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Interaction-driven quantum anomalous Hall insulator in a Dirac semimetal
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The interaction-driven quantum anomalous Hall (QAH) insulator has been sought for a long time in a Dirac
semimetal with linear band touching points at the Fermi level. By combining exact diagonalization, density
matrix renormalization group, and analytical methods, we study a spinless fermion system on the checkerboard
lattice with twofold rotational symmetry, which realizes two Dirac band touching points in the absence of
interaction. At weak coupling, the Dirac semimetal is stable. At a finite density-density repulsive interaction, we
analyze possible symmetry broken states, and find that an QAH state is stabilized when the interaction strength
exceeds the energy scale controlling the separation between the Dirac points. Through numerical simulations, we
verify the existence of the QAH phase with spontaneous time-reversal symmetry breaking and quantized Chern
number C = 1.
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I. INTRODUCTION

The integer quantum Hall (IQH) effect is the earliest re-
alization of a topological phase of matter, which has gapped
bulk excitations and gapless chiral edge states [1]. The topo-
logical nature of the IQH state is characterized by an integer
Chern number, which manifests through a quantized Hall
conductivity [2]. In conventional IQH effect time-reversal
symmetry (TRS) is broken by the applied external magnetic
field. Haldane showed that magnetic field is not necessary for
realizing an IQH state [3], and TRS may be broken sponta-
neously [4]. Such a new type of IQH state, which could be
realized in the absence of a magnetic field is called a quantum
anomalous Hall (QAH) state, which has prominent potential
applications in resistance metrology [5] and topological quan-
tum computing [6].

Both intrinsic ferromagnetism [7] or magnetic doping [8]
have been utilized for realizing QAH states in recent exper-
iment at sub-Kelvin temperatures [9–11]. Interaction driven
spontaneous TRS breaking provides a distinct route to re-
alizing QAH states in correlated matter. Such QAH states
have been proposed in correlated two-dimensional semimetals
[4,12,13]. In Dirac semimetals (DSMs) on the honeycomb and
kagomé lattices, although mean-field studies propose a QAH
state at finite interactions [4,14–20], numerical calculations
only find different charge density wave (CDW) insulating
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states [21–27]. Interestingly, the QAH state is also predicted
to be the dominant instability of spinless semimetals with
a quadratic band touching (QBT) point at the Fermi level
[12,13]. Because of the finite density of states at the Fermi
level, nearest-neighbor repulsive interactions are marginally
relevant and can stabilize a QAH state at weak coupling in
such spinless fermion system [12,13,15,28–30]. Recently, this
QAH state has also been identified at strong coupling by
unbiased numerical calculation [31–34]. In material simula-
tion, such a QAH state is predicted to exist in the hematite
nanosheets, which may have a very large gap ∼300 meV [35].

In this paper we study a correlated DSM on the checker-
board lattice. Such a pair of Dirac points may be obtained
by applying strain to irradiated FeSe monolayer [36], or in
certain τ -type organic conductors in the absence of spin-orbit
coupling [37]. A checkerboard lattice may be equivalently
considered as a decorated square lattice with two atoms per
unit cell, or a bilayer system of two square lattices with the
layers displaced with respect to each other. Here, we adopt
the former perspective, and emphasize the utility of the latter
for physical realizations [38]. For concreteness, we consider a
spinless fermion model with a staggered on-site potential for
the two sublattices, and repulsive density-density interactions.
The Hamiltonian is given by

H = −
∑
i, j

(ti jc
†
i c j + H.c.) + μ

2

∑
i∈A

c†
i ci − μ

2

∑
i∈B

c†
i ci

+ V1

∑
〈i, j〉

nin j + V2

∑
〈〈i, j〉〉

nin j, (1)

where ti j = t for intersublattice hoppings between nearest-
neighbor (NN) “A” and “B” sites, ti j = t ′ and −t ′ for
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FIG. 1. Model Hamiltonian and the Brillouin zone of the spinless
fermion model on the checkerboard lattice. (a) The model on the
checkerboard lattice with two sublattices (the solid and empty circles
denote the A and B sublattices), which has the nearest-neighbor
hopping t and the next-nearest-neighbor hoppings t ′, −t ′. (b) The
Brillouin zone of the model. Without chemical potential, the non-
interacting system at half-filling can realize a semimetal with a
quadratic band touching at the M point K = (π, π ). In the presence
of on-site energies μ/2 (−μ/2) in the A (B) sublattice, the quadratic
band touching splits to two Dirac band touching points. The two
Dirac band touchings locate either along the line Kx = π or the line
Ky = π depending on the sign of μ.

intrasublattice hoppings between NN A (B) sites along the
x̂ (ŷ) and ŷ (x̂) axes, respectively, as shown in Fig. 1(a).
The strength of the staggered on-site potential is μ/2, and
V1 (V2) is the density-density repulsion between NN A–B
(A–A and B–B) sites. By setting μ > 0 (μ < 0), the two
linear or Dirac band-crossing points locate along the line with
Ky = π (Kx = π ) in the Brillouin zone (BZ). In this paper we
investigate the interaction-induced symmetry broken phases
in the particle-hole channel. We uncover a stable QAH state
at small separations between the Dirac points. Our results are
substantiated by a combination of mean-field calculations and
density matrix renormalization group (DMRG) simulation.

This paper is organized as follows. In Sec. II, we describe
the DSM phase, and the phase diagram of the Hamiltonian
in Eq. (1) in the noninteracting limit. In Sec. III, we collate
all results that support the existence of an interaction-driven
QAH state. To this end, we present mean-field calculations
and numerical simulations to show that a QAH state is realized
as a finite-coupling instability of the DSM. We also identify
the region in the phase diagram where the QAH phase is
expected to be stabilized. Beyond the regime of stability of the
QAH state, a finite interaction strength may lead to other pat-
terns of symmetry breaking. In Sec. IV, we discuss non-QAH,
symmetry broken states that can directly gap out the Dirac
points, and tie the various instabilities to the noninteracting
phase diagram. A summary and outlook is presented in Sec. V.

