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Topological properties of subsystem-symmetry-protected edge states in an extended
quasi-one-dimensional dimerized lattice
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We theoretically investigate the topological properties of a dimerized quasi-one-dimensional (1D) lattice
comprised of multilegs (L) as well as multisublattices (R). The system has main and subsidiary exchange
symmetries. In the basis of the latter one, the system can be divided into L 1D subsystems, each of which
corresponds to a generalized SSHR model having R sublattices and on-site potentials. Chiral symmetry is absent
in all subsystems except when the axis of the main exchange symmetry coincides on the central chain. We find
that the system may host zero- and finite-energy topological edge states. The existence of a zero-energy edge
state requires a certain relation between the number of legs and sublattices. As such, different topological phases,
protected by subsystem symmetry, including zero-energy edge states in the main gap, no zero-energy edge states,
and zero-energy edge states in the bulk states are characterized. Despite the classification symmetry of the system
belongs to BDI symmetry class, but each subsystem falls into either AI or BDI symmetry class.
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I. INTRODUCTION

Topological states have been engaged in many areas of
physics, especially in several systems involving electrons
[1–4], cold atoms [5,6], and photons [7] in the past decade
[8]. One of the properties of these states is their robustness
against disorders or defects [9] as long as the fundamental
symmetry of system protecting nontrivial topology is pre-
served. Symmetries of a system can be used to classify the
topology of electronic band structures. Based on topological
classification [10–16], a diversity of interesting materials can
be categorized into topological insulating [1,17–20], topo-
logical superconducting [2,3,21–24], topological semimetal
[25–28], and topological metal [29–35] states in one, two, or
three dimensions.

In one-dimensional (1D) systems, one of the simplest
models for topological insulators is the Su-Schrieffer-Heeger
(SSH) chain [36]. It is characterized by two different tunneling
amplitudes, i.e., intra- and interunit cell tunneling amplitudes,
between two different sublattices in a chain [37]. The SSH
chain can host localized edge states at its ends under open
boundary conditions in the topologically nontrivial regime.
Such a topological state is protected by inversion symmetry
and has its topological invariant that can be calculated via
bulk states of the band structure under periodic boundary con-
ditions [38]. The generalization of the SSH model, including
next-nearest hopping [39], spin-orbit interaction [40,41], and
the Zeeman field [41], has also been studied recently. Further-
more, the extended SSH chain, with more than two sublattices
per unit cell, comprising three [42] and four [43,44] sublat-
tices, or even [45] and odd [34] numbers of sublattices per unit
cell has been investigated in 1D geometry, revealing various
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topological phases protected by main symmetries of the whole
system.

On the other hand, there are interesting 2D systems host-
ing topological phases [46,47]. A Chern insulator has been
proposed in a 2D lattice exhibiting a nonzero quantized Hall
conductance in the absence of an external magnetic field
[21,22]. Furthermore, helical edge states, protected by time-
reversal symmetry, have been realized at the edge of 2D HgTe
quantum wells [3]. Interestingly, it has been shown that non-
trivial topological phases can be hosted in a 2D SSH model
in the absence of Berry curvature due to presence of both
time-reversal and inversion symmetries [48].

However, in going from one dimension to two dimensions,
one deals with a class of systems, namely, quasi-1D systems,
having spectacular features [49]. Simple examples of quasi-
1D systems are coupled chains and ladders. Recently, several
topological features of ladder lattice structures have been in-
vestigated, exhibiting a rich variety of phases based on their
topological properties, for instance, topological superconduc-
tivity in Kitaev ladder [50]. Also, the effects of spin-orbit
coupling [51], interactions [52], and interchain coupling [53]
on the topological features of a Creutz ladder as well as
the role of topology on the charge-pumping phenomenon in
the Creutz ladder [54] have been studied. Beyond the single
SSH chain, in a two-leg SSH chain, topological nodal points
[55] and non-Abelian Berry connections associated with the
glide reflection symmetry [56] have been investigated. Also,
chiral solitons [57] and topological bound states [58] have
been observed in a coupled double SSH chain. It has also
been shown that a dimerized two-leg ladder can host localized
and delocalized topological finite-energy edge states in con-
tinuum for asymmetric and symmetric dimerization patterns,
respectively [32]. However, topological characterization of
generalized ladder systems involving more than two legs with
multisublattices per leg deserves to be explored further based
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FIG. 1. Schematic geometry of a finite section of quasi-1D lat-
tice comprised of L coupled chains oriented along the x direction.
Each chain has R sublattices. Intraunit (interunit) cell hopping, t (t ′),
represented in red (green) color.

on quasi-1D materials Bi4X4 (X = Br, I) [59,60]. Also, it is
interesting to find a situation where topological phases are not
protected by the main symmetries of the whole system.

