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We propose a method to compute spectral functions of generic Hamiltonians using the density matrix
renormalization group (DMRG) algorithm directly in the frequency domain, based on a modified Krylov-space
decomposition to compute the correction vectors. Our approach entails the calculation of the root-N (N = 2 is
the standard square root) of the Hamiltonian propagator using Krylov-space decomposition and repeating this
procedure N times to obtain the actual correction vector. We show that our method greatly alleviates the burden of
keeping a large bond dimension at large target frequencies, a problem found with conventional correction-vector
DMRG, whereas achieving better computational performance at large N . We apply our method to spin and
charge spectral functions of t-J and Hubbard models in the challenging two-leg ladder geometry and provide
evidence that the root-N approach reaches a much improved spectral resolution compared to the conventional
correction vector.
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I. INTRODUCTION

In condensed-matter physics, several unusual properties
of strongly correlated quantum materials are unveiled using
spectroscopic techniques, such as angle-resolved photoemis-
sion spectroscopy (ARPES) [1], inelastic neutron scattering
(INS), and resonant inelastic x-ray scattering (RIXS) [2].
These experimental probes do not provide a direct access to
the ground state but rather explore the low-energy excitations
of the system. Excitation spectra are experimentally measured
looking at the energy and momentum exchanged by the probe
of each technique with the material: a photoemitted electron
for ARPES, a neutron for INS, a photon for RIXS and are
theoretically encoded in spectral functions. The progressive
improvement in momentum and energy resolution in an ex-
perimental spectroscopic apparatus calls on the theory side for
an equally significant improvement of the spectral functions
calculations accuracy.

For a one-dimensional (1D) lattice Hamiltonian of size L,
a generic spectral function can be defined as

O(q, ω) = 1

L

∑
i, j

eiq(i− j)
∫ ∞

0
dt ei(ω+Eg)t 〈ψ |Ôie

−iĤt Ô j |ψ〉,

(1)
where |ψ〉 is the ground state of the system Hamiltonian Ĥ ,
Eg is the ground-state energy, q and ω are the momentum and
frequency (or energy) of the electron in the material, and Ô j

is the relevant operator involved in the scattering process of
the specific technique acting locally on site “ j” (Ô j = ĉ jσ for
ARPES, Ô j = Ŝz

j for INS, whereas special care is needed for
RIXS as written in Ref. [3]).

In 1D, the most powerful method to compute spectral
functions of arbitrary strongly correlated Hamiltonians is
the density matrix renormalization group (DMRG) [4,5]; the
DMRG is a variational but systematically exact algorithm
to find a matrix product state (MPS) representation for the
ground state of the system [6]. Spectral functions can be com-
puted in the time-space domain using time-dependent matrix
product state methods [7–10]. (For a recent review of the
different variants, see Ref. [11]) When using time evolution,
the problem is to find an efficient MPS representation of the
time-evolved vector,

|x j (t )〉 = e−iĤt Ô j |ψ〉, (2)

where the ground state of the Hamiltonian Ĥ is locally modi-
fied by Ô j , and the resulting state is evolved up to a very large
(in principle, “infinite”) time. This evolution always grows the
entanglement of the state and, thus, spoils the compression of
the MPS representation. Simulations are, therefore, typically
stopped at some large or maximum time, and linear prediction
[9] or recursion methods [12] are needed to obtain a well-
behaved Fourier transform in frequency.

In this paper, we are concerned with the complementary
approach of computing the spectral functions directly in the
frequency domain. To discuss this case, it helps to rewrite the
spectral function as

O(q, ω) = lim
η→0

1

L

∑
i, j

eiq(i− j)

× − 1

π
Im

[
〈ψ |Ôi

1

ω − Ĥ + Eg + iη
Ô j |ψ〉

]
, (3)
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where one writes down the Hamiltonian propagator explicitly,
and η > 0 is an arbitrary small extrinsic spectral broadening.
Three are the approaches that are typically used by DMRG
practitioners. Historically, the hybrid DMRG-Lanczos-vector
methods were first introduced [13] (refined using MPS more
recently [14,15]), then afterwards the correction-vector (CV)
method [16–21] and Chebyshev polynomial methods [22–25]
were proposed. In the CV method, one computes the real and
imaginary parts of the correction vector,

|x j (ω + iη)〉 = 1

ω − Ĥ + Eg + iη
Ô j |ψ〉, (4)

at fixed frequency ω, finite broadening η, and then computes
the spectral function in real-frequency space as a standard
overlap 〈ψ |Ôi|x j (ω + iη)〉. The real and imaginary parts of
the correction vector are typically obtained by solving for
coupled matrix equations using conjugate-gradient methods
[16], or by minimizing a properly defined functional [18,19].
Reference [20] formulated the algorithm in MPS language.