II. DIRAC SEMIMETAL PHASE

In this section we discuss the topology and symmetries of
the DSM phases in the noninteracting limit of the model, and
deduce the phase diagram as a function of the on-site energy
μ. We define the annihilation and creation operators (ar, a†

r )
and (br, b†

r ) to denote the fermion operators acting on the
two sites in the unit cell at r. It is convenient to formulate
the following discussion in the basis of the two-component

FIG. 2. Band structure and phase diagram in the noninteracting
limit. (a) δ = 1: a pair of Dirac points are present on the Ky = π

axis (DSMX phase). (b) δ = −1: a pair of Dirac points are present
on the Kx = π axis (DSMY phase). At (c) δ = 0 and (d) δ = 2 the
points collide to form a quadratic band-touching (QBT) semimetal
and an anisotropic semimetal (ASM), respectively. For |δ| > 2 the
system becomes a trivial insulator (SNI), which has different charge
densities on the two sublattices. The δ-driven phase diagram is sum-
marized in (e).

fermionic spinor ψ
ᵀ
r = (ar br), and introduce a dimension-

less parameter for the on-site energy δ = μ/(4t ′). We note
that the noninteracting limit of our model is distinct from the
Mielke model on the checkerboard lattice [39–41].

In the momentum space the noninteracting, single-particle
Hamiltonian takes the form

H0(K ) = −d1(K )σ1 − d3(K )σ3, (2)

where σ j is the jth Pauli matrix acting on the sublattice degree
of freedom, and

d1(K ) = 4t cos
Kx

2
cos

Ky

2
,

d3(K ) = 2t ′(cos Kx − cos Ky − δ). (3)

Since H0(K ) is real-valued and composed of even functions
of K, it is straightforwardly invariant under time reversal op-
eration, which acts as T : {K → −K, H0 → KH0K}, where
K implements complex conjugation. It is also invariant under
mirror operations about the K̂x and K̂y axes passing through
(π, π ), which act as M j : {Kj → 2π − Kj, H0 → σ3H0σ3}.
We note that in the limit δ → 0, the Hamiltonian acquires a
fourfold rotational symmetry [12].

For 0 < δ < 2 [−2 < δ < 0], a pair of linear band cross-
ings or Dirac points are present at Kx = ± cos−1(−1 + δ) and
Ky = π [Ky = ± cos−1(−1 − δ) and Kx = π ], as exemplified
by Figs. 2(a) and 2(b). We call the DSM phase at δ > 0
(δ < 0) DSMX (DSMY). The linear band crossings in the
DSM phases are topologically protected, which is revealed by
the winding number along any loop enclosing a single Dirac
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point. The winding number along a directed and closed path
C is given by

W (C) = 1

2π

∮
C

dl
d1(K )∂l d3(K ) − d3(K )∂l d1(K )

d2
1 (K ) + d2

3 (K )
. (4)

Upon translating K by a reciprocal lattice vector (for exam-
ple 2π K̂x) we find W (C) → −W (C) due to d1(K + 2π K̂x ) =
−d1(K ). Since the two Dirac points related by a reciprocal lat-
tice vector cannot carry different vorticities, W (C) ≡ −W (C).
Therefore, W (C) acts as a Z2 index, and can only distinguish
between band singularity points with odd and even vorticities.
Here, we consider C to be directed counter-clockwise, and find
that the Dirac points in the DSM phases are characterized by
W (C) = 1.

At δ = 0 (δ = ±2) the Dirac points collide resulting in
a QBT semimetal (anisotropic semimetal) where the bands
touch at the M point (Y point for δ = 2 and X point for
δ = −2), as shown in Figs. 2(c) and 2(d). While δ = ±2
are topological quantum critical points that separate DSM
phases from “trivial” insulators [42–44], the QBT at δ = 0
is a symmetry-protected phase of matter, which is protected
by a combination of TRS and fourfold rotational symmetry
[12]. We note that the trivial insulator phase is the site-nematic
insulator (SNI) discussed in Ref. [33], which has different
charge densities on the two sublattices. Owing to a finite
density of states at zero energy, only the QBT at δ = 0 may
be destabilized by an arbitrarily weak interaction [12,33]. In
Fig. 2(e) we depict the δ-driven phase diagram for H0.

III. QUANTUM ANOMALOUS HALL STATE

A. Mean-field analyses

The density of states vanishes linearly with energy in
the DSM phases, which implies that they are stable against
short-ranged interactions that are much weaker than μ = 4t ′δ.
Interactions with strength comparable or larger than μ, how-
ever, may destabilize the DSM phases, and open spectral gaps
at the Dirac points. In this section we investigate one of the
most interesting symmetry broken states that may result from
the DSM phases—the QAH state.

In the presence of arbitrarily weak interactions the QBT
semimetal at δ = 0 is unstable against a fourfold symmetric
QAH state, that breaks the T and both mirror symmetries
[12,33]. The fourfold rotational symmetry is lost at a finite
δ, and the ground state is an DSM for sufficiently weak inter-
actions. Since δ = 0 is a critical point in the noninteracting
limit, it influences the physics at δ 	= 0 through a critical
fan that emanates from it [45], as depicted by the region
above the dashed lines in Fig. 3(a). The boundary between
the critical fan and the DSM phases—the dashed lines—is
set by an energy scale E∗ ∼ |μ|, which approximately tracks
the location of the van Hove points in the single-particle
dispersion. Following the theory of critical phenomena, the
physics at energies exceeding E∗ is expected to be controlled
by the critical point at δ = 0 [45]. We take advantage of this
influence of the δ = 0 critical point on the phase diagram to
look for the QAH state at interaction strengths |Vn| � E∗.