In this paper, we consider a quasi-1D dimerized lattice con-
sisting of L legs such that each leg has R sublattices. We will
investigate topological properties of the system according to
its symmetries. The simultaneous existence of reflection and
(main and subsidiary) inversion symmetries allows us to de-
fine the so-called main and subsidiary exchange symmetries.
The Hamiltonian of the system can be block diagonalized in
the basis of subsidiary exchange symmetry with L blocks.
Each block can be regarded as a 1D subsystem that resembles
the SSH model with R sublattices, SSHR, having an effective
on-site potential. In the topological regime, there are zero- and
finite-energy edge states. The system hosts m − 1 zero-energy
edge states out of L(R − 1) edge states where m is the greatest
common divisor of (L + 1, R). Subsequently, depending on
the values of L and R, we realize different topological phases:
(i) zero-energy edge states reside in the main gap, (ii) there
are no zero-energy edge states, and (iii) zero-energy edge
states reside within bulk states. By breaking symmetries of the
system, interestingly, we realize that the inversion symmetry
of subsystems protects the topology of the system.

II. MODEL AND THEORY

We start by considering a quasi-1D superlattice comprising
of L number of chains along the x direction and each chain
contains R number of sublattices as shown in Fig. 1. The
Hamiltonian of the system being the sum of the Hamiltonian
of chains, Hchain, and the Hamiltonian of interchain couplings,
Hcoupl, is

H = Hchain + Hcoupl,

Hchain =
N∑

n=1

L∑
l=1

R−1∑
r=1

tlC
†
n,l,rCn,l,r+1

+
N−1∑
n=1

L∑
l=1

t ′
lC

†
n,l,RCn+1,l,1 + H.c.,

Hcoupl =
N∑

n=1

L−1∑
l=1

R∑
r=1

trC
†
n,l,rCn,l+1,r + H.c., (1)

where C†
n,l,r (Cn,l,r) is the creation (annihilation) operator of

electron on the rth sublattice of the lth chain at the nth
unit cell. We take the intracell (intercell) hopping tl = t =
1 + δ0 cos(θ ) (t ′

l = t ′ = 1 − δ0 cos(θ )) ∀l ∈ [1, L] in each leg
and inter leg hopping tr = t = 1 + δ0 cos(θ ) ∀r ∈ [1, R] with
δ0 and θ being the dimerization amplitude and a cyclically
varying parameter to control the strength and sign of dimer-
ization, respectively. Also, the N is the number of unit cells.
Without loss of generality, we take δ0 = 0.8 throughout the
paper.

Assuming periodic boundary conditions along the chains
and using Fourier transform of annihilation (creation) operator
C(†)

n,l,r = 1/
√

(N )
∑

k e(−)iknC(†)
k,l,r , we can write Hamiltonian

Eq. (1) in reciprocal space as H = ∑
k〈ψk|h(k)|ψk〉, where

|ψk〉 = ∑L,R
l,r Ck,l,r |l〉 ⊗ |r〉 with |l〉 and |r〉 being basis states,

respectively, in the chain and sublattice spaces and

h (k) =

⎛
⎜⎜⎜⎝

hchain hcoupl . . . 0

hcoupl hchain
. . . 0

...
. . .

. . . hcoupl

0 . . . hcoupl hchain

⎞
⎟⎟⎟⎠

L×L

, (2)

with

h chain =

⎛
⎜⎜⎜⎝

0 t . . . t ′eik

t . . .
...

...
. . . t

t ′e−ik . . . t 0

⎞
⎟⎟⎟⎠

R×R

,

h coupl =

⎛
⎜⎜⎜⎝

t 0 . . . 0

0 t . . .
...

...
. . . t 0

0 . . . 0 t

⎞
⎟⎟⎟⎠

R×R

.