In 2016, we proposed [21] an alternative method to com-
pute directly the correction vectors using a Krylov-space
expansion of the Hamiltonian operator constructed starting
from the locally modified MPS |φ〉 = Ô j |ψ〉. In all these
cases, the entanglement content of the correction vectors is
large, and it can be very large for large frequencies. This
makes standard CV DMRG simulations very expensive for
Hamiltonians beyond spin systems or for large lattices.

In 2011, Holzner et al. [22] proposed a MPS method to
compute a Chebyshev polynomial expansion (truncated at
some order N) of the spectral function (CheMPS). In this
approach, the Chebyshev momenta can be obtained from
overlaps of a properly defined series of Chebyshev vectors.
The main advantage of CheMPS lies in the small entangle-
ment that each Chebyshev vector has because the method
redistributes the large entanglement of the correction-vectors
|x j (ω + iη)〉 for different frequencies (or, alternatively, the
time-evolved state |x j (t )〉) over the entire series of Chebyshev
vectors.

Inspired by this idea, we here propose a method to compute
a generalized correction vector with smaller entanglement
content, the root-N correction vector, defined as

∣∣x1/N
j (ω + iη)

〉 =
(

1

ω − Ĥ + Eg + iη

)1/N

Ô j |ψ〉. (5)

The idea is to construct the actual correction vector as the
final vector of the series {|xp/N

j (ω + iη)〉}p∈[1,N] after N ap-
plications of the root-N propagator. At first sight, it seems
that, if N is sufficiently large, constructing the entire series
of vectors just adds a computational overhead compared to
the standard DMRG CV algorithm because only the final
vector of the series is actually needed for the spectral function
calculation. Yet we will show that the entanglement content
of the series slowly builds up with p, and, therefore, going
through many intermediate steps is more efficient than the
conventional DMRG CV algorithm, which tries to compute
the last element of the series in one step only.

The paper is organized as follows. Section II A introduces
the main steps of the algorithm; Sec. II B analyzes the al-
gorithm’s computational performance, and the entanglement

content of the root-N correction vectors in the test case of
a Heisenberg model in the two-leg ladder geometry. Sec-
tion II C applies our root-N method to compute spin and
charge spectral functions of doped t-J and Hubbard models
in the challenging two-leg ladder geometry, showing how our
method improves the spectral resolution and increases the
signal-to-noise ratio at large frequencies. Finally, we present
our conclusions and outlook.

II. METHOD AND RESULTS

A. root-N CV method algorithm

The algorithm follows five steps. We assume a standard
DMRG approach but provide the main step of the algorithm
in MPS language in the Appendix.

(1) Compute the ground-state wave function with the
DMRG.

For each frequency ω, repeat steps 2–4 to cover the desired
interval [ωmin, ωmax] with some step �ω > 0:

(2) Apply operator Oj at the center of the chain and
build the p = 1 root-N correction vector |xp/N

j (ω + iη)〉 as in
Eq. (5). This can be performed using conventional DMRG as
described in Ref. [21]. The Appendix describes in detail the
algorithm in MPS language. In this stage, as in the conven-
tional CV method, the sources of error are two: the Lanczos
error in the tridiagonal decomposition of the Hamiltonian (or
effective Hamiltonian in MPS language) indicated below by
εTridiag; the SVD error of the multitargeting DMRG procedure
(state averaging in MPS language).

Repeat step 3 until the N th root-N correction vector is
constructed and optimized, then go to step 4.

(3) Build the p + 1 root-N correction vector |x(p+1)/N
j (ω +

iη)〉 from the previous one assuming it as a starting point for
the Krylov-space decomposition of the Hamiltonian. A few
DMRG sweeps are performed until a desired convergence is
reached.

(4) Measure the spectral function in real-frequency space
as the overlap 〈ψ |Ôi|x j (ω + iη)〉; this part is the same as in
conventional DMRG CV.

(5) Fourier transform the overlap 〈ψ |Ôi|x j (ω + iη)〉 to get
the dynamical structure factor in momentum space O(q, ω) =
1
L

∑
i, j eiq(i− j)〈ψ |Ôi|x j (ω + iη)〉.

To clarify the main steps of the algorithm, we draw an
analogy with the adaptive time-step targeting approach in-
troduced for time-dependent DMRG in the seminal paper
by Feiguin and White [26]. In this case, one constructs the
time-evolved vector |x j (δt )〉 = U (δt )Ô j |ψ〉 only for small
time-step intervals of length δt = t/N , and where U (δt ) =
e−iĤ δt is the time-evolution propagator. To get the final time-
evolved vector at time t , one repeatedly applies U (δt ) to the
MPS. In practice one does not build the evolution operator
U (δt ) in the local basis but rather directly constructs the
vector |x j (δt )〉 = U (δt )Ô j |ψ〉 using a Krylov-space decom-
position of the Hamiltonian (or effective Hamiltonian in MPS
language).

