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In the last decades, dynamical mean-field theory (DMFT) and its diagrammatic extensions have been suc-
cessfully applied to describe local and nonlocal correlation effects in correlated electron systems. Unfortunately,
except for the exact solution, it is impossible to fulfill both the Pauli principle and conservation laws at the same
time. Consequently, fundamental observables such as the kinetic and potential energies are ambiguously defined.
In this work, we propose an approach to overcome the ambiguity in the calculation of the potential energy
within the ladder dynamical vertex approximation (D�A) by introducing an effective mass renormalization
parameter in both the charge and the spin susceptibility of the system. We then apply our method to the half-filled
single-band Hubbard model on a three-dimensional bipartite cubic lattice. We find (i) at weak-to-intermediate
coupling, a reasonable modification of the transition temperature TN to the antiferromagnetically ordered state
with respect to previous ladder D�A calculations without charge renormalization. This is in good agreement
with dual fermion and Monte Carlo results; (ii) the renormalization of charge fluctuations in our new approach
leads to a unique value for the potential energy which is substantially lower than corresponding ones from DMFT
and non-self-consistent ladder D�A; and (iii) the hierarchy of the kinetic energies between the DMFT and the
ladder D�A in the weak coupling regime is restored by the consideration of charge renormalization.

DOI: 10.1103/PhysRevB.106.205101

I. INTRODUCTION

The description and understanding of interacting many-
particle systems represents one of the fundamental challenges
in contemporary physics. It arises in various research areas
which include nuclear and atomic physics [1], solid state
theory [2], or soft matter systems [3]. In the latter two cases,
we are typically concerned with a very large (Avogadro)
number of interacting particles which facilitates a statistical
treatment of the problem. Of particular interest are the one-
and two-particle correlation functions of the system such as
the (position dependent) pair correlation function in classical
statistical mechanics or the position and time dependent one-
and two-particle Green’s functions in many-body quantum
systems which describe one- and two-particle excitations.
Apart from being interesting on their own, they provide access
to thermodynamic observable such as pressure, entropy or
free as well as kinetic and potential energies. The calcula-
tion of these correlation functions is, however, difficult in
the presence of interactions between the particles. For weakly
interacting systems, an effective independent particle descrip-
tion is possible which is exploited in static mean-field theories
[4] where the interaction between the particles is replaced
by a self-consistent field. At stronger coupling this procedure
yields increasingly unreliable results since the interaction be-
tween the particles must be taken into account explicitly. As
there is no exact solution to this problem for more than two
particles one has to consider approximations. For classical
systems, the Ornstein-Zernicke equation [5] together with
specific closure relations [6] can be exploited while quantum
mechanical Green’s functions can be calculated by Feynman
diagrammatic perturbation theory [7]. Unfortunately, the cor-
relation functions obtained in this way lead to thermodynamic

inconsistencies. In classical systems thermodynamic observ-
ables such as pressure or free energy can be obtained from the
pair correlation functions in different ways. For the exact so-
lution, all results of course coincide, however, an approximate
pair correlation function typically provides different results
depending on the route which is exploited for the determi-
nation of thermodynamic variables [8]. Such thermodynamic
inconsistencies can be also observed in the quantum case
where potential and kinetic energies differ [9,10] when they
are calculated from one- and two-particle Green’s functions
respectively. It is obvious that these discrepancies limit the
predictive power of theoretical calculations.

A good example for such thermodynamics inconsistencies
is the dynamical mean-field theory (DMFT) [11,12]. For a (fi-
nite dimensional) lattice model with purely local interactions
between electrons at the same lattice site, such as the Hubbard
Hamiltonian, DMFT approximates the irreducible part of the
one- and two-particle Green’s functions (i.e., the electronic
self-energy � and the vertex �r irreducible in the scattering
channel r) by summing up all purely local Feynman diagrams
for these correlation functions. In this way, all purely local
correlation effects in the system are captured exactly while
nonlocal correlations are described on a mean-field level.
Since DMFT is a conserving theory it satisfies all conservation
laws of the system (except for momentum conservation [13])
which guarantees consistent results for the kinetic energy at
the one- and the two-particle level [14]. However, the potential
energy obtained via the one-particle self-energy � differs
from the one calculated by the two-particle vertex �r and the
nonlocal DMFT bubble susceptibility.

A similar situation is often observed for the diagram-
matic extensions of DMFT [15–23] which include nonlocal
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correlations beyond the local ones of DMFT by a Feynman
diagrammatic expansion around the DMFT starting point.
Which of the sum rules and conservation laws are violated in
this case depends of course on the actual choice of Feynman
diagrams. For example, the dynamical vertex approximation
(D�A) [16,24–28] and the closely related QUADRILEX [22]
approach are based on the parquet formalism [29–33] using
the fully irreducible vertex of DMFT [34,35]. The parquet
equations lead to a fulfillment of the Pauli principle and all
sum rules depending on the EoM, specifically guaranteeing
consistency of the potential energy between the one- and
two-particle levels. However, any approximation based on
the parquet formalism (i.e., any approximate choice of the
fully irreducible vertex) lead to the two-particle correlation
functions not fulfilling continuity equations and the related
Ward identities [36–38]. Consequently, also derived conser-
vation laws such as the f -sum rule, which follows from the
continuity equation for the particle density, are generally vi-
olated in these situation. This implies different results for the
kinetic energy when it is obtained from one- and two-particle
correlation functions.

Another limitation of the parquet formalism is its very
high numerical cost even for single-orbital models, making
its extension to multi-orbital systems unrealistic in the fore-
seeable future. Hence, other routes have been pursued to
achieve consistent results for the potential energies. Within
the dual boson (DB) method [39,40], a purely local reference
system (analogous to DMFT) with an effective frequency
dependent interaction is introduced. The latter is determined
by the condition that the local parts of the lattice charge and
spin susceptibilities are equal to the corresponding ones of
the local reference system. While this approach certainly im-
proves the consistency between the one- and the two-particle
levels, it has been recently shown that an additional term in
the calculation of the potential energy from the one-particle
correlation function emerges due to the frequency dependence
of the interaction [10], which again destroys the consistency.
Moreover, the DB approach requires the repeated solution of
an effective Anderson impurity model (AIM) with a frequency
dependent interaction making it numerically challenging.

In this work, we will consider the consistency of the poten-
tial energy within another diagrammatic extension of DMFT,
the ladder version of the dynamical vertex approximation
(D�A) [34,41–44]. Within this approach, the sum rule for the
up-up susceptibility (which corresponds to the Pauli principle)
has been already restored by means of a so-called λ-correction
parameter in the spin channel [45]. More specifically, the
correlation length of the D�A spin susceptibility is renormal-
ized with a constant parameter λm determined by the above
mentioned sum rule. Here we will extend this idea [46] by cor-
recting also the charge susceptibility by a second parameter
λd. Both parameters are then simultaneously fixed by the sum
rule for the up-up susceptibility and the requirement that the
potential energies at the one- and the two-particle level should
be equivalent. This idea shares some similarities with the
two-particle self-consistent approach (TPSC) [47,48] where
the fulfillment of two-particle consistency is achieved by con-
sidering (different) effective Hubbard interaction parameters
in the charge and spin channel. However, the latter approach
is restricted to the weak coupling regime, while the DMFT

input in our improved version of ladder D�A makes the
method applicable to the entire range of the coupling param-
eter. With this method, we achieve an improved description
of the phase diagram in the weak-to-intermediate coupling
regime and consistent results for the potential energy in the
entire parameter space. Finally, we also restore the correct
hierarchy of the kinetic energy between D�A and DMFT in
the weak-to-intermediate coupling regime.

