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Antiferromagnetic Chern insulator in centrosymmetric systems
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An antiferromagnetic Chern insulator (AFCI) can exist if the effect of the time-reversal transformation on
the electronic state cannot be compensated by a space-group operation. The AFCI state with collinear magnetic
order is already realized in noncentrosymmetric honeycomb structures through the Kane-Mele-Hubbard model.
In this paper, we demonstrate the existence of the collinear AFCI in a square-lattice model which preserves the
inversion symmetry. Our study relies on the time-reversal-invariant Harper-Hofstadter-Hubbard model extended
by a next-nearest-neighbor hopping term including spin-orbit coupling and a checkerboard potential. We show
that an easy z-axis AFCI appears between the band insulator at weak and the easy xy-plane AF Mott insulator
at strong Hubbard repulsion provided the checkerboard potential is large enough. The close similarity between
our results and the results obtained for the noncentrosymmetric Kane-Mele-Hubbard model suggests the AFCI
as a generic consequence of spin-orbit coupling and strong electronic correlation which exists beyond a specific
model or lattice structure. An AFCI with the electronic and the magnetic properties originating from the same
strongly interacting electrons is a promising candidate for a strong magnetic blueshift of the charge gap below the
Néel temperature and for realizing the quantum anomalous Hall effect at higher temperatures so that applications
for data processing become possible.
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I. INTRODUCTION

The precise quantization of the Hall conductance in a
two-dimensional (2D) electron gas system subject to a strong
perpendicular magnetic field at low temperatures led to the
discovery of the quantum Hall state. A quantum Hall state
is characterized by a nonzero topological invariant C known
as Chern number. The state shows insulating behavior in the
bulk and metallic behavior at the edges. The gapless edge
states are chiral, i.e., electrons at each edge can only propagate
in a single direction, either clockwise or anticlockwise. It is
determined solely by the direction of the applied magnetic
field. This prevents backscattering and permits dissipationless
charge transport at the edges [1,2].

While a strong external magnetic field was essential in the
discovery of the quantum Hall state, the Haldane model [3]
provided a theoretical demonstration that a quantum Hall state
can be achieved even without a net magnetic flux through the
system. The only necessary condition is breaking of the time-
reversal symmetry. This suggested that the quantum Hall state
can be an intrinsic feature of a material rather than an effect
induced by an external magnetic field. Such a state is known
as the quantum anomalous Hall state or Chern insulator (CI).
From a practical point of view, the CI is highly favorable for
establishing dissipationless charge transport since it requires
no strong external magnetic field [4,5].

*ebrahimkhas@itp.uni-frankfurt.de
†goetz.uhrig@tu-dortmund.de
‡hofstett@physik.uni-frankfurt.de
§mohsen.hafez@tu-dortmund.de

The extension of the Haldane model to a spinful time-
reversal-invariant (TRI) model led to the prediction of the
quantum spin Hall insulator (QSHI) [6]. In a QSHI [6,7]
the Chern number for up and down spins is opposite due
to the time-reversal symmetry and the total Chern number
C = C↑ + C↓ vanishes. The QSHI is characterized by a Z2

topological invariant ν = (C↑ − C↓)/2 modulo 2. There are
gapless edge states which have opposite chirality for opposite
spins. The QSHI remains robust against spin-mixing Rashba-
type spin-orbit couplings due to the Kramers degeneracy [1,2].
The theoretical prediction of the QSHI in quantum wells
[8] was soon followed by an experimental verification [9].
The generalization of the QSHI to three dimensions led to
the theoretical prediction and the experimental observation
of three-dimensional (3D) TRI topological insulators. While
the quantum Hall state is a result of strong external magnetic
fields, the TRI topological insulators stem from strong spin-
orbit coupling [1,2].

Despite the important role that the Haldane model played
in the discovery of the TRI topological insulators, the realiza-
tion of the CI, for which the Haldane model was originally
proposed, still remained elusive. This originated from the fact
that the Haldane model was introduced more for theoretical
aims rather than to be materialized. We would like to point
out that the Haldane model is simulated in optical lattices by
creating artificial gauge fields for neutral atoms [10].

The realization of the CI in a crystalline material requires
two main ingredients: a strong spin-orbit coupling and a
spontaneous breaking of the time-reversal symmetry via spon-
taneous magnetization [4,5]. An effective strategy to reach
these conditions is by doping a topological insulator with
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magnetic impurities. A topological insulator has the prereq-
uisite of strong spin-orbit coupling and magnetic impurities
introduce magnetism into the system. A CI has been realized
by doping thin films of the topological insulator (Bi,Sb)2Te3

with the transition-metal element Cr [11] following a theoreti-
cal proposal [12]. A precise quantization of the Hall resistance
is observed at the temperature 30 mK at zero magnetic field
[11]. Improving the sample quality has allowed the realization
of the CI at the higher temperature 300 mK [13]. The fact that
the CI is realized at a temperature two orders of magnitude
smaller than the Curie temperature of the material, 30 K, is
attributed to the strong inhomogeneity induced into the system
by magnetic doping [14]. The temperature is raised to 2 K
using a magnetic modulation doping technique [14].

There has been a large interest in recent years in find-
ing topological insulators with intrinsic magnetic order [15]
which would allow the elimination of the detrimental effect of
disorder and an observation of the CI at higher temperature.
The efforts have led to the identification of several intrinsic
magnetic topological insulators, among them, MnBi2Te4 has
attracted the most attention [16–25]. However, these systems
have a very weak coupling between the magnetism and the
electronic surface states. A magnetically induced gap in the
surface states which is essential to realize the CI at high
temperatures is either missing or is extremely small [22–25].
The CI is observed on thin films of MnBi2Te4 with an odd
number of layers but still limited to the small temperature of
1.4 K [26]. This encourages further research to find the CI in
a new class of systems.

The current realization of the CI is tied to ferromagnetic
ordering [4,5]. One notes that although MnBi2Te4 is an anti-
ferromagnet (A-type) the realization of the CI in its thin films
[26] is due to the top and the bottom ferromagnetic layers. In
addition, the magnetic and the electronic properties originate
from electrons in different orbitals. While strongly correlated
electrons in a partially filled 3d or 4 f orbital are responsible
for the magnetic ordering, the noninteracting electrons in 6p
and 5p orbitals mainly govern the electronic properties [24].
The electronic bands are only indirectly affected by the mag-
netic ordering via an AF Kondo interaction [27].