On one hand, the reduced symmetry at finite δ is expected
to disfavor the more rotationally symmetric QAH state. On

FIG. 3. Phase diagram and spectral gap in the quantum anoma-
lous Hall (QAH) state. (a) Schematic phase diagram at a fixed
interaction strength. The QAH state obtained at δ = 0 extends to a
finite region along |δ|, whose size is controlled by the strength of
the interaction. (b) The behavior of the single-particle excitation gap
|�QAH| in the QAH state as a function of δ and V1 obtained through
a mean-field calculation. While |�QAH| ∼ exp −1/V1 at δ = 0, it
takes an algebraic form, |�QAH| ∼ (V1 − V1c )α with 0 < α < 1 and
V1c > 0, for |δ| 	= 0. As anticipated in (a), at a fixed V1, |�QAH|
decreases with increasing |δ| (see inset), resulting in a dome shaped
region about δ = 0 where the QAH phase is stabilized. In the inset
V1 = 3.5.

the other hand, a weak deviation away from δ = 0 is un-
likely to offset the free energy gain significantly enough to
immediately suppress the QAH order. Here, we show that
the competition between the two tendencies leads to a finite
region about δ = 0 where the QAH state survives. To this end,
let us define the QAH order parameter as [33]

�QAH(r) = γ0(r) + γx̂+ŷ(r) − γx̂(r) − γŷ(r), (5)

where γl (r) := i(a†
r br−l − H.c.). In the momentum space it

takes the form

�QAH(K ) = 4 sin
Kx

2
sin

Ky

2
ψ†(K )σ2ψ (K ). (6)

Thus, at a mean-field level, the single-particle spectrum in the
QAH state is gapped.

Since the QAH state results from the condensation of
particle-hole pairs on NN A and B sites, a sufficiently strong
V1 or V2 can independently drive a QAH instability [33].
Although V2 is a formally irrelevant perturbation at the QBT
fixed point in a renormalization group sense, it is on a par with
the V1 term at the DSM fixed points. The V2 term, however,
contributes to the QAH instability by generating an effective
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V1 term through quantum fluctuations [33]. Therefore, for
simplicity, we set V2 = 0, and perform an explicit mean-field
calculation to determine the δ and V1 dependence of the spec-
tral gap in the QAH state,

�QAH :=
∫

dK〈�QAH(K )〉. (7)

For notational convenience we set t = 2t ′ = 1, and present
the details of the calculation in Appendix A. In Fig. 3(b) we
summarize the results. We find that as |δ| increases away from
δ = 0, progressively stronger coupling is necessary to desta-
bilize the DSM phases, and the critical strength of V1 above
which the DSM phases become unstable tracks the boundary
of the critical fan. Furthermore, at a fixed V1, |�QAH| decreases
with increasing |δ|, which indicates that the QAH instability
of the semimetallic states would lead to a dome-shaped region
about δ = 0 as shown in Fig. 3(a).

The mean-field Hamiltonian describing the gapped single-
particle excitation in the QAH phase is given by

HQAH(K ) = H0(K ) + d2(K )σ2, (8)

where d2(K ) := �QAH sin Kx
2 sin Ky

2 . The Brillouin zone sup-
ports a quantized flux or Chern number in the QAH phase,
whose density is given by

f (K ) = 1

4π
d̂ (K ) · ∂ d̂ (K )

∂Kx
× ∂ d̂ (K )

∂Ky
, (9)

with d̂ = (d1, d2, d3)/
√∑3

n=1 d2
n . Since both d1 and d2 are

composed of half-angles, f (K ) is periodic under translation of
K by a reciprocal lattice vector. Thus, unlike the vorticity in
the noninteracting limit, positive and negative Chern numbers
are distinguished in the QAH phase. Here, the Chern number
is found to be 1. We note that, owing to the half-angles, the
texture of d̂ at any δ is such that d̂ does not acquire a polar
orientation at all high-symmetry locations. Consequently, the
texture wraps only half of the target manifold S2.

B. Numerical identification of the quantum
anomalous Hall state

Having established the possibility of realizing an QAH
state over an extended region of the δ–V1 phase diagram, in
this subsection we demonstrate the existence of the QAH
state as a finite-coupling instability of the DSMX phase on
the checkerboard lattice by using DMRG simulation [46].
In particular, we study a cylinder geometry for the system
with periodic boundary conditions along the circumference
direction (y direction) and open boundary conditions along
the axis direction (x direction). We use Ly and Lx to denote the
numbers of unit cells along the two directions, respectively.
Our system size is up to Ly = 8, and Lx is increased up to 48 in
most calculations. The results are well converged with system
length in our calculations. We have also checked the results
with increased number of DMRG sweep, confirming all the
results converged with sweeping. We implement the particle
number conservation and keep the optimal states up to M =
4000 to ensure the truncation error about 1 × 10−5. We start
from the DSMX phase by choosing a nonzero on-site energy
δ > 0 in the Hamiltonian Eq. (1). In this case, the Dirac points

locate on the Ky = π axis but Kx can be incommensurate.
While the even Ly is compatible with Ky = π , the finite-size
effects induced by incommensurate Kx can be reduced by
increasing system length. In Appendix B, we show the good
convergence of the obtained QAH order parameter in the bulk
of system versus both system length and bond dimension.

We calculate the QAH order parameter �QAH and the
site-nematic order parameter �SNI with growing repulsive
interactions. The site-nematic insulating state has been found
in the QBT semimetal in the presence of strong repulsive
interactions [33]. We define the QAH order parameter for each
NN bond (i, j) as �QAH = 4i〈�|c†

i c j − c†
j ci|�〉, where |�〉 is

the ground-state wavefunction; and the site-nematic order pa-
rameter as �SNI = |(na − nb)|/2, where na and nb are defined
as the particle densities of the two sublattices in the bulk of the
system. To detect possible QAH phase, we consider both the
NN V1 and the NNN V2 interactions, which have been found
to enhance the QAH order in the QBT semimetal [32,33] and
may also work in this studied Dirac semimetal. Otherwise,
finite-size DMRG simulation may not be able to identify the
QAH order if it is too weak [33]. For simplicity, we increase
V1 by fixing V2 = V1/2.