Diagonalizing the bulk Hamiltonian Eq. (2), the spectrum
can be obtained having LR bands as shown in Fig. 2 for differ-
ent values of L and R with θ/π = 1/2. One can see that there
are some band touching points, indicated by colored dots, at
the symmetric points k = 0 and k = π for θ/π = 1/2 (and for
θ/π = 3/2 not shown). Interestingly, the gap closings at the
symmetric points, which may be a signal of topological phase
transitions occurring, take place between certain bands at zero
(red dots) and/or finite (green dots) energies, depending on
the values of L and R. This indicates that there would possibly
be zero- and/or finite-energy edge states under open bound-
ary conditions. As shown in Fig. 2(a), the topological band
touchings, indicated by red dots, can occur between different
bands at zero energy, while the bulk states (blue lines), except
at the touching points, do not cross the Fermi level, E = 0.
This predicts that the zero-energy edge states will reside in
the main gap. In contrast, as shown in Fig. 2(b), the topolog-
ical band touchings, represented by green dots, only exist at
finite energies and the bulk states of different bands can be
accessed at zero energy. Consequently, in this case, there will
be no zero-energy edge states. From Fig. 2(c), one can see,
in addition to topological band touching points at zero energy
(red dots), bulk states of the other bands are available with
the same energy. So, one may anticipate that the zero-energy
edge states and the bulk states will coexist. Therefore, these
features imply that, correspondingly, there would possibly be
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FIG. 2. Energy spectra under periodic boundary conditions for (a) (L, R) = (2, 3), (b) (L, R) = (2, 4), and (c) (L, R) = (5, 3). Here θ/π =
1/2. Topological band touching points are shown at zero and finite energies by red and green dots, respectively.

symmetry-protected topological phases associated with zero-
energy edge states in the gap, without zero-energy edge states,
and with zero-energy edge states in the bulk states. So, we
are interested in inspecting symmetries of the system in the
following.

III. SYMMETRIES OF THE SYSTEM

A. Main symmetries

In the following, we investigate main symmetries of
the system including time-reversal, particle-hole, chiral, and
inversion symmetries. The system exhibits time-reversal
symmetry defined as Tih(k)Ti = h(−k) with i = 1, 2. The
operators of time-reversal symmetry are T1 = τxL ⊗ IRK and
T2 = ILRK, with K being the complex conjugation, IL (ILR) is
an identity matrix of size L (LR) and

τxL =

⎛
⎜⎜⎜⎜⎝

1
O 1

. .
.

1 O
1

⎞
⎟⎟⎟⎟⎠

L×L

. (3)

Note that in this system, T1 = ϒ1T2, where ϒ1 is a unitary
operator and will be investigated below.

Also, the system shows particle-hole and chiral symme-
tries. Since the system under consideration is a spinless
system, the unitary part of particle-hole operator, P , and the
chiral operator, �, are identical: P1 = �1 = C1L ⊗ C1R and
P2 = �2 = C2L ⊗ C1R , where

C1D =

⎛
⎜⎜⎜⎜⎝

1
−1 O

. . .

O

⎞
⎟⎟⎟⎟⎠

D×D

(4)

and

C2D =

⎛
⎜⎜⎜⎜⎝

1
O −1

. .
.

O

⎞
⎟⎟⎟⎟⎠

D×D

. (5)

The number of sublattices in each chain can be either odd
or even, so there exist two types of formula for each symmetry.
For the even number of sublattices per chain, the particle-hole
and chiral symmetries satisfy the general relations Pih(k)Pi =
−h	(−k) and �ih(k)�i = −h(k) with i = 1, 2, respectively.
When the R gets odd numbers, there are hidden particle-
hole and chiral symmetries fulfilling Pih(k)Pi = −h	(−k −
π ) and �ih(k)�i = −h(k − π ), respectively. Note that all the
operators of each symmetry can be commuted with each other
as [�i,� j] = 0, where � = (T ,P, �).

Due to T 2
i = P2

i = �2
i = ILR, according to the primary

topological periodic table [10–13], which is based on nonspa-
tial symmetries, the topological class of the system falls into
BDI class with Z index and the band structure of the system
may be gapped near the Fermi level revealing degenerate edge
states in topologically nontrivial phases.

Furthermore, Hamiltonian Eq. (2) illustrates reflection and
inversion symmetry. Although in quasi-1D systems, both
inversion and reflection symmetries change k → −k, they
could have a different form of operators. The reflection and
inversion symmetry defining 
ih(k)
i = h(−k) have the op-
erators 
1 = IL ⊗ τxR and 
2 = τxL ⊗ τxR , respectively. Note
that the inversion symmetry can be regarded as the reflection
symmetry for each chain. The mirror line of reflection symme-
try is perpendicular to the orientation of chains and bisects the
system while the inversion symmetry has an inversion point
located in the center of the system.