Antiferromagnets are a large class of materials with unique
features. They create no stray field, they are robust against
disturbing magnetic fields, and they have ultrafast spin dy-
namics in contrast to ferromagnets. These are the reasons
behind the recent surge of interest for developing a spintronics
technology based on antiferromagnets [28]. In addition, there
is experimental and theoretical evidence of antiferromagnets
displaying a strong coupling between the magnetic and the
electronic properties [29–35]. This is especially the case if the
electrons defining the charge gap are the ones responsible for
the magnetic ordering, i.e., strongly correlated [34,35]. There
is a noticeable shift of the charge gap towards higher energies
upon developing the AF order below the Néel temperature
[34,35]. These features make identifying strongly correlated
systems which can host antiferromagnetic CI (AFCI) states
of particular interest. We emphasize that the AFCI discussed
in this paper originates from the spontaneous time-reversal
symmetry breaking which is distinct from the AF quantum
Hall insulator [36,37] in which the time-reversal symmetry is
explicitly broken.

A ferromagnetic ordering makes a clear distinction be-
tween up and down spins. This allows one spin component to
be in a trivial state with Cσ = 0 and the other spin component
to be in a quantum Hall state with Cσ̄ �= 0, resulting in a
CI with C = C↑ + C↓ �= 0. In contrast, such a distinction is
not obvious in an antiferromagnet. This raises the question if
there can exist an AFCI state. An AFCI can indeed exist if
the effect of the time-reversal transformation on the electronic
state cannot be compensated by a space-group operation. The
absence of such an antiunitary symmetry is necessary for find-
ing a nonzero Chern number [38,39]. The AFCI has already
been identified in the Kane-Mele-Hubbard model which lacks
inversion symmetry using a mean-field theory approximation
[39] and is also suggested for NiRuCl6 based on the density-
functional theory analysis [40].

In this paper, we consider a minimal TRI extension of the
Harper-Hofstadter model [41–43] which allows us to realize
both the QSHI and the trivial band insulator (BI) at half-
filling. In addition to the nearest-neighbor (NN) hopping t the
Hamiltonian involves a next-nearest-neighbor (NNN) hopping
t ′ and a checkerboard potential �. The combination of time-
reversal symmetry and inversion symmetry with respect to a
lattice site leads to spin-degenerate energy bands. We address
the effect of the Hubbard interaction U favoring a Néel AF
Mott insulator on the system employing the dynamical mean-
field theory (DMFT) method [44]. We determine the phase
diagram of the model in the U -� plane for a fixed value
of t ′ and show that for (U ≈ 2�) � t an easy z-axis AFCI
appears, separating the BI at small and the easy xy-plane AF
Mott insulator at large values of U .

The similarity between our results and the results obtained
for the noncentrosymmetric Kane-Mele-Hubbard model [39]
suggests the AFCI as a generic phase in strongly correlated
systems with spin-orbit coupling, which exists beyond a spe-
cific model or lattice structure. We discuss the stabilization
of the AFCI based on vanishing of spin and charge gaps and
emphasize that the necessary condition to realize the AFCI
is the absence of a space-group operation to compensate the
effect of the time-reversal transformation on the electronic
state.

The paper is organized as follows. In the next section we in-
troduce the extended TRI Harper-Hofstadter-Hubbard (HHH)
model and present its phase diagram. Section III is devoted
to the technical aspects. In Sec. IV we discuss the results
obtained for small to intermediate values of the checkerboard
potential �. We unfold the emergence of the AFCI for large
values of � in Sec. V. Section VI discusses the evolution of
the essential charge and spin gaps across the AFCI phase. The
paper is concluded in Sec. VII.

II. THE MODEL AND THE PHASE DIAGRAM

A. Hamiltonian

The Kane-Mele model [45] and the TRI Harper-Hofstadter
model [46,47] have been introduced as two fundamental mod-
els to study the QSHI. The TRI Harper-Hofstadter model is
simulated using ultracold atoms in optical lattices [48,49].
While the Kane-Mele model at half-filling represents a QSHI,
the Harper-Hofstadter model at half-filling is a semimetal.
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One needs to consider the Harper-Hofstadter model at other
fillings or to add additional terms such as a NNN hopping
to open a gap and achieve nontrivial topological states [50].
We include a NNN hopping to the TRI Harper-Hofstadter
model and focus on half-filling. The half-filling is necessary
to realize a Mott insulating phase in the presence of a strong
Hubbard interaction and to make a comparison with the results
of the Kane-Mele-Hubbard model [39].

A minimal extension of the TRI HHH model which allows
to investigate the competition between the QSHI, the BI, and
the Mott insulator states is thus given by

H = Ht + �
∑

�r,σ
(−1)x+yn�r,σ + U

∑

�r
n�r,↓n�r,↑ (1)

with the hopping term

Ht = −t
∑

�r
(c†

�r+x̂c�r + c†
�r+ŷe+2π iϕxσz c�r + H.c.)

− t ′ ∑

�r
(c†

�r+x̂+ŷe+2π iϕ(x+ 1
2 )σz c�r

+ c†
�r+ŷe+2π iϕ(x+ 1

2 )σz c�r+x̂ + H.c.), (2)

where �r = xx̂ + yŷ = (x, y) runs over the square lattice with
the lattice constant considered as the unit of length. The cre-
ation field operator at the lattice position �r is given by c†

�r =
(c†

�r,↑, c†
�r,↓). Similarly, the annihilation field operator is given

by the column vector c�r = (c�r,↑, c�r,↓)T . The index σ =↑,↓
specifies the z component of the particle spin. The occupation
number operator reads as n�r,σ = c†

�r,σ c�r,σ .
A particle picks up a phase determined by ϕ upon hop-

ping which is opposite for opposite spins due to the Pauli
matrix σz, making the Hamiltonian time-reversal symmetric.
We fix the phase parameter to ϕ = 1

2 and the NNN hopping to
t ′ = 0.25t throughout this paper. The phase parameter ϕ = 1

2
is the simplest case to achieve nontrivial topological bands.
The second term in Eq. (1) is a checkerboard potential giving
the onsite energy +� to sites with x + y even and the onsite
energy −� to sites with x + y odd. It supports a BI phase in
the system. The last term in Eq. (1) is the Hubbard interaction
which describes the repulsion between particles with opposite
spins occupying the same lattice site and at half-filling favors
long-range AF order. The different terms in the Hamiltonian
(1) for ϕ = 1

2 are sketched schematically in the 2 × 2 unit cell
in Fig. 1. We denote the four different sublattices as A1 with x
and y even, A2 with x and y odd, B1 with x odd and y even, and
B2 with x even and y odd.1 The system has inversion symmetry
where the center of inversion can be at any lattice site.

A clarification on the choice of the staggered potential
in Eq. (1) is in order. We have considered a checkerboard
potential changing as �(−1)x+y and not a staggered poten-
tial changing only along one direction, e.g., �(−1)x. This

1It is possible to reduce the number of sites in the unit cell to
two sites by applying the spin-dependent local gauge transforma-
tion c�r → e−iπσzy2/2c�r . However, this shifts the energy bands in the
momentum space and also changes the magnetic order in the large
Hubbard U limit. We decided to avoid such a transformation to
prevent potential confusion.