In our proposed root-N Krylov-space approach, we intro-
duce a propagator in a fictitious time-space s as |x j (δs)〉 =
W (δs)Ô j |ψ〉, where δs = 1/N , and where W (δs) = e−K̂ δs

with K̂ = ln [ω + Eg + iη − Ĥ ]. Clearly, if we apply W (δs)N
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FIG. 1. Convergence analysis of the root-N Krylov-space CV DMRG method: the Heisenberg ladder. Panels (a) and (b) report the qy = 0, π

components of S(qx, qy, ω) using the standard Krylov-space CV approach. A ladder with Jy = 2Jx is simulated. The length is L = 50 × 2, the
broadening is η = 0.1, and the resolution step is δω = 0.1 (units are set by Jx = 1). Panels (c) and(d) report the qy = 0, π components of
S(qx, qy, ω) using the root-N Krylov-space CV method using N = 20. Panels (e) and (f) show specific momentum-energy line cuts of the
dynamical spin structure computed in panels (a)–(d) for different values of the root-exponent N . Numerical fluctuations and instabilities are
removed, and the quality of the spectra is clearly improved as N is increased. Panels (g) and (h) show the same line cuts as in panels (e) and
(f) but with at fixed N and increasing the number of DMRG states. When using the root-N CV method with N = 4, a substantially smaller
number of states m = 200–650 < 1000 suffices to get better quality results than with the standard Krylov-space DMRG CV approach.

times to initial vector Ô j |ψ〉 we obtain the desired standard
correction vector. In other words, we formally define and solve
an auxiliary differential equation,

d

ds

∣∣xs
j (ω + iη)

〉 = − ln [ω + Eg + iη − Ĥ ]
∣∣xs

j (ω + iη)
〉
, (6)

such that at time s we have the solution,

∣∣xs
j (ω + iη)

〉 =
(

1

ω − Ĥ + Eg + iη

)s∣∣x0
j (ω + iη)

〉
, (7)

with the initial condition being |x0
j (ω + iη)〉 = Ô j |ψ〉.

In this construction, 1/N plays the role of a small parameter
to compute the resolvent in the standard CV approach. We
will show that this method is especially useful at large target
frequencies where large bond dimensions (or DMRG states)
are typically needed.

B. Convergence analysis and computational performance: the
Heisenberg model on a two-leg ladder as a case study

We begin by testing our root-N CV method by apply-
ing it to an isotropic Heisenberg model on a two-leg ladder
geometry. (The Supplemental Material [27] provides compu-
tational details for all the models considered in this paper.)
The Heisenberg Hamiltonian on a two-leg ladder with open
boundary conditions and size L = Lx × 2 is defined as

HHeis = Jx

Lx−1∑
i=1; γ=1,2

Si,γ · Si+1,γ + Jy

Lx∑
i=1

Si,1 · Si,2, (8)

where Si,γ ≡ {Sx
i,γ , Sy

i,γ , Sz
i,γ } describes the spin-(1/2) opera-

tors on site i and ladder leg γ . In this paper, antiferromagnetic
exchange interactions along both the leg and the rung direc-
tions are assumed with Jy = 2Jx. The spin structure factor
S(q, ω) with q ≡ (qx, qy) can be defined as

S(q, ω) = 1

2Lx

Lx∑
j=1;γ

ei[qx ( j−i)+qy (γ−γ ′ )]

×〈ψ |S j,γ
1

ω − H + iη
Si,γ ′ |ψ〉, (9)

where the center point is chosen in the middle of leg 1,
(i, γ ′) = (Lx/2, 1).