In addition to the main inversion symmetry, already dis-
cussed above, there is a subsidiary inversion symmetry whose
inversion points can be placed between every two adjacent
chains at the mirror line. This means that, under such symme-
try, the system can be remained invariant by inverting every
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two adjacent chains to each other with respect to the inver-
sion point located between them. The operator of subsidiary
inversion symmetry can be found as


3 = C3L ⊗ τxR , (6)

where

C3L =

⎛
⎜⎜⎜⎝

0 1 O

1 . . .
. . .

. . .
. . . 1

O 1 0

⎞
⎟⎟⎟⎠

L×L

. (7)

The first part of the 
3 operator, i.e., C3L acts on the chain
space and exchanges every two adjacent legs with each other,
while the second part acts on the sublattice space of each
leg and x → −x. It should be noted that the subsidiary op-
erator can satisfy inversion relation provided that the 
1 is
preserved.

B. Additional symmetries

In this system, as already mentioned, both the inversion
and reflection symmetries can change k to −k, therefore,
under a transformation that is a combination of the inversion
with respect to the main inversion point and reflection with
respect to the vertical mirror line, the Hamiltonian is invariant.
This implies that there is an additional symmetry, namely,
exchange symmetry, with a horizontal mirror line, along the
x axis, in the middle of the lattice. Correspondingly, its ex-
change operator can be obtained by multiplying the reflection
operator 
1 by the inversion operator 
2, i.e.,

ϒ1 = 
1
2 = τxL ⊗ IR, (8)

exchanging a chain from the upper half with its correspond-
ing one in the lower half of the system. Also, the existence
of the subsidiary inversion symmetry enables us to define
a subsidiary exchange symmetry. Its operator is the matrix
multiplication of 
2 and 
3,

ϒ2 = 
3
2 = C3L ⊗ IR, (9)

exchanging two adjacent chains with respect to an axis, being
parallel to the chains, located in the middle between them.
Note, there would be ϒ2 as long as ϒ1 is established.

After obtaining the symmetries that leave the Hamilto-
nian invariant, it is possible to utilize them in dividing the
system into subsystems by block diagonalizing the system
Hamiltonian [61,62]. This makes it easy to inspect topological
origins of system ingredients, in particular, when a system
hosts finite-energy topological edge states [35]. Therefore,
because of [h(k), ϒi] = 0 (i = 1, 2), Hamiltonian Eq. (2) can
be brought into a block-diagonal form through a unitary trans-
formation H(k) = Uh(k)U −1. The unitary matrix U can be
constructed from the eigenstates of ϒi. According to Eq. (8),
it is easy to show that the eigenvalues of ϒ1 are ±1. So, in
the basis of ϒ1, the Hamiltonian will be block diagonalized
into two decoupled blocks. If L is an even number, the size
of both blocks is LR/2, while for odd L, the sizes of two
blocks are 
 L

2 �R and (1 + 
 L
2 �)R. In this case, one should

find another exchange symmetry for each block and repeat the
block-diagonalization process to obtain L blocks of size R.

On the other hand, the subsidiary exchange symmetry op-
erator ϒ2 has L eigenvalues, λl , with R-fold degeneracy. The
simple closed-form for the eigenvalues λl is [63,64]

λl = 2 cos

(
lπ

L + 1

)
, l = 1, 2, ..., L. (10)

So, in the ϒ2 representation, the Hilbert space of the system
can be decomposed into L subspaces giving rise the Hamil-
tonian as H(k) = ⊕L

l=1 hϒ2=λl (k), where the Hamiltonian of
each subsystem is

hϒ2=λl (k) =

⎛
⎜⎜⎜⎝

tλl t . . . t ′e−ik

t tλl
. . .

...
...

. . .
. . . t

t ′eik . . . t tλl

⎞
⎟⎟⎟⎠

R×R

. (11)

Note that the Hamiltonian of subsystem Eq. (11) is a Hamil-
tonian of the extended SSH model [34,42,44,45], i.e., SSHR,
including R sublattices, with diagonal entries. Evidently, the
multiplication of the coupling term t and the subsidiary
exchange operator eigenvalues λl creates effective on-site po-
tentials (see Eq. (11)). In analog to the original SSH chain
model with R = 2, where there is only one gap, being the
main gap, containing one pair of topological edge states in
the topological regime, the subsystem SSHR has R − 1 gaps,
including a main gap and subgaps. Each gap would host topo-
logical edge states. Consequently, in the present system with
L subsystems, there could be a total of L(R − 1) topological
edge states with zero and/or finite energies.