In Fig. 4(a), we show the QAH order parameter �QAH

with growing interactions obtained by DMRG on the Ly =
6, 8 cylinders for δ = 0.05. We do not show the results
for Ly = 4, which are vanishing-small due to strong finite-
size effects. To allow spontaneous TRS breaking in DMRG
calculation, we choose the wavefunction as complex. Since
DMRG simulation tends to select the minimum entropy state
[47], spontaneous TRS breaking is allowed in the complex
wavefunction simulation if the energy splitting of the two
lowest-energy states are negligible within the resolution of
the simulation, because the symmetry breaking states have
the minimum entropy. By contrast, DMRG calculation us-
ing real wavefunction will obtain a superposition of the two
symmetry breaking states, which has a larger entanglement
entropy and poses a greater challenge to the convergence of
the simulation. Therefore, complex-wavefunction simulations
have been widely used for detecting TRS broken states in
different systems [32,48]. For 2 � V1 � 4.5, we find stable
nonzero QAH order �QAH in the bulk of the systems, showing
the robust spontaneous TRS breaking in this coupling region.
For the NN bonds in the bulk of cylinder, the local QAH
ordering pattern results in a loop current that circulates in each
plaquette, and the neighboring plaquettes have opposite loop
circulation directions, which agrees with a QAH phase with
vanished net flux [3]. Here we would like to emphasize that
for the smaller interactions, �QAH might be present but is very
weak and thus the system size in our calculation cannot detect
the order. As a result, we may take V1 � 2 as the upper bound
of the phase boundary between the DSM and QAH phase.
Here, the key result is the identification of the spontaneous
TRS breaking with growing interactions.

In Fig. 4(b), we demonstrate the site-nematic order �SNI

versus interactions. Since the noninteracting system already
has a finite on-site potential δ, �SNI must be nonzero in the
thermodynamic limit. In the small-interaction region and the
intermediate region with finite �QAH, we find that �SNI is
small and decreases with increased system circumference Ly.
However, �SNI sharply grows for V1 � 4.5 accompanied by
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FIG. 4. Identification of the quantum phases induced by inter-
actions. The noninteracting system is a Dirac semimetal with the
on-site energy δ = 0.05. The repulsive interactions are increased by
fixing V1 = 2V2. (a) and (b) are the interaction dependence of the
QAH order parameter �QAH and the site-nematic order parameter
�SNI on the Ly = 6, 8, Lx = 48 cylinders, which are obtained by
using the bond dimensions M = 4000. The order parameters are
measured in the bulk of the cylinders.

the vanished �QAH, which consistently show a quantum phase
transition to a site-nematic insulating phase.

Furthermore, we study the flux response to measure the
Hall conductance σH to reveal the topological nature of the
intermediate phase [48,49]. For an IQH state, an integer par-
ticle will be pumped from one edge of the cylinder to the
other one by adiabatically inserting a period of U (1) flux
θ in the cylinder, following the Laughlin’s gedanken ex-
periment [50,51]. In a period of flux insertion from θ = 0
to θ = 2π , the Hall conductance can be obtained from the
pumped particle number δN with σH = e2

h δN . To simulate
such a flux insertion in DMRG, we use the twisted boundary
conditions in the circumference direction of the cylinder, i.e.,
c†

i c j + h.c. → c†
i c jeiθ + H.c. for all the hopping terms that

cross the circumference boundary. We adiabatically increase
the flux θ in DMRG simulation by using the converged ground

FIG. 5. Flux insertion simulation in the QAH phase. The flux is
adiabatically inserted by using the twisted boundary conditions. The
accumulated edge particle number δN is obtained by subtracting the
particle number in the case of θ = 0. In a period of the flux from
θ = 0 to 2π , a quantized charge δN = 1 is pumped, characterizing
a Chern number C = 1. In this simulation, a very small additional
flux is introduced in all the plaquettes in the purpose of stabilizing a
TRS-breaking ground state.

state with a given flux θ as the initial wavefunction for the
DMRG sweeping with slightly increased flux θ + δθ [48,49].
For the converged ground state of each flux θ , we measure the
particle density and calculate the accumulated particle number
δN near the boundaries. The flux dependence of δN is shown
in Fig. 5. For all the flux values we find no particle accumula-
tion or depletion in the bulk of cylinder. Only the edge particle
accumulation δN increases with flux, showing that the particle
is pumped from one edge to the other one. In a period of the
flux θ = 0 → 2π , the pumped particle number is nothing but
a precise quantized value δN = 1, which characterizes this
QAH state as a Chern number C = 1 IQH state. Notice that
in the previous DMRG study of the interaction-driven QAH
state in the semimetals with a quadratic band touching at
the Fermi level [32,33], the pumped charge shows a nearly
straight line versus θ , indicating the uniform Berry curvature
with increased flux [52]. However, the charge pumping shown
in Fig. 5 clearly deviates from a straight line and characterizes
the nonuniform Berry curvature with the flux [52].

Here we would like to remark the difficulty in obtaining the
quantized Chern number in this DMRG simulation. Our direct
flux insertion simulation does not get δN = 1 but δN = 0
at θ = 2π , which usually happens when the QAH gap is
relatively small compared with the energy splitting between
the twofold near-degenerate ground states. To stabilize the
flux insertion simulation, we introduce a very small additional
flux in each plaquette, which has been found to be helpful for
identifying the QAH state [34]. By using this technique here,
we can obtain a quantized Chern number C = 1.

