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The Landauer formula provides a general scattering formulation of electrical conduction. Despite its utility,
it has been mainly applied to the linear-response regime, and a scattering theory of nonlinear response has yet
to be fully developed. Here, we extend the Landauer formula to the nonlinear-response regime. We show that
while the linear conductance is directly related to the transmission probability, the nonlinear conductance is given
by its derivatives with respect to energy. This sensitivity to the energy derivatives is shown to produce unique
nonlinear transport phenomena of mesoscopic systems including disordered and topological materials. By way
of illustration, we investigate nonlinear conductance of disordered chains and identify their universal behavior
according to symmetry. In particular, we find large singular nonlinear conductance for zero modes, including
Majorana zero modes in topological superconductors. We also show the critical behavior of nonlinear response
around the mobility edges due to the Anderson transitions. Moreover, we study nonlinear response of graphene
as a prime example of topological materials featuring quantum anomaly. Furthermore, considering the geometry
of electronic wave functions, we develop a scattering theory of the nonlinear Hall effect. We establish a new
connection between the nonlinear Hall response and the nonequilibrium quantum fluctuations. We also discuss
the influence of disorder and Anderson localization on the nonlinear Hall effect. Our work opens a new avenue
in quantum physics beyond the linear-response regime.
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I. INTRODUCTION

Electronic transport plays a central role in condensed
matter physics and gives insights into underlying electronic
properties of a rich variety of materials. As well as the
practical relevance, it is of fundamental significance to de-
velop a theory of electrical conduction in statistical physics.
Based on kinetic equations for the distribution of particles, the
Boltzmann transport theory describes semiclassical transport
phenomena [1,2]. A fully quantum description of electrical
conduction is given by the linear response theory that treats
an external field as a perturbation to the system near ther-
mal equilibrium [3–5]. Its successful applications include the
quantum Hall effect, where topology of the wave functions
plays a key role [6–12].

The Landauer formula provides yet another general for-
mulation of electrical conduction from a different perspective
[13–18]. It relies on the scattering formulation of electronic
transport and addresses experimental situations in which a
system is attached to electrodes. A crucial advantage of the
Landauer formula is its wide utility to quantum transport. It
provides a clear understanding about mesoscopic quantum
experiments of point contacts [19,20], wires [21], and car-
bon nanotubes [22]. The Landauer formula also describes
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Anderson localization [23–27], which is the disorder-induced
localization as a consequence of the wave nature of electrons.
Furthermore, it explains electronic transport in topological
materials [28–31] including graphene [32,33]. The scattering
formulation is also instrumental in understanding statistical
behavior of transport properties such as the universal con-
ductance fluctuations [34–39]. Another decisive advantage
of the Landauer formula is its applicability to the far-from-
equilibrium regime. While the linear response theory is
applicable only close to thermal equilibrium, the Landauer
formula describes far-from-equilibrium phenomena such as
shot noise [40–44] and dissipative transport in open systems
[45–52].

Recently, nonlinear response of electron systems has at-
tracted growing interest [53–75]. Nonlinearity of electrical
conduction gives rise to new transport phenomena unseen in
the linear regime, such as the quantized circular photogal-
vanic effect [57] and the high-frequency rectification [61].
Moreover, several fundamental relations in thermodynamics
and statistical physics, including the Onsager reciprocal re-
lations [76], require reconsideration in the nonlinear regime.
A prime example is the nonlinear Hall effect, which arises
even in the presence of time-reversal invariance [54]. The
nonlinear Hall conductance also offers new pieces of infor-
mation about topological band structures of materials such as
the Berry curvature dipole. Experimentally, the nonlinear Hall
effect was observed in WTe2 with time-reversal invariance
[58,59]. Nonlinear electronic transport opens a new avenue in
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condensed matter physics and statistical physics, awaiting
further theoretical and experimental advances.

In view of the considerable recent interest in nonlin-
ear transport phenomena, there seems to be an urgent need
to develop a scattering formulation of nonlinear response.
Several previous works were based on nonlinear optical
approaches [77,78], which are likely to be valid in the
high-frequency regime. For electrical conduction in the low-
frequency regime, by contrast, the validity of such an optical
approach is unclear, and the scattering approach should be
more relevant. While some previous works studied nonlinear
transport of mesoscopic conductors [79–86], nonlinear trans-
port of disordered and topological materials has been largely
unexplored. Furthermore, the nonlinear Hall effect has been
studied solely by the semiclassical Boltzmann transport the-
ory [54]. As a result, the fully quantum nature of the nonlinear
Hall effect has yet to be revealed.

In this work, we develop a nonlinear response theory
based on the scattering formulation and use it to explore
nonlinear transport phenomena of various disordered and
topological materials. In Sec. II, we formulate the nonlinear
response theory and derive the nonlinear Landauer formula.
In the obtained formula, while the linear response is given by
the transmission probability through the system, the nonlin-
ear response is given by the derivatives of the transmission
probability with respect to energy. We demonstrate that the
nonlinear Landauer formula fully captures the quantum ef-
fects of the nonlinear response as a virtue of the scattering
formulation. In particular, we explore nonlinear response of
the following exemplary disordered and topological materials
and clarify the different origins that induce nonlinear elec-
tronic transport.

(1) Disordered materials (Sec. III). We investigate nonlin-
ear response of disordered electron systems in one dimension.
We discover singular behavior of nonlinear conductance as a
consequence of chiral or particle-hole symmetry. We further
classify the universality classes of nonlinear response in disor-
dered electron systems according to symmetry and discuss the
critical phenomena of nonlinear response due to the Anderson
transitions.

(2) Graphene (Sec. IV). We study nonlinear quantum trans-
port of graphene as a prototypical topological semimetal. We
show its unique nonlinear quantum transport due to topology
of the Dirac point.

(3) Nonlinear Hall effect (Sec. V). We discuss the nonlinear
Hall effect in terms of the scattering theory. We reveal a
close relationship between the second-order nonlinear Hall
conductance and shot noise. This finding establishes a hitherto
unrecognized connection between the nonlinear Hall response
and nonequilibrium quantum fluctuations. We further discuss
the quantum effects of disorder and Anderson localization on
the nonlinear Hall effect with particular emphasis on symme-
try.

We conclude this work and give outlooks in Sec. VI.

II. NONLINEAR LANDAUER FORMULA

We formulate a nonlinear response theory based on the
scattering approach. Let us consider a system of electrons
that is attached to two electrodes via the ideal leads (Fig. 1).

FIG. 1. Scattering formulation of electrical conduction. The sam-
ple is attached to the two reservoirs at the different voltages through
the ideal leads. The Landauer formula relates the electrical conduc-
tion to the transmission through the sample.

The electrodes are described by large reservoirs of electrons at
thermal equilibrium, which obey the Fermi-Dirac distribution

feq (E ) := 1

eβ (E−μ) + 1
(1)

with the inverse temperature β and the chemical potential μ.
We impose a voltage V on the system by giving the potential
difference eV between the two reservoirs. The applied voltage
V produces a current I through the system, which generally
depends nonlinearly on V as

I =
∞∑

n=1

GnV
n. (2)

Here, G1 denotes the linear conductance, and Gn (n � 2)
denotes the nonlinear conductance. In the following, we show

Gn = en+1

(n!)h

∫ ∞

−∞

dn−1T

dEn−1

(
−dfeq

dE

)
dE , (3)

where T = T (E ) is the transmission probability of an elec-
tronic wave with energy E through the system. Moreover,
e > 0 is the elementary charge, and h is the Planck constant.
At zero temperature, Eq. (3) reduces to

Gn = en+1

(n!)h

dn−1T

dEn−1

∣∣∣∣
E=μ

. (4)

Equations (3) and (4) constitute the nonlinear Landauer
formula, which provides the nonlinear conductance in the
scattering formulation. While the linear conductance is given
by the transmission probability T = T (E ), the nonlinear con-
ductance is given by its derivatives. In these formulas, the
spin degrees of freedom are neglected for simplicity, which
are readily recovered.

A. Derivation

Now, we derive the nonlinear Landauer formula in Eqs. (3)
and (4). Let us first focus on electronic waves in the infinites-
imal energy range [E , E + dE ]. The current dI (in)

L→R from the
left reservoir to the system is

dI (in)
L→R = ev dNL→R, (5)

where v is the velocity of the electrons, and dNL→R is
their number. In terms of the wave number k, we have v =
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h̄−1dE/dk and dNL→R = feq (E (k) − eV )dk/2π . Here, the
chemical potential of the left reservoir is prepared to be
μ + eV . Then, we have

dI (in)
L→R = e

(
1

h̄

dE

dk

)[
feq (E (k) − eV )

dk

2π

]

= e

h
feq (E − eV )dE . (6)

Similarly, the current dI (in)
R→L from the right reservoir to the

system is

dI (in)
R→L = e

h
feq (E )dE , (7)

where the chemical potential of the right reservoir is μ.
The incident electronic waves are scattered in the system.

Let TL→R (TR→L) be the transmission probability of the system
for the incident electronic wave from the left to the right
(from the right to the left). These transmission probabilities
contain all information about the system. It is also notable
that they generally depend on energy E of the electronic
waves: TL→R = TL→R(E ) and TR→L = TR→L(E ). Then, the
total current dI through the system is

dI = TL→R(E )dI (in)
L→R − TR→L(E )dI (in)

R→L

= e

h
[TL→R(E ) feq (E − eV ) − TR→L(E ) feq (E )]dE . (8)

Now, considering all the electronic waves with arbitrary
energy, we have

I =
∫

dI = e

h

∫ ∞

−∞
[TL→R(E ) feq (E − eV )

− TR→L(E ) feq (E )]dE . (9)

When the system is isolated from the environment, current
conservation requires the scattering matrix to be unitary (see
Appendix A for details). As a result, the transmission prob-
ability TL→R(E ) from the left to the right is identical to the
transmission probability TR→L(E ) from the right to the left:

TL→R(E ) = TR→L(E ) =: T (E ). (10)

This is a general consequence of unitarity of scattering matri-
ces. Then, the current I reduces to

I = e

h

∫ ∞

−∞
T (E )[ feq (E − eV ) − feq (E )]dE . (11)

This is a general scattering formula of the current I for the
applied voltage V .

If we further assume that the transmission probability T =
T (E ) is independent of energy E [17,18], Eq. (11) reduces to

I = e

h
T

∫ ∞

−∞
[ feq (E − eV ) − feq (E )]dE =

(
e2

h
T

)
V,

(12)

where we use∫ ∞

−∞
[ feq (E − eV ) − feq (E )]dE = eV. (13)

Here, the current I is proportional to the voltage V , and the
linear conductance is given as the transmission probability T

multiplied by the fundamental constant e2/h. Although this
simplified formula is useful in obtaining the linear response,
it does not explain nonlinear response. We note that Eq. (12) is
valid as long as the transmission probability T is independent
of energy E . Consequently, even for large V and nonzero tem-
perature β < ∞, Eq. (12) is valid, and nonlinear conductance
vanishes.

Although Eq. (12) is widely used to obtain the linear
conductance, the transmission probability T does depend on
energy E in many cases. In fact, such energy dependence of
the transmission probability leads to the nonlinear response.
To obtain the nonlinear conductance, let us consider the en-
ergy dependence of the transmission probability. Expanding
the Fermi-Dirac distribution function feq in terms of the ap-
plied voltage V , we have

feq (E − eV ) − feq (E ) =
∞∑

n=1

1

n!

dn feq

dEn
(−eV )n. (14)

Inserting this expansion into Eq. (11), we have

I = e

h

∞∑
n=1

1

n!

(∫ ∞

−∞
T

dn feq

dEn
dE

)
(−eV )n. (15)

From the definition of the conductance Gn in Eq. (2), we have

Gn = (−1)nen+1

(n!)h

∫ ∞

−∞
T

dn feq

dEn
dE . (16)

Here, the transmission probability T and its derivatives should
vanish in the limit |E | → ∞ for physical electron systems in
solids. Then, integration by parts leads to Eq. (3). If the trans-
mission probability T is independent of energy E , we recover
Eq. (12), i.e., G1 = (e2/h)T and Gn = 0 for n � 2. In many
cases, temperature is sufficiently low in comparison with the
relevant energy scale and well approximated to zero. At zero
temperature (i.e., β = ∞), we have −dfeq/dE = δ(E − μ),
and Eq. (3) reduces to Eq. (4). Equations (3) and (4) constitute
a nonlinear extension of the Landauer formula.

According to the conventional Landauer formula in
Eq. (12), the linear conductance G1 is given by the trans-
mission probability T . On the other hand, according to the
nonlinear Landauer formula in Eqs. (3) and (4), the nth-order
nonlinear conductance Gn (n � 2) is given by the (n − 1) th
derivative of the transmission probability T with respect to
energy E . Here, the transmission probability T can be sys-
tematically calculated on the basis of the Green’s function
method [17]. In Appendix B, we investigate nonlinear trans-
port through some exemplary potential barriers on the basis of
the nonlinear Landauer formula.

Notably, the nonlinear Landauer formula in Eqs. (3) and
(4) is applicable in higher dimensions as well. In two dimen-
sions, for example, let us consider the diagonal conductance
along the x direction. In contrast to one dimension, transport
along the x direction consists of many modes characterized
by wave numbers ky along the y direction. In the presence of
translation invariance, these modes are independent of each
other. Hence, we have a well-defined transmission probabil-
ity Tx(E , ky) for electronic waves with energy E and wave
number ky along the y direction. The total transmission prob-
ability is given as Tx(E ) = ∑

ky
Tx(E , ky). In the absence of
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translation invariance due to disorder, the modes with dif-
ferent wave numbers ky interact with each other. Still, we
can calculate the total transmission probability T (E ) by sum-
ming up all the interacting transmitted modes. As a prime
example of two-dimensional materials, we investigate non-
linear conductance of graphene in Sec. IV. We also discuss
nonlinear Hall conductance with the scattering approach in
Sec. V.

B. Nonreciprocity

A crucial feature of nonlinear response is nonreciprocity.
Here, the nonreciprocal response is defined by

I (V ) �= −I (−V ). (17)

For the linear response I (V ) = G1V , we always have I (V ) =
−I (−V ), and the response is reciprocal. Thus nonreciprocal
response requires nonlinearity, especially even-order nonlin-
ear response. Nonreciprocal response has recently attracted
growing interest, for example, in noncentrosymmetric quan-
tum materials [87]. It has been analyzed perturbatively in a
manner similar to nonlinear optics [77,78].

The nonlinear Landauer formula in Eqs. (3) and (4) pro-
vides a general understanding about nonreciprocal response in
the scattering theory. In particular, the dominant contribution
to the nonreciprocal response arises from the second-order
nonlinear conductance

G2 = e2

2h

∫ ∞

−∞

dT

dE

(
−dfeq

dE

)
dE . (18)

Thus, in the scattering theory, the derivative of the trans-
mission probability is crucial for nonreciprocal response. In
the following, we demonstrate that various types of materials
indeed exhibit nonreciprocal response G2 �= 0. In particular,
such nonreciprocal response can arise even without many-
body interaction. Nonreciprocal response in simple systems
is discussed in Appendix B.

C. Nonlinear Boltzmann conductivity

The Landauer formula is applicable in the presence of
quantum coherence, which is distinct from semiclassical ap-
proaches such as the Boltzmann transport theory [1,2]. To
highlight this feature, we here derive nonlinear conductivity
on the basis of the Boltzmann equation and compare it with
the nonlinear Landauer formula. Let us consider a system of
electrons characterized by the energy dispersion E = E (k).
In contrast to the scattering approach, the system is prepared
to be in isolation from the environment including the elec-
trodes. Without any external field, the system is at thermal
equilibrium and described by the Fermi-Dirac distribution
feq = feq (k) := 1/(eβ(E (k)−μ) + 1)−1 with the inverse tem-
perature β and the chemical potential μ. Instead of imposing
the voltage by attaching the electrodes, we apply an electric
field E to the system. Because of this applied electric field E ,
the distribution function f = f (k) deviates from the equilib-
rium distribution function feq. Since E is uniform and static,
f only depends on the wave number k and is independent
of space and time. We assume that the distribution function
f follows the Boltzmann equation with the relaxation time

approximation [1,2]:

−eE
h̄

· ∂ f

∂k
= − f − feq

τ
. (19)

The relaxation time τ depends on details of scattering pro-
cesses. While τ is generally a complicated function of wave
number k, we ignore such k dependence for the sake of
brevity. To make the comparison with the Landauer formula
clear, we focus on one-dimensional systems in the following.
A generalization to higher-dimensional systems is straightfor-
ward.