Figures 1(a) and 1(b) report spectral maps of the two
components qy = 0, π of the dynamical spin structure factor
S(q, ω) as a function of the momentum transfer qx along
the leg direction and of the frequency. These are obtained
with conventional CV as in Refs. [21,28] on a system size of
length L = 50 × 2 and with an extrinsic broadening parameter
η = 0.1Jx. By comparison, Figs. 1(c) and 1(d) reports results
obtained using the root-N CV method with N = 8. In both
cases, we have used a maximum m = mmax = 1000 DMRG
states and a minimum mmin = 200, keeping the truncation
error below 10−7. Our DMRG calculations were carried out
with the DMRG++ code [29]. [Please see the description
around Eq. (A4) in the Appendix for the definition of the
extended MPS which is optimized by SVD in the root-N CV
algorithm.] We clearly note an overall improved spectrum in
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FIG. 2. Entanglement entropy of the root-N Krylov correction vectors and computational performance of the method. Panel (a) Entan-
glement entropy computed with conventional CV (dark green) compared to the same quantity computed with the root-N CV; N = 20 and
different p values (indicated by orange lines and thickness increasing with p) as a function of ω. We have used a Heisenberg two-leg ladder
with Jy = 2Jx , length L = 50 × 2 as in Fig. 1. (b) Accumulated CPU time in hours (obtained summing all the CPU times of the CV simulations
in the frequency interval ω ∈ [2.5, 6]) for different values of the DMRG truncation error εTrunc and (c) for different values of the Krylov-space
threshold accuracy parameter εTridiag as a function of the root-exponent N . The simulations were run on a single Intel Xeon CPU E5-1620
CPU node. When compared with the standard Krylov-space correction-vector method, the performance of the root-N approach is superior for
sufficiently large N .

this case with respect to the conventional CV method. We
analyze below the spectral features in more detail.

Figures 1(e) and 1(f) show momentum qx = 0.52π line
cuts of the spin spectra for the qy = 0, π components in the
root-N CV method. The data show that by increasing the
root-exponent N numerical fluctuations and instabilities are
removed with respect to the conventional CV results. The
red curves in Figs. 1(e) and 1(f) show that the conventional
CV approach can yield negative values for certain frequen-
cies. As finite-size effects are small for a L = 50 × 2 ladder,
these are clearly artifacts of the CV method which might
spoil important properties of the spectral functions, such as
sum rules. On the contrary, the root-N CV approach shows
always positive values which progressively improve upon in-
creasing the root-exponent N . Figures 1(g) and 1(h) show
how well the root-N method converges with respect to the
number of DMRG states. Contrary to panels (a)–(d), in these
panels the data for m < 1000 were obtained by imposing the
zero truncation error in the DMRG SVDs, therefore, setting
m = mmax = mmin. Our data show that at fixed root-exponent
N = 4, a substantially smaller number of DMRG states m =
200–650 < 1000 is sufficient to get better quality results than
with the conventional CV approach. As we will show next,
this improvement can be understood by the much lower en-
tanglement content of the root-N correction vectors.

Figure 2(a) shows indeed that the entanglement content of
the root-N correction vectors is smaller than the actual (con-
ventional) correction vector. In this calculation, to compute
the entanglement entropy of the expanded MPS for root-N
correction vectors (Appendix Eq. (A4) has the definition),
we have used a maximum m = 2000 DMRG states (and a
minimum mmin = 200), keeping the truncation error below
10−8 in both methods. It is nice to see that the entanglement
entropy of the extended MPS in the root-N CV method is very
close to that of the conventional CV in the lower-frequency
range investigated ω ∈ [0, ω∗] with ω∗ 
 4.5. For larger fre-

quencies, the root-N CV approach truncates the entanglement
contained in the conventional CV vector, showing that a larger
root-exponent N or a larger number of DMRG states should
be considered. Yet we highlight that this truncation does not
show instabililities or fluctuations as in the conventional CV
approach.

In the same range of frequencies (ω ∈ [2.5, 6]), we have
monitored the accumulated CPU times taken for the sim-
ulations to complete in the two methods [Fig. 2(b)]. We
observe that, for moderately small root-exponent N , the root-
N CV method can be actually slower than the conventional
CV method, assuming the same truncation error εTrunc and
truncation threshold εTridiag for the Hamiltonian matrix de-
composition in the Krylov space (see Appendix for a more
detailed definition of εTridiag). If the root-exponent N is
sufficiently large, the root-N CV method is seen to be com-
putationally more efficient than the conventional CV method.
Indeed, when the entanglement is decomposed in smaller
chunks by considering a larger N , the root-N method becomes
faster even though many more optimizations and Lanczos
decompositions are actually performed. Eventually, however,
if the root-exponent N is very big, the increased number of
DMRG sweeps and iterations required to compute the larger
number of root-N vectors becomes naturally detrimental for
computational performance as the accumulated CPU times are
seen to increase linearly with N .

Figure 2(b) further shows that at fixed root-exponent N as
one decreases the requested DMRG truncation error εTrunc,
the accumulated CPU times are bigger. This is because of
the larger computational load of the SVD decomposition of
the MPS tensors in the multitargeting or state-averaging ap-
proach.