It is worthwhile noting that if the L takes an even number,
the system Hamiltonian is similar to an L/2-spinfull 1D sys-
tem with SSHR chain that is exposed to an external Zeeman
field with amplitude tλl . In this case, the exchange symmetry
is equivalent to the spin-rotation symmetry in a 1D spinfull
system [30]. For odd L, the system resembles an L-chain
bosonic system with an integer spin S = 
L/2� − 1 [52].

As mentioned above, the topological phase transition oc-
curs at k = 0, π and θ/π = 1/2, 3/2. By substituting these
requirements in Eq. (11), the energy bands at the phase tran-
sition points can be obtained as [64]

Elr = t

[
λl + 2 cos

(
2rπ − π

R

)]
,

r = 1, 2, ..., R, if k = π,

Elr = t

[
λl + 2 cos

(
2rπ

R

)]
,

r = 1, 2, ..., R, if k = 0. (12)

Subsequently, using Eqs. (10) and (12), gap closure condi-
tions, i.e., Elr = 0, implies that

k = 0 → 2r = ±Rl

1 + L
+ R, (13)

k = π → 2r − 1 = ±Rl

1 + L
+ R. (14)

Note, for k = 0 (π ) the left-hand side of the above relation
is a positive even (odd) quantity, since the r takes positive
integer values. Also, for given integers R and L, the values
of l satisfying in Eqs. (13) and (14) gives us the subsystems
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that their gap can be closed and reopened at zero energy,
namely, the main gap of the whole band structure. It is easy
to show (see Appendix) that for such subsystems with the
corresponding λl , the index l fulfills the following relation:

L + 1

m
� l � (m − 1)

L + 1

m
, (15)

where m is the greatest common divisor of (L + 1, R). From
Eq. (15), one finds that there are m − 1 subsystems for which
main gap closing/reopening can take place. After the topolog-
ical phase transition, the gap of each of these subsystems can
contain one pair of zero-energy edge states. As a consequence,
in total, there will be m − 1 topological edge states at zero
energy under open boundary conditions.

IV. SYMMETRIES OF THE SUBSYSTEMS

In this section, we will examine the symmetries of sub-
systems, i.e., Eq. (11). The subsystems have inversion and
time-reversal symmetries. The corresponding operator of in-
version symmetry is 
′ = τxR and of time-reversal symmetry
is T ′ = IRK. Depending on the value of λl , Eq. (11) can have
extra symmetries as will be discussed in the following.

A. Odd numbers of L

In this case, the axis symmetry of the main exchange
symmetry, ϒ1, coincides with the central chain and, at the
same time, the number of eigenvalues of ϒ2, i.e., λl , will
be an odd number. As a result, one of the eigenvalues λl

must be zero originating from the fact that eigenvalues of a
Hermitian operator, e.g., ϒ2, are symmetric about zero. This
means that one of the subsystems whose effective on-site
potential is zero, tλl = 0, has chiral symmetry. Such sub-
system reminisces of the bare SSHR system. However, the
whole Hamiltonian has chiral symmetry. Depending on R that
would take even or odd numbers, the system hosts topological
edge states within either gapped or gapless bulk states around
zero energy. Note that the subsystem corresponding to the
zero eigenvalue has chiral and electron-hole symmetries in
addition to the inversion and time reversal symmetry. The
unitary part of particle-hole symmetry and chiral symmetry
is P ′ = �′ = C1R .

In fact, the even number of sublattices provides bulk
insulating ground states supporting particle-hole and chiral
symmetries in 1D systems [36–38,43–45]. Also, a pair of edge
states manifests itself at zero energy because of the presence
of inversion and chiral symmetry of the bare SSHR subsystem
[44,45]. So, the system at least hosts a pair of zero-energy
edge states in a topological insulating regime. In the present
cases, the chiral operators commute with the subsidiary ex-
change operator ϒ2 when the L takes odd numbers, i.e.,
[�i, ϒ2] = 0. As a consequence, according to Refs. [10–12],
the class of the subsystem with λl = 0 (the subsystem with
zero energy edge states) remains BDI, hosting nontrivial topo-
logical phases.

While the other subsystems lack chiral symmetry due to
λl �= 0 as already discussed above, these subsystems would
have zero-energy edge states if Eqs. (13)–(15) established.
In such a situation, m > 1 and the effective on-site potential
forces the energy of finite-energy edge states of the corre-

sponding subsystems to be shifted toward zero energy. This
is in contrast to the usual cases where there is no zero-energy
topological edge state when there is no chiral symmetry [34].
Also, the topological classification of the subsystems without
chiral symmetry belongs to AI class, owing to the presence
of inversion and time-reversal symmetries in the subsystems
[14–16].