The paper is organized as follows. In Sec. II, we discuss the
general formalism of the ladder D�A approach and introduce
our new method. In Sec. III, we present our results for the
three-dimensional half-filled Hubbard model on a simple cu-
bic lattice and discuss the impact of the extended λ correction
scheme on charge and spin susceptibilities, phase diagram,
electronic self-energies as well as on the potential and kinetic
energies. In Sec. IV we conclude our work.

II. METHOD

In this study, we will consider the single-band Hubbard
model,

Ĥ = −t
∑
〈i j〉σ

ĉ†
iσ ĉ jσ + U

∑
i

n̂i↑n̂i↓ (1)

with hopping amplitude t between nearest neighbors and ef-
fective Hubbard interaction U between particles at the same
lattice site. ĉ(†)

iσ annihilates (creates) an electron with spin σ

at lattice site Ri and n̂iσ = ĉ†
iσ ĉiσ is the local density. We will

restrict ourselves to the half-filled (n = 1) three-dimensional
simple cubic lattice with nearest neighbor hopping. The en-
ergy scale will be fixed to D = 2

√
6t which corresponds to

twice the standard deviation of the noninteracting density of
states. Furthermore, we will use ν = (2n + 1)π

β
, n ∈ Z, to

indicate fermionic and ω = 2m π
β

, m ∈ Z, for bosonic Mat-
subara frequencies. β = 1/T denotes the inverse temperature
of the system. Lastly, the factor of 1

β
for Matsubara sums is

omitted, i.e.,
∑

ν := 1
β

∑∞
n=−∞ and integrals over the momen-

tum vectors k or q over the Brillouin zone (BZ) are written as
sums

∑
k := 1

VBZ

∫
BZ dk, where VBZ is the volume of the BZ.

A. Ladder D�A formalism

The method employed in this work is based on D�A [16]
in its ladder approximation [41,46]. D�A is a natural gener-
alization of DMFT in the following sense: DMFT assumes
the one-particle irreducible (1PI) one-particle vertex, the elec-
tronic self-energy �ν , to be purely local, i.e., k independent.
D�A raises this concept to the two-particle level and assumes
the 2PI two-particle vertex 
νν ′ω

σσ ′ to be local. This is a system-
atic approximation in the sense that the theory becomes exact
in the limit of n → ∞ for local nPI vertices. 
νν ′ω

σσ ′ introduces
nonlocal correlation effects on top of the local ones of DMFT
via a momentum dependent self-energy �ν

k which is obtained
from the equation of motion

�ν
k = Un

2
−U

∑
ν ′ωk′q

F νν ′ω
↑↓,kk′qGν ′

k′Gν ′+ω
k′+qGν+ω

k+q . (2)

The full vertex F νν ′ω
↑↓,kk′q is calculated from 
νν ′ω

σσ ′ through
the Bethe-Salpeter and parquet equations [29,32]. The
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former connects 
νν ′ω
σσ ′ with F νν ′ω

↑↓,kk′q in three different ways,
corresponding to fluctuations in the charge, spin and particle-
particle channels. The latter takes into account the mutual
renormalization effects between these three different chan-
nels. However, this approach is numerically very expensive.
The ladder approximation therefore omits the self-consistency
and calculates the full vertex only once via a one-shot Bethe-
Salpeter equation in the relevant scattering channels. For
the repulsive particle-hole symmetric Hubbard model, these
are the charge (density, r = d) and the spin (magnetic, r =
m) channel while particle-particle fluctuation are typically
strongly suppressed and sufficiently well captured at the lo-
cal level by DMFT. Moreover, also the Green’s functions
appearing in Eq. (2) remain on the DMFT level, contrary to
self-consistent methods like parquet. Unfortunately, the ladder
approximation violates the two-particle self-consistency. This
leads to (i) a spurious 1/iν asymptotic behavior of the self-
energy [46] and (ii) ambiguous results for the potential energy.
To overcome these problems it is necessary to rewrite Eq. (2)
in terms of physical susceptibilities. To this end we introduce
the bare, generalized and physical susceptibilities as well as
the triangular vertex which are defined as follows (the upper
sign corresponds to the spin, the lower to the charge channel):

χνν ′ω
0,q = −βδνν ′

∑
k

Gν
kGν+ω

k+q , (3)

χνν ′ω
r,q = χνν ′ω

0,q −
∑
ν1ν2

χ
νν1ω
0,q �ν1ν2ω

r χν2ν
′ω

r,q , (4)

χω
r,q =

∑
νν ′

χνν ′ω
r,q , (5)

γ νω
r,q =

∑
ν ′

(
χνν ′ω

0,q

(
1 ± Uχω

r,q

))−1
χνν ′ω

r,q . (6)

Gν
k = [iν + μ − εk − �ν]−1 is the DMFT lattice Green’s

function and �ν the local DMFT self-energy. �νν ′ω
r denotes

the local vertex which is irreducible in channel r. These
quantities allow us to reformulate the equation of motion
[34,41,46]:

�λ,ν
k = Un

2
− U

∑
ωq

[
1 + 1

2
γ νω

d,q

(
1 − Uχ

λd ,ω
d,q

)

− 3

2
γ νω

m,q

(
1 + Uχλm,ω

m,q

) −
∑
ν ′

χν ′ω
0,q F νν ′ω

m

]
Gν+ω

k+q , (7)

where F νν ′ω
m is the local full vertex of DMFT. A detailed

discussion of the method is given in Ref. [46] [cf. Sec. I A.,
Eq. (2) to Eq. (10) in this reference].

With these definitions we can formulate the above dis-
cussed consistency relations for the Pauli principle and the
potential energy as

1

2

∑
ωq

(
χ

λd,ω
d,q + χλm,ω

m,q

) != n

2

(
1 − n

2

)
, (8a)

U

2

∑
ωq

(
χ

λd,ω
d,q − χλm,ω

m,q

) + U
n2

4︸ ︷︷ ︸
E (2)

pot

!=
∑
νk

Gλ,ν
k �λ,ν

k︸ ︷︷ ︸
E (1)

pot

, (8b)

where we introduced [here and also in Eq. (7)] the free param-
eters λd and λm to fulfill these consistency relations. Note that
Eq. (6) is not affected by any λ correction as the triangular
vertex already features the correct high-frequency asymptotic
behavior. More details are given in Sec. V of Ref. [46]. The λ’s
enter into the formalism via a renormalization of the physical
susceptibilities in the spirit of the Moriya theory of itinerant
magnetism [49] as follows:

χλr
r =

(
1

χr
+ λr

)−1

. (9)

A previous version of ladder D�A [41] has already ex-
ploited a simpler type of this idea where the sum rule in
Eq. (8a) has been enforced by considering a λ correction only
in the spin channel (i.e., λd = 0). In our new approach we
achieve a higher degree of consistency by overcoming the
ambiguity in the determination of the potential energy with
a corresponding renormalization in the charge channel.

III. RESULTS

In the following, we present results for the charge (density)
and spin (magnetic) susceptibilities and the related magnetic
phase diagram, the self-energies as well as the potential and
kinetic energies, which are obtained by our method. We
focus particularly on the mutual renormalization effects be-
tween charge and spin fluctuations which are introduced by
the consistency relations in Eqs. (8). Moreover, we com-
pare our findings with previous ladder D�A calculations
[34,41,43,46], where only the spin channel has been renor-
malized, as well as to other diagrammatic and numerical
techniques.