C. Connection with the quantum anomalous Hall phase
in the quadratic band touching semimetal

We have shown that repulsive interactions can also drive
a QAH phase in a Dirac semimetal. In this subsection, we
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FIG. 6. Robust QAH phase in the presence of sublattice on-site
potential for the model with V1 = 4,V2 = 2. (a) Energy spectrum
vs the on-site potential δ on the Lx = Ly = 4 torus obtained by
ED calculation. For each parameter point δ, all the energy levels
have subtracted its ground-state energy E0. (b) QAH order param-
eter �QAH vs δ obtained by DMRG calculation on the Ly = 6 and
Ly = 8 cylinders, which are obtained using the bond dimension
M = 4000.

unveil that this QAH phase is smoothly connected with the
interaction-induced QAH phase in the QBT semimetal, by
turning on anisotropic interactions in the Hamiltonian. In
particular, we focus on the sublattice on-site potential that
we have studied. We start from the QAH phase without on-
site potential (δ = 0) at V1 = 4,V2 = 2, which is induced by
interaction in the QBT semimetal [33]. By switching on the
potential δ, we calculate the energy spectrum of the system
on the Lx = Ly = 4 torus by using the exact diagonaliza-
tion (ED). The potential dependence of energy spectrum is
shown in Fig. 6(a). For small potential δ, the nearly double-
degenerate ground states, which characterize the QAH phase
are very robust. With growing δ, the gap decreases and closes
at δ � 0.1. In Fig. 6(b), we demonstrate the obtained QAH
order parameter �QAH by using DMRG. Based on the DMRG
results on the Ly = 6, 8 cylinders, we find stable QAH order
for δ � 0.15, showing a robust QAH phase in this region. The
smaller QAH region in the ED results (δ � 0.1) may be owing
to the stronger finite-size effects.

TABLE I. The symmetries of the low-energy effective Hamilto-
nian h0, and the symmetry broken states that open a single-particle
excitation gap at the Dirac points. The first column lists the sym-
metries that protect the DSMX phase. The corresponding symmetry
operations on momentum and the Hamiltonian are listed in the sec-
ond column. Finally, the third column lists the ordering patterns that
break the respective symmetries. The mass terms Mi j are discussed
in the main text. Here, �γ = (24, 25, 45), θ is a real-valued angle,
and n̂(k) is a generically momentum-dependent, 3-component unit
vector.

Symmetry Operation Broken by

Time reversal k → −k; h0 → 4K h0 K4 M4, M5, M13

x mirror kx → −kx; h0 → 34 h0 34 M4, M13

y mirror ky → −ky; h0 → 12 h0 12 M2, M13

Chiral h0 → e−iθ n̂(k)·�γ h0 eiθ n̂(k)·�γ M2, M4, M5

IV. OTHER SYMMETRY BROKEN STATES

In Sec. III we demonstrated the robustness of the inter-
action induced QAH phase at small δ and sufficiently large
interaction strengths. We also argued that this QAH state,
in fact, should be considered as an instability of the QBT
semimetal, which is inherited by the DSM phases when the
interaction strength places the system in the critical fan in
the vicinity of δ = 0. In this section, we investigate those
symmetry broken states that are true instabilities of the DSM
phases, i.e., they gap out single-particle excitations only if
δ 	= 0. For concreteness, we consider the DSMX phase with
δ > 0. The properties of DSMY can be deduced directly from
the results obtained here.

Since the linear dispersion supported by the Dirac points
are well defined only below the van Hove scale that ∼E∗,
we coarse-grain to energies E � E∗, and focus on the Dirac
points at K = (κ±, π ) where κ± := π ± cos−1(1 − δ). An
appropriate description of the low energy dynamics in the
vicinity of the Dirac points is formulated in terms of the
coarse-grained fermionic operators, ψ±, such that(

ar
br

)
� eiκ+xψ+(r) + e−iκ−xψ−(r). (10)

In the basis of the bi-spinor �T = (ψ+, ψ−), the Hamiltonian,
linearized in the vicinity of the Dirac points, obtains the form

h0(k) = vy(δ)ky1 + vx(δ)kx3, (11)

where vx(δ) = √
δ(2 − δ), vy(δ) = √

2δ, and k = K − KD

with KD being the location of a Dirac point. Here, we have
defined ( j, 4, 5) = (τ3 ⊗ σ j, τ2 ⊗ σ0, τ1 ⊗ σ0) with j =
1, 2, 3, and τ j (τ0) being the jth Pauli (2 × 2 identity) matrix,
which acts on the valley degree of freedom labeled by “±” in
Eq. (10). Note that we have set t = 2t ′ = 1.

The discrete transformations T and Mx exchange the two
Dirac points, but My does not. The 4 × 4 representations of
the microscopic symmetry operations discussed in Sec. II are
listed in Table I. Here, mn := [a, b]/(2i). In addition to the
microscopic symmetries that h0 inherits from H0, the effective
Hamiltonian also possesses an emergent SU (2) chiral symme-
try due to the linearization of the dispersion around the Dirac
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points. The group of chiral transformations is generated by
24, 25, and 45, with 45 protecting the Dirac points against
hybridization. Thus, the combination of microscopic discrete
and emergent chiral symmetries protect the DSM phase.

While the vanishing density of states at the Fermi level
ensures the stability the DSM phase against weak-coupling in-
stabilities, for sufficiently strong interactions the symmetries
that protect the Dirac points may be spontaneously broken.
If the resultant symmetry broken state is accompanied by
an energy gap in the single particle spectrum, then it would
be expected to be stabilized at the cost of the DSM phase.
Such gap-openings in the particle-hole channel are specified
by the  matrices that anticommute with h0, viz., 2, 4, 5,
and 13. These correspond to the order parameters Mj (k) ≡
�†(k) j�(k) with j = 2, 4, 5 and M13(k) ≡ �†(k)13�(k).
The symmetries broken by individual mass orders are listed
in Table I. While M2 and M13 involve intravalley particle-hole
order, M4 and M5 hybridize the two Dirac points. In particular,
M13 corresponds to the QAH order parameter, and the QAH
mass gap takes the same sign at the two Dirac points, indicat-
ing its source to be different than the DSM phase. By contrast,
the non-QAH orders are sensitive to the existence of the Dirac
points, either through a sign-change of the mass gap (M2), or
spatial modulation over a scale ∼(κ+ − κ−)−1 (M4 and M5).