On the other hand, an odd number of R providing an odd
number of bands in each subsystem results in bulk metallic
ground states, due to the existence of chiral symmetry and
the subsystem with λl = 0 resides always within the gapless
bulk states. Moreover, if conditions (13)–(15) are established
in the other subsystems λl �= 0, their zero-energy topological
edge states would lie in the continuum instead of band gaps.

B. Even numbers of L

For an even number of chains, none of the eigenvalues of
subsidiary exchange symmetry is zero. So, all the subsystems
lack chiral symmetry though each chain may include either
even or odd number sublattices. This implies that, unlike the
previous case, there is not even one subsystem belonging to
the BDI class. For an even or odd number of R, all subsystems
have an AI class because of the inversion and time-reversal
symmetries in the subsystems [14–16]. Moreover, the sub-
systems can be considered as the generalized SSHR and have
finite-energy edge states unless Eqs. (13)–(15) would be held
for some of them.

C. Topological invariant

The existence of inversion symmetry in the subsystems
gives rise that their Hamiltonians commute with the inversion
symmetry operator at k = 0 and k = π . As such, the subsys-
tems have well-defined parities. Also, the expectation value
of inversion operator is ±1 at either k = 0 or k = π . We can
define topological invariant N = ∑L,R−1

l,r |n0,l,r − nπ,l,r | in Z
[65], where n0,l,r and nπ,l,r are the number of negative parities
at k = 0 and k = π , respectively, for the lth subsystem and
rth gap.

Actually, to distinguish localized and extended features of
an eigenstate ψE in the corresponding eigenenergy E under
open boundary conditions, we determine inverse participation
ratio [66] as

IE = Ln
∑

j |ψE ( j)|4
LnLRN

. (16)

In the above relation, the system would host localized and
extended states, respectively, for IE = 0 and IE = −1.

V. PHASE DIAGRAM AND BAND STRUCTURES

In Fig. 3, we have plotted the phase diagram of system as
function of R and L. The total numbers of topological edge
states, N , at both zero and finite energies, are represented
by colors. According to Eq. (15), we specified the number of
zero-energy edge states in the main gap by different colorful
markers. For an odd number of R and L, there is a situation
in which topological edge states in the gap of a subsystem
can reside within the bulk states of another subsystem and the
system can host topological edge states in the continuum. We
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FIG. 3. Topological phase diagram of the system as functions of
the chain number L and sublattice number R. The color indicates
the total numbers of edge states (N ). Also, the colored and black
markers represent the number of edge state in the main gap and in
the continuum at zero energy, respectively. Note that the values of N
are completely integers.

distinguish the number of edge states at zero energy in the
continuum by black markers. One can see that N increases
rapidly when both R and L increase rather that one of the
parameters gets fixed values. Also, for a given L there are
at most L zero-energy edge states in the main gap, if R =
p(L + 1) where p = 1, 2, 3, ....

The band structure and the related topological invariant N
as a function of θ with L = 2 are shown in Figs. 4(a) and 4(c),
respectively, for R = 3 and R = 4. In these cases, our system
reduces to a two-leg ladder with three and four sublattices per
leg. Because, here, the main exchange symmetry axis does
not coincide on any chain, there is no zero eigenvalue for the
subsidiary exchange symmetry operator ϒ2. Also, the whole
system can be considered as a direct sum of two decoupled
subsystems (or chains) with effective on-site potentials.

One can see in Fig. 4(a) that there are L(R − 1) = 4 topo-
logical edge states in the topological regime with N = 4.
Also, according to (L + 1) = 3 and R = 3, the great common
divisor is m = 3, and therefore there exist m − 1 = 2 pairs of

zero-energy edge states in the main gap which are protected
by inversion symmetry of their subsystem Hamiltonians. In
this case, the effective on-site potential, originated from the
combination of coupling term and eigenvalue of ϒ2, leads
to shifting the finite-energy edge states to zero energy. Fur-
thermore, the remaining L(R − 1) − (m − 1) = 2 topological
edge states are finite-energy edge states within subgaps. Inter-
estingly, for certain values of θ the finite-energy edges states
cross the bulk states. In Fig. 4(b), the energy spectrum of the
system versus wave function index corresponding to Fig. 4(a)
is presented for θ/π = 1. One can see that there are two (two)
pairs of red stars at zero (finite) energy showing the number
of nontrivial midgap zero- (finite-) energy edge states.