To more concisely distinguish the different methods, we
use the following notation: The previous version of D�A will
be denoted with lD�Am . The index “m” indicates that only
the magnetic susceptibility is renormalized by a parameter
λm �= 0, while λd = 0. lD�Adm refers to our new approach
where both the charge and spin susceptibility are corrected by
renormalization constants λd, λm �= 0.

The local DMFT self-energy �ν and vertex functions �νν ′ω
r

have been obtained from an exact diagonalization (ED) impu-
rity solver using four bath sites. While the applicability of ED
is certainly limited by the necessity of fitting the hybridization
function to a finite bath, it does not suffer from any statis-
tical noise which typically arises in quantum Monte Carlo
calculations. The latter particularly affects the two-particle
vertex �νν ′ω

r which is obtained from a matrix inversion in
the space of the fermionic Matsubara frequencies ν and ν ′.
For the development of the new method we deemed statistical
fluctuations of the input data as problematic, since the effect
of specific features in the approach and the statistical error on
the results cannot easily be disentangled. Such problems are
indeed absent in ED which is in any case expected to provide
reliable results at the rather high temperatures above the TN of
D�A. We have nevertheless checked our numerical findings
for a broad range of points in the U versus T phase diagram
with continuous time quantum Monte Carlo (CTQMC) calcu-
lations in the hybridization expansion implementation using
the W2DYNAMICS package [50].
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FIG. 1. λm as a function of λd for three different values of U at
β = 10 and 14. The divergence of λm(λd ) indicates the largest pole
of χ

λd ,ω

d,q as a function of λd [see Eq. (9)] after which this suscepti-
bility would become negative making all solutions with smaller λd

unphysical.

A. Physical interpretation and determination of λd and λm

Considering an Ornstein-Zernike form for the physical
charge and spin susceptibilities

χω0
r,q ∼ 1

q2 − ξ−2
r

, (10)

it is obvious that the λ corrections introduced in Eq. (9)
correspond to a renormalization of the correlation length
(ξr )−2 → (ξλr

r )−2 = ξ−2
r + λr or, after rewriting, ξr → ξλr

r =
ξr√

1+λrξr
. Let us remark that, from field theoretical perspec-

tive, ξ−2
r corresponds to the mass of the propagator of the

corresponding charge and spin fluctuations and, hence, λr

can be also interpreted as a mass renormalization. The ac-
tual values of the parameters λd and λm are determined be
the consistency relations Eq. (8a) for the Pauli principle and
Eq. (8b) for the potential energy, respectively. A numeri-
cally efficient algorithm to determine λd and λm from these
equations is discussed in Appendix C. Here, instead, we
present a solution method which better highlights the phys-
ical content of our approach. This method consists in two
steps:

First, we use only sum rule Eq. (8a), corresponding to the
Pauli principle, to calculate λm for given values of λd. In
this way we obtain a function λm(λd ) which is depicted in
Fig. 1 for three different values of U at β = 10 and 14. The
values for the temperature are chosen such that the distance
to the phase transition is similar for the three values of U (cf.
Sec. III C). The allowed range of values for λd and λm is deter-
mined by the condition that both the density and the magnetic
susceptibilities χω

d,q and χω
m,q must be real and positive for

all frequencies ω and momenta q (see also Appendix C for
a discussion of the physically relevant interval). We observe
that λm is monotonously decreasing with increasing λd. This
behavior can be directly understood from Eq. (8a): a larger
value of λd corresponds to a smaller χω

d,q. Hence, in order to
fulfill this sum rule the decrease of χω

d,q must be compensated
by a corresponding increase of χω

m,q which is achieved by
lowering the value of λm. Therefore Eq. (8a) provides in a

FIG. 2. Difference between the potential energies obtained from
one- and two-particle correlation functions as on the right and left-
hand sides of Eq. (8b) respectively as a function of λd where λm is
obtained (for a given λd) from Eq. (8a). Results at three different
values of U at β = 10 and 14 are shown, corresponding to weak,
intermediate and strong coupling. The crossing of the lines with the
x axis indicates a solution for the set of consistency Eqs. (8).

simplified way the mutual renormalization of the charge and
spin susceptibilities as it is usually achieved only by a full
parquet treatment [24,26,30] of the problem.

To determine the value of λd we have to consider Eq. (8b)
which corresponds to the consistency of the potential energies
between the one- and the two-particle level. In Fig. 2, we
show the difference between the left and the right-hand side
of this equation as a function of λd for three different values
of U at β = 10 and 14 where λm = λm(λd). The value of λd

at which the curve crosses zero corresponds to a solution of
the consistency equation for the potential energy Eq. (8b). For
each of the considered values of U , we find such a crossing for
positive values of λd. Moreover, we observe that the slope of
the lines decreases with increasing interaction strength. This
behavior can be attributed to the overall magnitude of charge
fluctuations in the respective parameter regime. At weak cou-
pling (U = 1), χω

d,q is still comparatively large and, hence, its
inverse is small. Correcting a small value by λd and inverting
again [see Eq. (9)] results in a substantial modification of χω

d,q
and all quantities depending on it. On the contrary, at larger
values of U (U = 2 and 3.5) close to or beyond the Mott
metal-to-insulator transition charge fluctuations are strongly
suppressed and χω

d,q becomes very small. Consequently its
inverse gets very large and is only weakly affected by the
addition of the parameter λd in Eq. (9) explaining the overall
weaker dependence of observables on λd at strong coupling.
This observation has also implications for the numerical de-
termination of λd. In fact, the calculation of λd becomes
gradually more difficult upon increasing U as the correction of
the already strongly suppressed charge susceptibility requires
an increasingly higher numerical precision. This also implies
that the solution starts to depend stronger on small changes in
the DMFT input in this parameter regime which requires a
particularly precise evaluation of the DMFT correlation func-
tions �ν and �νν ′ω

r .
Let us briefly address the signs of the (real) renormalization

parameters λd and λm. On general grounds we expect that
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FIG. 3. Heat map of λd as a function of U and T from weak to
strong coupling. The orange line indicates the Néel temperature of
DMFT while the red line corresponds to the TN of lD�Adm .

DMFT overestimates nonlocal fluctuations described by χω
r,q

as it is a mean-field theory with respect to spatial degrees
of freedom. Hence, the λ corrections should suppress these
DMFT fluctuations by assuming positive values λr > 0. This
assertion is indeed true in the entire parameter regime as can
be seen in Figs. 2 and 3. In Fig. 2, the curve corresponding to
the consistency relation for the potential energy crosses zero
at positive values of λd for all U which is confirmed by the
heatmap of λd as a function of U and T in Fig. 3. In the latter,
we indeed observe λd > 0 for all values of U and β which is
also true for λm = λm(λd ).

B. Density and magnetic susceptibilities

In this section, we discuss the lattice susceptibilities χω
r,q in

the charge (r = d) and spin (r = m) channels. These observ-
ables are interesting on their own as they are subject to the
renormalization procedure discussed in the previous section.
Moreover, they determine the antiferromagnetic phase transi-
tion and transfer the effects of charge and spin renormalization
to the electronic self-energy as well as to the potential (and
kinetic) energies via Eqs. (7) and (8b).