Solving the Boltzmann equation in Eq. (19) perturbatively,
we have

f = feq +
∞∑

n=1

(
eτE

h̄

)n dn feq

dkn
. (20)

The current density i is obtained as

i = −e
∮

v f
dk

2π
(21)

with the velocity v := h̄−1dE/dk. Here, the integral is taken
over the entire momentum space. Now, we define the nth-
order nonlinear conductivity σn by

i =
∞∑

n=1

σnEn (22)

in a manner similar to the nth-order nonlinear conductance Gn

in Eq. (2). Generally, in d dimensions, we have i = I/Ld−1

and E = V/L with the length scale L, leading to

σn = GnLn−d+1. (23)

In one dimension, this relationship reduces to σn = GnLn.
Then, the nth-order conductivity σn is obtained as

σn = − 1

τ

(eτ

h̄

)n+1
∮

dE

dk

dn feq

dkn

dk

2π
, (24)

where the integration is carried over the entire momentum
space. This is the response formula derived from the Boltz-
mann equation. Integration by parts leads to

σn = 1

τ

(
−eτ

h̄

)n+1
∮

dnE

dkn

(
−dfeq

dk

)
dk

2π

= 1

τ

(
−eτ

h̄

)n+1
∮

dn+1E

dkn+1
feq

dk

2π
. (25)

At zero temperature, we have −dfeq/dk = (dE/dk)δ(E (k) −
μ), which simplifies the formula to

σn = 1

τ

(
−eτ

h̄

)n+1
∮

dnE

dkn

dE

dk
δ(E (k) − μ)

dk

2π
. (26)

In Appendix C, we calculate linear and nonlinear conductivity
of some exemplary systems on the basis of the Boltzmann
equation.

As demonstrated in Eq. (25), the nth-order Boltzmann
conductivity σn is given by the nth derivative of the energy
dispersion E = E (k) [i.e., the (n − 1) th derivative of the
velocity h̄−1dE/dk]. On the other hand, as demonstrated in
Eq. (3), the nth-order Landauer conductance Gn is given by
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the (n − 1) th derivative of the transmission probability T =
T (E ). These results appear to be similar to each other and
show a common mathematical structure underlying the two
different transport theories. In fact, both velocity h̄−1dE/dk
and transmission probability T describe a flow of electrons
and share a similar physical interpretation, at least in the
semiclassical regime. In the fully quantum regime, however,
a crucial distinction arises between h̄−1dE/dk and T . In fact,
the transmission probability T cannot be obtained solely from
the energy dispersion E . It also contains information about
wave functions of electrons. In the presence of strong quantum
coherence, electronic transport should be described by both
energy dispersion and wave functions. Consequently, while
the Landauer formula fully captures such a quantum effect,
the Boltzmann equation does not.

In fact, the Boltzmann equation is valid only in the semi-
classical regime and invalid in the fully quantum regime [1,2].
The Boltzmann equation assumes that electrons are particles
with momenta h̄k. In other words, packets of electronic waves
are assumed to be well defined, which behave as particles.
For this assumption to be valid, the mean free path � (i.e.,
the average distance between successive scattering events)
needs to be much larger than the Fermi wave length λ (i.e.,
� � λ). At sufficiently high temperature, this condition is
usually respected because of strong inelastic scattering, which
destroys the coherence of electrons. At low temperature, by
contrast, the coherence can be strong, and the condition � � λ

can break down. In such a fully quantum regime, electrons
behave as waves and exhibit unique transport phenomena even
in the linear regime, such as Anderson localization [23]. In
this work, we use the nonlinear Landauer formula to explore
nonlinear transport phenomena that have genuinely quantum
nature.

D. Noise

Noise provides key pieces of information about transport
properties [40–44]. For example, the discrete nature of elec-
trons is captured by shot noise far from thermal equilibrium,
which contrasts with the thermal (Johnson-Nyquist) noise at
equilibrium. Shot noise is also sensitive to fractional charges
that accompany the fractional quantum Hall effect [88,89]. As
a virtue of the scattering formulation, the Landauer formula
enables direct characterization of noise even far from thermal
equilibrium. Here, we derive the nonlinear contributions of
shot noise in the scattering formulation.

In general, the current fluctuates with time: I = I (t ). To
characterize the current fluctuations, we consider the correla-
tion function of the current I (t ) defined by

C(t ) := I (t )I (0) − I (t ) I (0), (27)

where the overline denotes the time average. Then, the noise
S is defined as

S := 2
∫ ∞

−∞
C(t )dt . (28)

Using the wave-packet approach [43], we associate the noise S
with the transmission probability T = T (E ) (see Appendix D

for details):

S = 2e2

h

∫ ∞

−∞
{T 2(E )[ feq (E − eV )(1 − feq (E − eV ))

+ feq (E )(1 − feq (E ))]

+ T (E )(1 − T (E ))[ feq (E − eV )(1 − feq (E ))

+ feq (E )(1 − feq (E − eV ))]}dE . (29)

The noise S includes the thermal noise driven by thermal
fluctuations at equilibrium. The thermal noise is present even
in the absence of an external bias voltage V . The noise S
also includes the nonequilibrium noise that is caused by the
external voltage V and survives even at zero temperature.
Such nonequilibrium noise, i.e., shot noise, originates from
the discrete nature of electrons.

To characterize the shot noise, let us focus on zero temper-
ature. Then, the distribution functions of the reservoirs reduce
to the step function feq (E ) = θ (μ − E ), and Eq. (29) reduces
to

S = 2e2

h

∫ μ+eV

μ

T (E )(1 − T (E ))dE . (30)

This is a general formula of the shot noise for an arbitrary
external voltage V . If we define the nth-order noise power σn

by

S =
∞∑

n=1

σnV
n, (31)

we have

σn = 2en+2

(n!)h

dn−1

dEn−1
[T (E )(1 − T (E ))]

∣∣∣∣
E=μ

. (32)

The first three σn’s are explicitly given by

σ1 = 2e3

h
T (μ)(1 − T (μ)), (33)

σ2 = e4

h
T ′(μ)(1 − 2T (μ)), (34)

σ3 = e5

3h
[T ′′(μ)(1 − 2T (μ)) − 2(T ′(μ))2]. (35)

Here, T ′(μ) and T ′′(μ) are the first and second derivatives of
the transmission probability T (μ) with respect to the chemical
potential μ. Thus the nth-order noise power σn is given by the
(n − 1) th derivative of the transmission probability T (E ) in a
manner similar to the nth-order nonlinear conductance Gn in
Eq. (4).

The transmission probability T is often very small. For
example, when the system is subject to Anderson localization
due to disorder, we have T � 1. In such cases, we have
1 − T � 1 and hence

σn � 2en+2

(n!)h
T (n−1)(μ), (36)

where T (n−1)(μ) denotes the (n − 1) th derivative of T (μ).
Since the nth-order nonlinear conductance Gn is given by
Eq. (4), we have

σn � 2eGn. (37)
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In the linear regime, the relationship σ1 � 2eG1 holds for
the classical shot noise (i.e., Poisson noise) [44]. Our results
demonstrate that a similar relationship generally holds also for
the nonlinear noise power σn and the nonlinear conductance
Gn. By contrast, when the transmission probability T is not
small (i.e., T � 1), the shot noise deviates from the Poisson
noise. The quantum correction is evaluated by the Fano factor

F := S

2eI
. (38)

The leading-order contribution of the Fano factor is known
to be 1 − T . Here, we derive the nonlinear corrections to the
Fano factor as

F = 1 − T (μ) − eT ′(μ)

2
V

− e2[2T (μ)T ′′(μ) + (T ′(μ))2]

12T (μ)
V 2 + O(V 3). (39)

Remarkably, thermal noise was experimentally measured
for a quantum conductor even in the nonlinear regime [90]. In
this experiment, the observed noise is mainly due to thermal
fluctuations and survives even in the absence of the exter-
nal voltage. At much lower temperature, the thermal noise
should be suppressed and replaced by shot noise driven by the
external voltage. In such a nonequilibrium regime, Eq. (32)
characterizes the noise of the conductor. It also deserves fur-
ther research to investigate the nonlinear contributions of shot
noise for the fractional quantum Hall effect [88,89]. In Sec. V,
we find a new connection between the shot noise and the
nonlinear Hall conductance.

E. Comparison with previous formulas

In the literature, Eq. (11) was used to obtain the current-
voltage characteristic of specific scattering processes, such
as double-barrier tunneling [17,91]. However, it involves nu-
merical calculations, which makes the analytical treatment
and general understanding difficult. The nonlinear Landauer
formula in Eqs. (3) and (4) elucidates universal features of
nonlinear transport, as demonstrated below.

It should also be noted that the nonlinear Landauer for-
mula in Eqs. (3) and (4) is not directly applicable to strongly
correlated electron systems. To take into account many-body
interaction, we need to consider renormalization of the current
and the chemical potential difference between the electrodes.
In fact, the chemical potential difference does not necessar-
ily coincide with the electric potential difference eV in the
presence of many-body interaction; the interaction-induced
density redistribution also contributes to the chemical po-
tential difference. The current I is also subject to similar
renormalization. Such renormalization is crucial even in the
linear regime [92–97], which is needed to explain the ro-
bust quantization of the linear conductance experimentally
observed in point contacts [19,20], wires [21], and carbon
nanotubes [22]. It is also notable that Ref. [79] presented
a formula similar to Eq. (3), which was applied to time-
reversal-symmetry-breaking transport [81] and thermoelectric
transport [85]. However, the formula in Ref. [79] does not
consider the renormalization due to many-body interaction.
In the present work, we focus on noninteracting systems and

FIG. 2. Linear and nonlinear conductance of the disordered
chains (L = 50, J = 1.0, and W = 1.0). Each datum shows the av-
erage over 100 000 samples. (a1) The linear conductance G1, (a2)
the second-order nonlinear conductance G2, and (a3) the third-order
nonlinear conductance G3 as functions of the chemical potential μ

in the standard class. (b1) G1, (b2) G2, and (b3) G3 in the chiral
class. Away from zero energy, the conductance behaves similarly in
the standard and chiral classes for both linear and nonlinear regimes.
At zero energy, by contrast, the conductance exhibits the singular
behavior in the chiral class.

show that new physics arises even in the absence of many-
body interaction. In particular, disorder and topology lead to
unique nonlinear transport phenomena, as demonstrated in the
subsequent sections.

III. DISORDER-INDUCED NONLINEAR
QUANTUM TRANSPORT

Anderson localization [23–27] is the disorder-induced
localization of coherent waves. In perfect crystals with trans-
lation invariance, electrons form Bloch waves that extend over
the entire systems. Disorder that breaks translation invariance
of crystals leads to scattering and interference of electronic
waves, resulting in the formation of localized standing waves
and the suppression of transport. Such localization, i.e., An-
derson localization, originates from the quantum nature of
electronic waves and serves as one of the best platforms where
the Landauer formula is relevant. Anderson localization plays
an important role in transport of mesoscopic electron sys-
tems [17,18,26,27,39], as well as synthetic materials of light
[98–100] and cold atoms [101,102].

Here, we use the nonlinear Landauer formula to investigate
nonlinear response of disordered electron systems that are
subject to Anderson localization. In particular, we demon-
strate the singularly large nonlinear conductance in disordered
chains with chiral or particle-hole symmetry (Fig. 2), which
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TABLE I. Symmetry classification of disordered electron sys-
tems in one dimension. The tenfold internal-symmetry classification
is based on time-reversal symmetry (TRS), particle-hole symmetry
(PHS), and chiral symmetry (CS). For the entries of TRS and PHS,
the signs ±1 denote the signs of the symmetry operators. For the
entries of CS, 0 and 1 describe the absence and presence of CS,
respectively. We show the five symmetry classes for which the sin-
gularity of the linear and nonlinear conductance arises at zero energy
(i.e., classes BDI, AIII, CII, DIII, and D). In the three of these five
symmetry classes, the singularity arises only for an odd number of
channels (i.e., classes BDI, AIII, and CII).

Class TRS PHS CS Singularity Parity

AI +1 0 0
A 0 0 0
AII −1 0 0

BDI +1 +1 1 � �
AIII 0 0 1 � �
CII −1 −1 1 � �
CI +1 −1 1
C 0 −1 0
DIII −1 +1 1 �
D 0 +1 0 �

provides a clear experimental signature of the disorder-
induced nonlinear transport. In addition to the numerical
calculations of prototypical models, we discuss general classi-
fication of nonlinear response of disordered electron systems
in one dimension based on symmetry (Table I). We further
discuss the influence of the Anderson transitions on nonlinear
transport in higher-dimensional disordered systems.

A. Standard class

To understand nonlinear response of disordered chains, we
investigate the following lattice model in one dimension with
a disordered onsite potential:

Ĥ =
L∑

n=1

[−J (ĉ†
n+1ĉn + ĉ†

nĉn+1) + Vnĉ†
nĉn]. (40)

Here, ĉn (ĉ†
n) annihilates (creates) a spinless fermion at site

n, and J > 0 is the hopping amplitude. The disordered poten-
tial Vn ∈ R is chosen uniformly from [−W/2,W/2] with the
disorder strength W � 0. We impose the periodic boundary
conditions (i.e., ĉL+1 = ĉ1, ĉ†

L+1 = ĉ†
1). This model respects

time-reversal symmetry (i.e., Ĥ∗ = Ĥ ) because of the real
parameters J,Vn ∈ R (see Appendix G for details about
symmetry).

In the absence of the disordered potential (i.e., W = 0), the
single-particle spectrum is given as

E (k) = −2J cos k (41)

with momentum k ∈ [0, 2π ]. In such a periodic crystal, the
perfect transmission (i.e., T = 1) is realized inside the energy
band, while no transmission (i.e., T = 0) occurs outside the

energy band:

T (E ) =
{

1 (|E | < 2J );

0 (|E | > 2J ).
(42)

Consequently, the linear conductance is G1 = e2/h in the en-
ergy band |E | < 2J , and the nonlinear conductance vanishes
except for the band edges E = ±2J .

The disordered potential deforms the band structure and
changes the transport properties. We numerically calculate the
transmission probability T = T (E ) for the disordered chain
in Eq. (40) (see Appendix E for details about the numerics)
[103]. Here, T is a disorder-dependent statistical quantity,
and we consider the average transmission probability 〈T 〉
for many samples. Then, from the nonlinear Landauer for-
mula in Eq. (4), we obtain the average linear and nonlinear
conductance, as summarized in Fig. 2(a). In this model, all
the eigenstates are localized even for small disorder. This
behavior is consistent with the scaling theory of Anderson lo-
calization [25], which predicts the absence of delocalization in
one-dimensional disordered systems. As shown in Fig. 2(a1),
the transmission probability clearly deviates from the behav-
ior of the periodic crystal in Eq. (42). The linear conductance
G1 reaches the maximum at the band center μ = 0, gradually
decreases away from the band center, and vanishes outside
the energy band. This behavior is consistent with the density
of states and the localization behavior. In fact, the density
of states near the band center is larger than that near the
band edges; the eigenstates near the band center are more
delocalized than those near the band edges.

As a consequence of this behavior, the second-order non-
linear conductance G2, which is given by the derivative of
G1 = G1(μ), vanishes at the band center μ = 0 and grows
around the band edges. Since the nonlinear response vanishes
(i.e., G2 = 0) in the perfect crystal, the nonlinear response
G2 �= 0 is induced by disorder. It also accompanies nonrecip-
rocal response, as discussed in Sec. II B. In a manner similar to
G2, the third-order nonlinear response G3 grows near the band
edges. This linear and nonlinear response is general features
of one-dimensional electron systems in the standard class (i.e.,
symmetry classes that only involve time-reversal symmetry;
namely, classes A, AI, and AII in Table I).

For sufficiently weak disorder and a sufficiently large sys-
tem length, the distribution of the transmission probability T
is analytically obtained by the random-matrix approach (see
Appendix F 1 for details) [39,104–106]. Using the obtained
probability distribution, we have the average transmission
probability

〈T 〉 �
√

8ξ

πL
e−L/2ξ (43)

with the energy-dependent localization length

ξ = 2(4J2 − E2)〈
V 2

n

〉 . (44)

When the disordered potential Vn is distributed uniformly in
[−W/2,W/2], we have

〈
V 2

n

〉 =
∫ W/2

−W/2
V 2 dV

W
= W 2

12
. (45)
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The transmission probability 〈T 〉 decreases exponentially as
a function of the system length L, which is a hallmark of
Anderson localization. The localization length ξ and the trans-
mission probability 〈T 〉 become maximal at the band center
E = 0 and decrease away from it. Moreover, the large non-
linear response arises near the band edges (see Fig. 6 in
Appendix F 1). These analytical results are consistent with the
numerical results in Fig. 2(a).

B. Chiral class

While the transport properties discussed in the preceding
section III A are universal for one-dimensional electron sys-
tems in the standard class, symmetry changes the universality
class of Anderson localization. In one dimension, relevant
symmetry is chiral (sublattice) symmetry, which enables de-
localized zero-energy modes even in the presence of disorder
[107–111]. To understand the role of chiral symmetry for non-
linear quantum transport, we investigate the following lattice
model in one dimension with random hopping:

Ĥ = −
L∑

n=1

(J + �Jn,n+1)(ĉ†
n+1ĉn + ĉ†

nĉn+1). (46)

Similarly to the model in Eq. (40), this model reduces to
Eqs. (41) and (42) in the absence of the random hopping. The
random hopping amplitude �Jn,n+1 ∈ R is chosen uniformly
from [−W/2,W/2] with the disorder strength W � 0.