In Sec. III we have shown that the QAH order is pro-
gressively suppressed by increasing separation between the
Dirac points. How do the other symmetry-broken states fare
compared to the QAH state? By focusing only on patterns of
symmetry breaking that are commensurate with the checker-
board lattice, we compare the behaviors of the QAH state
and the state with M2 as the order parameter. The latter is
characterized by Pierls-like distortion along the x̂ direction
that modulates over a single unit-cell spacing. Consequently,
we call it “stripe-Pierls” (SP) state. In contrast to the QAH
state [see Fig. 3(b)], the gap in the SP state increases with
both δ and V1 as shown in Fig. 7(a). This opposite tendency of
the gaps in the two symmetry-broken states, as a function of δ,
suggests that at a fixed interaction strength, for a sufficiently
large separation between the Dirac points, the SP state would
eventually dominate over the QAH state. We demonstrate it
by plotting the behavior of the respective gaps as a function of
δ in Fig. 7(b). Thus, it would be expected that the QAH phase
would give way to the SP phase at sufficiently large separation
between the Dirac points.

We numerically explore the quantum phase diagram of the
system with growing δ and interactions by choosing V1 =
2V2. In the DMRG calculation on the Ly = 6 systems, we
identify the QAH and the SNI state by computing the cor-
responding order parameters, as we have done in Fig. 4. The
obtained results are shown as the symbols in Fig. 8. For small
interactions, the Dirac semimetal would be stable against in-
teractions. The dotted line depicts a schematic phase boundary
between the QAH and Dirac semimetal. With increased inter-
actions in the larger-δ regime (the colored regime in Fig. 8),
our DMRG calculations do not find evidence to support either
bond order or site order before the SNI state emerges (see
the results in Appendix C), indicating a direct transition from
the DSM to the SNI phase. This is a reasonable possibility
because the DSM phase may be considered as a state arises
out of a nematic instability of the QBT semimetal. Previous

FIG. 7. Competitors of the quantum anomalous Hall (QAH)
state. (a) The behavior of the mean-field gap in the stripe-Pierls
(SP) state. Unlike the QAH state, the SP state is strengthened by
increasing separation between the Dirac points. (b) This leads to an
opposite behavior of the gap in the two phases as a function of δ.
Here, we have fixed V1 = 3.5.

calculations suggest that the corresponding nematic order,
〈ψ†(K )σ3ψ (K )〉, is strengthened by increasing repulsive in-
teractions [33], which would translate into |δ| renormalizing
to larger values. Larger |δ|, however, pushes the DSM towards
an SNI state, as illustrated in Fig. 2(e). Therefore, it is possible
that repulsive interactions induce a direct transition from the
DSM phase to the SNI phase at a sufficiently strong bare |δ|.
We note that, although our DMRG simulations suggest an
absence of the SP phase as the QAH state is suppressed, it may
not rule out incommensurate ordering patterns, eg. M4 and M5,
due to the limit of system size in numerical simulation.

V. CONCLUSIONS

In this paper we considered spinless fermions hopping
on a checkerboard lattice under uniaxial strain or staggered
on-site potential to demonstrate that (i) it is indeed possible
to realize QAH states in Dirac semimetals by spontaneous
TRS breaking; (ii) single-particle quantum critical points play
a fundamental role in guiding the strong-coupling symmetry
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broken phases in its vicinity. Through mean-field calculations
we argued that the QAH state should be considered as an
instability of the quadratic band-touching semimetal at δ =
0, which survives in the DSM phase at sufficiently strong
interactions. Our numerical simulations support this perspec-
tive, and we showed that the stable QAH state at finite δ is
smoothly connected to that at δ = 0. The suppression of the
QAH order with increasing bare δ provides further support.
We have also identified other symmetry breaking channels
that can open a spectral gap at the Dirac points, and potentially
competes with QAH state at sufficiently large bare separation
between the Dirac points. A comprehensive understanding
of their mutual competition would require a detailed renor-
malization group analysis and numerical simulations, both of
which are beyond the scope of this paper, but would be an
interesting topic for future investigations.

Since the spinful version of our model at δ = 0 is unstable
to a quantum spin Hall (QSH) state [29], we expect that
the corresponding spinful DSM phase obtained by applying
uniaxial strain or staggered on-site potential would continue
to be unstable to the QSH state at small δ. In both spinless
and spinful models it would also be interesting to investi-
gate potential pairing instabilities and their relationship with
anomalous/spin Hall fluctuations. We leave such considera-
tion to future work.
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APPENDIX A: MEAN-FIELD CALCULATIONS

Here we present the details of the mean-field calculations.
We use the “power expanded Gibbs potential method” (PEGP)
[33] for comparing the two commensurate symmetry broken
states, viz., quantum anomalous Hall (QAH) and stripe-Pierls
(SP), for δ > 0. For the symmetry breaking channels the

FIG. 8. Schematic phase diagram of the model with increased
on-site energy δ and interactions. Here we set V1 = 2V2. The symbols
denote the parameter points, which we determine their orders by
DMRG calculation, with the red squares for the QAH state and
the blue circles for the SNI state. For small interactions, the Dirac
semimetal would be stable. The dotted line is a schematic phase
boundary between the QAH and semimetal. With growing interac-
tions in the larger-δ regime (the colored regime), DMRG results do
not find evidence to support a symmetry breaking phase before the
SNI state appears.

action in the presence of the respective source terms are

SQAH = S(QAH )
0 + Sint, (A1)

SSP = S(SP)
0 + Sint, (A2)

where

S(QAH )
0 = S0 +

∫
dk0

2π
JQAH�QAH (A3)