Figure 4 shows the frequency dependence of the
momentum-integrated charge and spin susceptibilities ob-
tained by three different methods. The red squares indicate
the lD�Adm results where both the charge and the spin sus-
ceptibilities have been renormalized by a λ correction. They
are compared to the corresponding DMFT results where λd =
λm = 0 (orange circles) and the lD�Am where only the spin
susceptibility is corrected using Eq. (8a) (green hexagons).
For further comparison, we also present the local impurity
susceptibilities χω

r,loc (brown triangles) which have been ob-
tained directly from the DMFT impurity solver. We show our
data for three different values of U in the weak (U = 1),
intermediate (U = 2) and strong (U = 3.5) coupling regimes
at temperatures slightly above the DMFT phase transition.

We observe that the introduction of λ corrections leads to
an overall suppression of the charge and spin susceptibilities
with respect to DMFT in the entire parameter regime. For the
spin susceptibility in the upper panels, this reduction becomes
more pronounced upon increasing U . This observation can be
attributed to the overall increase of spin fluctuations by the
gradual emergence of a local moment for larger interaction
values. In fact, the absence of two-particle self-consistency in
DMFT leads to a substantially larger violation of the sum rule

FIG. 4. Momentum integrated susceptibilities in spin (top row) and charge (bottom row) channel for lD�Adm (red squares) versus DMFT
(i.e., λd = λm = 0, orange circles) and lD�Am (green hexagons). Data is presented in the weak (U = 1), intermediate (U = 2) and strong
(U = 3.5) coupling regime above the critical temperature of DMFT. Note that for lD�Am no charge renormalization is performed making it
equivalent to the DMFT solution in the lower panel. The local impurity susceptibilities of DMFT (brown triangles) are shown for comparison.
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Eq. (8a) when local spin fluctuations enhance the nonlocal
spin susceptibility [51]. Let us remark that the renormaliza-
tion of the spin susceptibility becomes also stronger when
the temperature is decreased. This can be readily understood
by the substantial growth of this correlation function upon
approaching TN of DMFT (where it actually diverges) leading
to a stronger violation of Eq. (8a).

Let us now address the difference in the spin renormaliza-
tion between the lD�Am and lD�Adm methods. The reduction
is larger for lD�Am where only the spin fluctuations are
renormalized by means of Eq. (8a) (green hexagons) com-
pared to lD�Adm where we consider a λ correction in both
the spin and the charge channel (red squares). As discussed
in the previous Sec. III A, this behavior can be understood
from Eq. (8a) where a suppression of χω

d,q through λd > 0
must be compensated by a smaller value of λm and, hence,
a larger χω

m,q compared to lD�Am where λd =0, to match the
constant on the right-hand side of this equation. This effect is
more pronounced at weak coupling (U = 1, upper left panel)
and gradually decreases upon increasing U . In fact, while at
intermediate coupling (U = 2, upper middle panel) the differ-
ence between lD�Am and lD�Adm is still visible (albeit very
small) both methods provide virtually the same result at strong
coupling (U = 3.5, upper right panel).

On the contrary, the (relative) change of the charge suscep-
tibility due to the introduction of λd is rather constant (about
30%) in the entire parameter regime (see difference between
red squares and orange circles in the lower panels of Fig. 4).
However, the effect of this renormalization on other physical
quantities strongly depends on the coupling strength. At weak
coupling (U = 1, lower left panel), charge fluctuations are
still significant (compared to the value of the spin fluctuations)
and their correction by means of λd is indeed highly relevant
for the fulfillment of sum rule (8a). In fact, at U = 1, the
charge renormalization is almost solely responsible for the
enforcement of this consistency relation as the spin suscepti-
bility is more or less equivalent to DMFT (cf. red squares and
orange circles in the left upper panel of Fig. 4). Upon increase
of the interaction strength to U = 2 and 3.5, the overall size
of the charge susceptibility decreases by one to two-orders of
magnitude. Hence, the effect of the charge correction on the
spin renormalization becomes gradually smaller and almost
vanishes in the strong coupling regime where only the spin
susceptibility contributes significantly to Eq. (8a).

It is also instructive to consider the deviations of the
momentum-summed lattice susceptibilities of DMFT (orange
circles) from the local ones of the AIM related to the DMFT
solution of the Hubbard model (brown triangles in Fig. 4).
Since DMFT is not a two-particle self-consistent theory
considerable differences between these quantities are to be
expected. This is indeed true for the spin channel (upper pan-
els), while no significant (relative) difference can be observed
in the charge channel. Introducing a λ correction solely in the
spin channel (green hexagons) we observe that the consistency
between the momentum summed lattice susceptibility and
the local one of the AIM is implicitly restored. While at a
first glance this effect from the lD�Am method appears to
be preferable, we argue that in fact the opposite is the case.
The local impurity model of DMFT contains no nonlocal
correlation effects. Hence, its local correlation functions are

expected to deviate from the local part of the corresponding
D�A lattice correlation functions which indeed contain such
nonlocal contributions. These nonlocal contributions can be
included in an impurity model only by introducing an effective
frequency dependent interaction U (ω) as done in the dual
boson approach [18]. In this method, a consistency between
local lattice quantities and the corresponding impurity quanti-
ties is indeed meaningful because nonlocal correlation effects
are partially encoded in the frequency dependence of the ef-
fective U . Since we do not consider such a modification of
the impurity model within the ladder D�A, a consistency be-
tween momentum summed and impurity correlation function
at the two-particle level is not to be expected. An additional
λ correction in the charge channel leads to physically reason-
able deviations from the correlation function of the AIM (red
squares versus brown triangles in Fig. 4).

C. Phase diagram

In three dimensions, the half-filled Hubbard model on a
bipartite simple cubic lattice features an antiferromagnetically
ordered phase at low temperatures for all values of the in-
teraction parameter U . The second-order phase transition to
this antiferromagnetic state is indicated by the divergence of
the antiferromagnetic susceptibility χAF(T )=χm(ω=0, q=
�). In Fig. 5, we present the results for the inverse of this
observable as a function of the temperature for two differ-
ent values of U . A divergence of χAF(T ), i.e., vanishing of
χ−1

AF (T ) marks the onset of antiferromagnetic order. We ob-
serve the same hierarchy of curves as in the previous section.
The DMFT antiferromagnetic susceptibility (orange circles),
which corresponds to λd = λm = 0, is larger than the D�A
susceptibilities (green hexagons and red squares) where λ

corrections have been applied. Consistent with the discussion
above, the lD�Am results where λd = 0 (green hexagons) are
smaller than the ones obtained by lD�Adm where both the
charge and the spin channels are renormalized (red squares).
As has been detailed in Sec. III B, this is explained by the
consistency relation (8a) where the suppression of charge
fluctuations by λd > 0 requires a larger spin susceptibility
compared to the case where λd = 0. The difference between
the two approaches is particularly pronounced at weak and
intermediate coupling while it gradually decreases for increas-
ing U when charge fluctuations are strongly suppressed and,
hence, have lesser effect on the overall physical picture.