A crucial difference between the two models is chiral sym-
metry (see Appendix G for details about symmetry). In fact,
the model in Eq. (46) respects chiral symmetry

ŜĤ Ŝ−1 = Ĥ , (47)

where the antiunitary operator Ŝ is defined by

Ŝ ĉnŜ−1 = (−1)nĉ†
n (48)

and

∀ z ∈ C ŜzŜ−1 = z∗. (49)

Chiral symmetry imposes a special constraint on the eigen-
states with zero energy. On the other hand, the onsite potential
Vnĉ†

nĉn in Eq. (40) breaks chiral symmetry in Eq. (47).
Chiral symmetry changes the transport properties of dis-

ordered electron systems. We numerically calculate the linear
and nonlinear conductance of the chiral-symmetric model in
Eq. (46), as summarized in Fig. 2(b). Away from zero energy,
the conductance behaves similarly to the standard class in
Fig. 2(a) for both linear and nonlinear regimes. However, the
situation changes around zero energy. As shown in Fig. 2(b1),
the linear conductance G1 exhibits a singular peak at zero
energy. The change of G1 is rapid and indifferentiable as a
function of energy. Consequently, the nonlinear conductance,
which is given by the derivatives of the linear conductance,
exhibits singularly large values at zero energy [Fig. 2(b2) and
2(b3)]. This singularly large nonlinear conductance serves as a
clear experimental signature of the disorder-induced nonlinear
transport that can be distinguished from other contributions.

The singularity of zero modes is a unique feature of dis-
ordered electron systems with chiral symmetry, which dates
back to the work by Dyson [107]. In fact, the transmission

probability 〈T 〉 decreases only algebraically at zero energy
(see Appendix F 2 for details):

〈T 〉 (E = 0) �
√

2�

πL
(50)

with the mean free path

� := J2

〈(�Jn,n+1)2〉 . (51)

The distinction between Eqs. (43) and (50) reflects from the
different distributions of the transmission probability T . As a
consequence of the power-law decay in Eq. (50), the trans-
mission of zero modes decays slowly in comparison with
other modes with nonzero energy. In fact, zero modes never
exhibit Anderson localization even in the presence of disorder.
This anomalous delocalization of zero modes is protected by
chiral symmetry. The singularity of zero modes leads to the
singularly large nonlinear response.

C. Classification in one dimension

The behavior of the nonlinear conductance discussed in the
preceding sections is not specific to the models in Eqs. (40)
and (46) but constitutes general features of disordered elec-
tron systems. Anderson localization of disordered electron
systems is generally understood by the tenfold internal-
symmetry classification based on time-reversal symmetry,
particle-hole (charge-conjugation) symmetry, and chiral (sub-
lattice) symmetry (Table I; see also Appendix G for details)
[27,30,39,110]. Using this symmetry classification, we also
classify the universal behavior of nonlinear response of disor-
dered electron systems in one dimension.

In the standard class (i.e., classes A, AI, and AII), nonlinear
conductance generally behaves in a manner similar to the
model in Eq. (40). In fact, the model in Eq. (40) only respects
time-reversal symmetry and belongs to class AI. Hence, no
singular behavior appears in the nonlinear response in the
standard class. In the chiral class (i.e., classes AIII, BDI,
and CII), on the other hand, nonlinear conductance gener-
ally behaves in a manner similar to the model in Eq. (46).
Consistently, the model in Eq. (46) belongs to class BDI.
Thus electron systems in the chiral class generally exhibit the
singularity of nonlinear response at zero energy. Notably, such
singular behavior arises only for an odd number of channels
[111].

The classification in Table I allows us to predict possible
other symmetry classes in which strong nonlinear response
arises. In addition to the chiral class, the singular behav-
ior of nonlinear conductance arises in classes DIII and D,
which describe spinful and spinless superconducting wires,
respectively. Remarkably, zero modes of superconductors in
classes DIII and D obey the statistics of Majorana fermions
[112–114]. Thus the Majorana zero modes in disordered topo-
logical superconductors should exhibit the singular behavior
of the nonlinear response. It is worthwhile to further study
this nonlinear transport phenomenon with specific models.
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D. Anderson transitions

As described above, all eigenstates are subject to Anderson
localization even for infinitesimal disorder in one dimension,
except for zero modes protected by chiral or particle-hole
symmetry. In higher-dimensional systems, by contrast, eigen-
states can stay delocalized for small disorder and exhibit the
Anderson transitions between delocalization and localization
for critical disorder. Correspondingly, the systems can have
mobility edges E = Ec in the spectra, across which delocal-
ized eigenstates turn localized. The linear conductance G1

exhibits the critical behavior around the mobility edge:

G1 ∝ |E − Ec|s. (52)

The critical exponent s depends solely on symmetry and di-
mension, characterizing the universality class of the Anderson
transitions. In a number of noninteracting electron systems,
the critical behavior is determined solely by one relevant
parameter [25]. Under the one-parameter scaling, the criti-
cal exponent s of the linear conductance G1 is associated
with the critical exponent ν of the localization length ξ by
s = (d − 2)ν [115]. In three dimensions, for example, the
critical exponents are numerically obtained as ν � 1.57 in the
presence of time-reversal symmetry (i.e., 3D class AI) and
ν � 1.44 in the absence of time-reversal symmetry (i.e., 3D
class A) [116].

In contrast to the linear regime, the effect of the Anderson
transitions is not well understood in the nonlinear regime.
From the nonlinear Landauer formula in Eq. (4), we un-
derstand the behavior of nonlinear conductance around the
Anderson transitions. In fact, the nth-order nonlinear conduc-
tance Gn should exhibit the critical behavior

Gn ∝ |E − Ec|s−n (53)

near the mobility edge E = Ec. For example, in time-reversal-
invariant systems in three dimensions, we have from s � 1.57
[116]

G2 ∝ dG1

dE
∝ |E − Ec|0.57, (54)

G3 ∝ d2G1

dE2
∝ |E − Ec|−0.43, (55)

and so on. Remarkably, while G1 and G2 vanish at the mobil-
ity edge E = Ec, the higher-order nonlinear conductance Gn

(n � 3) diverges at E = Ec. This singular behavior is similar
to the Dyson singularity of zero modes in one-dimensional
disordered systems, as discussed in the preceding sections.
Meanwhile, away from the mobility edges, the nonlinear
response does not grow since the transmission probability
changes only gradually.

IV. NONLINEAR TRANSPORT AND QUANTUM
ANOMALY IN GRAPHENE

Topological materials are quantum materials that exhibit
nontrivial topology in wave functions [28–31]. Among them,
graphene, a single layer of carbon atoms on a two-dimensional
honeycomb lattice, is a prototypical topological semimetal
[32,33]. It is also a building block of van der Waals het-
erostructures [117]. The low-energy electronic band structure

of graphene is generally described by the continuum Dirac
Hamiltonian

H (k) = h̄v(kxσx + kyσy), (56)

where v > 0 is the Fermi velocity, and σi’s (i = x, y, z) are
Pauli matrices. The two bands touch at the Dirac point E =
0 with the relativistic dispersion E (k) = ±h̄v|k|. The two-
dimensional Dirac Hamiltonian in Eq. (56) describes a single
valley degree of freedom, which appears twice in momentum
space with opposite chirality. This description is valid as long
as the intervalley scattering is irrelevant. Notably, it also de-
scribes a two-dimensional surface mode of three-dimensional
topological insulators [118–120], and our discussions below
are applicable also to such topological surface modes.

A unique characteristic of graphene appears in transport
phenomena. In particular, the linear transport at the Dirac
point originates from nontrivial topology, or equivalently,
quantum anomaly [121–125], and is robust against disor-
der [126–128]. Since quantum coherence can be maintained
because of the high tunability, graphene is among the best
platforms in which the Landauer formula plays a major role.
Here, we investigate nonlinear conductance of graphene on
the basis of the nonlinear Landauer formula and demonstrate
a unique quantum effect in the nonlinear response (Fig. 3).
These discussions also provide representative calculations of
electrical conduction in two-dimensional quantum materials
based on the scattering formulation.

A. Linear conductance

We consider graphene described by Eq. (56) of lengths
Lx and Ly along the x and y directions, respectively. In the
x direction, we attach the two electrodes to the graphene. In
the y direction, on the other hand, no electrodes are attached,
and transmitted modes along the x direction are specified
by the transverse momentum ky. The scattering problem of
graphene is solvable, as shown in Appendix H 1 [129,130].
The transmission probability T (E , ky) for the given energy E
and transverse momentum ky is obtained as

T (E , ky) = 1

cos2 kxLx + (E/h̄vkx )2 sin2 kxLx
(57)

with

kx :=
√(

E

h̄v

)2

− k2
y . (58)

Here, ky is always real-valued, but kx is imaginary-valued
for |E | < h̄v|ky|. In the limit Ly → ∞, the total transmission
probability is given by

T (E ) = Ly

π

∫ ∞

0
T (E , ky )dky. (59)

According to the Landauer formula, the linear and nonlin-
ear conductance is obtained by the transmission probability
T = T (E ). The linear conductance G1 at zero temperature is
given from Eq. (4) by

G1(μ) = 4e2

h
T (μ), (60)
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FIG. 3. Linear and nonlinear conductance of graphene (h̄v = 1). (a) The linear conductance G1, (b) the second-order nonlinear conductance
G2, and (c) the third-order nonlinear conductance G3 as functions of the chemical potential μ. At the Dirac point μ = 0, the conductance
exhibits the universal behavior such as G1 = (4e2/h) (Ly/Lx ) (1/π ), G2 = 0, and G3 = (2e4/3h) (LxLy ) (0.20 · · · /π ).

where we include the multiplication by four to take into ac-
count the valley and spin degrees of freedom.

From these formulas, the linear conductance G1 is ob-
tained, as shown in Fig. 3(a). Away from the Dirac point μ =
0, G1 grows linearly with the chemical potential μ besides the
small oscillations. Near the Dirac point μ = 0, by contrast,
G1 is no longer linear in μ; it takes a nonzero minimum value
at the Dirac point. This behavior qualitatively agrees with the
experimental results [131,132]. While it seems unfeasible to
explicitly obtain G1 for the arbitrary chemical potential μ, we
analytically obtain the asymptotic behavior (see Appendix H 2
for detailed derivations). At the Dirac point μ = 0, we have

T (E = 0) = Ly

π

∫ ∞

0

dky

cosh2 kyLx
= Ly

πLx
, (61)

which gives [129,130]

G1(μ = 0) = 4e2

h

Ly

Lx

1

π
. (62)

Away from the Dirac point (i.e., |μ| → ∞), the linear con-
ductance G1 behaves as

G1(μ) � 4e2

h

Ly

Lx

a

π

|μ|Lx

h̄v
(|μ| → ∞), (63)

where the numerical coefficient is

a := 2 −
√

2 arccoth
√

2 = 0.753550 . . . . (64)

These asymptotic results are compatible with the numerical
results in Fig. 3(a).

If Eq. (63) were valid even at the Dirac point μ = 0, the
linear conductance G1 would vanish. This behavior is consis-
tent with the density of states, which gets larger for the larger
chemical potential and vanishes at zero chemical potential.
It is also similar to the semiclassical conductance derived
with the Boltzmann equation [133,134]. Hence, the vanishing
linear conductance G1 at the Dirac point, including Eq. (63),
is a semiclassical result of electronic transport; nonvanishing
G1 even at the Dirac point, including Eq. (62), signals a gen-
uinely quantum effect. In fact, at the Dirac point μ = 0, the
wave number kx = iky along the conducting direction is pure
imaginary, which means that G1 in Eq. (62) originates solely
from quantum tunneling (see also Appendix H 1 for details).
Furthermore, the nonzero linear conductance in Eq. (62) is
a direct consequence of nontrivial topology of wave func-
tions [121–125]. From the field-theoretical perspective, this is
equivalent to the quantum anomaly of the underlying quantum
field theory. Thus the linear transport at the Dirac point is a

direct experimental signature of the nontrivial quantum effect
in graphene. The Landauer formula enables its theoretical
characterization.

B. Second-order nonlinear conductance

The second-order nonlinear conductance G2 is obtained by
the derivative of the transmission probability T = T (E ) as

G2(μ) = 2e3

h

dT

dE

∣∣∣∣
E=μ

. (65)

Figure 3(b) shows G2 as a function of the chemical potential
μ. Away from the Dirac point, the second-order nonlin-
ear conductance G2 is nearly constant besides the small
oscillations. As shown in Appendix H 2, this behavior is
asymptotically obtained as

G2(μ) � 2e3

h
Ly

a

π

sgn(μ)

h̄v
(|μ| → ∞) (66)

with the numerical constant a in Eq. (64). This is the semi-
classical result that can be obtained also from the Boltzmann
equation. Near the Dirac point, by contrast, such a semiclassi-
cal result is no longer valid. In fact, G2 decreases and behaves
as

G2(μ) � 2e3

h
Ly

c

π

μLx

(h̄v)2 (μ � 0) (67)

with the numerical constant

c := −
∫ ∞

0

1 + 2 tanh2 x − cosh2 x

x2 cosh2 x
dx

= 0.201876 . . . (68)

The vanishing behavior of the second-order nonlinear conduc-
tance G2 at the Dirac point is a direct signature of nontrivial
topology, which is experimentally observable. Because of the
nonperturbative nature of topology, this behavior is expected
to be immune to disorder. It is also notable that nonzero
G2 �= 0 away from the Dirac point implies the nonreciprocal
response, as discussed in Sec. II B. The reciprocal response at
the Dirac point, accompanied by G2 = 0, is a consequence of
the nontrivial topology.

C. Third-order nonlinear conductance

The third-order nonlinear conductance G3 is obtained as

G3(μ) = 2e3

3h

d2T

dE2

∣∣∣∣
E=μ

. (69)
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In the semiclassical regime away from the Dirac point, G3

oscillates around zero as a function of the chemical potential
μ, as shown in Fig. 3(c). The oscillation of G3 is more pro-
nounced than G1 and G2. Around the Dirac point μ = 0, the
third-order nonlinear conductance G3 exhibits different be-
havior again because of nontrivial topology. It takes a nonzero
value,

G3(μ = 0) = 2e4

3h
LxLy

c

π
(h̄v)−2, (70)

where the numerical constant c is given as Eq. (68) (see Ap-
pendix H 2 for derivations). This nonzero value is also a direct
experimental signature of the nontrivial topology of graphene.

In summary, the linear and nonlinear electronic transport
of graphene is obtained as

I � 4e2

h

Ly

Lx

1

π

[
V + c

6

(
eLx

h̄v

)2

V 3

]
(μ = 0) (71)

at the Dirac point and

I � 4e2

h

Ly

Lx

a

π

[
|μ|V + sgn(μ)

2
eLxV

2

]
(|μ| → ∞) (72)

away from the Dirac point. It is worthwhile to take trigonal
warping terms [126,135] into consideration. It also merits fur-
ther study to revisit our results in terms of the Kubo formula
and its nonlinear extensions.

V. NONLINEAR HALL EFFECT

The quantum Hall effect is a prototypical topological phe-
nomenon [6–12]. While it was extensively studied in the linear
regime, the nonlinear Hall effect has attracted growing interest
in recent years [54,58–60,62–65,71,72]. For an applied volt-
age V and the concomitant Hall current IH, the linear and
nonlinear Hall conductance is defined by

IH = GH
1 V + GH

2 V 2 + · · · , (73)

where GH
1 is the linear Hall conductance, and GH

2 is the
second-order nonlinear Hall conductance. The second-order
nonlinear Hall conductance exhibits unique transport prop-
erties that have no analogs in the linear Hall conductance.
For example, in the presence of time-reversal symmetry, GH

1
vanishes, but GH

2 survives. Moreover, GH
2 contains new infor-

mation about electron systems, such as the Berry curvature
dipole. The second-order nonlinear Hall effect was experi-
mentally observed in WTe2 [58,59].

The nonlinear Hall effect was studied on the basis of the
Boltzmann equation with the relaxation time approximation
(see Appendix C 3 for details) [54]. Although this approach
is likely to be valid at high temperature, it cannot capture the
genuinely quantum nature of the nonlinear Hall effect. Here,
we develop a scattering theory of the nonlinear Hall effect and
fully capture its quantum nature. In particular, we demonstrate
that the second-order nonlinear Hall conductance is related to
shot noise (see also Sec. II D for details about shot noise). We
also discuss the effect of disorder and Anderson localization
on the nonlinear Hall effect, including the significance of
symmetry.

A. Scattering formulation of the nonlinear Hall effect

We consider a generic electron system in two dimensions
of lengths Lx and Ly along the x and y directions, respec-
tively. The system is characterized by the energy dispersion
E = E (k) and the Berry curvature � = �(k). We attach the
two reservoirs to the system and apply a bias voltage V along
the x direction. The two reservoirs at the left and right are
described by the Fermi-Dirac distributions feq (E − eV ) and
feq (E ), respectively. On the other hand, the system is subject
to the periodic boundary conditions along the y direction.
Our discussions can also be straightforwardly generalized to
three-dimensional systems.

The applied bias voltage V leads to the diagonal current
I along the x direction and the Hall current IH along the y
direction. These currents arise from the velocity

v(k) = 1

h̄

∂E (k)

∂k
− e

h̄
(E × n)�(k). (74)

Here, E is an electric field applied to the system. In two
dimensions, n is the unit vector along the z direction, and
we have E × n = (Ey,−Ex ). As discussed in Sec. II A, the
diagonal current I arises from the first term and is given
as the nonlinear Landauer formula in Eqs. (3) and (4). By
contrast, the Hall current IH arises from the second term,
the anomalous velocity [136–138]. The anomalous velocity
originates from the nontrivial topology of wave functions [i.e.,
Berry curvature �(k)] and plays a key role in topological
transport phenomena. While the first term in Eq. (74) can
also contribute to electrical conduction in the y direction, it
should vanish in the presence of time-reversal symmetry or
space-inversion symmetry. Hence, we focus on the anomalous
velocity in the following.