FIG. 1. Schematic representation of the Hamiltonian (1) for
the phase parameter ϕ = 1

2 . The Hamiltonian involves a nearest-
neighbor hopping t , a next-nearest-neighbor hopping t ′, a checker-
board potential �, and a Hubbard interaction U . Particles with
opposite spins pick up opposite phases upon hopping due to the Pauli
matrix σz in the phase factor. The different sublattices are labeled as
A1, A2, B1, and B2.

is because in the presence of the checkerboard potential the
effect of the time-reversal transformation on the Néel AF
state cannot be compensated by a space-group operation while
for the staggered potential along the x direction the effect
of the time-reversal transformation on the Néel AF state can
be compensated by a lattice shift along the y direction. The
checkerboard potential permits the emergence of the Néel
AFCI. The staggered potential changing only along the x
direction can lead to other types of correlated topological
states and we leave it for a future study. The Hamiltonian
(1) with ϕ = 1

2 is thus motivated as a minimal theoretical
model which allows to investigate the AFCI phase beyond the
noncentrosymmetric Kane-Mele-Hubbard model [39].

B. Limiting behaviors

In the absence of the Hubbard interaction the Hamiltonian
(1) reduces to a four-level problem in momentum space de-
scribed by

H =
∑

�k,σ

�
†
�k,σ

Hσ (�k)��k,σ
(3)

with ��k,σ
= (a1,�k,σ

, b1,�k,σ
, b2,�k,σ

, a2,�k,σ
)T where a1,�k,σ

is the
Fourier transform of c�r,σ on the sublattice A1 and similarly for
the other operators. The Bloch Hamiltonian is given by

Hσ (�k) = (�σz − 2t cos(ky)σx) ⊗ σz − 2t cos(kx )1 ⊗ σx

+ 4t ′sgn(σ ) sin(kx ) sin(ky)σx ⊗ σy, (4)

where σx, σy, and σz stand for Pauli matrices and we have
defined sgn(↑) = +1 and sgn(↓) = −1.

The energy bands of Eq. (4) are spin degenerate as
H↑(�k) and H↓(�k) differ only by a transpose. This spin
degeneracy originates from the time-reversal symmetry
Hσ (�k) = H∗

σ̄ (−�k) and the inversion symmetry with respect
to a lattice site Hσ (�k) = Hσ (−�k). We have used σ̄ to indicate
the opposite direction of σ .
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The Hamiltonian (4) at half-filling describes a QSHI for
� < 4t ′ with the Chern numbers C↑ = +1 and C↓ = −1 for
the up and down spins. Upon increasing � the gap closes
at � = 4t ′ and for � > 4t ′ the system becomes a BI with
Cσ = 0 for both spin components. As we will show using the
topological Hamiltonian method [51,52] a similar Hamilto-
nian but with a renormalized staggered potential determines
the topological properties also of the interacting model (1).

In the large Hubbard U limit where the subspace with a fi-
nite number of doubly occupied sites is much higher in energy
than the subspace with no double occupancy one can derive an
effective spin Hamiltonian describing the low-energy proper-
ties of the system [53]. The effective spin Hamiltonian of the
extended TRI HHH model (1) in the Mott limit (U − 2�) � t
is given by

Heff = J1

∑

〈i, j〉
�Si · �S j + J2

∑

[i, j]

(
Sz

i Sz
j − Sx

i Sx
j − Sy

i Sy
j

)
(5)

with the NN J1 = 4t2U/(U 2 − 4�2) [54] and the NNN J2 =
4t ′2/U [55,56] exchange couplings. The notation 〈i, j〉 limits
sites i and j to be NN and the notation [i, j] limits sites i and
j to be NNN. The spin anisotropy in the NNN exchange inter-
action stems from the spin-dependent NNN hopping which
reduces the SU(2) symmetry to the U(1) symmetry. The
Hamiltonian (5) supports the Néel AF state with a spin polar-
ization in the x-y plane (xy-AF state) due to the ferromagnetic
NNN exchange interaction in the x and y directions. This
avoids the frustration induced by the AF NNN interaction in
the z direction. The energy difference per lattice site of the
Néel AF state with the spin polarization along the z direction
(z-AF state) and the xy-AF state reads as

εz − εxy = J2 = 4t ′2

U
(6)

in the mean-field approximation of the spin Hamiltonian (5).
While in the Mott regime (U − 2�) � t the xy-AF state is
the stable phase, we will show how charge fluctuations for
(U ∼ 2�) � t stabilize a z-AFCI.

A similar Hamiltonian as Eq. (1) but with hopping phases
independent of spin, breaking explicitly the time-reversal
symmetry, is employed in Ref. [36] to investigate the role of
the lattice symmetry on the emergence of AF quantum Hall
states. One notes that here we analyze systems which show
spontaneous breaking of the time-reversal symmetry and the
emergence of AFCIs. It is worth also mentioning that in the
absence of the hopping phase, i.e., for ϕ = 0, and vanishing
NNN hopping t ′ = 0, the Hamiltonian in Eq. (1) reduces to
the ionic Hubbard model which has been used as a paradig-
matic model for studying the transition from band to Mott
insulator in one [54,57–60] and two [61–66] dimensions.

C. Phase diagram

Before proceeding to the technical aspects and discussing
the results in details we present the phase diagram of the
extended TRI HHH model (1) for the phase parameter ϕ = 1

2
and the NNN hopping t ′ = 0.25t in the U -� plane in Fig. 2.
We have used DMFT [44] and the topological Hamiltonian
method [51,52] to address the effect of the interaction. The
system is a QSHI for small values of � and the Hubbard

0

2

4

6

8

10

12

0 3 6 9 12 15 18 21 24 27

BI

QSHI
xy-AF

z-AFCI/t

U/t

FIG. 2. The phase diagram of the extended time-reversal-
invariant Harper-Hofstadter-Hubbard model in Eq. (1) for the phase
parameter ϕ = 1

2 and the next-nearest-neighbor hopping t ′ = 0.25t .
The phase diagram involves a trivial band insulator (BI), a quantum
spin Hall insulator (QSHI), a Néel antiferromagnetic state with the
spin polarization in the xy plane (xy-AF), and a Néel antiferromag-
netic Chern insulator with the spin polarization along the z direction
(z-AFCI). The results are for the temperature T = 0.02t .

interaction induces a transition to the xy-AF phase. For in-
termediate values of � the system is in the BI phase and the
Hubbard interaction first drives the system into the QSHI and
then into the xy-AF state. For large values of �, a z-AFCI
separates the BI from the xy-AF phase. We cannot exclude
the possible existence of an extremely narrow trivial z-AF
phase between the BI and the z-AFCI. The positions of the
tricritical points in Fig. 2 are approximate as their accurate
determination is demanding. The phase diagram 2 is obtained
for the small but finite temperature T = 0.02t to guarantee
that the narrow z-AFCI phase can survive thermal fluctuations
and be found in a real experiment which is always performed
at a finite T .