Close to the transition temperature TN, χAF(T ) takes the
form of a universal scaling function [54]

χAF(T ) ∼ a|T − TN|−γ , (11)

where γ is the critical exponent associated with the suscepti-
bility. The mean-field (MF) value γ = γMF = 1 is consistent
with the linear temperature dependence of the DMFT χ−1

AF (T )
in Fig. 5 (orange circles). The renormalization of this DMFT
susceptibility by a λ parameter leads to a modification of the
mean-field behavior and provides a γ > 1 which is clearly
visible for the green hexagons and red squares in Fig. 5. The
deviation from the linear mean-field behavior can be only
observed in the critical temperature region �Tcrit ∝ T 2

N ac-
cording to the Ginzburg criterion [55]. This explains why the
bending of χ−1

AF (T ) is more pronounced in a wider temperature
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FIG. 5. Inverse of the antiferromagnetic susceptibility χAF(T ) = χm(ω=0, q=�) as a function of the temperature T = 1
β

for U =1.25
(left) and U =2 (right) obtained by DMFT (orange circles), lD�Am (green hexagons) and lD�Adm (red squares).

range for U = 2, where TN is substantially larger than for
U = 1.25 (for lower values of U the critical regime is hardly
visible on our scales). In Ref. [56], it has been discussed,
that the lD�Am provides critical exponents consistent with the
spherical symmetric Kac model [57], where γ = 2, similar
as in TPSC [58]. On the other hand, when the susceptibility
bends away from the mean-field behavior, γ ≈ 1.4 as in the
Heisenberg model has been fitted numerically in an extended
temperature range [34]. Such an exponent has also been ob-
served in the DF approach [52], whereas that for the Falicov
Kimball model was consistent with the critical exponent of the
Ising model [59]. Let us point out that fitting the exponent of
a scaling function such as Eq. (11) is intrinsically difficult and
γ = 2 can be only achieved by including subleading terms in
the fit as has been shown in Refs. [56,60].

In any case, the determination of TN from numerical data is
stable, and its value depends only very weakly on changes
in γ [56]. We have, hence, fitted the results for χAF(T )
to the scaling function in Eq. (11) in order to obtain the
transition temperature TN for different interaction values U .
The transition curves TN(U ) for DMFT (orange circles), the
lD�Am (green hexagons), and lD�Adm (red squares) are de-
picted in Fig. 6 where also results obtained with other methods

FIG. 6. Phase diagram of the 3d half-filled Hubbard model on
a simple cubic lattice with nearest neighbor hopping. The curves
correspond to the transition temperature to the antiferromagnetically
ordered state obtained by the different methods (DF [52] and Di-
agMC [53]) indicated in the legend of the figure.

are shown for comparison. Overall, a reduction of TN obtained
by both versions of D�A with respect to the DMFT curve
can be observed. This is indeed the expected behavior as
mean-field theories (such as DMFT) typically overestimate
the transition temperature to an ordered state. This can be
attributed to the fact that nonlocal correlations, which are
included in D�A in an effective way by the λ corrections
but not in DMFT, destroy the order in an intermediate tem-
perature regime and predict a reduced TN. Remarkably, in the
weak to intermediate coupling region (U ∼1 to U ∼2) this
reduction is much more pronounced when only the renormal-
ization of the spin susceptibility through Eq. (8a) is taken
into account (green hexagons). This is a direct consequence
of the mechanism which has been discussed in Sec. III B for
the susceptibilities: The positive λd leads to a decrease of
the charge susceptibility χω

d,q in Eq. (8a) requiring a larger
spin susceptibility χω

m,q (corresponding to a smaller value of
λm with respect to the case where only the spin channel is
corrected). Consequently, the related antiferromagnetic spin
susceptibility χAF(T ) will diverge at a higher temperature T
in lD�Adm giving rise to a higher transition temperature TN

with respect to lD�Am .
For U � 1, our numerical lD�Adm data for TN coincide

with the corresponding DMFT results. This means nonlocal
correlations do not reduce the transition temperature in this
parameter regime, which is indeed the expected behavior and
has been predicted by analytical considerations and numerical
simulations [51,61,62]. In fact, it was demonstrated that TN is
affected mainly by local particle-particle fluctuations (which
are of course already included in DMFT) in the weak cou-
pling region. In the intermediate coupling regime (U ∼1 to
U ∼2) we observe a reduction of TN in lD�Adm with respect
to DMFT which is in good agreement with dual fermion
(DF) [52] and diagrammatic Monte Carlo [53] results. This
is consistent with the fact that within the DF treatment of the
problem both the spin and the charge fluctuations are renor-
malized within a self-consistent update of the generalized
susceptibilities in the dual space [15] (although a consistency
of the potential energy has not been demonstrated in this
framework). Diagrammatic Monte Carlo calculations provide
(in principle) the exact solution of the problem. In the in-
termediate coupling region, they are in very good agreement
with our lD�Adm results which can therefore be considered
a more reliable method than lD�Am for the estimation of the
transition temperature in this parameter regime.
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FIG. 7. Imaginary part of the electronic self-energy at the nodal [kN = ( π

2 , π

2 , π

2 )] and antinodal [kAN = (π, π

2 , 0)] points on the Fermi
surface for three different coupling strengths at β = 10 and β = 14 as a function of the fermionic Matsubara frequency ν. We present data for
DMFT (orange circles), lD�Am (green hexagons and blue pentagons) and lD�Adm (red squares and brown triangles).

Finally, in the strong coupling region U �2, the results of
both D�A schemes coincide and match excellently the data
from the Heisenberg model onto which the Hubbard model
can be mapped at large interaction strength. This is consistent
with the fact, that in this parameter region the charge degrees
of freedom are almost frozen and, hence, the renormalization
in the charge channel has no effect on TN.

D. Self-energies

In this section, we discuss the momentum dependent imag-
inary part of the electronic self-energies obtained by lD�Adm

as a function of the Matsubara frequency ν at the nodal kN =
(π/2, π/2, π/2) and antinodal kAN = (π, π/2, 0) momen-
tum on the Fermi surface. In Fig. 7, we compare our findings
(red squares and brown triangles) to the corresponding local
self-energy �ν of DMFT (orange circles) and and to lD�Am

results (green hexagons and blue pentagons) for three different
values of U at β = 10 and 14, slightly above TN of DMFT
for the respective U values. In general, the absolute values of
the momentum dependent self-energies in both D�A schemes
are larger than the corresponding DMFT correlation function.
This is the expected behavior [46] as nonlocal correlations
typically suppress the spectral weight at the Fermi level (in
addition to the suppression due to local correlations which are
already captured by DMFT). As has been discussed in several
previous papers [15,46], the enhancement of �ν

k is stronger at
the antinodal point kAN than at the nodal point kN which is
confirmed by our data (for both variants of D�A). We observe
that the lD�Adm method yields larger (in absolute value) self-
energies than the ones obtained by the lD�Am method over
the entire U range. This can easily be understood from the
different magnitudes of the spin and charge susceptibilities in
both approaches and the way how they enter in the EoM (7).
To this end, we split Eq. (7) into a magnetic contribution, a
density contribution and a remainder which accounts for the
remaining terms on the right-hand side of this equation:

�ν
d,k = U 2

2

∑
ωq

γ νω
d,qχ

λd,ω
d,q Gν+ω

k+q , (12a)

�ν
m,k = 3U 2

2

∑
ωq

γ νω
m,qχ

λm,ω
m,q Gν+ω

k+q , (12b)

�ν
rem,k = �ν

k − �ν
d,k − �ν

m,k. (12c)

Note that the remainder term does not contain χ
λd,ω
d,q or χλm,ω

m,q
and therefore does not depend on any λ parameter. It is for
this reason equivalent in the lD�Am and lD�Adm method.
As discussed in Sec. III B χω

m,q is larger for lD�Adm than
for lD�Am . This property is directly transferred to �ν

m,k in
Eq. (12b) where at weak coupling (U = 1) we indeed observe
a larger contribution of spin fluctuations to the self-energy for
lD�Adm (red squares) compared to lD�Am as shown in Fig. 8.
The opposite behavior is observed for the charge susceptibil-
ity. It is smaller for lD�Adm with respect to lD�Am and the
same behavior is observed for the corresponding contribution
to the self-energy �ν

d,k. However, since the charge fluctuations
are substantially smaller than the spin fluctuations, the former
are less relevant in the equations of motion which leads to
an overall larger self-energy for λd > 0. The same should
in principle hold in the strong coupling regime. However,
as discussed in the previous sections, due to the extremely
small values of charge fluctuation also the differences in
the self-energies and their various contributions are strongly
suppressed and almost no differences in the results for
lD�Adm and lD�Am can be observed as it is shown in Fig. 9.