To obtain the anomalous velocity in Eq. (74), we need to
evaluate the electric field E inside the system. Naively, we may
consider

E = V

Lx
. (75)

However, Eq. (75) is valid only in the semiclassical regime,
in which inelastic scattering destroys quantum coherence of
electronic transport and leads to Ohm’s law. In the presence
of quantum coherence, by contrast, the semiclassical result in
Eq. (75) is no longer valid.

In general, the total voltage drop V is due to the voltage
drop through the system and the voltage drop in the electrodes
(or equivalently, the voltage drop at the contacts between the
system and the reservoirs). In the aforementioned semiclassi-
cal regime, the voltage drop through the system dominates the
total voltage drop. In the quantum regime, the voltage drop
in the electrodes is comparable with that across the system as
a consequence of quantum coherence. In particular, when the
perfect transmission T = 1 is realized in a clean system, no
voltage drop should arise in the system, and the voltage drop
should arise only in the electrodes. This is a characteristic of
coherent transport of electrons in the quantum regime. For a
generic case, the dominant contribution of the voltage drop
through the system is given as (1 − T )V with the transmission
probability T [17,18]. In actual experiments, the voltage drop
(1 − T )V through the system is measured in the four-terminal
setup, while the total voltage drop V is measured in the two-
terminal setup. Consequently, the electric field E in the system
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is given as

E = (1 − T )
V

Lx
+ O(V 2). (76)

For the perfect transmission T = 1, no electric field appears
in the system (i.e., E = 0), and the voltage drop arises only in
the electrodes, which is consistent with the above discussions.
On the other hand, for the low transmission probability T �
1, the electric field E approaches the semiclassical result in
Eq. (75).

Now, we take the anomalous velocity into consideration
and calculate the nonlinear Hall conductance in the scattering
theory. Let us first focus on the transmitted modes with the
wave numbers in [kx, kx + dkx] × [ky, ky + dky]. Then, sim-
ilarly to Sec. II A, the numbers dNL→R and dNR→L of the
electronic waves from the left to the right and from the right
to the left are respectively given as

dNL→R = T (k) feq (E (k) − eV )
Lyd2k

(2π )2 , (77)

dNR→L = T (k) feq (E (k))
Lyd2k

(2π )2 . (78)

Here, T = T (k) is the transmission probability as a function
of the wave numbers k and calculated from the given Hamilto-
nian H = H (k) in a manner similar to graphene (see Sec. IV
for details). Because of the anomalous velocity in Eq. (74),
these transmitted modes contribute to the Hall current dIH

along the y direction

dIH = e
( e

h̄
E�(k)

)
(dNL→R − dNR→L)

� e2V

h̄

Ly

Lx
T (k)(1 − T (k))�(k)

× ( feq (E (k) − eV ) − feq (E (k)))
d2k

(2π )2 , (79)

where Eq.(76) is used. Using the expansion

feq (E (k) − eV ) − feq (E (k))

= −eV
∂ feq (E (k))

∂E (k)
+ O(V 2), (80)

we have

IH =
∫

dIH � e3V 2

h̄

Ly

Lx

∮
BZ

T (k)(1 − T (k))�(k)

×
(

−∂ feq (E (k))

∂E (k)

)
d2k

(2π )2 . (81)

The momentum integral is taken over the whole Brillouin
zone. From this equation, we see that the linear Hall conduc-
tance vanishes. The leading-order contribution is quadratic for
the applied voltage V , which gives the scattering formula of
the second-order nonlinear Hall conductance

GH
2 = e3

h̄

Ly

Lx

∮
BZ

T (k)(1 − T (k))�(k)

×
(

−∂ feq (E (k))

∂E (k)

)
d2k

(2π )2 . (82)

At zero temperature, we have −∂ feq/∂E = δ(E − μ), and the
formula further reduces to

GH
2 = e3

h̄

Ly

Lx

∮
BZ

T (k)(1 − T (k))�(k)

× δ(E (k) − μ)
d2k

(2π )2 . (83)

The momentum integral is taken only at the Fermi sur-
face E (k) = μ, which implies the Fermi-liquid nature of
the second-order nonlinear Hall conductance [139]. Equa-
tions (82) and (83) are the general formulas of the second-
order nonlinear Hall conductance in the scattering theory.

As shown in Eqs. (82) and (83), the second-order nonlinear
Hall conductance GH

2 is obtained as the integral of T (1 − T )
multiplied by the Berry curvature � on the Fermi surface
E (k) = μ. As discussed above, T in the formula is due to
the transmission into the system along the x direction, and
1 − T is due to the anomalous velocity along the y direction.
This formula is relevant to coherent electronic transport in the
quantum regime. In such a quantum regime, the Boltzmann
equation, which does not take quantum coherence into consid-
eration, is no longer valid, and the semiclassical theory is not
applicable. From Eqs. (82) and (83), GH

2 gets small for the low
transmission probability T � 1. It gets small also for large T
and vanishes for the perfect transmission T = 1. These results
are unique to quantum electronic transport.

B. Nonlinear Hall response and nonequilibrium
quantum fluctuations

The product T (1 − T ) reminds us of shot noise, which is
discussed in Sec. II D. In fact, in two dimensions, the dom-
inant contribution of shot noise S at zero temperature reads
S � σ0V with

σ0 = 2e3

h
Ly

∫ 2π

0
T (μ, ky)(1 − T (μ, ky ))

dky

2π
, (84)

where T (μ, ky) is the transmission probability as a function
of the chemical potential μ and the wave number ky along the
y direction. Since transport properties are determined solely
by the transmission probability T , the similarity between
Eqs. (83) and (84) implies an intimate relationship between
the second-order nonlinear Hall conductance GH

2 and the shot
noise power σ0.

Suppose that the transmission probability depends solely
on the Fermi energy: T = T (μ). This simplification is similar
to the approximation that neglects the energy dependence of
T for the conventional Landauer formula in Eq. (12) [17,18],
which are likely to capture the dominant contribution of trans-
port properties. Then, the second-order nonlinear conductance
in Eq. (82) reduces to

GH
2 � e3

h̄

Ly

Lx
T (1 − T )C, (85)

where the topological term C is the integral of the Berry
curvature on the Fermi surface (or equivalently, the integral
of the Berry curvature dipole below the Fermi energy):

C :=
∮

BZ
�(k)δ(E (k) − μ)

d2k

(2π )2 . (86)
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Meanwhile, the shot noise power in Eq. (84) reduces to

σ0 � 2e3

h
LyT (1 − T ). (87)

Comparing Eqs. (85) and (87), we find

GH
2 = πC

Lx
σ0. (88)

The proportional coefficient depends solely on the topological
property C of the system, not on the transport property T . This
fact suggests a universal underlying mechanism between GH

2
and σ0.

The thermal noise at equilibrium is related to the linear
diagonal conductance via the fluctuation-dissipation theo-
rem [4]. Our results establish a new connection between
nonequilibrium quantum fluctuations and nonlinear transport.
This relationship is crucially different from the conventional
fluctuation-dissipation theorem. In fact, the nonlinear Hall
conductance does not accompany energy dissipation in con-
trast to the linear diagonal conductance. Moreover, as also
discussed in Sec. II D, shot noise originates from the quantum
nature far from thermal equilibrium in contrast to the ther-
mal noise at equilibrium. Such nonequilibrium quantum noise
cannot be discussed in the linear response theory, which can
only describe electrical conduction near thermal equilibrium.
Our new fundamental relationship between the nonequilib-
rium quantum fluctuations and the nonlinear quantum Hall
response is due to the scattering formulation.

C. Edge transport

As discussed in the previous section V A, the bulk of two-
dimensional materials exhibits the nonlinear Hall response
at the leading order, and the linear Hall response vanishes.
At first sight, this fact seems to be incompatible with the
quantized linear Hall conductance in the insulating phase [6].
This apparent inconsistency is resolved if we consider the
electric conduction at the boundary of the system [8,10]. If the
wave function of the gapped bulk exhibits nontrivial topology
(i.e., Chern number), the chiral edge modes appear at the
boundary (i.e., bulk-boundary correspondence) [28–30]. The
number of these chiral edge modes coincides with the Chern
number C1 ∈ Z of the bulk wave function. When the system
is attached to the reservoirs along the x direction and subject
to the periodic boundary conditions along the y direction in a
manner similar to Sec. V A, pairs of the chiral edge modes
are localized at the boundary between the system and the
reservoirs and move unidirectionally along the y direction,
giving rise to the Hall response. Their energy dispersion reads

E (k) = ±h̄vk (89)

with the Fermi velocity v > 0. Importantly, backscattering is
forbidden for the chiral edge modes. The absence of backscat-
tering is a unique feature due to chiral anomaly [140–142],
which contrasts with normal electron systems on lattices such
as Eqs. (40) and (46). As a result, the chiral edge modes realize
the perfect transmission

T (E ) = 1 (90)

for arbitrary energy E . Since T does not depend on E , the
nonlinear conductance vanishes even for an arbitrary external
voltage V . In fact, from the nonlinear Landauer formula in
Eq. (4), the current I due to the chiral edge mode is given by

I = C1
e2

h
V, (91)

which shows the quantized linear conductance G1 = C1e2/h.
In Appendix C 2, we also obtain the semiclassical conductiv-
ity of the chiral edge modes on the basis of the Boltzmann
equation. Also in such a semiclassical regime, the chiral edge
modes only exhibit the linear conductivity.

The vanishing nonlinear Hall response of the chiral edge
modes underlies the experimental observation of the robust
quantized Hall conductance. If the chiral edge modes gave rise
to the nonlinear Hall response, the quantization of the Hall
response in Eq. (91) would be fragile against the nonlinear
contribution. Furthermore, it is immune to disorder and lattice
deformation. If the lattice spacing a is introduced, the energy
dispersion of the chiral edge modes reads

E (k) = ± h̄v

a
sin ka (92)

instead of Eq. (89). For a → 0, Eq. (92) reduces to Eq. (89).
Even in such a case, backscattering is forbidden, and the Hall
conductance is quantized as in Eq. (91). The robust quanti-
zation of the linear Hall conductance originates from chiral
anomaly [140–142].

Therefore, the quantized linear Hall response is due to
transport at the boundary. In such an insulating phase, the non-
linear Hall response discussed in the preceding section V A
is exponentially suppressed because of the very low trans-
mission probability T � 1 due to the bulk energy gap. The
nonlinear Hall response in the metallic phase arises only at the
bulk, which contrasts with the linear quantum Hall response at
the boundary. These theoretical results can be confirmed ex-
perimentally by local measurement of the linear and nonlinear
response at the bulk and boundary. It is yet another advantage
of the Landauer formula to distinguish the edge response
from the bulk response and to address actual experimental
situations. The above results show the rich interplay of the
linear and nonlinear response with topology.

D. Effect of disorder

In Refs. [62–64], the second-order nonlinear Hall conduc-
tance of disordered electron systems was calculated on the
basis of the Boltzmann equation. There, the nonlinear Hall
conductance never exhibits the exponential suppression even
for arbitrary disorder. However, quantum coherence should
lead to Anderson localization and suppress electronic trans-
port for sufficiently low temperature and sufficiently strong
disorder.

The nonlinear Landauer formula enables us to consider the
effect of Anderson localization on the nonlinear Hall effect.
We understand its behavior using the scattering formula in
Eqs. (82) and (83). In particular, when the system is subject to
Anderson localization because of sufficiently strong disorder,
the second-order nonlinear Hall conductance GH

2 in Eqs. (82)
and (83) is approximated by T (1 − T ) � T . Thus GH

2 should
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behave similarly to the linear diagonal conductance G1 ∝ T .
From this fact, we understand the qualitative behavior of the
nonlinear Hall effect in disordered electron systems.

In generic disordered electron systems in two dimensions,
even infinitesimal disorder drives the systems into Ander-
son localization and leads to the exponential suppression of
the linear diagonal conductance G1 [25,143,144]. In such a
generic situation, the second-order nonlinear Hall conduc-
tance GH

2 should decay exponentially with respect to the
system size even for infinitesimal disorder. This behavior
contrasts with the robust quantization of the linear Hall con-
ductance in the insulating phase (see the previous section V C
for details).

Even in two-dimensional electron systems, additional sym-
metry can enable delocalization and Anderson transitions.
In particular, in time-reversal-invariant materials with spin-
orbit coupling, the systems respect time-reversal symmetry
T −1H∗T = H with a unitary matrix T satisfying T ∗T = −1
and belong to the symplectic class (class AII; see Appendix G
for details about the symmetry classification). In the sym-
plectic class, systems exhibit antilocalization and Anderson
transitions even in two dimensions [145], which is relevant to
the Z2 topological insulators featuring the quantum spin Hall
effect [146–148]. This also implies possible unique behavior
of the nonlinear quantum spin Hall effect, which deserves fur-
ther research. Moreover, chiral symmetry gives rise to singular
transport phenomena in disordered electron systems [109]
(see also Sec. III for details about the one-dimensional case).
Consequently, the second-order nonlinear Hall conductance
should also exhibit singular behavior in the presence of chiral
symmetry.

As well as symmetry, topology changes the universality
classes of Anderson localization. For example, as discussed
in Sec. IV, nontrivial topology at the Dirac point leads to
the robust delocalization of graphene for arbitrary disorder
[126–128]. Similarly, topology at the Fermi surface can give
rise to unconventional transport phenomena for the nonlinear
Hall effect. The Berry curvature that appears in the momen-
tum integral of Eqs. (82) and (83) should play a significant
role in such topological phenomena.

It should be noted that the quantum effect of disorder
may be captured also by the Kubo formula and its nonlin-
ear extensions. In the linear regime, the weak-localization
correction was quantified by perturbative calculations with
diagrammatic combinatorics [143–145]. However, such per-
turbative calculations work only for weak disorder and cannot
characterize Anderson transitions correctly. No research has
ever succeeded in systematically characterizing nonlinear re-
sponse of disordered electron systems exhibiting Anderson
localization in the perturbative approach. While a recent work
[62] discussed the nonlinear Hall effect perturbatively, it only
investigated diagrams at the lowest order and hence failed to
capture Anderson localization. To correctly capture Ander-
son localization, we need to consider an infinite number of
relevant diagrams that yield nontrivial contributions to self
energy in a manner similar to the linear regime [143–145].
The Landauer formula is free from these conceptual and
technical difficulties and enables simple characterization of
linear and nonlinear response because of the scattering
formulation.

VI. DISCUSSIONS

Electronic transport lies at the heart of condensed matter
physics. However, it has been studied mainly in the linear
regime, and a unified understanding about nonlinear elec-
tronic transport has yet to be established. We have developed
a general nonlinear response theory in the scattering ap-
proach. We have derived the nonlinear Landauer formula,
which enables us to obtain the nonlinear conductance by the
transmission probability. The aim of this work is to understand
nonlinear response of disordered and topological materials on
the basis of the nonlinear Landauer formula. For disordered
electron systems, we have found universal behavior of the
nonlinear conductance and generally classified the universal-
ity classes on the basis of symmetry. As a prime example
of topological materials, we have studied the nonlinear con-
ductance of graphene and shown their unique behavior due
to the quantum anomaly. Furthermore, we have developed a
scattering theory of the nonlinear Hall effect and discovered
a universal relationship between the nonlinear Hall response
and the nonequilibrium quantum fluctuations.

Before closing, we discuss several outlooks. We have clas-
sified the nonlinear response of disordered electron systems in
one dimension, as shown in Sec. III. It is worthwhile to further
investigate nonlinear conductance of higher-dimensional dis-
ordered electron systems that exhibit the Anderson transitions.
Moreover, although the one-parameter scaling [25] is usually
valid in noninteracting electron systems, it can be violated in
the presence of additional topology [149–151]. Thus nonlin-
ear response of disordered topological materials is also worth
further research. In particular, while we have studied nonlin-
ear transport of clean graphene in Sec. IV, it is of interest to
investigate the effect of disorder on the nonlinear transport of
graphene. Away from the Dirac point, disorder induces Ander-
son localization and strongly suppresses electrical conduction.
At the Dirac point, by contrast, the linear conductance is
immune to disorder [126–128] as long as it does not mix the
valleys. This anomalous delocalization is a consequence of
the nonperturbative nature of topology or quantum anomaly
[121–125]. Thus the nonlinear response is expected to exhibit
singular behavior at the Dirac point of disordered graphene.
It is also significant to study the influence of symmetry
and disorder on the nonlinear Hall effect, as discussed in
Sec. V.

Nonreciprocity is a hallmark of the nonlinear response, as
discussed in Sec. II B. Notably, nonreciprocity can arise even
if the transmission probabilities are reciprocal [i.e., Eq. (10)].
Equation (10) is ensured solely by unitarity of scattering
matrices due to current conservation (see Appendix A for
details). While time-reversal symmetry is relevant to the quan-
tum phases of the transmission amplitudes, it is not necessary
for Eq. (10). In the presence of dissipation, by contrast, the
scattering processes are no longer unitary. The coupling to
the external environment results in, for example, the viola-
tion of charge conservation or the destruction of quantum
coherence. In such a case, Eq. (10) is violated, and non-
reciprocal response can arise because of the nonreciprocal
transmission probabilities: TL→R �= TR→L. Dissipative nonre-
ciprocity brings about unique physical phenomena, such as
coherent perfect absorption [47,48], unidirectional invisibility
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[45,49], and destruction of Anderson localization [52]. It is
also relevant to a quantum point contact for ultracold atoms
[51]. Nonreciprocity in open systems is fundamentally differ-
ent from nonreciprocity discussed in this work, the latter of
which arises from the energy dependence of the transmission
probability in closed systems with coherent and conservative
scattering processes. It merits further study to develop a uni-
fied understanding about nonreciprocal response in closed and
open systems.