Figure 2(c) ends this subsection by showing further how
the accumulated CPU times vary as a function of the trunca-
tion thresold εTridiag for the Hamiltonian matrix decomposition
in the Krylov space at fixed DMRG truncation error εTrunc. A
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smaller threshold requires a larger number of steps and, thus, a
bigger Krylov space, requiring a larger CPU time to converge
and complete the simulations.

C. Correlation functions of t-J and Hubbard models

In this section, we apply the root-N CV method to the
more challenging t-J and Hubbard models on a two-leg ladder
geometry.

The t-J Hamiltonian is defined as

Ht-J = −tx

Lx−1∑
i=1; γ=1,2;σ

(c†
i,γ ,σ ci+1,γ ,σ + H.c.)

− ty

Lx∑
i=1;σ

(c†
i,1,σ ci,2,σ + H.c.)

+ Jx

Lx−1∑
i=1; γ=1,2

(
Si,γ · Si+1,γ − ni,γ ni+1,γ

4

)

+ Jy

Lx∑
i=1

(
Si,1 · Si,2 − ni,1ni,2

4

)
, (10)

where c†
i,γ ,σ (ci,γ ,σ ) is the electron creation (annihilation) op-

erator on site i, ladder leg γ with spin polarization σ , whereas
ni,γ = ∑

σ c†
i,γ ,σ ci,γ ,σ is the electron number operator. The

Hubbard Hamiltonian is

HHub = −tx

Lx−1∑
i=1; γ=1,2;σ

(c†
i,γ ,σ ci+1,γ ,σ + H.c.)

− ty

Lx∑
i=1;σ

(c†
i,1,σ ci,2,σ + H.c.) + U

Lx∑
i=1; γ=1,2

ni,γ ,↑ni,γ ,↓.

(11)

For both models defined above, the spin structure factor
S(q, ω) is defined as in the Heisenberg model case [Eq. (9)].
Analogously, the charge structure factor is

N (q, ω) = 1

2Lx

Lx∑
j=1;γ

ei[qx ( j−i)+qy (γ−γ ′ )]

×〈ψ |δn j,γ
1

ω − H + iη
δni,γ ′ |ψ〉, (12)

where δnj,γ ≡ n j,γ − 〈ψ |n j,γ |ψ〉, where |ψ〉 is the ground
state of the system.

We start discussing the t-J model results, comparing the
root-N method against the results obtained to the conventional
CV approach. We calculate both spin and charge dynamical
structure factors for a doped ladder with Nel = 0.88L, cor-
responding to 12% hole doping and with lattice size L =
50 × 2. In this case, we use a maximum m = 1200 DMRG
states for both methods (and a minimum mmin = 200) in order
to keep the truncation error below 10−8.

FIG. 3. Dynamical structure factors for a t-J two-leg ladder. Panels (a) and (b) [(e) and (f)] report the qy = 0, π components of the
S(qx, qy, ω) [N (qx, qy, ω)] using the standard Krylov -pace correction-vector approach. A ladder with ty = tx = t = 1, Jx = Jy = 0.5t is
simulated. The length is L = 50 × 2, the number of electrons is Nel = 0.88L, the broadening is η = 0.1, and the resolution step δω = 0.1
(units are set by t = 1). Panels (c) and (d) [(g) and (h)] report the qy = 0, π components of the S(qx, qy, ω) [N (qx, qy, ω)] using the root-N
Krylov-space correction vector using N = 8.
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FIG. 4. Dynamical structure factors for a Hubbard two-leg ladder. The qy = 0 and qy = π components of the dynamical spin structure
factor S(qx, qy, ω) using in (a) and (b) the conventional Krylov-space DMRG CV approach, against in (c) and (d) the root-N Krylov-space
CV method with N = 4 (a maximum of m = 3000 DMRG states were used). The qy = 0 and qy = π components of the dynamical charge
correlation using in (e) and (f) the conventional Krylov-space DMRG CV against in (g) and (h) the root-N Krylov-space CV with N = 4 (a
maximum of m = 2000 DMRG states were used). A ladder L = 50 × 2 ladder with ty = tx = t = 1, U = 8t is simulated with Nel = 0.88L
electrons, broadening η = 0.1, and resolution step δω = 0.025 for S(qx, qy, ω), and δω = 0.1 for N (qx, qy, ω). Units are set by t = 1.

Figures 3(a)–3(d) show the comparison for the dynamical
spin structure factor S(q, ω). We note that for N = 8 the
root-N CV method yields results that are practically identical
to those obtained with the CV method. Yet the root-N method
provides a much better frequency resolution or larger signal-
to-noise ratio for the more challenging dynamical charge
structure factor N (q, ω) where we also obtain quantitative
agreement.

