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Unconventional optical selection rules in ZrTe5 under an in-plane magnetic field
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The optical selection rules of an electron system under a magnetic field play key roles in determining its optical
properties, from which the band structures and underlying symmetries can be derived. In this paper, based on a
three-dimensional strong topological insulator model describing ZrTe5, we study the Landau levels (LLs) and
magneto-optical conductivity under an in-plane magnetic field. We reveal that in the transverse conductivity
Re(σzz ), the unconventional optical selection rules n → n ± 2 dominate, with n being the LL index. We attribute
the unconventional selection rules to the peculiar distribution of parity carried by the LLs, resulting from the
chiral symmetry of the sub-Hamiltonians. Moreover, we predict that, if the strong anisotropic system is tuned to
be nearly isotropic, the LLs would redistribute and the conventional selection rules n → n ± 1 can be recovered.
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I. INTRODUCTION

Three-dimensional (3D) zirconium pentatelluride ZrTe5 is
a representative of emerging topological materials and has
aroused researchers’ ongoing interests in recent years [1].
Its nontrivial band topology [2] together with the intrinsic
dynamics of the Dirac fermion can bring out a lot of uncon-
ventional phenomena, such as the chiral magnetic effect [3],
the anomalous Hall effect [4,5], the 3D quantum Hall effect
[6], and the anomalous thermoelectric effect [7,8]. Although
there is no consensus on the ground state of ZrTe5 in exper-
iment, recent measurements of angle-resolved photoelectron
spectroscopy [9], infrared spectroscopy [10,11], magnetoin-
frared spectroscopy [12], as well as magnetotransport [13]
supported its ground state to be a strong topological insulator
(TI) at low temperatures, in which the characteristic linear
surface states [9] and bulk band inversions have been clearly
identified [10–13].

In 3D topological Weyl/Dirac semimetal materials, apply-
ing a strong magnetic field can lead to the formation of Landau
levels (LLs) dispersing along the wave vector parallel to the
field. When combining the magnetic field with scanning tun-
neling spectroscopy or infrared spectroscopy, they can provide
powerful ways to study the bulk electronic structure and band
topology [14,15]. Among them, the optical selection rules
play key roles in determining the basic optical properties of
the electron system [16–18]. In a 3D ZrTe5 crystal, prismatic
ZrTe3 chains run along the crystallographic a axis (x axis)
and link along the c axis (y axis) with zigzag Te atom chains,
which form two-dimensional (2D) layers. Via weak van der
Waals bondings, the 2D layers stack along the b axis (z axis)
to form a 3D layered orthorhombic structure. In a recent
magnetoinfrared spectroscopy experiment of ZrTe5 [12], the
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magnetic field was applied not only along the perpendicular
z direction, but also in the x-y plane. Since the LLs and
magneto-optics under an in-plane magnetic field remain un-
explored in quantum theory, this motivates the present work.

In this paper, based on a strong TI model describing ZrTe5,
we study the LLs and magneto-optical conductivity Re(σαα )
under an in-plane magnetic field. By performing numerical
calculations in the lattice model, we find that the zeroth LLs
show distinctive behaviors from the n � 1 LLs, leading to
different resonant peak numbers in Re(σαα ), which are con-
sistent with experimental observations [12]. In the transverse
conductivity Re(σzz ), we reveal the existence of unconven-
tional optical selection rules n → n ± 2 and attribute them to
the peculiar distribution of parity carried by the LLs. Such a
distribution is shown to be induced by the chiral symmetry
of the sub-Hamiltonians with quadratic terms. Moreover, we
predict that, if a strong anisotropic system is tuned to be nearly
isotropic under an external pressure, the LLs will redistribute
and the conventional selection rules n → n ± 1 can be recov-
ered. Our findings will broaden the understanding of exotic
quantum phenomena in topological materials.

II. MODEL

We start from the strong TI model of ZrTe5 that was pro-
posed in a recent magnetoinfrared spectroscopy experiment
[12]. The corresponding low-energy Hamiltonian can be writ-
ten as (h̄ = 1) [12,19–22]

H (k) = v(kxσz ⊗ τx + kyI ⊗ τy) + vzkzσx ⊗ τx

+ [
M − ξ

(
k2

x + k2
y

) − ξzk
2
z

]
I ⊗ τz, (1)

where σ and τ are the Pauli matrices acting on the spin and
orbit degrees of freedom, respectively. v and vz are the Fermi
velocities, ξ and ξz are the band inversion parameters, and
M denotes the Dirac mass. Consider an in-plane magnetic
field, B = Bex. To incorporate it in the system, we use the
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FIG. 1. The LL dispersions in (a), with magnetic field B =
10.3 T. The LL energy εnsλ at kx = 0 vs B in (b). The solid lines
are the fittings to the LLs by the power function ε = (aB + c)d for
B > 10 T. From (0 + −) to (3 + +) LL, the exponent d is extracted
as d = 0.80, 0.66, 0.69, 0.68, 0.68, 0.68, 0.68, 0.68.