The similarity between the phase diagram in Fig. 2 and
the phase diagram of the noncentrosymmetric Kane-Mele-
Hubbard model [39] suggests that the z-AFCI is not a phase
limited to a specific model or a specific lattice structure, but
rather is a generic consequence of strong electronic correla-
tion and spin-orbit coupling in two-dimensional systems. The
necessary condition to realize an AFCI is the absence of a
space-group operation to compensate the effect of the time-
reversal transformation on the electronic state which can be
achieved with or without the inversion symmetry. Our DMFT
analysis demonstrates that the z-AFCI can exist beyond the
(slave boson) mean-field approximation [39] and survives lo-
cal quantum fluctuations.

III. TECHNICAL ASPECTS

A. Dynamical mean-field theory

We employ DMFT which is an established approach to
systems with strong local interaction and large coordination
number. The method approximates the self-energy to be spa-
tially local which is exact in the limit of infinite coordination
number. In the case of finite coordination number the nonlocal
quantum fluctuations due to the momentum dependence of the
self-energy are neglected. The local quantum fluctuations are
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fully taken into account. The lattice model is mapped to an
Anderson impurity model determined self-consistently [44].
DMFT has been extensively applied in the past decade to in-
teracting two-dimensional topological systems [36,37,47,67–
71].

We use real-space DMFT [72–74] as it allows access not
only to the bulk, but also to the edges of the system. The self-
energy is local but it can depend on the position

	�r,σ ;�r′,σ ′ (iωn) = δ�r,�r′	�r;σ,σ ′ (iωn) . (7)

One notes that the spin off-diagonal elements of the self-
energy 	�r;σ,σ̄ (iωn) �= 0 are essential to describe the xy-AF
phase. We use our implementation of real-space DMFT for
SU(N ) systems introduced in Ref. [75] due to its easy adapt-
ability to different models and its capability of addressing
self-energies with spin off-diagonal elements. We use the ex-
act diagonalization (ED) method as the impurity solver which
provides an accurate description of static local quantities and
permits direct access to real-frequency dynamical quantities
[76].

We mainly consider 40 × 40 lattices with periodic bound-
ary conditions to investigate the bulk properties. However,
near phase transitions especially in the z-AFCI region we
have performed calculations also for 60 × 60 lattices and
find no change in the results. To analyze edge excitations,
41 × 40 lattices are used with open boundary conditions along
x and periodic boundary conditions along y direction, i.e.,
cylindrical geometry. One notes that although we use the
real-space DMFT we fully exploit the translational symmetry
of the system to set up the impurity problem and to compute
the lattice Green’s function [75]. For example, for the bulk
properties the impurity model is addressed only at the four
lattice sites in the unit cell sketched in Fig. 1.

We mainly use the number of bath sites nbs = 6 in the ef-
fective Anderson impurity problem. However, we will present
data also for nbs = 5, 7, and 8 across the z-AFCI phase and
show that the results obtained for these different numbers of
bath sites are almost indistinguishable. This stems from the
perfect description of the dynamical Weiss field we find in
all these cases. The conservation of the total z component of
spin is used in the ED except for the xy-AF phase. We fix the
temperature to T = 0.02t and perform the DMFT loop with
200 positive Matsubara frequencies. Again, we pay careful
attention to the z-AFCI region where we increase the number
of positive Matsubara frequencies up to 1000. A chemical
potential μ is added to the Hamiltonian (1) and is adjusted
within the DMFT loop to satisfy the half-filling condition.

B. Topological Hamiltonian method

Although the real-space DMFT makes it possible to di-
rectly spot the excitations at the bulk and at the edges, a more
precise way to determine the topological phase transitions is
by computing the topological invariants. For an interacting
system, the topological invariants can be calculated using
twisted boundary conditions [77]. This requires knowledge
of the eigenstates of the system which is beyond the scope
of the DMFT. Topological invariants can be expressed also
based on the Green’s function provided the system contains no
nontrivial degeneracy, such as the one in fractional quantum

Hall states [78,79]. Such a condition is satisfied for all the
phases we investigate in this paper. The method involves fre-
quency and momentum integrations over the Green’s function
and its derivatives and remains computationally demanding.
In Ref. [51] it has been shown by adiabatic deformation of the
imaginary-frequency Green’s function (such that the charge
gap never closes) that the topological invariant of an interact-
ing system can be determined from an effective noninteracting
model. The method is exact provided that the necessary condi-
tions are satisfied [52]. The effective model, called topological
Hamiltonian, in the Bloch form reads as

Ht (�k) = H0(�k) + �(�k, ω = 0), (8)

where H0(�k) is the noninteracting part of the Hamiltonian
and �(�k, 0) is the self-energy in momentum space and at zero
frequency.

It should be mentioned that the topological invariant can
change not only due to the poles of the Green’s function but
also due to its zeros [80], e.g., in paramagnetic Mott insulators
where the self-energy at zero frequency diverges [27]. But this
does not occur in the phases studied in this paper.

The noninteracting part of the Hamiltonian (1) in the Bloch
representation is given by Eq. (4). The self-energy in the
DMFT is local. Hence, the momentum-space self-energy in
the paramagnetic and in the z-AF state is given by

�σ (�k, 0) = + 1
2 (	A,σ (0) + 	B,σ (0))1 ⊗ 1

+ 1
2 (	A,σ (0) − 	B,σ (0))σz ⊗ σz, (9)

where 	A,σ (0) is the self-energy on the sublattice with the
higher onsite energy and 	B,σ (0) is the self-energy on the
sublattice with the lower onsite energy. One notes that the
self-energy on the sublattices A1 and A2 are equal, and also
on the sublattices B1 and B2.

The topological Hamiltonian obtained by adding the self-
energy (9) to the Bloch Hamiltonian (4) remains, up to an
irrelevant constant, the same as Eq. (4) but with the renor-
malized staggered potential

�̃σ = � + 1
2 (	A,σ (0) − 	B,σ (0)). (10)

We drop the lower index σ when discussing paramagnetic
phases as there is no spin dependence. The system is in the
QSHI phase for |�̃| < 4t ′ and in the BI phase for |�̃| > 4t ′. In
the z-AF state, however, the renormalized staggered potential
(10) depends on the spin and, in principle, it is possible that
one spin component falls in the topological region |�̃σ | < 4t ′
and the other in the trivial region |�̃σ | > 4t ′. This leads to
the emergence of a CI. For the NNN hopping t ′ = 0.25t that
we consider throughout this paper the topological transition
occurs at |�̃σ | = t .

