exact diagonalization for importance sampling?
The computational savings come during the decorrelation
stage of the METROPOLIS Hastings algorithm where for ev-
ery N/r spin configurations generated we record only the
last one so using an effective model for all those un-
recorded update steps reduces the time needed for sample
generation.

For the one-dimensional system (N = 20 lattice sites), the
effective models generate samples that accurately describe
the average energy, specific heat, the magnitude of average
magnetization, and the staggered magnetization as can be seen
in Fig. 2. For the Heisenberg model, we do not generate sam-
ples below T = 10−2 because the sample generation script
requires approximately the same amount of time to generate
samples as exact diagonalization, a fact we attribute to our
code not being properly optimized.

The situation is different for the two-dimensional case
(N = 6 × 6 = 36 lattice sites). All models generate samples
that are able to accurately describe the average energy, but the
N1 model fails to capture the correct behavior for the other
three quantities in the region of T � 0.1 as can be seen in
Fig. 3. This seems counterintuitive given the extremely low
mean squared error that N1 has as can be seen in Fig. 1, but
this is an indication of overfitting. We have tried increasing
both the number of minibatches used during training and the
number of hidden nodes for the N1 model; however the results
remained practically the same. The figures for the spin corre-
lation and structure factor for the systems under consideration
are presented in Appendix C.

FIG. 6. Magnitude of average magnetization and staggered mag-
netization for the one-dimensional system (N = 20 lattice sites)
without implementing importance sampling. All three models main-
tain the same performance as shown in Fig. 2.

We are also interested in testing the viability of our
method on larger systems. We focus our attention on a one-
dimensional chain with N = 100 sites and a two-dimensional
square lattice with N = 10 × 10 = 100 sites. Both systems
are significantly larger than the ones studied in Sec. IV, while
at the same time allow us to generate enough training data in
a reasonable amount of time. We use the same approach as
the one outlined in Sec. III B, with the only difference being
the number of hidden nodes used in each neural network. For
each model, we use the same ratio of hidden nodes to inputs
as in the previous cases. More specifically, we use 1 : 1 and
4 : 3 hidden nodes to inputs for the N1 and N1Eigenvalues
respectively. As can be seen in Figs. 4 and 5, the neural
networks maintain the same performance as that demonstrated
in their smaller counterparts. We should note that we use a
training data set with 104 samples for both large and small
lattices and believe it is a serendipitous fact that the models
perform in a similar manner. We expect that training these
model architecures on larger systems with ∼1000 sites will
probably require bigger training data set to achieve similar
performance.

FIG. 7. Magnitude of average magnetization and staggered
magnetization for the two-dimensional system (N = 6 × 6 = 36
lattice sites) without implementing importance sampling. The
N1Eigenvalues maintains the same performance as shown in Fig. 3,
whereas the Heisenberg model shows a slight disagreement in the
region around T ∼ 0.1. The N1 model completely fails for tempera-
tures below T ∼ 0.2.

205112-6



SAMPLE GENERATION FOR THE SPIN-FERMION MODEL … PHYSICAL REVIEW B 106, 205112 (2022)

FIG. 8. Comparing the MSE using different activation functions
for the N1 and N1Eigenvalues models. We compare the sigmoid
function (blue circles), the sofplus function (red pluses), the hyper-
bolic tangent function (orange crosses), and the relu function (green
stars).

The main bottleneck of the methods presented in this pa-
per is the amount of time needed to generate the training
data set since this is obtained using exact diagonalization.
Thus, one could reasonably question if the amount of time
needed to train a neural network and use it to generate
samples is worth the effort. We investigated this question
and found that generating a training data set, training a
neural network, and subsequently using it to generate sam-
ples requires less time than generating samples using exact
diagonalization. For this benchmark, we devoted the same
resources to both approaches; however, one has to keep in
mind that the absolute time will differ on a different machine.
For the one-dimensional system with N = 100 sites, it takes

FIG. 9. The relative error between the Heisenberg model (red
pluses), N1 (orange crosses), N1Eigenvalues (green stars), and
the quantities generated with exact diagonalization for the one-
dimensional system with N = 20 sites.