To summarize, the dynamical spin structure factor S(q, ω)
is practically identical in the two methods, whereas when con-
sidering the dynamical charge structure factor N (q, ω) besides
obtaining qualitative agreement, the root-N provides a much
better frequency resolution (or a larger signal-to-noise ratio as
we recall here that in both methods the same broadening η

was used).
We now focus on the Hubbard model where minor differ-

ences in the results between the two methods can be observed
when a moderately small root-exponent N is used in the root-
N CV method.

As in the t-J case, we consider spin as well as charge
dynamical structure factors for a doped ladder (Nel = 0.88L,
12% hole doping) with system size L = 50 × 2. We consider
an isotropic ladder with parameters tx = ty = t = 1 and U =
8t . Spin and charge structure factors for Hubbard ladders were
already studied and discussed by us in Refs. [30–34] where
the conventional Krylov-space CV method was used. Figure 4
uses a maximum m = 3000 DMRG states in both methods
for S(q, ω) whereas a maximum of m = 2000 was used for
N (q, ω). In both cases, the minimum number of DMRG states

was mmin = 200, and the truncation error was kept smaller
than 10−7.

Figures 4(a)–4(d) show the comparison for the dynami-
cal spin structure factor S(q, ω). For N = 4 the root-N CV
method gives results practically identical to the CV method,
and only minor quantitative differences can be observed. For
example, in the root-N method, the broad two-triplon excita-
tion band in the spin structure factor S(qx, qy = 0, ω) appears
to be sharper than in the conventional CV method. In the qy =
π component, instead, the main spectral features at the incom-
mensurate wave-vector qx 
 0.88π appear slightly broader
in the conventional CV method as a function of frequencyat
low frequencies. From this analysis, we conclude that even a
moderately small root-exponent N is sufficient to get a better
converged spin spectral function using the root-N CV method.

These observations are relevant when comparing DMRG
spectral data with RIXS [35] and INS [36] experiments in the
challenging “telephone number” cuprates, experimental data
that recently have became available for the doped regime [34].

Finally, we discuss the dynamical charge structure factor,
which is of interest in RIXS measurements of the charge-
transfer band excitations in ladder cuprates. When a Hubbard
ladder is doped with holes with respect to half-filling, we ob-
serve two branches in the N (q, ω): the first one at low energy
corresponds to in-band particle-hole excitations across the
Fermi level. The high-energy band describes charge-transfer
electronic exitations above the Mott gap. Figures 4(e)–4(h)
shows that the root-N CV method provides high quality spec-
tral data with no appreciable shifts (downwards or upwards)
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of the main features. (Please remember that we are using the
same η for both methods.) Yet some spectral weight redis-
tribution can be noted: spectral intensity on the high-energy
charge-transfer band appears more intense in the root-N CV
method compared to the conventional CV method. We con-
clude that in this case, even though very good results can be
obtained with a modest root-exponent N , one should prefer
simulations with the largest possible N in order to get the best
results from our root-N method.

III. DISCUSSIONS AND CONCLUSIONS

In this paper, we have proposed a method to compute
generic spectral functions of strongly correlated Halmil-
tonians using generalized correction vectors with smaller
entanglement content: the root-N CV method. The idea
behind the root-N CV draws inspiration, in part, from time-
dependent MPS methods, and, in part, from the Chebyshev
MPS approach. The CheMPS method helps in computing
spectral functions but as was highlighted recently [25], where-
asresolving accurately the low-energy part of the spectral
functions, CheMPS cannot resolve the high-energy spectrum
accurately because an energy truncation of the Chebyshev
vectors is, in general, required. To avoid this issue, Xie et al.
[25] have proposed a reorthogonalization scheme for the
Chebyshev vectors (ReCheMPS). Nevertheless, if the target
frequency window for the spectral function is chosen to be
much smaller than the many-body width of the system (this
should be, in general, performed to increase the frequency res-
olution), an energy truncation might still be required. There is
evidence that the energy-truncation procedure severely limits
the applicability of the CheMPS or ReCheMPS methods in
challenging cases as in Hubbard or t-J models as in these
cases it likely becomes a necessary step of the algorithm
mainly because the many-body bandwidth is, in general, much
larger than the spectral support of typical spectral functions.
When the energy truncation is performed, several Krylov-
space projections as Chebyshev recurrence steps are required,
rendering the method as computationally demanding as the
conventional CV method.

Going back to the root-N CV, this paper has shown that
when the root-exponent N is sufficiently large, the root-N
CV performance becomes better than that of the conventional
CV because the former method handles much less entangled
correction vectors. In particular, we have shown evidence that
in the Heisenberg and t-J models the root-N CV method im-
proves even the quality of the spectral functions and provides a
better frequency spectral resolution (or a larger signal-to-noise
ratio). Larger N values in the root-N CV method require more
sweeping of the lattice but do not affect much CPU times
because each sweep is faster than using smaller N values.