FIG. 8. Imaginary part of the self-energy �ν
kN

split into contri-
butions from the charge susceptibility (blue pentagons and brown
triangles), the spin susceptibility (green hexagons and red squares)
and an remainder (blue heptagons) according to Eqs. (12) at β = 14
and U = 1. Results are presented for lD�Adm (red squares and brown
triangles) and lD�Am (green hexagons and blue pentagons). Note
that the remainder is equivalent for both methods as it does not
depend on any λ parameter.
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FIG. 9. Same as in Fig. 8 but for U = 3.5.

Let us remark that at weak-to-intermediate coupling the
difference for �ν

k between our new lD�Adm method and the
previous lD�Am approach is quite substantial. As we observe
a tiny deviation from the correct high-frequency asymptotic
behavior �ν

k =
ν→∞ U 2 n

2 (1 − n
2 ) 1

iν + O( 1
iν2 ) for lD�Adm , our

new approach might slightly overestimate this correlation
function. However, at present, a comprehensive understanding
of this feature is still lacking and further investigation in future
research work is required.

E. Potential and kinetic energies

Figure 10 shows the potential energies obtained from
DMFT (orange circles and brown triangles), lD�Am (blue dia-
monds and green hexagons), and lD�Adm (red squares). Let us
stress that for the first two cases (DMFT and lD�Am ) the po-
tential energies obtained at the one particle level (E (1)

pot , orange
circles and blue diamonds) deviate from the corresponding
results at the two-particle level (E (2)

pot , brown triangles and
green hexagons) as these approaches are not two-particle self-
consistent [cf., Eq. (8b)]. The vertical lines indicate TN for the
respective methods.

We observe the same hierarchy of curves for all values
of U . The largest potential energy is E (1)

pot of DMFT (orange
circles) which is obtained via the right-hand side of Eq. (8b)
with the local DMFT self-energy and the (lattice) Green’s
function of DMFT. Considering the DMFT self-consistency
relation, we obtain

E (1)
pot,DMFT =

∑
ν

∑
k

Gν
k︸ ︷︷ ︸

Gν

�ν =
∑

ν

Gν�ν

= U

2

∑
ω

(χω
d − χω

m ) + U
n2

4
= U 〈n↑n↓〉, (13)

where Gν
k is the DMFT lattice Green’s function and Gν de-

notes the local impurity Green’s function which is equivalent

FIG. 10. Potential energy as a function of temperature for four different values of U as obtained by the DMFT (orange circles and
brown triangles), lD�Am (blue diamonds and green hexagons), and lD�Adm (red squares). Note that for DMFT and lD�Am the results for
Epot calculated from the one- and the two-particle levels [corresponding to the right- and left-hand sides of Eq. (8b), respectively] differ.
Vertical lines indicate the transition temperature TN of the respective method. Due to the unphysical large scale of E (2)

pot of DMFT at U = 3.5,
the data are shown as inset. For U = 2.0 (lower left panel) E (2)

pot of DMFT (brown triangles) is not shown, because it can only be calculated
above TN of DMFT (orange line), i.e., only for T = 0.1 in this figure. The corresponding value at this temperature is E (2)

pot = −0.0212.
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to the local (i.e., momentum summed) DMFT lattice Green’s
function due to the DMFT self-consistency condition. χω

d/m
are the local impurity charge and spin susceptibilities and
〈n↑n↓〉 corresponds to the impurity double occupancy. Note
that the AIM is solved exactly and, hence, all consistency
relations, in particular the local version of Eq. (8b), are ful-
filled as also indicated in Eq. (13). This implies that E (1)

pot
of DMFT is equivalent to U times the double occupancy of
the auxiliary AIM which is obtained directly from the impu-
rity solver. Alternatively, the same results can be calculated
by summing the local susceptibility χω

↑↓ = 1
2 [χω

d − χω
m] over

all bosonic Matsubara frequencies ω. In Sec. III B, we have
demonstrated that the momentum summed spin and charge
lattice susceptibilities in lD�Am (green hexagons in the upper
and orange circles in the lower panels of Fig. 4) [63] are
almost equivalent to the corresponding correlation function of
the AIM (brown triangles in Fig. 4). This explains why E (2)

pot
of lD�Am (green hexagons) is almost the same (or only very
slightly smaller) than the DMFT potential energy E (1)

pot (orange
circles) in Fig. 10.

The D�A values for E (1)
pot (blue diamonds) on the other

hand, are considerably smaller than the corresponding DMFT
results which have been also reported in Ref. [46]. In the
latter reference it has been discussed, that this is indeed the
expected behavior at weak coupling where the antiferromag-
netic ground state is of Slater type. Within such a weak
coupling Slater mechanism, the antiferromagnetic phase is
stabilized by a decrease in the potential energy. Our results
indicate that this mechanism is reflected in the corresponding
antiferromagnetic fluctuations above TN where the inclusion
of nonlocal correlations leads to a suppression of Epot with
respect to DMFT. We observe the same behavior at strong
coupling where, in principle, a reversed order of the hierarchy
in magnitude of potential energies could have been expected
due to the antiferromagnetic phase being of Heisenberg type
and a stabilization through a gain of kinetic energy [46]. This
is, however, not observed as D�A always leads to a reduction
of the potential energy with respect to DMFT, indicating that
this change in the nature of the antiferromagnetic order from
weak to strong coupling is not fully captured by the corre-
sponding fluctuations above TN (see also the discussion of the
kinetic energy below). Whether this behavior is an artifact of
the ladder D�A method or the correct result requires further
investigation.

The lD�Adm approach (red squares), where by construc-
tion E (1)

pot = E (2)
pot , predicts much smaller potential energies

than E (1)
pot and E (2)

pot of lD�Am (blue diamonds and green

hexagons) and E (1)
pot of DMFT (orange circles). For E (2)

pot , this
difference can be easily explained by the different magnitudes
of the lattice charge and spin susceptibilities which have been
analyzed in Sec. III B. In fact, χω

d,q is smaller for lD�Adm

than for lD�Am while the opposite behavior is observed for
χω

m,q which is larger for lD�Adm compared to lD�Am . Equa-

tion (8b) for E (2)
pot then implies that the corresponding potential

energy for lD�Adm is smaller compared to the one obtained
with lD�Am .

The fact, that the potential energy of lD�Adm is smaller
than E (1)

pot of lD�Am can be easily understood by the difference
in the size of the self-energies in both approaches. In fact,

considering Eq. (8b) for the calculation of E (1)
pot , we find that

E (1)
pot =

∑
νk

�ν
kGν

k =
∑
νk

(
iν + μ − εk

iν − εk − iIm�ν
k

− 1

)

= U

4
+

∑
νk

(
iν − εk

i[ν − Im�ν
k] − εk

− 1

)
. (14)

In the second line, we have used that μ = U
2 = Re�ν

k for the
particle-hole symmetric case at half filling (n = 1) and the dis-
persion relation εk is defined as the Fourier transform of the
hopping matrix. Considering that Im�ν

k < 0 for ν > 0 [64],
it is obvious that a larger self-energy will lead to a smaller
potential energy E (1)

pot (and vice versa). As we have discussed in
Sec. III D, the self-energies for lD�Adm are indeed larger than
the corresponding self-energies for lD�Am in the entire pa-
rameter regime which explains the corresponding differences
in the potential energies.