=
∫

dk ψ
†
k

[
ik0σ0 + 4t cos

kx

2
cos

ky

2
σ1 + {2t ′(cos ky

− cos kx ) + μ}σ3 + 4JQAH sin
kx

2
sin

ky

2
σ2

]
ψk, (A4)

S(SP)
0 = S0 +

∫
dk0

2π
JSP�SP =

∫
dk ψ

†
k [ik0σ0 + d1(�k)σ1

+ d3(�k)σ3 + dSP(�k)JSPσ2] ψk . (A5)

with k0 being the Euclidean frequency, d1 = 4t cos kx
2 cos ky

2 ,

d3 = 2t ′(cos ky − cos kx ) + μ, dQAH (�k) = 4 sin kx
2 sin ky

2 , and

dSP(�k) = 4 cos kx
2 sin ky

2 . Note that we have assumed JX with

X = QAH, SP to be independent of k0 and �k. Thus, the re-
spective propagators are

G(QAH )
0 (k, JQAH ) = −ik0σ0 + d1(�k)σ1 + d3(�k)σ3 + dQAH (�k)σ2JQAH

k2
0 + d2

1 (�k) + d2
3 (�k) + J2

QAH d2
QAH (�k)

, (A6)

G(SP)
0 (k, JSP ) = −ik0σ0 + d1σ1 + d3σ3 + JSPdSPσ2

k2
0 + d2

1 (�k) + d2
3 (�k) + d2

SP(�k)J2
SP

. (A7)
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In either case

Sint = 4V1

∫
dk1dk2dq cos

qx

2
cos

qy

2
a†(k1 + q)a(k1)b†(k2)b(k2 + q)

+ 2V2

∫
dk1dk2dq [(sin

k1x − k2x

2
sin

k1x − k2x + qx

2
) + (x → y)]

× [(a†(k1 + q)a(k1)a†(k2 − q)a(k2)) + (a → b)]. (A8)

We note that the respective order parameters and sources are related by

�QAH =
〈 ∫

d�k 4 sin
kx

2
sin

ky

2
ψ

†
k σ2ψk

〉
= −4

∫
d�k sin

kx

2
sin

ky

2
Tr

[
σ2G(QAH )

0 (k)
]
, (A9)

�SP =
〈 ∫

d�k 4 cos
kx

2
sin

ky

2
ψ

†
k σ2ψk

〉
= −4

∫
d�k cos

kx

2
sin

ky

2
Tr

[
σ2G(SP)

0 (k)
]
. (A10)

According to the PEGP expansion, up to linear order in interaction strength, the Gibbs free energy G(�) = G0(�) + 〈Sint〉.
For the reason noted in the main text henceforth we set V2 = 0, and evaluate 〈Sint〉 individually for either the QAH or SP state,

〈Sint〉X = 4V1

∫
dk1dk2dq cos

qx

2
cos

qy

2
[〈a(k1)a†(k1 + q)〉X 〈b(k2 + q)b†(k2)〉X − 〈b(k2 + q)a†(k1 + q)〉X 〈a(k1)b†(k2)〉X ],

(A11)

where 〈a(k)b†(k′)〉X = (2π )3δ(3)(k − k′)G(X )
ab (k); 〈a(k)a†(k′)〉X = (2π )3δ(3)(k − k′)G(X )

aa (k), etc. with X referring to QAH or
SP. Upon further evaluation we obtain

〈Sint〉X = − 4V1(2π )3δ(3)(0)

[{
1

2

∫
d�k d3(�k)

|M(�k)|

}2

+ 1

4

∫
d�k1d�k2

d1(k1)d1(k2) + J2
X dX (k1)dX (k2) + iJX {d1(k1)dX (k2) − d1(k2)dX (k1)}

|M(k1)| |M(k2)|

×
{

cos
k1x

2
cos

k2x

2
cos

k1y

2
cos

k2y

2
+ cos

k1x

2
cos

k2x

2
sin

k1y

2
sin

k2y

2

+ sin
k1x

2
sin

k2x

2
cos

k1y

2
cos

k2y

2
+ sin

k1x

2
sin

k2x

2
sin

k1y

2
sin

k2y

2

}]
(A12)

(i) For QAH state: At μ = 0, M(�k) is invariant under kx ←→ ky, but d3(�k) is odd. Thus, the first term in Eq. (A12) vanishes.
At μ 	= 0, the above is no longer true and the Hartree term contributes. At any μ, M(�k) is invariant under k j → 2π − k j , but
d1(�k) is odd. Thus, the nonvanishing terms in the Fock term are (numerator only)

d1(�k1)d1(�k2) cos
k1x

2
cos

k1y

2
cos

k2x

2
cos

k2y

2
+ J2

QAH dQAH (�k1)dQAH (�k2) sin
k1x

2
sin

k1y

2
sin

k2x

2
sin

k2y

2
.

Therefore,

〈Sint〉QAH = −V1(2π )3δ(3)(0)
[

f 2
3 + f 2

1 + J3
QAH f 2

QAH

]
(A13)

where f3(JQAH ) = ∫
d�k d3(�k)

M(�k)
, f1(JQAH ) = ∫

d�k d2
1 (�k)

4tM(�k)
, and fQAH (JQAH ) = ∫

d�k d2
QAH (�k)

4M(�k)
.

(ii) For SP state the nonvanishing terms in the numerator of the Fock term is

d1(�k1)d1(�k2) cos
k1x

2
cos

k1y

2
cos

k2x

2
cos

k2y

2
+ J2

SPdSP(�k1)dSP(�k2) cos
k1x

2
sin

k1y

2
cos

k2x

2
sin

k2y

2
.