FIG. 10. The relative error between the Heisenberg model (red
pluses), N1 (orange crosses), N1Eigenvalues (green stars), and
the quantities generated with exact diagonalization for the two-
dimensional system with N = 6 × 6 = 36 sites.

approximately 4.5 hours to generate the training data set with
104 samples at T = 0.1. Both neural networks are trained
using a GPU, which expedites the training process, and that
takes about 90 minutes regardless of the temperature. The
neural networks require approximately 25 minutes to generate
105 samples at T = 0.1. Hence the total amount needed to
generate 105 samples at T = 0.1 using the neural networks,
including the amount of time needed to generate the training
data set and train the models, is roughly 6.5 hours. In contrast,
to generate 105 samples at T = 0.1 using exact diagonaliza-
tion requires roughly 41 hours. It is worth noting that the
amount of time required to train the neural network depends
on the number of epochs, batch size, and training data set
size. For instance, one could reduce the training time by using
fewer epochs, a bigger batch size, or a smaller training data
set. In the future, we would like to investigate the possibility
of training a neural network on a smaller lattice and appropri-
ately adjust it so it can generate samples for a larger lattice.

V. NEURAL NETWORKS AS EFFECTIVE MODELS

Lastly, we examine the possibility of completely eliminat-
ing exact diagonalization from the calculation of the expected
values. That is equivalent to using Eq. (15) where the spin con-
figurations are drawn from the probability distribution derived
from the effective models. In other words, neural networks
can be seen as nonperturbative effective models obtained by
tracing out over the electronic degrees of freedom.

To test this idea, we calculate the observables related to
the magnetization state of the system since both the av-
erage energy and specific heat require knowledge of the
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FIG. 11. Spin correlation for an one-dimensional system with
N = 20 lattice sites for r = {1, 2, 3, 4}.

eigenspectrum which cannot be accessed with the N1 and
Heisenberg models. Having said that, we could still use
N1Eigenvalues for determining these two quantities since
its output is the eigenspectrum of the Hamiltonian. For the
one-dimensional system (see Fig. 6), all three models remain
in agreement with exact diagonalization maintaining the same
performance as in Fig. 2. For the two-dimensional system
(see Fig. 7), only N1Eigenvalues remains in agreement with
exact diagonalization across all temperatures. Interestingly,
the Heisenberg model remains in agreement with exact diag-
onalization for most temperatures, and struggles only in the
region around T ∼ 0.1. The N1 completely fails to capture
the correct behavior for temperatures below T ∼ 0.2, which
is precisely the regime where the physics is dominated by the
energy spacing. On the other hand, it is reasonable to expect
that N1Eigenvalues will be better to retain its high fidelity
even in the absence of importance sampling since the network
approximates the mapping of each spin configuration to its
corresponding eigenspectrum, a task which might preserve a
significant amount of information relevant for describing the
system. In contrast, both the Heisenberg and N1 models try to
approximate the fermionic free energy, a scalar quantity ob-
tained by integrating over the spectrum, a process that might
cause significant information loss.

VI. CONCLUSION

Neural networks are ideal surrogates to replace computa-
tionally intensive steps in Monte Carlo methods, given their
remarkable flexibility to approximate arbitrary functions of
interest. This advantage is counterbalanced by the numerical
cost required to train the models. One solution is to exploit a
system’s symmetries and augment the existing training data

FIG. 12. Spin correlation for an one-dimensional system with
N = 100 lattice sites for r = {1, 2, 3, 4}.