Finally, the challenging Hubbard model requires a careful
use of our root-N CV method: whereas moderately small
root-exponents N give very good results for the main spectral
features, our data show only minor differences with respect
to the conventional CV method, which, however, should be
taken into account when high-precision experimental results
are available.

We believe that root-N correction-vector DMRG will be-
come a much used method not only when high-precision

spectral data is sought, but also when high performance is
required, performance better than the computationally expen-
sive conventional CV method.

The root-N method should also facilitate high-precision
spectral function calculations in finite width cylinders where
better computational methods are currently needed. These
cylinders try to approach the two-dimensional models that are
at the frontier of what DMRG can perform, and they need a
very large computational effort to simulate.
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APPENDIX: MPS ALGORITHM TO BUILD THE ROOT-N
CORRECTION VECTOR

Let us introduce a Matrix product state representing the
ground state of the system for L sites and open boundary
conditions (we use a notation similar to Ref. [11]),

|ψ〉 =
∑

σ1···σL
m0···mL

Mσ1
1;m0,m1

· · · MσL
L;mL−1,mL

|σ1 · · · σL〉, (A1)

where mj are the bond dimensions or virtual indices (with m0

and mL one-dimensional dummy indices), and σ j represent the
physical indices of the many-body state of the system. For-
mally, let us define the tensors ψ̄L, j−1 ≡ (M†

1 , . . . , M†
j−1) and

ψ̄R, j+1 ≡ (M†
j+1, . . . , M†

L ) which constitute a left and right
map, respectively, from the joint Hilbert space on sites 1
through j − 1 onto the bond space mj−1, and from the joint
Hilbert space on sites j + 1 through L onto the bond space
mj . If we apply these maps to the MPS |ψ〉, we can obtain
the effective state at site j, |ψeff

j 〉; see Fig. 5(a). When |ψ〉
is in a MPS mixed-canonical form, |ψeff

j 〉 equals the three-
rank tensor Mj,mj−1mj in the MPS at site j, which is often
interpreted as a vector of dimensions (djmj−1mj ), where d j

is the local physical Hilbert space dimension. Similarly, the
Hamiltonian Ĥ , in matrix product operator form, acts between
the maps defined above [and their conjugates, ψL, j−1 ψR, j+1;
see Fig. 5(b)] to yield an effective single-site Hamiltonian
Ĥ eff

j . This procedure can also be defined in the space of two
sites. A computer program never needs to explicitly construct
Ĥ eff

j , but only evaluates its action on |ψeff
j 〉.

Using |ψeff
j 〉 and Ĥ eff

j , we construct three local MPS ten-
sors. The first one is obtained by applying operator Ô j on
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FIG. 5. Effective local state vector and Hamiltonian. Panel
(a) Effective state |ψ eff

j 〉 obtained by projecting the MPS by the maps

ψ̄L, j−1 ≡ (M†
1 , . . . , M†

j−1) and ψ̄R, j+1 ≡ (M†
j+1, . . . , M†

L ). If |ψ〉 is
a mixed-canonical MPS representation, then simply |ψ eff

j 〉 = Mj .
Panel (b) Effective (one-site) Hamiltonian obtained by projecting Ĥ
using the maps {ψ̄L, j−1, ψL, j−1, ψ̄R, j+1, ψR, j+1} defined above. Anal-
ogous definitions can be given in the two-site case. Panel (c) (left)
Graphical representation of the diagonal effective Hamiltonian pro-
jected onto the Kryrol space. Representation of the Krylov projection
operator (triangular yellow tensor) Tlα where α = {σ j, mj−1, mj}
joins three indices so that it can be represented as a matrix (right).
T̂ tridiagonalizes Ĥ eff

j of panel (b), ĤTridiag,eff
j = T †Ĥ eff

j T , to the
smaller Krylov space spanned by index l , dim[l]  dim[α] =
djdim[mj−1]dim[mj]. Pln (green tensor) diagonalizes ĤTridiag,eff

j .

|ψeff
j 〉, yielding |φ〉 = Ô j |ψ〉. The MPS |φ〉 has all the tensors

equal to those of |ψ〉 except for the one at site j, M ′
j;mj−1,mj

,

M
′ σ j

j;mj−1,mj
=

∑
σ ′

j

O
σ jσ

′
j

j M
σ ′

j

j;mj−1,mj
. (A2)