Let us also briefly comment on the DMFT potential energy
E (2)

pot (brown triangles in Fig. 10) which is obtained from the
charge and spin susceptibilities χω

d,q and χω
m,q without any λ

correction via the left-hand side of Eq. (8b). We observe that
E (2)

pot of DMFT is smaller than the corresponding E (2)
pot for the

lD�Am approach. This can be understood by the fact that χω
m,q

is larger for DMFT compared to lD�Am (cf. orange circles
and green hexagons in the upper panels in Fig. 4) and enters
into Eq. (8b) for E (2)

pot with a negative sign.
The situation is more complicated for lD�Adm where an

additional renormalization via λd > 0 is applied to χω
d,q. Such

a correction has the opposite effect compared to the λ cor-
rection in the spin channel because the charge correlation
function enters in E (2)

pot with a positive sign. Hence, the intro-
duction of λd tends to suppress the corresponding potential
energy with respect to DMFT while λm typically increases it.
At weak coupling (U = 1.0 and U = 1.25, upper panels in
Fig. 10), we can see that the renormalization of the charge
susceptibility has indeed a more pronounced effect and the
E (2)

pot of DMFT (brown triangles) are larger than the corre-
sponding results for lD�Adm (red squares). On the contrary, at
strong coupling (U = 2 and U = 3.5, lower panels in Fig. 10)
the reduction of the potential energy due to the spin suscep-
tibility dominates and E (2)

pot of DMFT is located below the
corresponding lD�Adm result. (Note that for U = 2 only one
temperature point is located above TN of DMFT where E (2)

pot
is well defined in DMFT. The corresponding value is not
shown in the figure but explicitly given in the caption.) In
fact, at these large values of U , E (2)

pot of DMFT becomes even
negative due to the large value of the unrenormalized spin
susceptibility. This unphysical behavior at strong coupling has
already been reported for the two-dimensional Hubbard model
in Ref. [9]. In the heat map for E (2)

pot of DMFT in Fig. 11,
it can be clearly seen that such unphysical negative values
emerge at U ≈ 2. Note also, that below TN of DMFT E (2)

pot
becomes numerically ill defined, since the divergence of the
magnetic susceptibility around the antiferromagnetic ordering
vector introduces k-sampling dependent noise.

Let us finally comment on the temperature dependence of
Epot for the different methods. At weak coupling (U = 1 and
1.25, upper panels in Fig. 10), we observe an increase of
E (1)

pot for DMFT (orange circles) and E (1)
pot as well as E (2)

pot for
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FIG. 11. DMFT two particle potential energy E (2)
pot as a function

of T and U .

lD�Am (green hexagons and blue diamonds) upon decreasing
temperature. For DMFT this is indeed the expected behavior
as the system becomes more metallic at low temperatures [65].
For the lD�Am results, on the other hand, this increase with
decreasing temperature is unphysical as the double occupancy
is expected to become smaller when approaching the anti-
ferromagnetic order at TN. The latter (physical) behavior is
indeed observed when we consider λd > 0 in the lD�Adm ap-
proach (red squares) which further demonstrates the improved
consistency of our new approach with respect to the lD�Am

method. At intermediate and strong coupling (U = 2 and 3.5,

lower panels) both versions of D�A feature the physically
correct decrease of E (1)

pot with decreasing temperature.
Let us close this section by briefly discussing the kinetic

energy of the system as depicted in Fig. 12. It is calculated via
the equation

Ekin =
∑
νk

εkGν
k. (15)

At weak coupling, the antiferromagnetic state is of Slater
type. As it has been discussed extensively in Ref. [46], this
implies that the symmetry broken phase is stabilized by a
reduction of the potential energy while the kinetic energy is
larger in the symmetry broken than in the normal state. It has
been demonstrated in the latter publication, that at the very
small value of U = 0.75, this also holds for the corresponding
fluctuations above TN and is reflected in the kinetic energy of
lD�Am with respect to the corresponding DMFT result. We
also find this behavior for both the lD�Am and lD�Adm at
U = 1 in the left upper panel of Fig. 12.

At a slightly larger value of the coupling (U = 1.25, right
upper panel of Fig. 12), Ekin for lD�Am (green hexagons) is
located below the corresponding DMFT result (orange cir-
cles). This implies that within the lD�Am method the system
is already in an intermediate coupling region. On the contrary,
our new result for lD�Adm (red squares) predicts a kinetic
energy above the one of DMFT indicating that the system is
still in the weak coupling regime. This is indeed consistent
with the corresponding TN which is very close to the DMFT
result at this value of U . Overall one can see that the lD�Adm

FIG. 12. Kinetic energy as a function of temperature for four different values of U as obtained by the DMFT (orange circles), lD�Am (green
hexagons), and lD�Adm (red squares). Vertical lines indicate the transition temperature TN of the respective method.
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approach extends the range where a Slater type antiferromag-
netism is observed with respect to the lD�Am method.

At intermediate and strong coupling, both D�A approaches
predict a kinetic energy below the one of DMFT which is
the expected behavior in this parameter regime. Interestingly,
Ekin for lD�Adm is always larger (smaller in absolute value)
than the one obtained via lD�Am . This is again a conse-
quence of the larger self-energy in the lD�Adm approach
and can be explicitly demonstrated by rewriting Eq. (15) for
Ekin into a similar form as the equation for E (1)

pot in Eq. (14).
The difference between Ekin of the two versions of ladder
D�A decreases upon increasing U as the charge renormaliza-
tion becomes gradually less important and eventually almost
vanishes at the strongest coupling U = 3.5 (see also the cor-
responding discussions in the previous sections).

Let us finally mention, that the kinetic energy is also acces-
sible from the two-particle charge and spin susceptibilities via
the f -sum rule. It states that the coefficients of the 1

(iω)2 tails of
these correlation functions are related to this thermodynamic
observable (see, e.g., Refs. [10,46]). For DMFT, this leads to
the same results for Ekin as the calculation at the one-particle
level via Eq. (15), because DMFT is a conserving theory.
However, since the λ correction in its present form does not
change the asymptotic 1

(iω)2 contribution of χ
λd,ω
d,q and χλm,ω

m,q ,
the D�A results for Ekin at the two-particle level coincide with
the corresponding DMFT data and are, hence, not equivalent
to the D�A results obtained from Eq. (15).

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have presented a method which takes
into account nonlocal correlations beyond the local ones of
DMFT and fulfills specific exact sum rules which connect
one- and two-particle correlation functions. Our new approach
is based on the ladder dynamical vertex approximation where
nonlocal corrections to the purely local DMFT self-energy
are obtained via a diagrammatic expansion around DMFT.
More specifically, within this method a momentum dependent
self-energy is constructed from the DMFT Green’s function
and the DMFT charge and spin lattice susceptibilities. Since
we do not perform a fully self-consistent treatment of the
problem the results initially violate certain sum rules for these
susceptibilities which control the total density and the po-
tential energy of the system. To overcome this problem, we
have introduced a mass renormalization of the charge and
spin susceptibilities by means of (constant) parameters λd and
λm which are determined by the requirement that the above
mentioned sum rules are fulfilled. A simpler version of this
idea, where a correction is applied only to the spin channel,
has been already successfully exploited in previous research
works [41,46].