set, thus creating a bigger data set without the overhead of
the exact method. An added benefit of data augmentation
is that we are actively encouraging the neural network to
learn the system’s symmetries that the model should also
obey. In this work, we train two neural network models
using data augmentation and demonstrate their ability to
predict the free energy for the spin-fermion model in one
and two dimensions. The two neural network models dif-
fer fundamentally in two aspects: (i) the quantity they learn
and (ii) how they are used as effective models to generate
samples. The N1 model learns the free energy and is used
in combination with importance sampling which requires to
diagonalize the Hamiltonian at each measurement step. The
N1Eigenvalues model learns the energy spectrum (or den-
sity of states) of the Hamiltonian, and can reproduce the
exact results with high level of accuracy without using im-
portance sampling, making the simulations considerably more
efficient and faster. We compare the two neural networks
against an effective Heisenberg model and find that in one
dimension all three models have comparable performance,
whereas in two dimensions only the N1Eigenvalues and the
Heisenberg model describe correctly the system’s behavior
across all temperatures. Unlike the Heisenberg model, the
N1Eigenvalues model is not constrained to have a specific
functional form and is able to find an appropriate approx-
imation to the energy spectrum. Lastly, since the energy
spectrum is temperature independent, a neural network that
learns the energy spectrum, such as the N1Eigenvalues
model, could be trained at a high temperature where it is
cheap to generate a large training data set and then used for
all temperatures. Such an approach will reduce the cost asso-
ciated with training allowing the study of larger systems at low
temperatures.
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APPENDIX A: COMPARING ACTIVATION FUNCTIONS

While constructing both neural networks we investigated
how much our results were affected by the choice of the
activation function. We compared the following functions: (a)
the sigmoid function f (x) = 1

1+e−x , (b) the sofplus function
f (x) = ln(1 + ex ), (c) the hyperbolic tangent function f (x) =
ex−e−x

ex+e−x , and (d) relu function f (x) = max(0, x). Our results are
shown in Fig. 8, where we used the same number of hidden
nodes and training epochs. For the N1 network, the softplus
seems to perform the best over most temperatures, whereas for
the N1Eigenvalues the sigmoid has the best performance.
However, all activation functions have extremely low MSE
over all temperatures. We choose to use softplus for both N1
and N1Eigenvalues so they are on equal footing when we
compare them.

APPENDIX B: MODEL PERFORMANCE

Even though the results presented in Figs. 2 and 3 are in
good agreement with those generated using exact diagonaliza-
tion, it is hard to see by how much the quantities as determined
using the different models deviate from those derived using

FIG. 13. Spin structure factor for an one-dimensional system
with N = 20 lattice sites for T = {1, 0.2, 0.1, 0.05}. We observe
a peak at q = 10 × 2π

20 = π at T = 0.05. All models are in good
agreement with exact diagonalization.

FIG. 14. Spin structure factor for an one-dimensional system
with N = 100 lattice sites for T = {1, 0.2, 0.1, 0.05}. We observe a
peak at q = 50 × 2π

100 = π at T = 0.05. All models are in agreement
with exact diagonalization.

exact diagonalization. In order to further probe the accuracy
of our models, we generated Figs. 9 and 10 that present the
relative error for the four quantities of interest, for two of
the systems under consideration. In the one-dimensional case,
all models have a really low relative error, but in the two-
dimensional system the N1 model has a high relative error
at low temperatures.

APPENDIX C: SPIN CORRELATION
AND STRUCTURE FACTOR

The spin correlation for the one-dimensional N = 20 and
N = 100 systems are shown in Figs. 11 and 12 respec-
tively for r = {1, 2, 3, 4}. In both systems, we notice that
the magnitude of the correlation increases as the temperature
approaches zero. Furthermore, the spin correlation associated
with the odd vectors is negative whereas for the even vectors
is positive. This is an indication of antiferromagnetism and
is confirmed by the fact that the staggered magnetization
approaches unity and the average magnetization approaches
zero as the temperature approaches zero.

For these two systems, we also calculate the spin struc-
ture factor and the results are shown in Fig. 13 and 14 for
q = 2π

N {0, 1, . . . , L − 1}. One can see that at high tempera-
ture (T = 1) the structure factor seems relatively flat and the
models struggle to properly describe it. However, at a low tem-
perature (T = 0.05), we see a pronounced peak at q = π and
all models are in good agreement with exact diagonalization.