For the parameters of Fig. 4(c), we have (L + 1) = 3 and
R = 4 thus m = 1. As a result, the change of sublattice num-
bers causes the main gap to be closed. Subsequently, there is
no zero-energy edge state, m − 1 = 0, and the total number
of emerged edge states, L(R − 1) = 6, would be hosted as
finite-energy topological ones with N = 6 in the topological
regime. Correspondingly, as can be seen from Fig. 4(d), there
are only six pairs of edge states, represented by red stars,
distributed at different finite energies.

The band structures (with topological invariant N ) as a
function of θ/π and wave-function index, respectively, in
Figs. 5(a) and 5(b) are shown with L = 5 and R = 3. There
are L(R − 1) = 10 pairs of edge states in this case. L is odd,
so one of the subsystems corresponding to λl = 0 has chiral
symmetry. In addition, the odd number of R imposes that there
is a band around zero energy. Also, there are m − 1 = 2 pairs
of edge states at zero energy. These result in the presence of
zero-energy edge states in the continuum, see Fig. 5(a). As
shown in Fig. 5(b), there are six pairs of edge states at finite
energy in the continuum, represented by blue stars. Also, we
have shown extended bulk states (two pairs edge states in the
gap) by white (red) stars.

VI. SYMMETRY BREAKING PERTURBATIONS

To demonstrate the effect of subsidiary exchange sym-
metry on topological features of the system, we invoke a
perturbation to break this symmetry. Without loss of gen-
erality, we investigate a special case, for an odd number

FIG. 4. Energy spectra and relevant topological invariant N as a function of θ/π under open boundary conditions for L = 2 with (a) R = 3
and (c) R = 4. The edge states appear in yellow and the extended bulk ones in gray color. (b), (d) Energy spectrum as a function of wave function
index for the parameters used in (a) and (c), respectively, with θ/π = 1. Edge and bulk states are shown by red and white stars, respectively.
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FIG. 5. (a) Energy spectra and relevant topological invariant as
a function of θ/π under open boundary conditions with (L, R) =
(5, 3). The edge states are shown in yellow and the extended ones in
gray color. (b) Energy spectrum as a function of wave function index
corresponding to (a) with θ/π = 1. The red, blue, and white markers
represent, respectively, the edge states in the gap, the edge states in
the continuum, and the extended bulk states.

of chains with even number of sublattices, (L, R) = (3, 2).
The subsidiary exchange symmetry, having ϒ2 operator, can
be broken by setting either the intra- or intercell hopping
amplitude of central chain different from the others, i.e.,
tl=2 �= t or t ′

l=2 �= t ′. Nevertheless, the system still has the
main exchange symmetry with the ϒ1 operator. After diag-
onalization, the system can be considered as two decoupled
blocks, i.e., SSHR and SSH2R. So, there is no coupling term
between the two subsystems and, interestingly, as shown in
Fig. 6(a), the edge states of one block can lie within the
bulk states of the other ones; the finite-energy edge states
within 0.4 � θ/π � 0.7 and 1.3 � θ/π � 1.6. The breaking
of the subsidiary exchange symmetry provides an off-diagonal
term in one of the subsystems so the edge states of that
block can be hybridized with its bulk states resulting in the
finite-energy delocalized topological edge states in the contin-
uum; the finite-energy edge states within 0.7 � θ/π � 0.75

FIG. 6. (a) Dependence of energy spectra and relevant topolog-
ical invariant on θ for (L, R) = (3, 2). Here the parameters are the
same as before except that tl=2 = 0.1t . (b) Energy spectrum as a
function of wave function index corresponding to (a) with θ/π =
0.6. Red, blue, and white markers represent, respectively, the edge
states in the gap, the edge states in the continuum, and the extended
bulk states.

FIG. 7. Energy spectra and relevant topological invariant as a
function of θ for (L, R) = (3, 2). (a) V1 = 0.5,V2 = 0 (b) V1 = V2 =
0.5. By breaking the inversion symmetry of some subsystems and
the whole system, the degeneracy of finite-energy edge states are
destroyed and the gap around zero energy is opened.

and 1.25 � θ/π � 1.3. Although, one may expect that the
system has L(R − 1) = 3 edge states (including one pair at
zero energy), another gap around zero energy is opened and
an extra one pair of edge states manifests itself in this gap.
Thus, in total, the system hosts two pairs of edge states at zero
energy and at finite energy, giving rise to four pairs of edge
states within 0.5 � θ/π � 0.6 and 1.4 � θ/π � 1.5, see also
Fig. 6(b).