The renormalized staggered potential in Eq. (10) re-
quires the self-energy at zero frequency. We always find that
the value of the real part of the self-energy at the small-
est Matsubara frequency ω0 = πT perfectly describes the
value of the self-energy at zero frequency obtained by a
polynomial extrapolation. This means one can replace
	A,σ (0) with Re[	A,σ (ω0)] and 	B,σ (0) with Re[	B,σ (ω0)]
in Eq. (10).

The DMFT together with the topological Hamiltonian
method have been used extensively to map out the phase
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FIG. 3. (a) The local spin polarization in the xy-AF state (Mxy)
and in the z-AF state (Mz) vs the Hubbard interaction U for different
values of the staggered potential �. (b) The energy difference per
lattice site of the z-AF state and the xy-AF state vs the Hubbard U for
� = 3t and 5t . The mean-field result (6) of the effective low-energy
spin model is included as a red dashed line for comparison. (c) The
renormalized staggered potential �̃ in the paramagnetic region vs the
Hubbard U for different values of �. The system is in the trivial band
insulator for �̃ > t and in the quantum spin Hall insulator for �̃ < t
which are separated by the dashed line at �̃ = t . The results shown
are for the number of bath sites nbs = 6.

diagram of various interacting topological systems [36,37,67–
70,81]. The phase diagram of the Haldane-Hubbard model
obtained using the DMFT and the topological Hamiltonian
method agrees qualitatively with the results obtained using
ED and twisted boundary conditions [37]. A systematic study
of the quantum fluctuations beyond the DMFT indicates small
changes to the phase boundaries [82]. Similarly, we expect our
phase diagram to be qualitatively reliable, i.e., to be reliable
with regard to the types of the phases present and to which
phase is adjacent to which other phase. But the position of
the phase boundaries might be shifted upon including the
nonlocal quantum fluctuations.

IV. WEAK TO INTERMEDIATE
STAGGERED POTENTIALS

In Fig. 3(a) the local spin polarization in the z-AF state
(Mz) and in the xy-AF state (Mxy) is plotted vs the Hubbard
interaction U for the staggered potential � = t , 3t , and 5t ,
which correspond to small and intermediate values of � in the
phase diagram 2. The results are for the number of bath sites

nbs = 6 in the ED impurity solver. The local spin polarizations
are given by

Mz = 1
2 |〈c†

�r σz c�r〉|, (11a)

Mxy = 1
2 |〈c†

�r σx c�r〉x̂ + 〈c†
�r σy c�r〉ŷ|. (11b)

The lattice has the Néel AF order. The xy-AF phase is
continuously degenerate due to the spontaneous breaking of
the U(1) symmetry. We have produced multiple xy-AF so-
lutions for the DMFT equations corresponding to the local
spin polarization vector pointing in different directions in the
x-y plane. We find all the solutions having the same local
spin polarization Mxy and the same energy. This serves as
a corroborating test for our results. The z-AF solution is
twofold degenerate due to the spontaneous breaking of the
time-reversal symmetry.

The xy-AF state and the z-AF state in Fig. 3(a) show the
same local spin polarization at large values of U . However, the
spin polarizations Mxy and Mz become distinct as the Hubbard
U is reduced. For small values of the staggered potential �

the xy-AF state persists to smaller values of U compared to
the z-AF state. As one can see for � = t in Fig. 3(a) the
spin polarization in the z-AF state vanishes at U ∼ 7.5t while
the spin polarization in the xy-AF state survives down to
U ∼ 6.5t . This enhanced robustness of the xy-AF phase over
the z-AF phase against the charge fluctuations reduces upon
increasing the staggered potential to � = 3t and disappears
for � = 5t .

We have compared the energy per site of the z-AF (εz) and
the xy-AF (εxy) states in Fig. 3(b) for � = 3t and 5t . One
can see that the xy-AF state has a lower energy compared to
the z-AF state. This is what one would naturally expect in
the Mott regime based on the effective spin model (5). We
expect our DMFT treatment in the Mott limit to be equivalent
to the mean-field approximation of the low-energy spin model
(5). This is because the local quantum fluctuations taken into
account in the DMFT influence only the high-energy prop-
erties, which are already eliminated in the derivation of the
spin model. The spin model only involves nonlocal quantum
fluctuations. Such an equivalence can also be seen for the Néel
temperature of the Hubbard model [83]. The energy difference
in Fig. 3(b) for large Hubbard interactions approaches the
mean-field result of the spin model given by Eq. (6) with
t ′ = 0.25t , independent from �. The mean-field results are
denoted in Fig. 3(b) by a dashed red line. One notes that
although in the Mott regime (U − 2�) � t the DMFT results
equal the mean-field results of the effective low-energy spin
model, the DMFT analysis takes into account the charge fluc-
tuations which become essential as the Hubbard interaction
is reduced. We will show how these charge fluctuations for
(U ∼ 2�) � t favor energetically the z-AF state over xy-AF
state. Evidence of the z-AF phase acquiring an energy lower
than the xy-AF phase can already be seen in Fig. 3(b) for
� = 5t near U = 13t . This becomes more pronounced as � is
further increased in Sec. V. One notes that the location of the
tricritical points in the phase diagram 2 is only approximate
as they are difficult to be determined accurately.

In order to identify the transition between the BI and the
QSHI in the paramagnetic region the renormalized staggered
potential (10) is plotted in Fig. 3(c) vs the Hubbard U for
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FIG. 4. The spectral function Ax (ω) given by Eq. (12) vs fre-
quency for a cylinder of the size 41 × 40 with the edges at x = 0
and at x = 40 in the trivial band insulator phase for U = 5t and
� = 5t (a), in the quantum spin-Hall insulator phase for U = 4t and
� = 0 (b), and in the Néel antiferromagnetic phase with the spin
polarization in the x-y plane for U = 20t and � = 5t (c). The results
are symmetric with respect to the middle x = 20 of the cylinder. The
results are obtained for the number of bath sites nbs = 6.

the different values of the staggered potential � = t , 3t , and
5t . For � = t the system is at the phase boundary of the BI
and the QSHI for U = 0. As the Hubbard U is increased the
renormalized staggered potential �̃ lowers and the system
becomes a QSHI. For � = 3t and 5t the system for small
values of U is in the BI phase with �̃ > t . As the Hubbard
U is increased, the renormalized staggered potential crosses
the dashed line at �̃ = t and the transition to the QSHI takes
place.