The spin correlation for the two-dimensional
N = 6 × 6 = 36 and N = 10 × 10 = 100 square lat-
tices are shown in Figs. 15 and 16 respectively for
r = {(0, 1), (1, 0), (1, 1), (0, 2)}. Similarly with the
one-dimensional case the magnitude for all spin correlations
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FIG. 15. Spin correlation for a two-dimensional system with
N = 6 × 6 = 36 lattice sites for r = {(0, 1), (1, 0), (1, 1), (0, 2)}.
increases as T → 0 and the systems acquire a checkerboard
pattern thus exhibiting antiferromagnetic ordering.

For these two systems, we also calculate the spin structure
factor and the results are shown in Figs. 17 and 18. Similarly
to the one-dimensional case, we observe that at high tem-
perature (T = 1) the structure factor is relatively flat and the
models struggle to properly describe it. At a low temperature

FIG. 16. Spin correlation for a two-dimensional system with
N = 10 × 10 = 100 lattice sites for r = {(0, 1), (1, 0), (1, 1),
(0, 2)}.

FIG. 17. Spin structure factor for a two-dimensional system
with N = 6 × 6 = 36 lattice sites for T = {1, 0.2, 0.1, 0.05}. We
observe a peak at q = (π, π ) (M) at T = 0.05. The Heisenberg
and N1Eigenvalues models are in good agreement with exact
diagonalization.

(T = 0.05), we see a pronounced peak at q = (π, π ) (M)
with the Heisenberg and the N1Eigenvalues being in good
agreement with exact diagonalization.

FIG. 18. Spin structure factor for a two-dimensional system with
N = 10 × 10 = 100 lattice sites for T = {1, 0.2, 0.1, 0.05}. We ob-
serve a peak at q = (π, π ) (M) at T = 0.05. The N1Eigenvalues is
in good agreement with exact diagonalization.

205112-10



SAMPLE GENERATION FOR THE SPIN-FERMION MODEL … PHYSICAL REVIEW B 106, 205112 (2022)

[1] E. Morosan, D. Natelson, A. H. Nevidomskyy, and Q. Si, Adv.
Mater. 24, 4896 (2012).

[2] Strongly Correlated Systems, edited by A. Avella and F.
Mancini, Springer Series in Solid-State Sciences Vol. 176
(Springer, Berlin, Heidelberg, 2013).

[3] Strongly Correlated Systems: Experimental Techniques, edited
by A. Avella and F. Mancini, Springer Series in Solid-State
Sciences Vol. 180 (Springer, Berlin, Heidelberg, 2015).

[4] D. Ceperley and B. Alder, Science 231, 555 (1986).
[5] F. Becca and S. Sorella, Quantum Monte Carlo Approaches

for Correlated Systems, 1st ed. (Cambridge University Press,
2017).

[6] C. Zener, Phys. Rev. 82, 403 (1951).
[7] P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
[8] P. G. de Gennes, Phys. Rev. 118, 141 (1960).
[9] K. Kubo and N. Ohata, J. Phys. Soc. Jpn. 33, 21 (1972).

[10] E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
[11] T. Hotta and E. Dagotto, Colossal Magnetoresistive Man-

ganites, edited by T. Chatterji (Kluwer Academic Publishers,
Dordrecht, Netherlands, 2004), pp. 207–262.

[12] E. Dagotto, Nanoscale Phase Separation and Colossal Mag-
netoresistance: The Physics of Manganites and Related
Compounds, Springer Series in Solid-State Sciences Vol. 136
(Springer, Berlin, New York, 2003).

[13] E. Berg, M. A. Metlitski, and S. Sachdev, Science 338, 1606
(2012).

[14] N. Furukawa, Y. Motome, and H. Nakata, Comput. Phys.
Commun. 142, 410 (2001).

[15] N. Furukawa and Y. Motome, J. Phys. Soc. Jpn. 73, 1482
(2004).
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