While we have focused on disordered and topological ma-
terials in this work, it is worthwhile to consider the effect of
many-body interaction [152–154]. There, the renormalization
due to the many-body interaction [92–97] should be signifi-
cant, as discussed in Sec. II E. It is also of interest to study
nonperturbative transport phenomena in the scattering theory,
including the Landau-Zener transition [155,156]. While the
nonlinear Landauer formula in this work is concerned with
the two-terminal case, it can be straightforwardly general-
ized to the multi-terminal case in a manner similar to the
linear regime [15]. In this respect, a recent work [157] has
discovered the quantization of the (d + 1)-terminal nonlinear
conductance in a d-dimensional ballistic metal. It is signifi-
cant to develop a scattering theory of the quantized nonlinear
conductance.

In statistical physics, it is significant to develop a general
understanding about nonlinear response theories. In the linear
regime, the Landauer formula was shown to be equivalent to
the Kubo formula by taking into account the electrodes [16].
This correspondence is related to the conformal field theory
[158]. It merits further research to explore a similar corre-
spondence for nonlinear response. We also note that Ref. [66]
introduced the nonlinear Drude weights and showed that the
nth-order nonlinear Drude weight is given by the (n + 1) th
derivative of many-body eigenenergy with respect to a vector
potential. This result is similar to the nonlinear Boltzmann
conductivity discussed in Sec. II C, although Ref. [66] does
not depend on the Boltzmann equation but the limiting time
evolutions such as quench and adiabatic processes [159]. It is
worthwhile to further study the nonlinear Drude weights in
the scattering theory.

Note added. Recently, we became aware of Ref. [160],
which numerically investigates the nonlinear Hall effect in
the four-terminal setup. While the nonlinear Hall effect in
Ref. [160] originates from the Coulomb potential, the nonlin-
ear Hall effect in this work originates from the Berry curvature
and the concomitant anomalous velocity.

ACKNOWLEDGMENTS

We thank Shinsei Ryu and David Sánchez for helpful
discussions. K.K. is supported by the Japan Society for
the Promotion of Science (JSPS) through KAKENHI Grant
No. JP19J21927 and the Overseas Research Fellowship, and
by the Gordon and Betty Moore Foundation through Grant
No. GBMF8685 toward the Princeton theory program. M.U.
is supported by KAKENHI Grant Nos. JP18H01145 and
JP22H01152 from the JSPS.

APPENDIX A: SCATTERING AND TRANSFER MATRICES

We summarize basic properties of the scattering theory.
We consider a system connected to two ideal leads. Waves
incident on the system from the left and right are respectively

a+
in := (a+

1 a+
2 · · · a+

N )T
, (A1)

b−
in := (b−

1 b−
2 · · · b−

N )T
. (A2)

Here, N is the number of channels. Similarly, the reflected
and transmitted waves scattered to the right and left are re-
spectively

b+
out := (b+

1 b+
2 · · · b+

N )T
, (A3)

a−
out := (a−

1 a−
2 · · · a−

N )T
. (A4)

For these incident and scattered waves, the scattering matrix
S is defined by(

a−
out

b+
out

)
= S

(
a+

in

b−
in

)
, S :=

(
rL tL
tR rR

)
, (A5)

where rL (rR) is an N × N invertible matrix that describes the
reflection from the left to the left (from the right to the right),
and tR (tL) is an N × N invertible matrix that describes the
transmission from the left to the right (from the right to the
left). Similarly, the transfer matrix M is defined by(

b+
out

b−
in

)
= M

(
a+

in

a−
out

)
. (A6)

The scattering matrix S and the transfer matrix M contain the
same information on the scattering process. In fact, from the
definitions of S and M, we have

a−
out = rLa+

in + tLb−
in, (A7)

b+
out = tRa+

in + rRb−
in, (A8)

b+
out = M11a+

in + M12a−
out, (A9)

b−
in = M21a+

in + M22a−
out, (A10)

leading to

M =
(

tR − rRt−1
L rL rRt−1

L

−t−1
L rL t−1

L

)
, (A11)

and

rL = −M−1
22 M21, (A12)

rR = M12M−1
22 , (A13)

tL = M−1
22 , (A14)

tR = M11 − M12M−1
22 M21. (A15)

Suppose that the system is closed and isolated from the
environment. Then, the norms of the waves are conserved
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FIG. 4. Potential barriers. (a) Square potential V (x) = V0 (0 < x < L). (b) Delta potential V (x) = λδ(x). (c) Linear potential V (x) =
V0 − Fx (x > 0). (d) Coulomb potential V (x) = α/x (x > 0).

under the scattering (i.e., current conservation):

|a+
in|2 + |b−

in|2 = |a−
out|2 + |b+

out|2. (A16)

As a result, the scattering matrix S is unitary:

S†S = SS† = 1. (A17)

With the transmission amplitudes tR, tL and the reflection
amplitudes rL, rR, unitarity of S is equivalent to

1 = S†S =
(

r†
LrL + t†

RtR r†
LtL + t†

RrR

t†
LrL + r†

RtR t†
LtL + r†

RrR

)
, (A18)

1 = SS† =
(

rLr†
L + tLt†

L rLt†
R + tLr†

R

tRr†
L + rRt†

L tRt†
R + rRr†

R

)
, (A19)

which further leads to

tRt†
R = tLt†

L, tRt†
R + rLr†

L = tLt†
L + rRr†

R = 1. (A20)

Thus, in the presence of unitarity, the transmission probability
from the left to the right (i.e., sum of the eigenvalues of tRt†

R)
is the same as the transmission probability from the right to
the left (i.e., sum of the eigenvalues of tLt†

L). In terms of the
transfer matrix M, we have

|a+
in|2 − |a−

out|2 = |b+
out|2 − |b−

in|2 =
(

b+
out

b−
in

)†

σz

(
b+

out

b−
in

)

=
(

a+
in

a−
out

)†

M†σzM

(
a+

in

a−
out

)
(A21)

with a Pauli matrix σz, and the transfer matrix M is pseudouni-
tary:

σzM
†σ−1

z = M−1. (A22)

On the other hand, if the system exchanges energy or particles
with the environment, the scattering matrix S is no longer
unitary, and the transfer matrix is no longer pseudounitary
[52].

APPENDIX B: ILLUSTRATIVE EXAMPLES

The Landauer formula provides a useful way to obtain the
linear and nonlinear conductance of quantum materials. Here,
we illustrate this fact with simple examples. We investigate
scattering of a quantum particle with mass m and charge −e
through a potential barrier V (x) in one-dimensional contin-
uum space [155]. The wave function ψ (x) is described by the
Schrödinger equation

− h̄2

2m

d2

dx2
ψ (x) + V (x)ψ (x) = Eψ (x) (B1)

for given energy E � 0. We solve this scattering problem for
some exemplary potentials (Fig. 4) and obtain the linear and
nonlinear conductance (Fig. 5). We assume zero temperature
and use the Landauer formula in Eq. (4). The conductance be-
haves differently depending on the details of the potentials. As
discussed in Sec. II B, nonreciprocity is one of the hallmarks
of nonlinear response. We demonstrate that nonreciprocity,
which is characterized by the even-ordered nonlinear conduc-
tance including G2, indeed arises even in such simple systems.

1. Square potential

We begin with scattering through the square potential

V (x) =

⎧⎪⎨
⎪⎩

0 (x � 0);

V0 (0 < x < L);

0 (x � L),

(B2)

with V0 � 0 [Fig. 4(a)]. Let the wave function be

ψ (x) =

⎧⎪⎨
⎪⎩

eik0x + re−ik0x (x < 0);

aeikx + be−ikx (0 < x < L);

teik0 (x−L) (x > L),

(B3)

with the amplitudes a, b, r, t ∈ C and the wave numbers

k0 :=
√

2mE

h̄
, k :=

√
2m(E − V )

h̄
. (B4)

The wave number k in the presence of the square potential is
real for E � V0 and imaginary for 0 � E < V0. The boundary
conditions at x = 0

ψ (−0) = ψ (+0),
dψ

dx

∣∣∣∣
x=−0

= dψ

dx

∣∣∣∣
x=+0

(B5)

reduce to

1 + r = a + b, k0(1 − r) = k(a − b), (B6)

and the boundary conditions at x = L

ψ (L − 0) = ψ (L + 0),
dψ

dx

∣∣∣∣
x=L−0

= dψ

dx

∣∣∣∣
x=L+0

(B7)

reduce to

aeikL + be−ikL = t, k(aeikL − be−ikL ) = k0t . (B8)

Combining Eqs. (B6) and (B8), we have

a = − 2(1 + k/k0)e−ikL

(1 − k/k0)2eikL − (1 + k/k0)2e−ikL
, (B9)

b = 2(1 − k/k0)eikL

(1 − k/k0)2eikL − (1 + k/k0)2e−ikL
, (B10)
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FIG. 5. Linear and nonlinear conductance through potential barriers. (a1) The linear conductance G1, (a2) the second-order nonlinear
conductance G2, and (a3) the third-order nonlinear conductance G3 for the square potential as functions of the chemical potential μ (V0 = 1,√

2mV0L/h̄ = 10). (b1) G1, (b2) G2, and (b3) G3 for the delta potential (mλ2/2h̄2 = 1). (c1) G1, (c2) G2, and (c3) G3 for the linear potential
(V0 = 1, 4

√
2mV 3

0 /3h̄F = 4). (d1) G1, (d2) G2, and (d3) G3 for the Coulomb potential (2π 2mα2/h̄2 = 1).

r = (1 − k2/k2
0 )(eikL − e−ikL )

(1 − k/k0)2eikL − (1 + k/k0)2e−ikL
, (B11)

t = − 4k/k0

(1 − k/k0)2eikL − (1 + k/k0)2e−ikL
. (B12)

From these amplitudes, the transmission probability T = |t |2
is obtained as

T =
[

1 + V 2
0

4E (V0 − E )
sinh2

(√
2m(V0 − E ) L

h̄

)]−1

(B13)

for 0 � E < V0 and

T =
[

1 + V 2
0

4E (E − V0)
sin2

(√
2m(E − V0) L

h̄

)]−1

(B14)

for E > V0.
Figure 5(a) shows the linear conductance G1 and the non-

linear conductance G2, G3 for the square potential. When the
incident wave has smaller energy than the potential barrier
(i.e., μ < V0), the transmission is due to quantum tunneling
and suppressed for L � L0. As a result, the linear and non-
linear conductance is small for μ < V0. On the other hand,
when the incident wave has larger energy than the potential
barrier (i.e., μ � V0), it can transmit through the potential
barrier. Because of the wave nature of the transport, the per-
fect transmission T (E ) = 1 occurs only for the sequence of
the resonant energy. Consequently, the nonlinear conductance
oscillates as a function of the chemical potential μ. For large
L, however, the oscillation gets faster, and the derivatives of
Eq. (B14) get smaller on average. Such average behavior is

obtained by

T ∼
∫ 2π

0

[
1 + V 2

0

4E (E − V0)
sin2 θ

]−1
dθ

2π

=
[(

1 + V 2
0

8E (E − V0)

)2

−
(

V 2
0

8E (E − V0)

)2
]−1/2

� 1 − V 2
0

8E (E − V0)
(B15)

for L � h̄/
√

2mV0 and E � V0. Here, we use the formula∫ 2π

0

1

a + b cos θ

dθ

2π
= 1√

a2 − b2
(B16)

with a > b > 0.

2. Delta potential

We next investigate scattering through the delta potential

V (x) = λδ(x), (B17)

where λ � 0 is the strength of the potential barrier [Fig. 4(b)].
Clearly, the transmission is enhanced for small λ and sup-
pressed for large λ. The square potential in Eq. (B2) reduces
to the delta potential in Eq. (B17) for λ := V0L and L → 0.
Let the wave function be

ψ (x) =
{

eikx + re−ikx (x < 0);

teikx (x > 0),
(B18)

with the wave number k := √
2mE/h̄, as well as the transmis-

sion amplitude t ∈ C and the reflection amplitude r ∈ C. The
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boundary conditions at x = 0 read

ψ (+0) = ψ (−0), (B19)

and

− h̄2

2m

[
d

dx
ψ (x)

]x=+0

x=−0

+ λψ (0) = 0. (B20)

Combining these equations, we have

r = 1

ih̄2k/mλ − 1
, t = 1

1 + imλ/h̄2k
. (B21)

Thus the transmission probability T is obtained as

T = |t |2 = 1

1 + (mλ/h̄2k)2
= 1

1 + mλ2/2h̄2E

= 1

1 + E0/E
, (B22)

where we define the renormalized potential strength E0 as

E0 := mλ2

2h̄2 . (B23)

This result is equivalent to the transmission probability in
Eq. (B13) with λ = V0L and L → 0.

The transmission probability T monotonically grows with
increasing E � 0 and reaches one for E → ∞ [Fig. 5(b)]. At
zero energy E = 0, we have T = 0, i.e., no transmission. The
transmission probability T changes most rapidly near zero
energy E = 0. Around E = 0, we have the expansion

T = −
∞∑

n=1

(
− E

E0

)n

, (B24)

which means T |E=0 = 0 and

dnT

dEn

∣∣∣∣
E=0

= (−1)n+1n!

En
0

(B25)

for n � 1. This nth derivative yields the nonlinear conduc-
tance Gn at zero energy:

Gn(μ = 0) = en+1

(n!)h

dn−1T

dEn−1

∣∣∣∣
E=0

= (−1)n

n

en+1

h

1

En−1
0

.

(B26)

The current I is given as

I = e3

2hE0
V 2 − e4

3hE2
0

V 3 + · · · ,

= −eE0

h
log

(
1 + eV

E0

)
+ e2

h
V, (B27)

which shows strong nonlinearity and nonreciprocity. The in-
tegral of the transmission probability T is also obtainable as∫ E+

E−
T (E )dE =

∫ E+

E−

(
1 − E0

E + E0

)
dE

= E+ − E− − E0 log
E+ + E0

E− + E0
(B28)

for E± � 0.

3. Linear potential

As a more nontrivial example, we investigate scattering
through the linear potential [Fig. 4(c)]

V (x) =
{

0 (x < 0);

V0 − Fx (x > 0).
(B29)

Here, V0 � 0 and F � 0 are the height and gradient of the
potential barrier, respectively. The transmission is enhanced
for small V0 or large F and suppressed for large V0 or
small F .

While this scattering problem is exactly solvable with the
Airy functions, we here obtain the transmission probability
T (E ) on the basis of the Wentzel-Kramers-Brillouin (WKB)
approximation [155]. The WKB approximation is well justi-
fied for 0 � E � V0 and T (E ) � 1. Because of the generality
of the WKB approximation, the linear and nonlinear conduc-
tance for more complicated potentials can be calculated in
a similar manner. On the basis of the WKB approximation,
the transmission probability T through a barrier V (x) > E is
generally obtained as

T � exp

[
−2

√
2m

h̄

∫ x+

x−

√
V (x) − E dx

]
, (B30)

where x+ and x− (x+ � x−) are the two turning points de-
fined by V (x+) = V (x−) = E . For the linear potential, we
have

x− = 0, x+ = V0 − E

F
, (B31)

and then

T � exp

[
−2

√
2m

h̄

∫ (V0−E )/F

0

√
V0 − E − Fx dx

]

= exp

[
−v

(
1 − E

V0

)3/2]
, (B32)

where we define the renormalized potential strength v as

v :=
4
√

2mV 3
0

3h̄F
. (B33)

The obtained transmission probability T monotonically
grows with increasing 0 � E � V0. Using the Landauer for-
mula, we calculate the linear and nonlinear conductance with
T = T (E ). Figure 5(c) shows the linear conductance G1 and
the nonlinear conductance G2, G3 for the linear potential.
In contrast to the delta potential, the nonlinear conductance
vanishes for small chemical potential μ. Around E = 0, for
example, we have

T |E=0 = e−v, (B34)

dT

dE

∣∣∣∣
E=0

= 3ve−v

2V0
, (B35)

d2T

dE2

∣∣∣∣
E=0

= 3v(3v − 1)e−v

4V 2
0

. (B36)
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Around E = V0, on the other hand, we have

T |E=V0
= 1, (B37)

dT

dE

∣∣∣∣
E=V0

= 0, (B38)

d2T

dE2

∣∣∣∣
E=V0

= −∞. (B39)

It should be noted that the WKB approximation and the con-
sequent formula in Eq. (B32) may not be justified around
E = V0.

Since we have

d2T

dE2
∝ 3v

√
(V0 − E )3

V0
− V0, (B40)

the first derivative dT/dE gets largest for

E

V0
= 1 − (3v)−2/3, (B41)

at which we have

max

(
dT

dE

)
= (3v)2/3

2e1/3V0
= (0.745223 . . . )

v2/3

V0
. (B42)

This gives the maximum of the second-order nonlinear con-
ductance G2:

max(G2) = e3

2h
max

(
dT

dE

)
= (0.745223 . . . )

e3

2h

v2/3

V0
.