Peierls substitution, k → k − eA, where the magnetic vec-
tor potential is chosen as A = Byez in the Landau gauge.
In the following calculations, unless specified, we take the
model parameters as in Ref. [12]: (v, vz ) = (6, 0.5) × 105

m/s, (ξ, ξz ) = (100, 200) meV nm2, and M = 7.5 meV.

III. MAIN RESULTS

A. LLs

To solve the LLs, we construct the tight-binding Hamil-
tonian in the lattice model [see Sec. I of the Supplemental
Material (SM) [23]]. By diagonalizing the magnetic unit cell,
the LL dispersions can be obtained and are shown in Fig. 1.
The index nsλ are used to label each LL, with s = ±1 de-
noting the conduction/valence band and λ = ±1 the two
branches.

Figure 1(a) shows that for the zeroth LLs, the two branches
are well separated in energy, while for the n � 1 LLs, the two
branches are almost degenerate. At strong magnetic field, all
LLs increase with a relation that can be fitted by the power for-
mula ε = (aB + c)d as shown in Fig. 1(b). For the lowest LL,
the exponent d = 0.80, whereas for other LLs, the exponents
are close to 2

3 , both of which are distinct from the character-
istic exponent d = 1

2 of the LLs in a 3D linear Dirac model
[24]. We note that the lowest (0 + −) LL shows anomalous
behaviors with the magnetic field: It first decreases, reducing
to zero at a critical Bc, and then increases. This anomalous
behavior will be analyzed later.

B. Magneto-optical conductivity

The LL structure can be probed by magneto-optical mea-
surements. Within the linear-response theory, the magneto-
optical conductivity σαα is calculated by using the Kubo
formula [25],

σαα (ω) = 1

iV

∑
nn′

∑
ss′

∑
λλ′

f (εnsλ) − f (εn′s′λ′ )

εnsλ − εn′s′λ′

× |〈ψnsλ|Jα|ψn′s′λ′ 〉|2
ω + εnsλ − εn′s′λ′ + iτ−1

, (2)

where V is the volume of the system, f (x) is the Fermi-Dirac
distribution function, Jα = −ie[rα, H] is the current density
operator, α = x, z is the oscillating direction of the electric

FIG. 2. The magneto-optical conductivity Re(σαα ) (in units of
σ0 = e2

2π
) vs the photon frequency ω for different τ−1, with α = x in

(a) and α = z in (b). The LL transitions are labeled for each resonant
peak, where a weak peak is indicated by the arrow. The legends are
the same in both figures. We take the same parameters as those in
Fig. 1(a).

field E, and 1
τ

denotes the linewidth broadening induced by
impurity scattering [21,25–28]. We choose the Fermi energy
at zero energy and set the temperature to be zero, so the index
s = −1 and s′ = 1. For the linearly polarized light acting on
the system, the optical absorption is proportional to the real
part of σαα .

The numerical results of the magneto-optical conductiv-
ity Re(σαα ) are plotted in Fig. 2 for different strengths of
linewidth broadening. In the limit of small τ−1 (e.g., 1 meV),
one observes a series of resonant peaks sitting on an increas-
ing background [27], which is due to the dispersive LLs in
the 3D system. When τ−1 is strong, e.g., τ−1 = 20 meV,
the system enters into the diffusive metallic regime, and the
resonant peaks disappear.

The resonant peaks occur at the photon frequency ω =
εn′s′λ′ − εnsλ at the van Hove singularity kx = 0. The corre-
sponding selection rules can thus be determined for each
resonant peak by explicitly matching the energy difference
between the initial and final LLs. In Fig. 2, we carefully label
each LL transition, and observe that the selection rules are
n → n in the longitudinal conductivity Re(σxx ), and n → n ±
2 in the transverse conductivity Re(σzz ). The former selection
rules are the same as previous magneto-optic studies of Dirac
fermions when E ‖ B [22,29–31], whereas the latter ones are
distinctively different from previous studies of Dirac fermions
when E ⊥ B, with conventional selection rules given as n →
n ± 1 [10,16,22,27–33].