The real-space DMFT permits to spot bulk and edge ex-
citations of the interacting system by considering cylindrical
geometries. Although due to the finite number of bath sites
in the ED impurity solver the spectral function is not smooth
consisting of separate sharp peaks, it can still signal the ex-
istence of gapless excitations at the edges [36,70]. This is
observed also for the ED of lattice models [84]. Figure 4
displays the spectral function resolved along the x direction
Ax(ω) for a cylinder of the size 41 × 40 with the edges at
x = 0 and at x = 40. The results in Fig. 4 correspond to the
BI phase for U = 5t and � = 5t (a), to the QSHI phase for
U = 4t and � = 0 (b), and to the xy-AF phase for U = 20t

and � = 5t (c). The spectral function Ax(ω) is given by

Ax(ω) = 1

4

∑

σ

[Ax,y;σ (ω) + Ax,y+1;σ (ω)], (12)

where Ax,y;σ (ω) is the spectral function at the lattice position
(x, y) for the spin σ . One notes that Ax(ω) does not depend on
y and σ as we average over the two sites in the unit cell in the
y direction and over the spin. We have limited the x coordinate
in Fig. 4 to x < 20 as the results are symmetric with respect
to the middle x = 20 of the cylinder. The spectral function in
Eq. (12) averaged over the spin and the periodic y direction but
resolved along the open x direction allows us to examine how
the charge excitations change from the bulk to the edge of the
system. The results are for the number of bath sites nbs = 6.
A Lorentzian broadening with the broadening factor 0.05t is
used in the calculations.

As one can see from Fig. 4(b) there are gapless excita-
tions at the edges which quickly disappear as the bulk is
approached. In contrast, we find gapped excitations in the bulk
and at the edges in Figs. 4(a) and 4(c). As we move away
from the edges, the results in all the panels in Fig. 4 perfectly
coincide with the bulk results x = 18. Figure 4 allows us to
directly investigate the topological and the trivial nature of
the different phases in the interacting system without using
the topological Hamiltonian method, if we assume that the
bulk-boundary correspondence is valid. However, one notes
that this approach is only accurate when the system is deep
within a phase, where the edge excitations are either gapless
as in Fig. 4(b) or there is a large energy gap as in Figs. 4(a) and
4(c). Near the phase boundaries one needs a high-resolution
energy spectrum to distinguish a gapless spectrum from a
spectrum which has a tiny energy gap. In our analysis, the
energy resolution is limited by the finite number of bath sites
in the ED impurity solver. To determine the topological phase
boundaries accurately one needs to use the topological Hamil-
tonian method and compute the topological invariants which
change abruptly at a transition point.

V. ANTIFERROMAGNETIC CHERN INSULATOR

Up to now our discussion of the phase diagram in Fig. 2
has been limited to small and intermediate values of � with
� � 5t . In the following we will focus on large values of �

where a z-AFCI appears between the BI and the xy-AF phases.
In Fig. 5(a) the local spin polarizations in the z-AF and

in the xy-AF states are depicted vs the Hubbard U for the
staggered potential � = 7t . The number of bath sites is given
by nbs = 6. Comparing with the results in Fig. 3(a) one can
see how a region with a finite Mz and zero Mxy develops upon
increasing the value of �. The energy difference between the
z-AF state and the xy-AF state plotted vs U for � = 7t in
Fig. 5(b) shows that the z-AF state becomes the stable phase
with εz < εxy before Mxy vanishes. A very similar spin-flop
phase transition between the xy-AF order and the z-AF order
is observed in the Kane-Mele-Hubbard model [39]. The phase
diagram of the Kane-Mele-Hubbard model is investigated also
in Ref. [85]. However, the analysis in Ref. [85] is limited to
small values of the sublattice potential and the z-AF state is
never found as the stable phase.
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FIG. 5. (a) The local spin polarization in the xy-AF state (Mxy)
and in the z-AF state (Mz) vs the Hubbard interaction U . (b) The
energy difference per lattice site of the z-AF state and the xy-AF
state vs U . (c) The renormalized staggered potential �̃σ defined by
Eq. (10) in the z-AF phase vs the Hubbard U . The dashed lines in
(c) separate the topological region |�̃σ | < t from the trivial region
|�̃σ | > t . The results are for the staggered potential � = 7t . We have
used the number of bath sites nbs = 6 in the ED impurity solver. The
results in (c) are for the magnetic solution with the spin-up particles
occupying mainly the lower-energy sublattice.

To address the topological properties of the z-AF phase we
have plotted the renormalized staggered potential (10) vs the
Hubbard interaction in Fig. 5(c) for � = 7t . The dashed lines
separate the topological |�̃σ | < t from the trivial |�̃σ | > t
region. In the paramagnetic regime for U < 15.5t the renor-
malized staggered potential �̃σ is independent of the spin
and �̃σ > t suggests a BI phase. At U ≈ 15.5t we find �̃σ

extremely close to t . As the system enters the z-AF phase
for U > 15.5t the renormalized staggered potential �̃σ be-
comes spin dependent, increasing for one spin component
and decreasing for the other. One spin component falls in
the trivial region |�̃σ | > t and the other in the topological
region |�̃σ | < t . The results provided in Fig. 5(c) correspond
to the z-AF solution with the lower-energy sublattice occupied
mainly with spin-up particles. Figure 5(c) demonstrates that
the z-AF state has a finite Chern number and the emergence
of the z-AFCI.

To further check the existence of the z-AFCI between the
BI and the xy-AF phase for (U ∼ 2�) � t we have investi-
gated in Fig. 6 the same quantities as in Fig. 5 but for the fixed
Hubbard interaction U = 25t , varying the staggered potential
�. One can see a very similar behavior as in Fig. 5. The
z-AF phase is stable for 10.9t � � � 11.8t with one spin
component in the topological region |�̃σ | < t and the other in
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FIG. 6. The same quantities as in Fig. 5 but for the fixed Hubbard
interaction U = 25t and varying staggered potential �.

the trivial region |�̃σ | > t . Similar to Fig. 5 we find that at the
point where Mz vanishes the renormalized staggered potential
�̃σ is very close to t . However, we note that we cannot in
essence rule out the existence of an extremely narrow trivial
z-AF phase between the BI and the z-AFCI which corresponds
to a renormalized staggered potential �̃σ being slightly above
t rather than being exactly at t at the point where Mz vanishes.

We have carried out the same analysis as in Fig. 6 also
for the Hubbard interactions U = 15t , 20t , and 27t and the
obtained transition points are specified in the phase diagram
Fig. 2. Figure 2 exhibits a constant width proportional to t for
the z-AFCI as the atomic limit U/t,�/t → ∞ is approached.
In the phase diagram of the Kane-Mele-Hubbard model ob-
tained using mean-field theory, the width of the z-AFCI
phase increases as the Hubbard U and the sublattice potential
� are increased [39]. In the slave-boson mean-field analysis
of the Kane-Mele-Hubbard model, however, a constant width
for the z-AFCI phase is found [39] quite comparable to our
results in Fig. 2. This close similarity of the results obtained
for these two different models shows that the AFCI is a robust
phase which can emerge between the BI and the trivial AF
Mott insulator independent from the details of the system.
What is essential is the presence of the spin-orbit coupling and
the absence of a space-group operation that could compensate
the effect of the time-reversal transformation on the electronic
state.