(B43)

Similarly, since we have

d3T

dE3
∝ 9v2

(
1 − E

V0

)3

− 9v

(
1 − E

V0

)3/2

− 1, (B44)

the second derivative d2T/dE2 gets largest for

E

V0
= 1 −

(√
117 − 9

2
v

)−2/3

= 1 − (1.0662 . . . )v−2/3,

(B45)

at which we have

max

(
d2T

dE2

)
= (0.556247 . . . )

v4/3

V 2
0

. (B46)

This gives the maximum of the third-order nonlinear conduc-
tance G3:

max(G3) = e4

6h
max

(
d2T

dE2

)
= (0.556247 . . . )

e4

6h

v4/3

V 2
0

.

(B47)

These analytic results are compatible with the numerical re-
sults in Fig. 5(c). The maximum nonlinear conductance gets
larger with increasing v, which means large nonlinearity and
nonreciprocity for the strong potential barrier.

4. Coulomb potential

We finally investigate scattering through the Coulomb po-
tential

V (x) =
{

0 (x < 0);

α/x (x > 0),
(B48)

where α is the strength of the potential [Fig. 4(d)]. Histori-
cally, this scattering problem was relevant to the physics of
the α decay [161]. Similarly to the linear potential, we use the
WKB approximation and obtain the transmission probability
T for E � 0. The turning points for the Coulomb potential are

x− = 0, x+ = α

E
, (B49)

and then the transmission probability T in Eq. (B30) is ob-
tained as

T � exp

[
−2

√
2m

h̄

∫ α/E

0

√
α

x
− E dx

]

= exp

[
−2

√
2m

h̄

α√
E

∫ 1

0

√
1

x
− 1 dx

]
. (B50)

The integral is analytically calculated by introducing θ by x =:
cos2 θ :∫ 1

0

√
1

x
− 1 dx = 2

∫ π/2

0
sin2 θ dθ = π

2
. (B51)

Then, we have

T � exp

(
−πα

√
2m

h̄

1√
E

)
=: exp

(
−
√

E0

E

)
, (B52)

where we define the renormalized potential strength as

E0 := 2π2mα2

h̄2 . (B53)

The transmission probability T monotonically grows with
increasing E . Figure 5(d) shows the linear conductance G1 and
the nonlinear conductance G2, G3 for the Coulomb potential.
Because of the singular behavior at zero chemical potential
μ = 0, the linear conductance G1 is suppressed for small μ.
We have

dT

dE
= 1

2

√
E0

E3
e−√

E0/E , (B54)

d2T

dE2
= E0

4E3

(
1 − 3

√
E

E0

)
e−√

E0/E , (B55)

d3T

dE3
= 1

8

√
E3

0

E9

(
1 − 9

√
E

E0
+ 15E

E0

)
e−√

E0/E . (B56)

The first derivative dT/dE , which yields the second-order
nonlinear conductance G2, gets largest at E/E0 = 1/9 and
takes

max

(
dT

dE

)
= 27

2e3E0
= 0.672125 . . .

E0
. (B57)
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The second derivative d2T/dE2, which yields the third-order
nonlinear conductance G3, gets largest and smallest at

E

E0
= (17 − 3

√
21)

150
= 0.0216818 . . . , (B58)

E

E0
= (17 + 3

√
21)

150
= 0.204985 . . . , (B59)

respectively, and takes

max

(
d2T

dE2

)
= 15.384 . . .

E2
0

, (B60)

min

(
d2T

dE2

)
= −1.14219 . . .

E2
0

. (B61)

These large nonlinear conductance also means strong nonlin-
earity and nonreciprocity for the Coulomb potential around
zero chemical potential.

APPENDIX C: BOLTZMANN EQUATION

We investigate the linear and nonlinear response of exem-
plary systems on the basis of the Boltzmann equation. We
define the linear conductivity σ1 and nonlinear conductivity
σn (n � 2) by

i =
∞∑

n=1

σnEn (C1)

with the current density i and the electric field E . In one
dimension, the current density i is equivalent to the current
I , and the conductance Gn defined by Eq. (2) is given as
Gn = σn/Ln. As discussed in Sec. II C, on the basis of the
Boltzmann equation with the relaxation time approximation

−eE
h̄

∂ f

∂k
= − f − feq

τ
, (C2)

the nth-order conductivity σn is given as

σn = − 1

τ

(eτ

h̄

)n+1
∮

dE

dk

dn feq

dkn

dk

2π
(C3)

for a given energy dispersion E = E (k). Here, the integral∮
dk/2π denotes

∫ ∞
−∞ dk/2π for free space and

∫ 2π

0 dk/2π

for a lattice. If the boundary terms are negligible, σn further
reduces to

σn = 1

τ

(
−eτ

h̄

)n+1
∮

dn+1E

dkn+1
feq

dk

2π
. (C4)

1. Free fermion

We begin with a free fermion

E (k) = h̄2k2

2m
. (C5)

Since feq decays rapidly for k → ±∞, we can use Eq. (C4).
For n = 1, Eq. (C4) reduces to

σ1 = e2τ

h̄2

∫ ∞

−∞

(
h̄2

m

)
feq

dk

2π
= ne2τ

m
(C6)

with the number density

n :=
∫ ∞

−∞
feq

dk

2π
. (C7)

This is the Drude conductivity [1,2]. For even n, the nonlinear
conductivity σn vanishes because of time-reversal symmetry
E (k) = E (−k). Even if n is odd, the nonlinear conductivity
σn vanishes because of dnE/dkn = 0 for n � 3.

While Eq. (C5) describes a free fermion in free space, a
free fermion on a lattice is described by

E (k) = h̄2

ma2
(1 − cos ka) (C8)

with the lattice spacing a. This energy dispersion reduces
to Eq. (C5) for ka → 0. Similarly to the previous case, the
nonlinear conductivity σn for even n vanishes because of time-
reversal symmetry. Since the momentum integral is taken on
the Brillouin zone [0, 2π ], we can use Eq. (C4) again. Since
we have

dn+1E

dkn+1
= h̄2

ma2
(−1)(n−1)/2an+1 cos ka

= (−1)(n−1)/2 h̄2an−1

m

(
1 − ma2

h̄2 E

)
(C9)

for odd n, the nonlinear conductivity σn in Eq. (C4) is obtained
as

σn = (−1)(n−1)/2 h̄2an−1

mτ

(eτ

h̄

)n+1
(

n − ma2

h̄2 Ē

)
(C10)

with the energy density at equilibrium:

Ē :=
∫ 2π

0
E feq

dk

2π
. (C11)

In the continuum limit a → 0, only σ1 survives and gives σ1 =
ne2τ/m, which is the Drude conductivity in Eq. (C6). For a �=
0, on the other hand, we have

σ1 = e2τ

m

(
n − ma2

h̄2 Ē

)
, (C12)

σ3 = −a2e4τ 3

h̄2m

(
n − ma2

h̄2 Ē

)
, (C13)

and so on. Thus the nonlinear conductivity arises because of
the lattice effect. Formally, we have

i =
∞∑

n=1

σnEn = σ1E
[ ∞∑

n=0

(
−a2e2τ 2

h̄2 E2

)n
]

= σ1
E

1 + (aeτE/h̄)2 . (C14)

It should be noted that this expansion is valid only for
|aeτE/h̄| � 1.

2. Chiral fermion

We next investigate a chiral fermion

E (k) = h̄vk. (C15)

In this case, feq does not vanish for k → −sgn(v)∞, and
Eq. (C4) is no longer valid. This is a consequence of the
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quantum anomaly of the chiral fermion. Then, we instead use
Eq. (C3), which yields

σ1 = −e2τv

h̄

∫ ∞

−∞

dfeq

dk

dk

2π
= e2τ |v|

h
. (C16)

For n � 2, the nonlinear conductivity vanishes because of
dn feq/dkn → 0 for k → ±∞.

In the Landauer formula, the linear conductance G1 =
σ1/L for the chiral fermion is quantized to be e2/h, as
discussed in Sec. V C. From the Boltzmann equation, this
quantization of the conductance is obtained for

τ |v| = L, (C17)

which means that the mean free path τ |v| is equal to the
system length L. However, this condition is never realized
since the Boltzmann equation assumes the large mean free
path in comparison with the wave length of electronic waves,
as discussed in Sec. II C. Still, the vanishing nonlinear con-
ductivity is consistent with the results based on the Landauer
formula.

3. Nonlinear Hall effect

In Sec. V, we discuss the linear and nonlinear Hall effect in
the scattering formulation. For comparison, we here derive the
linear and nonlinear Hall effect on the basis of the Boltzmann
equation [54].

We focus on a two-dimensional system with periodic
boundaries in all the directions. The system is characterized
by the energy dispersion E = E (k) and the Berry curvature
� = �(k). Let us impose a constant electric field E on the
system. The distribution function f = f (k) is assumed to be
described by the Boltzmann equation

−eE
h̄

· ∂ f

∂k
= − f − feq

τ
. (C18)

Expanding f in terms of E , we have

f = feq + eτE
h̄

· ∂ feq

∂k
+ O(E2). (C19)

The current density i is obtained as

i = −e
∮

BZ
v f

d2k

(2π )2 , (C20)

where the momentum integral is taken over the entire Bril-
louin zone. The velocity v(k) is defined as

v = 1

h̄

∂E

∂k
− e

h̄
(E × n)� (C21)

with the unit vector n perpendicular to the two-dimensional
system. The second contribution is the anomalous velocity
due to the Berry curvature � [136–138].

In the following, we assume that the electric field E is
applied along the x direction (Ex := |E|). Then, the current
along the y direction, i.e., the Hall current, is give as

iy = −e2Ex

h̄

∮
BZ

� f
d2k

(2π )2 . (C22)

We define the linear and nonlinear Hall conductivity σ H
n by

iy = σ H
1 Ex + σ H

2 E2
x + O

(
E3

x

)
. (C23)

The linear Hall conductivity σ H
1 reads

σ H
1 = −e2

h̄

∮
BZ

� feq
d2k

(2π )2 . (C24)

At zero temperature, the momentum integral is taken below
the Fermi energy. In particular, when a band gap is open and
the Fermi energy is inside it, the integral reduces to the Chern
number C1 [28–31]:

C1 := −
∮

E (k)<μ

�
d2k

2π
∈ Z. (C25)

Then, the linear Hall conductivity is quantized to be

σ H
1 = C1

e2

2π h̄
= C1

e2

h
. (C26)

From Eq. (C19), the second-order nonlinear Hall conduc-
tivity σ H

2 reads

σ H
2 = −e3τ

h̄2

∮
BZ

�
∂ feq

∂kx

d2k

(2π )2 . (C27)

Since ∂ feq/∂k takes a sharp peak on the Fermi energy, σ H
2 is

roughly evaluated as the Berry curvature �(k) on the Fermi
surface. Meanwhile, Eq. (C27) reduces to

σ H
2 = e3τ

h̄2

∮
BZ

∂�

∂kx
feq

d2k

(2π )2 . (C28)

Thus σ H
2 is given as the dipole moment ∂�/∂k of the Berry

curvature at equilibrium.
In general, the nth-order nonlinear Hall conductivity σ H

n is
given by the (n − 1) th derivative of the Berry curvature �(k)
at equilibrium. In fact, we have

σ H
n = −en+1τ n−1

h̄n

∮
BZ

�
∂n−1 feq

∂kn−1
x

d2k

(2π )2

= e

τ

(
−eτ

h̄

)n
∮

BZ

∂n−1�

∂kn−1
x

feq
d2k

(2π )2 . (C29)

APPENDIX D: WAVE-PACKET APPROACH OF NOISE

We derive the general formula of noise in Eq. (29), using
the wave-packet approach [43]. To characterize the fluctua-
tions of the time-dependent current I = I (t ), we focus on the
electronic waves in the infinitesimal energy range [E , E +
dE ] and the long time interval [−T/2, T/2]. We assume that
the current consists of a collection of N � 1 pulse waves:

dI (t ) =
N∑

n=1

gni(t − nτ ). (D1)

Here, i describes the current induced by a pulse wave of a
single electron, satisfying∫ T/2

−T/2
i(t )dt = e. (D2)

Moreover, gn denotes the integer that describes the transmis-
sion of the nth pulse wave: we have gn = 1 for the transmitted
pulse waves and gn = −1 for the reflected pulse waves. The
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current noise is represented by the statistical uncertainty of gn.
We choose the time interval between pulse waves as

τ := h

dE
� T (D3)

such that the number of the pulse waves is

N = T

τ
= T dE

h
� 1. (D4)

Because of this choice of the pulse waves, each pulse wave is
independent of each other. As a result, we have

〈gmgn〉 = 〈gm〉 〈gn〉 + (
〈
g2

n

〉 − 〈gn〉2) δmn, (D5)

where the angle brackets denote the ensemble average.
It follows from Eq. (28) that the noise dS due to the elec-

tronic waves in [E , E + dE ] reads

dS := lim
T →∞

2

T

∫ T/2

−T/2

∫ T/2

−T/2
dC(t, t ′)dtdt ′

= lim
T →∞

2

T
(〈dQ2〉 − 〈dQ〉2), (D6)

where dC is the correlation function of the current dI ,

dC(t, t ′) := 〈dI (t )dI (t ′)〉 − 〈dI (t )〉 〈dI (t ′)〉 , (D7)

and dQ is the total electric charge,

dQ :=
∫ T/2

−T/2
dI (t )dt . (D8)

Now, using the representation in Eq. (D1), we have

〈dQ〉 =
∫ T/2

−T/2
〈dI (t )〉 dt =

N∑
n=1

〈gn〉
∫ T/2

−T/2
i(t − nτ )dt

= eN 〈gn〉 (D9)

and

〈dQ2〉 =
∫ T/2

−T/2

∫ T/2

−T/2
〈dI (t )dI (t ′)〉 dtdt ′ = e2

N∑
m,n=1

〈gmgn〉

= e2
[
(N 〈gn〉)2 + N

( 〈
g2

n

〉 − 〈gn〉2
)]

, (D10)

resulting in

dS = 2e2

h

( 〈
g2

n

〉 − 〈gn〉2
)
dE . (D11)

Thus the current noise dS reduces to the variance of gn.
Similarly to the Landauer formula, the variance of gn is

evaluated by the transmission probability T = T (E ), as well
as the distribution functions fL and fR of the respective reser-
voirs at the left and right. The probability of gn = 1 is fL(1 −
fR)T , while the probability of gn = −1 is fR(1 − fL)T . Using
these facts, we have

〈gn〉 = fL(1 − fR)T − fR(1 − fL)T = ( fL − fR)T, (D12)〈
g2

n

〉 = fL(1 − fR)T + fR(1 − fL)T, (D13)

which further leads to〈
g2

n

〉 − 〈gn〉2

= [ fL(1 − fR)T + fR(1 − fL)T ] − ( fL − fR)2T 2

= [ fL(1 − fL) + fR(1 − fR)]T 2

+ [ fL(1 − fR) + fR(1 − fL)]T (1 − T ). (D14)

The sum of dS for all electronic waves with arbitrary energy
yields Eq. (29), which is the general formula of the current
noise S. We note in passing that the average of the infinitesi-
mal current dI reads

〈dI〉 =
N∑

n=1

〈gn〉 i(t − nτ ) = e

h
T ( fL − fR)dE , (D15)

which reproduces the Landauer formula in Eqs. (3) and (4).

APPENDIX E: NUMERICS OF THE CONDUCTANCE
FOR LATTICE MODELS

We calculate the conductance for lattice models. Let ψn

be the single-particle wave function at site n. In general, the
Schrödinger equation reads

−Jn−1,nψn−1 + Vnψn − Jn,n+1ψn+1 = Eψn. (E1)

Here, Vn is the potential energy at site n, and Jn,n+1 is the
hopping amplitude between sites n and n + 1. The Ander-
son model in Eq. (40) reduces to Eq. (E1) for Jn,n+1 =
J , and the Dyson model in Eq. (46) reduces to Eq. (E1)
for Vn = 0 and Jn,n+1 = J + �Jn,n+1. Equation (E1) is
equivalent to (

ψn+1

ψn

)
= Mn

(
ψn

ψn−1

)
(E2)

with

Mn :=
(

(Vn − E )/Jn,n+1 −Jn−1,n/Jn,n+1

1 0

)
. (E3)

In this representation, the Schrödinger equation is
viewed as the spatial evolution of the wave function
(ψn ψn−1)T through the system described by the transfer
matrix Mn.

Now, we decompose the wave function ψn as the super-
position of a forward-traveling wave ∝ eikn and a backward-
traveling wave ∝ e−ikn:

ψn = c+eikn + c−e−ikn (E4)

with coefficients c+, c− ∈ C. The wave number k is defined
by the energy dispersion of the clean system:

E =: −2J cos k. (E5)

For E inside the energy band (i.e., |E | � 2|J|), the wave
number k is real-valued, and the two waves c+eikn and c−e−ikn

propagate in the opposite directions; for E outside the en-
ergy band (i.e., |E | > 2|J|), k is complex-valued, and the two
waves are localized and cannot transfer energy or particles.
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Equation (E4) is rewritten as(
ψn+1

ψn

)
=

(
1 1

e−ik eik

)(
c+eik(n+1)

c−e−ik(n+1)

)

=: Q

(
c+eik(n+1)

c−e−ik(n+1)

)
, (E6)

which leads to(
c+eik(L+1)

c−e−ik(L+1)

)
= Q−1

(
ψL+1

ψL

)
= Q−1ML

(
ψL

ψL−1

)

= Q−1MLML−1 · · · M1

(
ψ1

ψ0

)

= Q−1MLML−1 · · · M1Q

(
c+eik

c−e−ik

)
. (E7)

Consequently, the transfer matrix ML of the system with
length L is given as

ML = Q−1MLML−1 · · · M1Q. (E8)

The transfer matrix ML is related to the transmission am-
plitudes by Eq. (A11). Thus we obtain the transmission
probability TL as

TL = 1

|[ML]22|2
. (E9)

In this manner, we calculate the transmission probability TL

for a given lattice model and each energy E . The direct
applicability even in the presence of disorder is one of the
advantages of the scattering formulation. In addition, the con-
ductance can be straightforwardly calculated even for finite
systems, which is another advantage of the scattering formu-
lation. These advantages contrast with other transport theories
including the Kubo formula. For the numerical results in
Fig. 2, we take the ensemble average 〈TL〉 for many samples.