Finally, let us ensure whether the inversion symmetry of
subsystem is the fundamental symmetry protecting the edge
states. To be more specific, we add the following perturba-
tions:

H ′ =
N∑

n=1

3∑
l=1

2∑
r=1

[(−1)rV1δl,2 + V2]C†
n,l,rCn,l,r, (17)

to Hamiltonian Eq. (1) with parameters (L, R) = (3, 2). Here,
the δl,l ′ is the Kronecker delta and V1 (V2) is the amplitude of
staggered (uniform) on-site potential breaking the inversion
(chiral) symmetry of the full Hamiltonian. Despite breaking
the subsidiary exchange symmetry, by rewriting the Hamil-
tonian in the basis of ϒ2, one subsystem corresponding to
λl = 0 out of the three subsystems has inversion symmetry
with operator


′
λl =0 = τx2 . (18)

This subsystem inversion symmetry operator, clearly, acts on
dimensions lower than those of the whole system. While the
other two subsystems lack the inversion symmetry.

As shown in Fig. 7(a), for V1 �= 0 and V2 = 0, one can
see that the zero-energy edge state is preserved due to pres-
ence of the inversion symmetry for one of the subsystems,
whereas the topology and the degeneracy of finite-energy
edge states, related to the other two subsystems with broken
inversion symmetry, are destroyed. Furthermore, turning on
the V2, breaking the full chiral symmetry, does not any effect
on the subsystem-symmetry-protected edge states, as shown
in Fig. 7(b). Consequently, importantly, the topology of the
system is protected by the inversion symmetry of subsystems.
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VII. SUMMARY

We considered the quasi-1D lattice system with L legs
and R sublattices per leg. We determined symmetries of the
system. It is shown that due to reflection and subsidiary
inversion symmetry, the subsidiary exchange symmetry can
be defined. Using this symmetry, we decomposed the system
into subsystems. It is found the different topological phases
can emerge, depending on L and R. In the topological regime,
each subsystem reveals R − 1 topological edge states at zero
and finite energy in the band structure. Consequently, there
are, in total, L(R − 1) topological edge states. For the case
with nonzero eigenvalues of the subsidiary exchange symme-
try, the corresponding subsystems lack chiral symmetry and
these subsystems belong to the AI class. But when the axis of
main exchange symmetry coincides on the central chain, due
to vanishing one of the eigenvalues of subsidiary exchange
symmetry, one of the subsystems would reduce to the original
SSHR with chiral symmetry and this subsystem belongs to
BDI class. The existence of topological edge states does not
depend on the symmetry of the whole Hamiltonian. Instead,
the inversion symmetry of the subsystems plays the key role in
protecting the topological phases. Experimentally, the edges
states can be observed in photonic lattices made of waveguide
arrays [67].
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APPENDIX: ALLOWED VALUES OF l
AND THEIR NUMBER

In this Appendix, we determine which subsystems l host
the topological edge states at zero energy. In other words, the

possible values for l that can satisfy in Eq. (15) of the main
text. Subsequently, we obtain the number of permissible value
of l for given R and L.

Since Eqs. (13) and (14) of the main text contain positive
integers R, 2r, 2r − 1, and L, so the expression Rl

L+1 should
be an integer. The maximum value of l is L, so it is not
possible to simplify this fraction unless there exists a greatest
common divisor (GCD) between the two values (L + 1, R).
By introducing the GCD(L + 1, R) as m, the fraction can be
rewritten as R

m
ml

L+1 . Because R
m is a positive integer, l should

take the integer values pL+1
m (with p = 1, 2, 3, ...) to enforce

the fraction R
m

ml
L+1 to be a positive integer.

Also 1 � l � L, so

m

L + 1
� p � mL

L + 1
, (A1)

where the lower bound is not integer and should be readjusted
to 1 according to the lower value of p. The integer upper
bound of p can be obtained as

mL

L + 1
= m − m

L + 1
< m, (A2)

subsequently,

m − 1 � mL

L + 1
= m − m

L + 1
, (A3)

resulting in

1 � p � m − 1. (A4)

So, the allowed values of l are

L + 1

m
� l � (m − 1)

L + 1

m
(A5)

and their number is m − 1.
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