Hence,

〈Sint〉SP = −V1(2π )3δ(3)(0)

[{∫
d�k d3(�k)

M(�k)

}2

+
{ ∫

d�k d2
1 (�k)

4tM(�k)

}2

+ J2
SP

{ ∫
d�k d2

SP(�k)

4M(�k)

}2]
. (A14)

The Gibbs free energy is extremized with respect to �X ,
and the solution for ∂�X G(�X ) = 0 yields the gap in the sym-
metry broken state X . We note that, while extremizing, ∂�X JX

is obtained as a function of �X by inverting the respective
relationships in Eqs. (A9) and (A10). For more details, we
direct the interested reader to Ref. [33].
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FIG. 9. Bond dimension dependence and system length depen-
dence of the QAH order parameter. The system has V1 = 4,V2 =
2, δ = 0.05 on the Ly = 6, Lx = 36, 48 cylinders and the Ly = 8,
Lx = 36, 48 cylinders. M is the bond dimension, which is kept from
M = 1000 to M = 4000 in our simulation.

APPENDIX B: CONVERGENCE OF THE QUANTUM
ANOMALOUS HALL ORDER PARAMETER

In the main text, we have shown the QAH order parameter
on the Lx = 48 cylinder. In our DMRG calculation, we have
checked the convergence of the QAH order versus bond di-
mension M and system length Lx. Here, we present the bulk
QAH order on the Ly = 6, 8 cylinders with different system
lengths Lx = 36, 48, which are obtained by using complex
wavefunction and keeping M = 1000 − 4000 states. The re-
sults for V1 = 4,V2 = 2, δ = 0.05 are shown in Fig. 9. One
can find that the bulk QAH order is well converged with
growing system length and the results by keeping 4000 states

are convergent, which supports the accuracy of our DMRG
results.

APPENDIX C: MORE MEASUREMENTS
FOR THE LARGER POTENTIAL REGIME

In the main text, we have shown the phase diagram Fig. 8
with tuning the on-site potential δ and the repulsive interac-
tions. Here we show more data for the systems in the larger
potential regime. We choose δ = 0.4 and consider the inter-
actions V1 = 2V2 = 0, 2, 5. For V1 = V2 = 0, the system is
a Dirac semimetal. With growing interactions, we measure
the charge density 〈ni〉 and charge hopping energy 〈c†

i c j〉. As
shown in Fig. 10, the charge densities of the two sublattices
have a small difference 0.18 in the bulk of the cylinder for
V1 = V2 = 0, due to the on-site potential δ = 0.4. While for
V1 = 2V2 = 2 the density difference increases slightly to 0.34,
it becomes much larger (0.8) at V1 = 2V2 = 5, which char-
acterizes the emergence of the site-nematic insulating state.
By computing the charge density, we identify the site-nematic
insulating phase in Fig. 8.

We further compare the nearest-neighbor hopping energy
〈c†

i c j〉 in Fig. 11. For V1 = V2 = 0 and V1 = 2V2 = 2, the
hopping energies in the bulk seem not to break lattice sym-
metry and their values are close, which suggests these two
parameter points belong to the same phase. For V1 = 2V2 = 5,
because the charges mainly occupy one of the two sublat-
tices, the nearest-neighbor hopping energy becomes much
smaller.

APPENDIX D: ANOMALOUS HALL STATE VIA OTHER
DIRAC SEMIMETAL PHASES

The second anisotropic interaction we consider is the bond
anisotropy of the nearest-neighbor (NN) hopping term [12].

FIG. 10. Charge density for δ = 0.4 and different repulsive interactions on the Ly = 6, Lx = 48 cylinder. We show the results in the bulk
of the cylinder for (a) V1 = V2 = 0, (b) V1 = 2V2 = 2, and (c) V1 = 2V2 = 5. All the charge density values have subtracted a constant 0.5. The
negative and positive results are shown as the red and blue colors, respectively. The area of the circle is proportional to the absolute value of
the subtracted charge density. At the bottom, the numbers denote the subtracted charge densities.
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FIG. 11. Charge hopping energy for δ = 0.4 and different repulsive interactions on the Ly = 6, Lx = 48 cylinder. We show the results in
the bulk of the cylinder for (a) V1 = V2 = 0, (b) V1 = 2V2 = 2, and (c) V1 = 2V2 = 5. The number denotes the charge hopping energy 〈c†

i c j〉 of
the corresponding nearest-neighbor bond.

While we keep the NN hoppings along two directions as t
[the diagonal directions with the angles π/4 and 5π/4 in
Fig. 1(a)], we set the NN hoppings along the perpendicular
directions as t + δt (the diagonal directions with the angles
3π/4 and 7π/4). With a nonzero δt , the C4 rotational sym-
metry of the system reduces to the C2 symmetry, and the
QBT semimetal also becomes a Dirac semimetal with the
two Dirac band touching points locating along the diagonal
lines in the Brillouin zone [12]. Similar to the above case with
tuning μ, we start from the QAH phase at V1/t = 4,V2/t = 2

and increase δt . The exact diagonalization (ED) energy spec-
trum and the QAH order parameter obtained by DMRG are
shown in Fig. 12. In the ED spectrum, the gap between the
two lowest-energy states and the higher levels decreases with
growing δt . In DMRG results, the QAH order drops fast with
growing δt on the Ly = 6 system. On the wider Ly = 8 system,
�QAH enhances and indicates the strong finite-size effects
on Ly = 6. Based on the Ly = 8 results, the QAH order can
persist in a finite region of δt/t � 0.2.

FIG. 12. Robust QAH phase in the presence of bond anisotropy for the model with V1 = 4,V2 = 2. (a) Energy spectrum vs the nearest-
neighbor bond anisotropy δt on the Lx = Ly = 4 torus obtained by exact diagonalization calculation. For each parameter point δt/t , all the
energy levels have subtracted its ground-state energy E0. (b) QAH order parameter �QAH vs δt/t obtained by DMRG calculation on the Ly = 6
and Ly = 8 cylinders, which are obtained using the bond dimension M = 4000.
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