APPENDIX F: RANDOM-MATRIX THEORY OF
QUANTUM TRANSPORT IN DISORDERED CHAINS

We develop a random-matrix theory of quantum transport
for disordered chains [39,104–106]. We obtain the distribu-
tion of the transmission probability for disordered chains by
the functional renormalization group equations, which further
yields the linear and nonlinear conductance according to the
Landauer formula. This approach is valid for sufficiently weak
and sufficiently complicated disorder. The obtained probabil-
ity distribution does not depend on specific details of systems
but universally depends on symmetry. In particular, chiral
symmetry changes the universality classes, as demonstrated
below.

1. Standard class

We begin with the Anderson model in Eq. (40). As de-
scribed in Appendix E, the transmission probability TL of the
system with length L is given as

TL = 1

|[ML]22|2
, (F1)

where the transfer matrix ML is defined as

ML := Q−1MLML−1 · · · M1Q (F2)

with

Q :=
(

1 1

e−ik eik

)
, (F3)

Mn :=
(

(Vn − E )/J −1

1 0

)
. (F4)

Here, the wave number k is related to the energy E by the
dispersion relation

E = −2J cos k. (F5)

When the energy E is outside the energy band (i.e., |E | >

2|J|), the wave number k is pure imaginary, and the transmis-
sion is exponentially suppressed. In the following, we assume
|E | � 2|J| and hence the real wave number k ∈ R.

As described in Appendix A, current conservation im-
poses a constraint on the transfer matrix ML. In fact, current
conservation leads to unitarity of the scattering matrix S, or
equivalently, pseudounitarity of the transfer matrix:

σzM†
Lσ−1

z = M−1
L (F6)

with a Pauli matrix σz. While this is a general constraint on the
transfer matrix, we can also confirm it explicitly by the matrix
representation in Eqs. (F2)–(F4). Because of pseudounitarity,
we can perform the following polar decomposition of the
transfer matrix ML [162]:

ML =
(

uL 0

0 u′
L

)(
cosh xL sinh xL

sinh xL cosh xL

)(
vL 0

0 v′
L

)

=
(

uLvL cosh xL uLv′
L sinh xL

u′
LvL sinh xL u′

Lv′
L cosh xL

)
, (F7)

where uL, u′
L, vL, v′

L ∈ C are independent complex numbers
satisfying

|uL|2 = |u′
L|2 = |vL|2 = |v′

L|2 = 1. (F8)

These complex numbers describe the quantum phases of the
transmission and reflection amplitudes. On the other hand,
the nonnegative number xL � 0 is related to the transmission
probability by

TL = 1

cosh2 xL
. (F9)

This parametrization is useful for obtaining the functional
renormalization group equations.

Additional symmetry can further impose a constraint on
the transfer matrix ML [39]. In particular, the Anderson
model in Eq. (40) respects time-reversal symmetry (see Ap-
pendix G for details about symmetry). In the presence of
time-reversal symmetry, the scattering matrix S is required to
satisfy

ST = S, (F10)

and the transfer matrix ML is required to satisfy

σxM∗
Lσ−1

x = ML. (F11)

This constraint is equivalent to

u′
L = u∗

L, v′
L = v∗

L. (F12)
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In terms of the scattering matrix S, it is also equivalent to tL =
tR. Notably, the constraints due to unitarity and time-reversal
symmetry are applicable to arbitrary energy E , which contrast
with chiral or particle-hole symmetry.

Now, we consider the incremental changes of the transmis-
sion probability TL and derive the probability distribution of
the statistical variable TL. The transfer matrix ML+1 is related
to ML by

ML+1 = Q−1ML+1QML (F13)

with

Q−1ML+1Q =
(

eik 0
0 e−ik

)
+ VL+1

2iJ sin k

(
eik eik

−e−ik −e−ik

)
,

(F14)

which leads to

[ML+1]22 = v′
L

[
u′

L cosh xL − VL+1

2iJ sin k
(uL sinh xL

+ u′
L cosh xL )

]
e−ik . (F15)

In the absence of disorder, we have [ML]22 = e−ikL and hence
the perfect transmission TL = 1/|[ML]22|2 = 1. The disor-
dered potential leads to scattering between the plane waves,
which further results in Anderson localization. For sufficiently
weak disorder, we expand xL+1 in terms of VL+1/J:

xL+1 = xL + c1

(
VL+1

J

)
+ c2

2

(
VL+1

J

)2

+ O
(
V 3

L+1

)
. (F16)

Using

cosh xL+1 = cosh xL + c1 sinh xL

(
VL+1

J

)

+ c2
1 cosh xL + c2 sinh xL

2

(
VL+1

J

)2

+ O
(
V 3

L+1

)
,

(F17)

we have

c1 = − Im(u′
L/uL )

2 sin k
, (F18)

c2 = 1

2 sin2 k

[
(Re(u′

L/uL ))2

tanh (2xL )
+ Re(u′

L/uL )

]
. (F19)

We assume that the disordered potential is sufficiently
complicated such that the quantum phases of the scattered
waves are distributed in a completely random manner. Un-
der this assumption, the complex numbers uL and u′

L, which
describe the quantum phases of the scattered waves, are dis-
tributed uniformly on the unit circle in the complex plane.
This fact yields

〈(Re(u′
L/uL ))2〉 = 〈(Im(u′

L/uL ))2〉 = 1/2, (F20)

where the brackets denote the ensemble average. Using this
formula, we obtain the moments of the evolution �x :=

xL+1 − xL as

〈�x〉 = 〈c2〉
〈
V 2

n

〉
2J2

=
〈
V 2

n

〉
8J2 sin2 k

1

tanh (2x)
, (F21)

〈(�x)2〉 =
〈
c2

1

〉 〈
V 2

n

〉
J2

=
〈
V 2

n

〉
8J2 sin2 k

, (F22)

〈(�x)n〉 = 0 (n � 3). (F23)

These relations determine the probability distribution P =
P(x, L) of the statistical variable x. In fact, from Eq. (F23),
P(x, L) should obey the Fokker-Planck equation

∂

∂L
P = − ∂

∂x
〈�x〉 P + 1

2

∂2

∂x2
〈(�x)2〉 P, (F24)

which further reduces to

8J2 sin2 k〈
V 2

n

〉 ∂

∂L
P = 1

2

∂

∂x
sinh (2x)

∂

∂x

P

sinh (2x)
(F25)

from Eqs. (F21) and (F22). This Fokker-Planck equation de-
pends solely on the single length scale defined as

ξ := 8J2 sin2 k〈
V 2

n

〉 = 2(4J2 − E2)〈
V 2

n

〉 . (F26)

This is a manifestation of the one-parameter scaling [25].
The probability distribution P(x, L) contains all informa-
tion about the transport properties of the disordered system.
The Fokker-Planck equation (F25) controls the behavior
of P(x, L). Although we begin with the specific model in
Eq. (40), the Fokker-Planck equation (F25) is universal for
one-dimensional disordered electron systems in the standard
class.

While the Fokker-Planck equation (F25) is exactly solv-
able for arbitrary L [163], it is sufficient for our purposes to
focus on the asymptotic behavior for L → ∞. In such a limit,
we have T � 1 and hence x � 1. As a result, Eq. (F25) is
simplified to

ξ
∂P

∂L
� −∂P

∂x
+ 1

2

∂2P

∂x2
. (F27)

This is the standard diffusion equation with a drift term, which
is straightforwardly solved as

P(x, L) � 1√
2πL/ξ

exp

[
− (x − L/ξ )2

2L/ξ

]
. (F28)

This solution satisfies the normalization condition∫ ∞
0 P(x, L)dx = 1 in the limit L → ∞. Thus the statistical

variable x obeys the normal distribution with the mean
L/ξ and the variance L/ξ . Because of T � 4e−2x in the
limit L → ∞, the transmission probability T obeys the
log-normal distribution. Consequently, the typical value of
the transmission probability T is obtained as

Ttyp := e〈log T 〉 � 4e−2〈x〉 = 4e−2L/ξ . (F29)

Moreover, the average value of T is obtained as

〈T 〉 � 4
∫ ∞

0
e−2xP(x, L)dx =

√
8ξ

πL
e−L/2ξ , (F30)

leading to Eq. (43). The difference between the average and
typical values is due to rare realizations of atypically large

205104-24



NONLINEAR LANDAUER FORMULA: NONLINEAR … PHYSICAL REVIEW B 106, 205104 (2022)

FIG. 6. Linear and nonlinear conductance of the disordered chain in the standard class (L = 50, J = 1.0, W = 1.0). The formula in Eq. (43)
based on the random-matrix approach is used. (a) The linear conductance G1, (b) the second-order nonlinear conductance G2, and (c) the
third-order nonlinear conductance G3 as functions of the chemical potential μ.

transmission probabilities. In other words, it is a consequence
of the broad distribution of the log-normal distribution.

On the basis of the Landauer formula in Eq. (4), we cal-
culate the linear and nonlinear conductance from the average
conductance 〈T 〉 = 〈T 〉 (E ), as shown in Fig. 6. The trans-
mission probability gets largest at the band center E = 0
and decreases away from the band center. Consequently, the
nonlinear conductance grows near the band edges. This be-
havior is qualitatively consistent with the numerical results
in Fig. 2. The quantitative difference is due to a finite-size
effect. Although Eq. (43) assumes L � ξ , this assumption is
not applicable for the parameters in Figs. 2 and 6.

We note in passing that the above results imply that the
mean free path � is comparable with the localization length ξ

in one dimension. Physically, this means that the localization
occurs after a couple of scattering events. As discussed in
Sec. II C, the semiclassical Boltzmann equation assumes that
the mean free path � is much larger than the Fermi wave
length λ. The above results show that this assumption and the
concomitant Boltzmann equation actually break down in one
dimension.

2. Chiral class

We next consider the Dyson model in Eq. (46). In con-
trast with the Anderson model in Eq. (40), the Dyson model
respects chiral symmetry (see also Appendix G for details
about symmetry) [39]. In the presence of chiral symmetry, the
scattering matrix S is required to satisfy

S†(E ) = S(−E ), (F31)

and the transfer matrix ML is required to satisfy

σxML(E )σ−1
x = ML(−E ). (F32)

This constraint is equivalent to

u′
L(E ) = uL(−E ), v′

L(E ) = vL(−E ). (F33)

While time-reversal symmetry imposes a constraint on each
eigenmode, chiral symmetry imposes a constraint on each
pair of eigenmodes with opposite eigenenergy. Exceptionally,
eigenmodes with zero energy E = 0 are subject to the special
constraint due to chiral symmetry. In fact, for E = 0, chi-
ral symmetry leads to u′

L = uL and v′
L = vL, both of which

are real in the presence of additional time-reversal symmetry
[see Eq. (F12)]. This constraint changes the universality class
of Anderson localization and enables delocalization even in
one dimension. For example, chiral symmetry invalidates the

formula in Eq. (F20), which is crucial for the derivation of
the Fokker-Planck equation (F25) in the standard class. To
consider the new universality class due to chiral symmetry,
we focus on zero modes (i.e., E = 0) in the following.

Because of chiral symmetry, the polar decomposition in
Eq. (F7) is simplified to

ML = uLvL

(
cosh xL sinh xL

sinh xL cosh xL

)
= uLvLexLσx . (F34)

In contrast with the standard class, we allow the statisti-
cal variable x ∈ R to be negative. Furthermore, for the zero
modes of the Dyson model in Eq. (46), the transfer matrix Mn

reads

Mn =
(

0 −(J + �Jn−1,n)/(J + �Jn,n+1)

1 0

)
(F35)

with the disordered hopping amplitude �Jn,n+1. In a manner
similar to the standard class, we assume that the disordered
hopping is sufficiently weak and sufficiently complicated.
Then, the moments of the evolution �x := xL+1 − xL of the
statistical variable xL are obtained as

〈�x〉 = 0, (F36)

〈(�x)2〉 = 〈(�Jn,n+1)2〉
J2

, (F37)

〈(�x)n〉 = 0 (n � 3). (F38)

Notably, the first moment vanishes, which contrasts with the
standard class [see Eq. (F21) for comparison]. From these
moments, the Fokker-Planck equation that describes the prob-
ability distribution P = P(x, L) of the statistical variable x
reads

∂P

∂L
= 1

2�

∂2P

∂x2
(F39)

with the relevant length scale (i.e., mean-free path)

� := J2

〈(�Jn,n+1)2〉 . (F40)

Equation (F39) is clearly different from the Fokker-Planck
equation (F25) for the standard class. Still, Eq. (F39) de-
pends solely on the single parameter L/�, manifesting the
one-parameter scaling [25] also in the chiral class.
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The diffusion equation (F39) is solved as

P(x, L) = 1√
2πL/�

exp

(
− x2

2L/�

)
(F41)

under the initial condition P(x, L = 0) = δ(x) and the nor-
malization condition

∫ ∞
−∞ P(x, L)dx = 1. In contrast to the

probability distribution for the standard class [Eq. (F28)],
the statistical variable x is most probable for x = 0. From the
obtained probability distribution, the average conductance is

〈T 〉 =
∫ ∞

−∞

P(x, L)

cosh2 x
dx ∼

√
2

πL/�
(F42)

in the limit L → ∞. On the other hand, the typical conduc-
tance is

Ttyp := e〈log T 〉 ∼ e−√
8L/π� (F43)

in the limit L → ∞.
This universal behavior is different from the behavior for

the standard class in Eqs. (F29) and (F30) and originates
from chiral symmetry. Chiral-symmetry-breaking perturba-
tions change the universality class and replace Eq. (F39) with
the Fokker-Planck equation (F25) for the standard class. Sim-
ilarly, away from zero energy, chiral symmetry is no longer
relevant. Then, the universality class reduces to the standard
class, and the Fokker-Planck equation (F25) follows. Con-
sequently, the nonlinear conductance, which is obtained by
the derivatives of the transmission probability, gets singularly
large at zero energy, as shown in Fig. 2. In general, the
crossover between the standard class and the chiral class is
difficult to analyze exactly (but see Ref. [164]). We also note
that the above results apply to quasi-one-dimensional systems
with an odd number of channels; by contrast, zero modes
of quasi-one-dimensional systems with an even number of
channels never exhibit delocalization even in the presence of
chiral symmetry [111].

APPENDIX G: SYMMETRY CLASSIFICATION

We summarize the tenfold internal-symmetry class for
noninteracting fermionic systems [27,30,39,110]. We con-
sider a generic noninteracting fermionic system described by
the Hermitian Hamiltonian

Ĥ =
∑
m,n

Hm,nĉ†
mĉn. (G1)

Here, ĉn (ĉ†
n) annihilates (creates) a fermion at site n, satisfy-

ing the canonical anticommutation relations {ĉm, ĉ†
n} = δm,n.

The indices n describe the lattice sites, as well as possible in-
ternal degrees of freedom such as the spin degree of freedom.
The Hermitian matrix H = (Hm,n)m,n is the single-particle
Hamiltonian. While we discuss normal fermionic systems in
Eq. (G1) in the following, the discussions can be straightfor-
wardly generalized to Bogoliubov-de Gennes Hamiltonians
for superconductors by using the Nambu spinors instead of
the complex fermion operators.

We begin with unitary symmetry that does not mix fermion
annihilation and creation operators. We introduce a symmetry

transformation by

ĉm → ĉ′
m := Û ĉmÛ−1 =

∑
n

Um,nĉn. (G2)

Here, Û is a unitary operator that acts on the fermionic Fock
space, while U = (Um,n)m,n is a unitary matrix instead of
a second-quantized operator. Because of unitarity of Û , the
canonical anticommutation relations are preserved under the
symmetry transformation:

{ĉm, ĉ†
n} = Û{ĉm, ĉ†

n}Û−1. (G3)

Symmetry of the system is described by the invariance of the
Hamiltonian Ĥ under the symmetry operation Û :

ÛĤ Û−1 = Ĥ , (G4)

which is equivalent to

U −1HU = H (G5)

for the single-particle Hamiltonian H . The unitary operation Û
is internal when it acts only on the internal degrees of freedom
and does not act on the spatial degrees of freedom. Such in-
ternal symmetry is relevant to disordered electron systems and
characterizes the universality classes of Anderson localization
since only internal symmetry survives in the presence of dis-
order. We note that the tenfold symmetry classification [110]
does not include the unitary symmetry that commutes with
single-particle Hamiltonians. This is because the Hamiltonian
is block diagonalized in a trivial manner in the presence of
such unitary symmetry.