To show that the number of bath sites in the impurity solver
does not alter our results we have compared in Fig. 7 the local
spin polarizations Mxy (a) and Mz (b) for nbs = 6 at selective
points across the z-AFCI phase with the results obtained for
nbs = 5, 7, and 8. The results are for the Hubbard interaction
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FIG. 7. Comparison of the local spin polarizations obtained for
different number of bath sites nbs in the ED impurity solver for
the Hubbard interaction U = 27t and varying staggered potential �

across the z-AFCI phase. (a), (b) Display the local spin polarizations
in the xy-AF state (Mxy) and in the z-AF state (Mz).

U = 27t . One can hardly see any change in the data upon
changing the number of bath sites.

VI. ANTIFERROMAGNETIC CHERN INSULATOR FROM
GAP-CLOSING PERSPECTIVE

As the staggered potential � is increased in Fig. 6(c) the
spin-up component remains in the trivial region while the
spin-down component undergoes a transition from the trivial
to the topological region. Such a transition requires closing of
the charge gap. Hence, the charge excitations for the different
spin components are expected to show different behaviors. To
see how the charge excitations in the system depend on the
spin we plot the spin-resolved spectral function

Aσ (ω) = 1

4

∑

(x,y)∈unit cell

Ax,y;σ (ω) (13)

in Fig. 8. The sum in Eq. (13) runs over the 2 × 2 unit cell
specified in Fig. 1. The results in Fig. 8 are given for U = 25t
and the number of bath sites nbs = 8. Similar to the results
in Fig. 6(c), the results in Fig. 8 are for the magnetic solution
with the lower-energy sublattice mainly occupied with spin-up
particles [see Fig. 9(a) for a schematic sketch of the state].
The magnetic results in Fig. 8 are always given for the z-AF
solution, even for the small values of � = 6t in Fig. 8(a) and
� = 8t in Fig. 8(b) where the z-AF state is metastable [see
Fig. 6(b)]. We avoid the spin-flop transition because our aim
in this section is to study the stabilization of the z-AFCI phase
from the perspective of gap closing, i.e., to study how the
charge gap continuously changes as � is increased in Fig. 6(c)
and the transition to the z-AFCI phase takes place.

The staggered potentials � = 6t and 8t in Figs. 8(a) and
8(b) correspond to a highly polarized z-AF phase with both
spin components in the trivial region. For the fully polar-
ized state the charge excitation for the spin up corresponds
to moving a particle from the lower-energy sublattice to the
higher-energy sublattice [see Fig. 9(a)]. This costs an energy
equal to U + 2�. This nicely explains the spectral weights

FIG. 8. The spin-resolved spectral function Aσ (ω) given by
Eq. (13) vs frequency for the Hubbard interaction U = 25t and
different values of the staggered potential � across the z-AFCI phase.
The results in (a) to (d) correspond to the z-AF solution with the
lower-energy sublattice mainly occupied with spin-up particles [see
(a) in Fig. 9]. The results are for the number of bath sites nbs = 8 in
the ED impurity solver.

for spin up in Figs. 8(a) and 8(b) distributed mainly near
ω = ±(U/2 + �). The points ω = ±(U/2 + �) in Figs. 8(a)
and 8(b) are specified by vertical dotted lines. The charge ex-
citation for spin down corresponds to moving a particle from
the higher-energy sublattice to the lower-energy sublattice,
which costs an energy equal to U − 2�. This explains the
spectral weight distribution for spin down appearing around
ω = ±(U/2 − �) in in Figs. 8(a) and 8(b). The points ω =
±(U/2 − �) in Figs. 8(a) and 8(b) are specified by vertical
dashed lines. One notes that near ω = ±(U/2 − �) there are
also some spectral weights for spin up which can more obvi-
ously be seen from the inset in Fig. 8(b). These contributions
are important because they define the charge gap for the spin
up and originate from the fact that the system is not fully
polarized.

The charge gap is defined by the energy difference of
the electron and the hole spectral peaks closest to the Fermi
energy ω = 0. The charge gap is specified by a double-head
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FIG. 9. (a) Schematic representation of an AF state with the
spin-up sublattice having a lower onsite energy (E = −�) in contrast
to the spin-down sublattice (E = +�). (b) Schematic representation
of the charge gap for the spin up (σ =↑) and the spin down (σ =↓) vs
the staggered potential � across the z-AFCI. The sketch corresponds
to the z-AF solution in which the sublattice with the lower onsite en-
ergy is mainly occupied with spin-up particles, as shown in (a). The
spin gap in the trivial band insulator phase, corresponding to � >

�c3, is also shown in (b). The spin gap stems from an electron-hole
bound state with the total spin S = 1 and the magnetic polarization
α = z (see the main text). The local spin polarization Mz becomes
finite for � < �c3 upon closing the spin gap. The Chern number Cσ

changes upon closing the charge gap for the spin component σ . The
Chern number is finite only for �c1 < � < �c2.

arrow in Fig. 8(a). Figures 8(a) and 8(b) show that the charge
gap for the spin down is always smaller than the charge gap
for the spin up. The charge gap for both spin components
decreases as the staggered potential � is increased approach-
ing the transition point to the z-AFCI. According to Fig. 6(c)
the spin-down component undergoes a transition from the
trivial state to the topological state at � = 10.8t . Figure 8(c)
displays the spin-resolved spectral function for the same value
of �. As one can see from the inset in Fig. 8(c) there are some
spectral contributions near the Fermi energy for the spin-down
component while the spin-up component is clearly gapped.
This is nicely consistent with the expectation that the change
of the Chern number is accompanied by closing of the charge
gap.

For the staggered potential � = 11.5t in Fig. 8(d) the
system is within the z-AFCI. The spectral weight distribution
for the spin up shows a manifest shift of the spectral weights
from ω ≈ ±(U/2 + �) to ω ≈ ±(U/2 − �) in contrast to
the spectral weight distribution for small values of �. This
is due to the noticeable reduction of the local spin polariza-
tion Mz and approaching the paramagnetic region as can be
seen from Fig. 6(a). The inset in Fig. 8(d) suggests a finite
and rather equal charge gap for both spin components. This
finite charge gap corroborates the insulating bulk state for
both spin components. For the staggered potential � = 12t
in Fig. 8(e) the system enters the paramagnetic phase and the
spectral functions for up and down spins coincide. We observe
an increase in the charge gap upon increasing the staggered
potential from � = 12t in Fig. 8(e) to � = 14t in Fig. 8(f)
which signals a BI phase consistent with our finding based on
the renormalized staggered potential in Fig. 6(c).