We then construct the (real and imaginary parts of the) root-
N correction vector by Krylov-space decomposition of the
Hamiltonian Ĥ eff

j ,

[X (ω + iη)]σ j

j;mj−1,mj

=
∑

l,l ′nn′
σ ′

j ,m
′
j−1,m

′
j

T †
l;σ j ,mj−1,mj

P†
ln

1

[ω − εeff
j δnn′ + Eg + iη]1/N

×Pn′l ′Tl ′;σ ′
j ,m

′
j−1,m

′
j
M

′σ ′
j

j;m′
j−1,m

′
j
, (A3)

where Tl ′;σ j ,mj−1,mj tridiagonalizes Ĥ eff
j , ĤTridiag,eff

j = T †Ĥ eff
j T

to the smaller Krylov space spanned by index l , dim[l] 
d jdim[mj−1]dim[mj]. Pln diagonalizes ĤTridiag,eff

j , Ĥdiag,eff
j =

P†ĤTridiag,eff
j P, where εeff

j ’s are the eigenvalues of Ĥdiag,eff
j .

How is the Krylov-space tridiagonalization of Ĥ eff
j stopped?

In practice, we compare the lowest eigenvalue of Ĥdiag,eff
j ,

εmin = {εeff
j [k]}min at iterations k and k + 1, and exit the loop

when the error breaks below a certain threshold. In this paper,
we have set εTridiag to a value not too small in order to avoid the
proliferation of Krylov vectors (and, thus, Lanczos iterations),
and their reorthogonalizations. In general, the three states
|φ〉, |X Re〉, and |X Im〉 will be represented in a bad basis of
the environments ψL and ψR which are optimized to repre-
sent original state |ψ〉. To expand these bases, we use state
averaging of the four states, which is equivalent to targeting
more than one state in conventional DMRG language. In MPS
language as explained in Ref. [37], the state averaging is
performed by creating an extra index which labels the states
involved. One formally considers an expanded MPS repre-
senting a mixed state,⎛
⎜⎜⎝

|ψ〉
|φ〉

|X Re〉
|X Im〉

⎞
⎟⎟⎠ =

∑
σ1···σL

A′,σ̄1
1 · · ·C′,σ̄ j

j · · · B′,σ̄L
L |σ1 · · · σL〉

=
∑

σ1···σL

⎛
⎜⎜⎝

Aσ1
1 [ψ] 0 0 0

0 Aσ1
1 [φ] 0 0

0 0 Aσ1
1 [X Re] 0

0 0 0 Aσ1
1 [X Im]

⎞
⎟⎟⎠

· · ·

⎛
⎜⎜⎝

C
σ j

j [ψ]
C

σ j

j [φ]
C

σ j

j [X Re]
C

σ j

j [X Im]

⎞
⎟⎟⎠

· · ·

⎛
⎜⎜⎝

BσL
L [ψ] 0 0 0

0 BσL
L [φ] 0 0

0 0 BσL
L [X Re] 0

0 0 0 BσL
L [X Im]

⎞
⎟⎟⎠

× |σ1 · · · σL〉,
where C

′,σ̄ j

j;m′
j−1,m

′
j

has four components (representing the

four targeted vectors) and it has extended bond di-
mensions m′

j−1 = m[ψ]
j−1 + m[φ]

j−1 + m[X Re]
j−1 + m[X Im]

j−1 and m′
j =

m[ψ]
j + m[φ]

j + m[X Re]
j + m[X Im]

j . Here, the notation in terms of
A and B tensors underlines a mixed-canonical representation
of all the MPSs. By SVD compression, one has

C
′,σ j

j = U
′,σ j

j S′
jV

′,†
j . (A4)

As in conventional DMRG, one can also introduce different
weights in the direct sum and perform a SVD of the weighted
sum of the reduced density matrix ρ ′ = ∑3

k=0 wkρk Once this
procedure is performed at site j, one can proceed updating all
the tensors at site j + 1. In formulas,

C′
j+1 =

⎛
⎜⎜⎜⎜⎝

C
σ j+1

j+1 [ψ]

C
σ j+1

j+1 [φ]

C
σ j+1

j+1 [X Re]

C
σ j+1

j+1 [X Im]

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

U
[′,†,σ j ]
j C

σ j

j [ψ]Bσ j+1

j+1 [ψ]

U
[′,†,σ j ]
j C

σ j

j [φ]Bσ j+1

j+1 [φ]

U
[′,†,σ j ]
j C

σ j

j [X Re]Bσ j+1

j+1 [X Re]

U
[′,†,σ j ]
j C

σ j

j [X Im]Bσ j+1

j+1 [X Im]

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(A5)
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where U
[′,†,σ j ]
j from Eq. (A4) is common to all the four

vectors. After sweeping back and forth through the lat-

tice, a good representation of the correction vectors is
obtained.
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