It is interesting to note that, due to the broken twofold
degeneracy of the zeroth LLs, the zeroth LL transitions show
two different resonant peaks both in Re(σxx ) and Re(σzz ). In
addition, in Re(σzz ), there exists a weak peak with the LL
transition 0sλ → 0s′λ̄, as indicated by the arrow.

C. Selection rules

To understand the behavior of the magneto-optical con-
ductivity and especially the unconventional selection rules, it
would be instructive to consider the Hamiltonian H (k) at the
van Hove singularity kx = 0. At this point, H (k) can be block
diagonalized through a unitary matrix U = 1√

2
(σx + σz ) ⊗ τz,

H ′ = UH (kx = 0)U † = H ′
a ⊕ H ′

b, (3)
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FIG. 3. The LLs vs the magnetic field B, with εa
ns of H ′

aB in
(a) and εb

ns of H ′
bB in (b). The even- (odd-) parity LLs are labeled

as solid (dashed) lines. The arrows indicate the dominated LL transi-
tions in Re(σzz ), with the red dashed one related to the weak peak in
Fig. 2(b). The matrix element 〈ϕa(b)

n− |J ′
za(b)|ϕa(b)

n′+ 〉 between the different

initial states ϕ
a(b)
n− and final states ϕ

a(b)
n′+ in (c), (d). The magnetic field

is set as B = 10.3 T. For clarity, the neighboring bars are shifted
vertically by 2 × 105.

where the sub-Hamiltonians H ′
a and H ′

b are written as

H ′
a,b = ∓vzkzτx − vkyτy + (

M − ξk2
y − ξzk

2
z

)
τz. (4)

Clearly, H ′ owns the chiral symmetry as CH ′C† = −H [34],
with the operator C = σx ⊗ τx. If the anisotropy is absent, ξ =
ξz and v = vz, H ′

a and H ′
b represent the 2D Chern insulator

models that are expanded to the second-order k2
i terms; the

total Hamiltonian H ′ is equivalent to the low-energy effective
model that describes the 2D surface states in the magnetic TI
film [35].

We introduce the ladder operators a = 1√
2
(η + ∂

∂η
) and

a† = 1√
2
(η − ∂

∂η
), with the dimensionless parameter η =

lBkz − y
lB

and the magnetic length lB = 1√
eB

, so then H ′
a be-

comes

H ′
aB =

(
P − Q̃ Ta† − Sa

Ta − Sa† −P + Q̃

)
, (5)

with Q̃ = Qa†a − R
2 (a2 + a†2). H ′

bB can be obtained from H ′
aB

by exchanging S and T . Here, the parameters are defined as
P = M − ξ+ξz

2l2
B

, (Q, R) = ξ±ξz

l2
B

, (S, T ) = v±vz√
2lB

. H ′
a/bB can be di-

agonalized in the Hilbert space spanned by |n〉 that is defined
as a†a|n〉 = n|n〉 [36,37]. In the calculations, one can truncate
the Hilbert space at a cutoff Nc, which is set as Nc = 200 (see
Sec. IV of SM [23]).

The LL energies of H ′
aB and H ′

bB are presented as a function
of B in Figs. 3(a) and 3(b), respectively, in which εa

ns together
with εb

ns agree well with the results in Fig. 1(b) by a lattice
model calculation. We observe that particle-hole symmetry is
broken in H ′

a(b)B, but is still preserved in the total Hamiltonian
H ′

aB ⊕ H ′
bB. This can be seen from the relation τxH ′

aBτx =

−H ′
bB. Indeed, this relation guarantees that the energies and

wave functions of the two sub-Hamiltonians are related: εa
ns =

−εb
ns̄ and ϕa

ns = τxϕ
b
ns̄, with s̄ = −s. Actually, in Fig. 1(b), the

(n + −) and (n + +) LLs with n > 0 are equivalent to the n+
LLs in H ′

aB and H ′
bB, respectively.

With the same unitary matrix U , the current density opera-
tor matrix at kx = 0 is transformed as

J ′
x = UJxU

† = −evσx ⊗ τx, (6)

J ′
z = UJzU

† = J ′
za ⊕ J ′

zb, (7)

with

J ′
za,b = ∓evzτx −

√
2eξz

lB
(a + a†)τz. (8)

As J ′
x in Eq. (6) is antidiagonal, its nonzero matrix element

must appear between the states of different sub-Hamiltonians.
Since 〈ϕa(b)

n+ |J ′
x|ϕb(a)

n′− 〉 = −evδnn′ , the selection rules must be
n → n and λ′ = λ.