Although it is not possible to extract from the ED spectral
functions quantitative values for the charge gap which changes
smoothly across the narrow z-AFCI region, a qualitative be-
havior can still be concluded. One should note that apart from
the finite number of bath sites in our ED impurity solver, it
is inherently difficult to obtain accurate results especially for
dynamical quantities near a critical region. Figure 9(b) shows
schematically how the different phase transitions take place
upon changing the staggered potential across the z-AFCI from
the gap-closing perspective. In addition to the charge gap for
the up and the down spins the figure includes also the spin
gap in the BI phase. The spin gap is the excitation energy
of an electron-hole bound state with the total spin S = 1.
It is the condensation of such a bound state which leads to
the stabilization of an AF order. The stabilization of an AF
state upon softening an S = 1 excitation is well known in
dimerized magnetic systems [86–90]. It can also be seen from
the analysis of various gaps for the ionic Hubbard model [66]
as an electronic model similar to our Hamiltonian in Eq. (1).
One should note, however, that there is a spin-dependent hop-
ping phase in Eq. (1) which lifts the degeneracy between the
magnetic number m = 0 and the magnetic numbers m = ±1,
or equivalently in terms of a specific magnetic polarization
α = x, y, z [86], the degeneracy between the magnetic polar-
ization α = z and the magnetic polarizations α = x, y. It is
the magnetic polarization α = z which defines the spin gap
in Fig. 9(b) and stabilizes the z-AF state [86]. In sketching
the charge gap for the up and the down spins in Fig. 9(b) it
is supposed that the spin-up sublattice has the lower onsite
energy in contrast to the spin-down sublattice [see Fig. 9(a)].

Starting from the limit of large values of � in Fig. 9(b)
the system is in the BI phase with an identical charge gap
for the up and the down spins. Upon decreasing � the spin
gap vanishes at �c3 and the system acquires a z-AF order for
� < �c3. The charge gap becomes spin dependent in the mag-
netically ordered phase. This is due to the fact that the effect
of the time-reversal transformation on the z-AF state cannot
be compensated by a space-group operation. Otherwise, the
charge gap would remain equal for the up and the down spins
even in a magnetically ordered phase. This would prevent
the different spin components to fall in different topological
states.

The charge gap for the spin down in Fig. 9(b) closes at �c2

and the system acquires a finite Chern number. This leads to
the z-AFCI. Upon further decreasing of � the charge gap for
the spin down closes again at �c1. The Chern number of the
spin-down component vanishes for � < �c1 and the system
enters a trivial z-AF phase.

Our description of the phase transitions in Fig. 9(b) implies
a trivial z-AF phase between the BI and the z-AFCI, although
in practice it might be extremely narrow. This is because the
magnetic ordering stems from the condensation of an S = 1
bound state while the change of the Chern number requires
closing of the charge gap. This corresponds to a renormalized
staggered potential in Fig. 6(c) being slightly above t rather
than being exactly at t at the point where Mz vanishes in
Fig. 6(a) and cannot be resolved based on numerical DMFT
results. An intervening trivial AF phase between the BI and
the AFCI in the case of a continuous transition is also pointed
out in Ref. [39] based on bifurcation of a Weyl line due to the
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AF ordering. Further research is needed to clarify the emer-
gence of the AFCI based on vanishing of different energy gaps
proposed in Fig. 9(b). Using the numerical renormalization
group instead of the ED as the impurity solver in DMFT might
help to better resolve the behavior of the charge gap across the
AFCI. Beyond the DMFT, a method such as the continuous
unitary transformations [91–93] which provides a quantitative
description of the elementary excitations and their interactions
can shine more light on various excitation energies, including
both the charge and the spin gap, and the stabilization of the
AFCI. The method is already applied to the ionic Hubbard
model [66] and can be employed to address also the effect of
the finite spin-orbit coupling.

VII. CONCLUSION

In this paper we demonstrate the existence of the collinear
AFCI in a square-lattice system which preserves the inver-
sion symmetry. Our analysis relies on a minimal extension of
the time-reversal-invariant Harper-Hofstadter-Hubbard (TRI
HHH) model which permits to study the competition of the
BI, the QSHI, and the Néel AF Mott insulator phases by
varying the Hubbard repulsion U and a sublattice potential
� and examine the existence of the AFCI phase beyond the
noncentrosymmetric Kane-Mele-Hubbard model [39].

We map out the phase diagram of the model in the U -�
plane showing a very close similarity with the phase diagram
proposed for the noncentrosymmetric Kane-Mele-Hubbard
model [39]. The AFCI appears between the BI and the AF
Mott insulator in the limit of large U and �. The close
similarity of the results obtained for the two very different
models suggests that the AFCI is a generic phase which exists
beyond a specific model or a lattice structure. We discuss the
stabilization of the AFCI based on the vanishing of the charge
and the spin gap and emphasize that the necessary condition
to realize the AFCI is the lack of a space-group operation to
compensate the effect of the time-reversal transformation on
the electronic state, which can be achieved on different lattice
structures with or without the inversion symmetry.

Optical lattices provide a versatile platform to study the
interplay of two-particle interaction and spin-orbit coupling
[94]. The correlation strength is highly tunable by using Fes-
hbach resonances or by changing the optical lattice depth,
and there has been impressive progress in the past decade
in creation of artificial gauge fields using, for example,
lattice shaking or laser-assisted tunneling techniques [95].

Fundamental topological models such as the Haldane model
[10] and the TRI Harper-Hofstadter model [48,49] have thus
been realized. The Chern number of the Hofstadter bands has
been measured [96] and the phase diagram of the Haldane
model has been mapped out [10]. The high control and tun-
ability of quantum gases in optical lattices would allow to
directly investigate our proposed phase diagram in Fig. 2.
According to our results, the AFCI can be realized by driving
the system from the AF Mott insulator to the BI phase in the
limit of large U and �.

Since the experimental discovery of the quantum anoma-
lous Hall effect in Cr-doped (Bi,Sb)2Te3 thin films about
a decade ago [11] there has been extensive research to in-
crease the observation temperature of the effect [15,97]. In
the current realizations of the CI, the magnetic ordering and
the electronic properties stem from electrons in different or-
bitals [4,5,15,97]. While the strongly interacting electrons in
a 3d or 4 f orbital are the origin of the magnetic ordering,
the noninteracting electrons in 6p and 5p orbitals define the
electronic properties [24]. The coupling between the magnetic
and the electronic degrees of freedom can be seen as an
AF Kondo interaction [27]. In contrast, in the AFCI phase
we discussed in this paper the electronic and the magnetic
properties are inherently coupled as they originate from the
same, strongly interacting, electrons. Such a strongly corre-
lated AFCI is expected to show a strong magnetic blueshift
of the charge gap upon developing the magnetic order below
the Néel temperature [34,35]. This would allow to realize the
quantum anomalous Hall effect at temperatures closer to the
magnetic transition temperature of the material. Transition
metal elements with partially filled 4d and 5d shells such
as iridates [98,99] are potential candidates to observe the
combined effect of the strong correlation and the spin-orbit
coupling and to realize the AFCI phase.
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