Time-reversal symmetry is described by the antiunitary
operation defined by

T̂ ĉmT̂ −1 =
∑

n

Tm,nĉn (G6)

and

∀ z ∈ C T̂ zT̂ −1 = z∗. (G7)

Here, T̂ is an antiunitary operator that acts on the fermionic
Fock space, while T = (Tm,n)m,n is a unitary matrix. A sys-
tem respects time-reversal invariance if the Hamiltonian Ĥ
satisfies

T̂ Ĥ T̂ −1 = Ĥ . (G8)

In fact, if this relation is satisfied, we have

T̂ Ô(t )T̂ −1 = Ô(−t ), (G9)

where Ô(t ) = eiĤt Ôe−iĤt is the time-evolved operator of a
fermionic operator Ô. In terms of the single-particle Hamil-
tonian H , time-reversal invariance is equivalent to

T −1H∗T = H. (G10)

Because of antiunitarity of time-reversal symmetry, the sym-
metry operator and matrix are required to satisfy

T̂ 2 = (±1)N̂ , T ∗T = ±1 (G11)

with the number operator N̂ := ∑
n ĉ†

nĉn. The signs in these
equations correspond to the signs of time-reversal symmetry
in Table I. For T̂ 2 = −1, time-reversal symmetry leads to the
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Kramers degeneracy. Generally, time-reversal symmetry with
T ∗T = +1 enhances Anderson localization [143,144], while
time-reversal symmetry with T ∗T = −1 suppresses Anderson
localization [145]. The disordered electron system in Eq. (40)
respects time-reversal symmetry with T = 1.

Particle-hole symmetry (or equivalently, charge-
conjugation symmetry) is described by the unitary operation
defined by

ĈĉmĈ−1 =
∑

n

C∗
m,nĉ†

n, (G12)

where Ĉ and C = (Cm,n)m,n are unitary operators and matri-
ces, respectively. In contrast to time-reversal symmetry, this
operation mixes fermion annihilation and creation operators.
It describes the transformation between particles and holes,
and flips the sign of the electron charge with respect to the
charge neutral point:

ĈQ̂Ĉ−1 = −Q̂ (G13)

with Q̂ := N̂ − N/2. The Hamiltonian is particle-hole sym-
metric if it satisfies

ĈĤ Ĉ−1 = Ĥ , (G14)

which leads to tr H = 0 and

C−1HT C = −H. (G15)

Particle-hole symmetry acts as unitary symmetry on the
fermionic Fock space but acts as antiunitary symmetry on
the single-particle Hilbert space. Similarly to time-reversal
symmetry, the symmetry operator and matrix are required to
satisfy

Ĉ2 = (±1)N̂ , C∗C = ±1. (G16)

In the presence of particle-hole symmetry, eigenenergy ap-
pears in opposite-sign pairs (E ,−E ); zero-energy modes are
subject to a special constraint. For C∗C = +1, zero modes
remain to be delocalized even in one-dimensional disordered
systems [111].

Finally, chiral symmetry (or equivalently, sublattice sym-
metry) is defined by the antiunitary operation defined by

Ŝ ĉmŜ−1 =
∑

n

Sm,nĉ†
n, (G17)

where Ŝ is an antiunitary operator on the fermionic Fock
space, and S = (Sm,n)m,n is a unitary matrix on the single-
particle Hilbert space. In the simultaneous presence of
time-reversal symmetry and particle-hole symmetry, chiral
symmetry appears as a combination of the two symmetry.
Even in the absence of time-reversal symmetry and particle-
hole symmetry, chiral symmetry is respected, for example, in
bipartite hopping models. The system respects chiral symme-
try if the Hamiltonian satisfies

ŜĤ Ŝ−1 = Ĥ , (G18)

which leads to tr H = 0 and

S−1HS = −H. (G19)

The matrix S can be chosen to be Hermitian and satisfy
S2 = 1 without loss of generality. Similarly to particle-hole
symmetry, chiral symmetry imposes a special constraint
on zero modes, which results in delocalization even in
one-dimensional disordered systems [107,108,111]. The dis-
ordered electron system in Eq. (46) respects chiral symmetry
with Sm,n = (−1)mδm,n.

APPENDIX H: SCATTERING THEORY OF GRAPHENE

We consider the scattering problem for the two-
dimensional Dirac Hamiltonian

H (kx, ky) = h̄v(kxσx + kyσy) (H1)

with v > 0. This Hamiltonian describes graphene [32,33], as
well as a surface mode of the three-dimensional topological
insulator [118–120]. Let Lx and Ly be the lengths of the system
along the x and y directions, respectively. Along the x direc-
tion, the system lies in 0 � x � Lx and is connected with the
two leads in x � 0 and Lx � x. The two leads are assumed to
be graphene with a large potential V0. In the limit |V0| → ∞,
an infinite number of modes propagate in the leads. Along the
y direction, on the other hand, we impose a certain boundary
condition and use the Fourier representation with the wave
number ky. Such boundary conditions include the smooth edge
and metallic armchair edge. We later take the limit Ly → ∞,
for which the effect of the boundary conditions is irrelevant.

1. Derivation of the transmission probability

The transmission probability is analytically obtained in a
manner similar to Refs. [129,130]. We begin with the eigen-
value problem of the two-dimensional Dirac Hamiltonian in
Eq. (H1):

h̄v(−i∂xσx − i∂yσy)ψ (x, y) + V0ψ (x, y) = Eψ (x, y). (H2)

The eigenenergy is obtained as

E = ±h̄v

√
k2

x + k2
y + V0, (H3)

and the corresponding eigenstate is

ψ (x, y) = eikxx+ikyy

(
1

θ (kx, ky)

)
(H4)

with

θ (kx, ky) := ± kx + iky√
k2

x + k2
y

. (H5)

We note that θ (kx, ky) satisfies

θ (kx, ky)θ (−kx, ky) = −1. (H6)

In the following, we fix E and define kx and k0 as

kx :=
√(

E

h̄v

)2

− k2
y , (H7)

k0 :=
√(

E − V0

h̄v

)2

− k2
y . (H8)

For |V0| → ∞, we have k0 → ∞ and |θ (k0, ky)| → ±1.
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Now, suppose that the wave function is given as

ψ (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

eik0x+ikyy
( 1
θ (k0, ky )

) + r(ky)e−ik0x+ikyy
( 1
θ (−k0, ky )

)
(x � 0);

a(ky)eikxx+ikyy
( 1
θ (kx, ky )

) + b(ky)e−ikxx+ikyy
( 1
θ (−kx, ky )

)
(0 � x � Lx );

t (ky)eik0(x−Lx )+ikyy
( 1
θ (k0, ky )

)
(x � Lx ),

(H9)

for the wave number ky along the y direction. The boundary conditions at x = 0 reduce to

1 + r(ky) = a(ky) + b(ky), (H10)

θ (k0, ky) + r(ky)θ (−k0, ky) = a(ky)θ (kx, ky) + b(ky)θ (−kx, ky), (H11)

and the boundary conditions at x = Lx reduce to

a(ky)eikxLx + b(ky)e−ikxLx = t (ky), (H12)

a(ky)eikxLx θ (kx, ky) + b(ky)e−ikxLx θ (−kx, ky) = t (ky)θ (k0, ky). (H13)

From Eqs. (H10) and (H11), we have

a(ky)[θ (kx, ky) − θ (−k0, ky)] + b(ky)[θ (−kx, ky) − θ (−k0, ky)] = θ (k0, ky) − θ (−k0, ky). (H14)

In addition, from Eqs. (H12) and (H13), we have

a(ky)eikxLx [θ (kx, ky) − θ (k0, ky)] + b(ky)e−ikxLx [θ (−kx, ky) − θ (k0, ky)] = 0. (H15)

Combining these equations with Eq. (H6), we have

a(ky) = (1 + θ2(k0, ky))(1 + θ (kx, ky)θ (k0, ky))e−ikxLx

eikxLx (θ (kx, ky) − θ (k0, ky))2 + e−ikxLx (1 + θ (kx, ky)θ (k0, ky))2 , (H16)

b(ky) = (1 + θ2(k0, ky))θ (kx, ky)(θ (kx, ky) − θ (k0, ky))eikxLx

eikxLx (θ (kx, ky) − θ (k0, ky))2 + e−ikxLx (1 + θ (kx, ky)θ (k0, ky))2 , (H17)

and

t (ky) = (1 + θ2(k0, ky))(1 + θ2(kx, ky))

eikxLx (θ (kx, ky) − θ (k0, ky))2 + e−ikxLx (1 + θ (kx, ky)θ (k0, ky))2 . (H18)

In the limit V0 → ∞, we have θ (k0, ky ) → −1 and hence

t (ky) → 2(1 + θ2(kx, ky))

eikxLx (1 + θ (kx, ky))2 + e−ikxLx (1 − θ (kx, ky))2 = 1 + θ2(kx, ky)

(1 + θ2(kx, ky)) cos kxLx + 2iθ (kx, ky) sin kxLx
. (H19)

Since we have

θ (kx, ky) + θ−1(kx, ky) = θ (kx, ky) − θ (−kx, ky) = 2kx

E/h̄v
,

(H20)

the transmission amplitude t (ky) reduces to

t (ky) = kx

kx cos kxLx + i(E/h̄v) sin kxLx
, (H21)

Thus the transmission probability T (ky) is obtained as

T (ky) = |t (ky)|2 =
∣∣∣∣ kx

kx cos kxLx + i(E/h̄v) sin kxLx

∣∣∣∣
2

.

(H22)

Here, the wave number kx along the x direction is given as
Eq. (H7) by the energy E and the wave number ky along the y
direction.

Then, we consider all the modes along the y direction. In
the limit Ly → ∞, we have

T =
∑

ky

T (ky) → Ly

π

∫ ∞

0
dky T (ky). (H23)

Notably, the transmission probability T (ky) behaves differ-
ently depending on whether kx is real-valued or not. For
0 � ky � |E |/h̄v, we have kx ∈ R and hence

T (ky) = 1

cos2 kxLx + (E/h̄vkx )2 sin2 kxLx
. (H24)

For ky � |E |/h̄v, on the other hand, we have kx ∈ iR and
hence

T (ky) = 1

cosh2 κxLx + (E/h̄vκx )2 sinh2 κxLx
(H25)
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with κx :=
√

k2
y − (E/h̄v)2. Thus the transmission probability

T consists of the following two contributions (i.e., T = Tc +
Tq):

Tc := Ly

π

∫ |E |/h̄v

0

dky

cos2 kxLx + (E/h̄vkx )2 sin2 kxLx
, (H26)

Tq := Ly

π

∫ ∞

|E |/h̄v

dky

cosh2 κxLx + (E/h̄vκx )2 sinh2 κxLx
. (H27)

Introducing

x := kx(ky)Lx, κx(ky)Lx, (H28)

we have

dx

dky
= −kyL2

x

x
,

kyL2
x

x
, (H29)

and hence

Tc = Ly

πLx

∫ |E |Lx/h̄v

0

dx√
(ELx/h̄vx)2 − 1(cos2 x + (ELx/h̄vx)2 sin2 x)

=:
Ly

πLx

∫ |E |Lx/h̄v

0
Tc(x)dx, (H30)

Tq = Ly

πLx

∫ ∞

0

dx√
(ELx/h̄vx)2 + 1(cosh2 x + (ELx/h̄vx)2 sinh2 x)

=:
Ly

πLx

∫ ∞

0
Tq(x)dx. (H31)

Notably, Tc describes classical scattering with the real wave
numbers kx ∈ R. As shown in Fig. 7(a), Tc is zero at the Dirac
point E = 0 and increases away from the Dirac point. This
behavior is compatible with the density of states of graphene,
as well as the conductance derived by the Boltzmann equa-
tion [133,134]. By contrast, Tq describes quantum tunneling
with the imaginary wave numbers kx ∈ iR. As shown in
Fig. 7(b), Tq gets largest at the Dirac point E = 0 and de-
creases away from the Dirac point. Thus, while Tc dominates
the transmission away from the Dirac point, Tq dominates the
transmission near the Dirac point.

2. Asymptotic analysis

The integrals in Eqs. (H30) and (H31) seem to be un-
feasible analytically. However, their asymptotic behavior is
tractable even analytically, which allows us to obtain the linear
and nonlinear conductance of the Dirac Hamiltonian.

First, we focus on the behavior for |ELx/h̄v| � 1. Since
the integrand in Eq. (H30) is expanded as

Tc(x) = 1√
(ELx/h̄vx)2 − 1

+ O(E2) (H32)

for 0 � x � |E |Lx/h̄v, we have

Tc = Ly

πLx

∫ |E |Lx/h̄v

0

[
1√

(ELx/h̄vx)2 − 1
+ O(E2)

]
dx

= Ly

πLx

|E |Lx

h̄v

∫ 1

0

dx√
x−2 − 1

+ O(E3)

FIG. 7. Transmission probability of the two-dimensional Dirac
Hamiltonian in Eq. (H1) as a function of energy E . (a) Classical
transmission probability Tc. (b) Quantum transmission (tunneling)
probability Tq.

= Ly

πLx

|E |Lx

h̄v
+ O(E3). (H33)

In addition, the integrand in Eq. (H31) is expanded as

Tq(x) = 1

cosh2 x
−

(
1

2 cosh2 x
+ sinh2 x

cosh4 x

)(ELx

h̄vx

)2

+ O(E4), (H34)

which shows the singularity at x = 0. To handle this singu-
larity appropriately, we divide the integral range [0,∞] into
[0, |E |Lx/h̄v] and [|E |Lx/h̄v,∞]. For x ∈ [0, |E |Lx/h̄v], we
expand the integrand as

Tq(x) = 1

|E |Lx/h̄vx
+ O(E2) (H35)

and have∫ |E |Lx/h̄v

0
Tq(x)dx =

∫ |E |Lx/h̄v

0

[
1

|E |Lx/h̄vx
+ O(E2)

]
dx

= |E |Lx

h̄v

∫ 1

0
xdx + O(E3)

= 1

2

|E |Lx

h̄v
+ O(E3). (H36)

For x ∈ [|E |Lx/h̄v,∞], using

f (x) := 1

2x2 cosh2 x
+ sinh2 x

x2 cosh4 x
− 1

2x2

= 1

2
− 4x2

3
+ O(x4), (H37)

we expand the integrand as

Tq(x) = 1

cosh2 x
−

[
f (x) + 1

2x2

](
ELx

h̄v

)2

+ O(E4) (H38)

and have∫ ∞

|E |Lx/h̄v

Tq(x)dx

=
∫ ∞

|E |Lx/h̄v

{
1

cosh2 x
−

[
f (x) + 1

2x2

](ELx

h̄v

)2}
dx

+ O(E4)
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= 1 − tanh

( |E |Lx

h̄v

)
−

(
ELx

h̄v

)2

×
∫ ∞

|E |Lx/h̄v

[
f (x) + 1

2x2

]
dx + O(E4). (H39)

Here, we have

∫ ∞

|E |Lx/h̄v

[
f (x) + 1

2x2

]
dx = 1

2

( |E |Lx

h̄v

)−1

− c

2
+ O(E )

(H40)

with

c := −2
∫ ∞

0
f (x)dx = 0.201876 . . . , (H41)

which leads to∫ ∞

|E |Lx/h̄v

Tq(x)dx

= 1 − 3

2

|E |Lx

h̄v
+ c

2

(
ELx

h̄v

)2

+ O(E3). (H42)

Combining Eq. (H36) with Eq. (H42), we have

Tq = Ly

πLx

∫ ∞

0
Tq(x)dx

= Ly

πLx

[
1 − |E |Lx

h̄v
+ c

2

(
ELx

h̄v

)2]
+ O(E3). (H43)

Thus the total transmission probability for |ELx/h̄v| � 1 is

T = Tc + Tq = Ly

πLx

[
1 + c

2

(
ELx

h̄v

)2]
+ O(E3). (H44)

This analytic result is compatible with the numerical results in
Figs. 3 and 7. Notably, although each of Tc and Tq contains the
nonanalytic term in proportion to |E |, the total transmission
probability T = Tc + Tq is analytic.

Next, we consider the opposite limit |ELx/h̄v| → ∞. In
this limit, the integrand in Eq. (H30) is approximately evalu-
ated as

Tc(x) � 1√
(ELx/h̄vx)2 − 1(1/2 + (ELx/h̄vx)2/2)

, (H45)

and then Eq. (H30) reduces to

Tc � Ly

πLx

|E |Lx

h̄v

∫ 1

0

2dx√
x−2 − 1(1 + x−2)

= Ly

πLx
(2 −

√
2 arccoth

√
2)

|E |Lx

h̄v
. (H46)

On the other hand, the integrand in Eq. (H31) is evaluated as

Tq(x) � 1

|ELx/h̄vx|(ELx/h̄vx)2 sinh2 x
, (H47)

and then Eq. (H31) reduces to

Tq � Ly

πLx

(
h̄v

|E |Lx

)3 ∫ ∞

0

x3dx

sinh2 x

= Ly

πLx

3ζ (3)

2

(
h̄v

|E |Lx

)3

, (H48)

which is much smaller than Tc in Eq. (H46) for |ELx/h̄v| →
∞. Thus the total transmission probability is

T = Tc + Tq � Ly

Lx

2 − √
2 arccoth

√
2

π

|E |Lx

h̄v
. (H49)

The numerical results in Figs. 3 and 7 are consistent with this
analytic result. The numerical results include the additional
small oscillations around this linear behavior.
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