For J ′
z in Eq. (7), since it is block diagonal, its nonzero

matrix element must appear between the states of the same
sub-Hamiltonians. Now each sub-Hamiltonian H ′

a(b)B owns

the parity symmetry with the operator Pa = (−1)a†aτz com-
muting with H ′

a(b)B [37]. Therefore, each LL owns definite
even or odd parity, as labeled in Figs. 3(a) and 3(b) by solid
or dashed lines, respectively. We can see that the neighboring
LLs always own opposite parities. On the other hand, as
PaJ ′

za(b)Pa = −J ′
za(b), J ′

za(b) owns odd parity and its matrix ele-

ment 〈ϕa(b)
n− |J ′

za(b)|ϕa(b)
n′+ 〉 is nonvanishing only when the n− and

n′+ states own opposite parities (see Sec. V of SM [23]). Thus
due to the peculiar distribution of parity carried by the LLs,
the nonvanishing matrix element requires n′ − n = 2l , with l
being the integer. This is also demonstrated by the numerical
results in Figs. 3(c) and 3(d). We see that the matrix elements
take large values only when n′ = n ± 2, and decrease quickly
to zero when n′ is away from n. Therefore one can determine
that the selection rules in Re(σzz ) are n → n ± 2 and λ′ = −λ.

D. Anisotropy

As 3D ZrTe5 is highly anisotropy, we investigate its role in
forming the LLs and selection rules by changing the Fermi
velocity vz. Experimentally, tuning vz is quite feasible, be-
cause it represents the hopping strength in the z direction and
is expected to increase when the external pressure is applied
along the z direction of the 3D crystal [38,39]. In Fig. 4(a),
the total LLs are plotted with vz, with the even- (odd-) parity
LLs denoted by solid (dashed) lines. One observes a transition
in the distribution of parity in the LLs as increasing vz, which
can be understood through the chiral symmetry of the sub-
Hamiltonian as follows.

In the limit vz = 0, we have S = T and the sub-
Hamiltonian H ′

a(b)B owns the chiral symmetry τxH ′
a(b)Bτx =

−H ′
a(b)B. The chiral symmetry guarantees that each sub-

Hamiltonian has two zeroth LLs but with opposite parities.
When vz increases from zero, the chiral symmetry of the
sub-Hamiltonian is broken, but the two zeroth LLs still persist,
until vz reaches a critical value. After vz crosses the critical
value, one of the two zeroth LLs flows away from its partner,
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FIG. 4. The LL flowing with vz in (a). The black (red) lines represent εa(b)
ns , and the solid (dashed) lines denote the even- (odd-) parity

LLs. The inset shows the energy differences, �1 and �2. The matrix element 〈ϕa(b)
n− |J ′

za(b)|ϕa(b)
n′+ 〉 with vz in (b), (c), where the initial and final

state index, n and n′, as well as the selection rules are labeled in different regions. The critical velocity vc1
z is the same as that in (a), and

v
c2a(b)
z marks the point where the matrix element inversion occurs. We set the magnetic field as B = 10.3 T and mark the experimental value

vz = 0.5 × 105 m/s [12] with asterisks.

and becomes an n = 1 LL. Thus we are left with only one
single zeroth LL for each sub-Hamiltonian, leading to the n+
and n− LLs carrying the same parities. If the system is nearly
isotropic, vz ∼ v, we have S  T, Q̃ and the sub-Hamiltonian
H ′

a/bB is analogous to that in graphene [40–42] and other Dirac
electron systems [43].

To quantitatively characterize the transition, we define �1

and �2 as the energy differences between the neighboring
LLs, as indicated in Fig. 4(a). The inset in Fig. 4(a) presents
the relative magnitude of �1 and �2, in which �1 = �2 oc-
curs at vz = vc

z . This critical vc
z is characterized when the two

zeroth LLs change to be one zeroth LL. The transition also
exists in higher n > 0 LLs (see Sec. VII of SM [23]). Explic-
itly, when vz increases, the ns+ LL flows to the (n + 1, s−)
LL, with a direct consequence being that the index of the
two LLs should be relabeled as (n + 1, s−) and (n + 1, s+),
respectively.

Next, we turn to the selection rules in Re(σzz ). In Fig. 4(b),
for the matrix element 〈ϕa

n−|J ′
za|ϕa

n′+〉, when vz � v, the initial
and final state index are chosen as n = 2 and n′ = 0, 2, 4,
respectively. Clearly the matrix element with n′ = 0, 4 takes a
relatively large value, indicating the unconventional selection
rules n → n ± 2. When vz increases to be larger than vc2a

z , the
matrix element with n′ = 2 overwhelms that with n′ = 0, thus
the selection rules become n → n and n → n + 2. Further
increasing vz to cross vc

z , the LLs regroup and the initial
state index will be increased by one but the final state index
remains unchanged. Consequently, the parity of the n− LL
changes, while the parity of the n′+ LL remains unchanged, as
seen in Fig. 4(a). Therefore, the conventional selection rules
n → n ± 1 are recovered. A similar change of the selection
rules can also be found for the matrix element 〈ϕb

n−|J ′
zb|ϕb

n′+〉
in Fig. 4(c) and those with a higher index (see Sec. VIII of SM
[23]).

E. Zeroth LLs versus the magnetic field

As analyzed above, zeroth LLs play an important role in
forming the unconventional selection rules in ZrTe5. Here,
we make a detailed study of the anomalous behavior of the
zeroth LLs with the magnetic field B. In Figs. 3(a) and 3(b),

when B increases, the 0− (0+) LLs in H ′
a(b)B changes its sign,

and crosses the zero energy at the same critical magnetic field
Bc = 5.24 T. This can be understood from the effective Dirac
mass term P of H ′

aB in Eq. (5). The “mass” P consists of the
original Dirac mass M and a part proportional to an external
magnetic field. For the case of M > 0, the effective mass P
changes from positive to negative with increasing magnetic
field, leading to the sign inversion of the lowest LL. However,
for the case of M < 0, there would be no sign inversion of
the lowest LLs. Therefore, the intercept of the lowest LLs
with zero energy is closely connected to the bulk band inver-
sion, which gives an important signature of a strong TI phase
in ZrTe5. In a recent thermoelectric effect [7] and another
magnetoinfrared spectroscopy study [10], the intercept of the
lowest LLs in ZrTe5 with zero energy was also demonstrated,
but under a perpendicular magnetic field. The physical mech-
anisms were both attributed to strong Zeeman splitting, with
the critical magnetic field estimated to be around 13 T [7]
and 17 T [10], much higher than the present study. More
discussions regarding the zeroth LLs are presented in Secs. II
and III of SM [23].

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, by performing full quantum mechanical cal-
culations, we study the magneto-optics in 3D ZrTe5 under an
in-plane magnetic field and reveal the unconventional selec-
tion rules n → n ± 2 in Re(σzz ). It should be mentioned that
several studies have been performed for 3D Weyl semimetals
under an in-plane magnetic field, and it was found that the
chiral anomaly can engender the planar Hall effect [44–46].
However, these studies were mainly in the semiclassical
framework, and thus quantum effects are not fully uncovered.
We also mention that, in the optical absorption spectra of
MoS2 [47] and the photocurrent of bilayer graphene [48], sim-
ilar unconventional selection rules were reported, which were
attributed to a quite different mechanism, the high-order trigo-
nal warping effect. Moreover, in their studies [47,48], the un-
conventional selection rules were only connected to very weak
peaks and thus are difficult to be observed in experiments.
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For the electron-electron correlations, it is estimated that
within the mean-field framework [49], when the magnetic
field is above a critical value, the correlations can open up
a gap with a magnitude of meV around the Fermi level.
However, the parity of the LLs will not be changed by such
a gap opening, and thus the selection rules would not be
affected. We also demonstrate that the selection rules show
a certain robustness to the weak in-plane Zeeman splittings
(see Sec. IX of SM [23]).

We make some comparisons with a recent experiment in
ZrTe5 [12] where the magnetic field was applied along the a
axis: (i) The transition energy extracted from the magnetoin-
frared spectra clearly exhibits two branches in the zeroth LL
transitions and one branch in the n � 1 LL transitions, which
are consistent with our theoretical results; (ii) the magnetic
field implemented in the experiment was in the range 6–17.5 T
with the asymptotic exponent for the LLs being 1

2 , whereas

our calculations indicate that the asymptotic exponents for the
LLs are quite different, and may require stronger magnetic
fields to test the discrepancy. Therefore, further experimental
works in ZrTe5 are expected. We also hope that our results can
be extended to other layered and weak-coupling 3D topolog-
ical materials, such as HfTe5 [2,50,51], Bi2Te3, and Sb2Te3

[19,20].
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