We have applied our new approach to the three-
dimensional half-filled Hubbard model on a simple cubic
lattice with nearest neighbor hopping which features an an-
tiferromagnetically ordered phase at low temperatures for all
values of the interaction strength. The introduction of the
correction parameters λd and λm leads to a mutual renormal-
ization of charge and spin fluctuations which can be usually
only achieved in far more complicated theories such as the
parquet approach. The latter is, however, restricted to simple

one-band models due to its numerical complexity while our
method is, in principal, applicable for multi-band systems or
systems with a nonlocal interaction.

We have demonstrated that our method, which takes
into account the renormalization of both the charge and
spin susceptibility, improves several results compared to the
above mentioned previous version of D�A where only the
spin susceptibility has been renormalized. In particular, at
weak-to-intermediate coupling it predicts a higher transition
temperature TN to the antiferromagnetically ordered state with
respect to the old approach which is in good agreement with
dual fermion and diagrammatic Monte Carlo calculations.
At strong coupling it gradually becomes similar to the old
technique as charge fluctuations are strongly suppressed and
their renormalization has (almost) no effect on the physical
results.

We have also analyzed the potential energy which is ob-
tained by our new method. In contrast to DMFT and the
previous version of D�A, it is uniquely defined and lower
than the corresponding ones obtained by the latter approaches.
Moreover, at weak coupling it always decreases upon decreas-
ing temperatures approaching the antiferromagnetic phase
transition which is indeed the expected behavior for a Slater
type antiferromagnet where the ordered phase is stabilized by
the potential energy. The kinetic energy is located above the
one of DMFT at weak coupling which is also consistent with
Slater type antiferromagnetism while the previous non-self-
consistent version of D�A predicts a lower kinetic energy
with respect to DMFT. Overall, our new approach describes
the weak and intermediate coupling regime, where charge
fluctuations still play an important role, substantially better
than the previous approach where a renormalization of charge
fluctuations is absent.

Let us finally state, that our new method is not yet fully
two-particle consistent as it violates sum rules which originate
from conservation laws such as the f -sum rule. The inclusion
of such consistency relations in the D�A formalism (and
also other diagrammatic extension of DMFT) is an interesting
future research perspective (for some preliminary ideas see,
e.g., Ref. [46]).

In this work, we have presented data only at half-filling
to avoid additional technical expenses for the determination
of the chemical potential for a given average particle density.
However, there are no restrictions on the method preventing
a generalization to finite doping. In fact, we expect that the
numerical accuracy even improves in this situation due to
an increase of charge fluctuations. Finally, the extension of
the presented approach to more realistic multi-orbital systems
can potentially lead to an improved theoretical description of
nonlocal correlation effects in real materials.
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FIG. 13. Full vertex F νν′ω
m as a function of ν, ν ′ at 5 different ω. Labels indicate the (integer) index of the Matsubara frequency. Shaded

colors indicate points connected to others by symmetries. (Top) Unshifted grids. (Bottom) ν, ν ′ shifted by −ω/2.

APPENDIX A: USE OF SYMMETRIES

The irreducible vertex �νν ′ω
r , which is required for the

calculation of the lattice generalized susceptibility χνν ′ω
r,q in

Eq. (4), is calculated from the local generalized susceptibility
χνν ′ω

r via a local version of Eq. (4). The latter is obtained
directly from the ED impurity solver which represents the nu-
merically most expensive part of the entire method. To reduce
the number of frequencies for which χνν ′ω

r has to be evaluated
explicitly we have considered two algorithmic improvements.

(i) We have shifted the fermionic Matsubara frequencies
(ν, ν ′) by −ω

2 . This improves our calculations since the
main nonperturbative structures of χνν ′ω

r are centered around
(−ω

2 ,−ω
2 ) (see Refs. [66,67]). This can be seen in the upper

panels of Fig. 13 where we present the full vertex F νν ′ω
m , which

is obtained from χνν ′ω
m by amputating the four outer Green

function lines [66], as a function of ν, ν ′ at different ω slices.
The main structures, indicated by the crossing of the yellow
and blue diagonal contributions, indeed move to the center if
the frequency grid is shifted by −ω

2 .
(ii) We have considered all physical symmetries of χνν ′ω

r
which allows us to reduce the actual calculation to a subset
of Matsubara frequencies in the selected frequency grid. In
fact, the generalized susceptibility χνν ′ω

r is equivalent for all
frequency triples (ν, ν ′, ω) which are related to each other via
a specific physical symmetry. Consequently, it is sufficient
to determine this correlation function for only one of this
related triples. In Fig. 13, the frequencies which are related
to another one by a symmetry are shaded. Overall this leads
to a reduction in the number of triples (ν, ν ′, ω) by more than
a factor of 10.

For the determination of equivalent arguments for the two-
particle Green’s function, we have proceeded in the following
way:

(1) Define the grid of size Ntot = N2
ν × Nω, possibly with

shifted ν, ν ′ values.

(2) Define the symmetry mapping, i.e., f (p) = “list of
points p maps to.” This includes only direct symmetries, so
for 5 symmetries in the system, the list will have the length 5.

(3) Construct an undirected graph with Ntot vertices, each
representing a point on the grid while edges for each vertex v

are given by f (v). It suffices to loop over all vertices and call f
on its value, disregarding double edges. In case the equivalent
points are related by some operation other than the identity, for
example complex conjugation, one has to track the operation
connecting two vertices as edge “weight,” for example, in a
parent array.

(4) Determine all connected components, for example us-
ing depth first search [68], and choose a (random) node as
representative. The construction of the mapping from the re-
duced to the full grid, including the “weights,” can be done
with a modified depth first search as well.

(5) Hand off the reduced grid and mapping to the full grid
to the impurity solver and D�A code.

APPENDIX B: IMPROVED ASYMPTOTICS

For the lD�Adm method, it is necessary to solve the two
coupled equations in Eq. (8a) and Eq. (8b) for λm and λd

simultaneously. This requires a precise evaluation of the cor-
responding frequency sums in these relations as well as in
Eqs. (5) and (6). For a numerical evaluation, these sums over
an infinite number of Matsubara frequencies obviously have
to be restricted to a finite frequency grid. A plane summation
in such a finite frequency domain is typically not sufficient
to determine λd and λm, but the consideration of the high-
frequency asymptotic behavior of all involved correlation
functions provides accurate and stable enough results, even if
small frequency grids or noisy Monte Carlo input data is used.
This section gives an overview of the improved Matsubara
summation method used to perform the Matsubara frequency
sums for the determination of the λ parameters.
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The central idea for this summation technique is to di-
vide functions of Matsubara frequencies f ω, where ω is now
a generic variable which can represent a (set of) fermionic
and/or bosonic Matsubara frequencies, into a core and asymp-
totic region. The summation is then performed separately for
both. In the core region (indicated by a subscript “c”), a sum
over the exact numerical data for f ω is carried out while in
the asymptotic high-frequency regime f ω (or shell region,
indicated by a subscript “s”) is replaced by leading order
diagrams T ω which do not decay as a function of frequency.
The frequency sum over the latter can be performed semi-
analytically. Formally, this idea can be represented as follows:∑

ω

f ω =
∑
ω∈�ν

c

( f ω − T ω + T ω ) +
∑
ω∈�ν

s

( f ω − T ω + T ω )

≈
∑
ω∈�ν

c

( f ω − T ω ) +
∑

ω

T ω,

where in the second line of this equation we have neglected
the term f ω − T ω in the high-frequency shell region as it
rapidly decays with increasing frequency ω. As discussed
in Appendix A, the core region �c = �ν

c for the bosonic or
fermionic frequency ω can depend on a (fermionic or bosonic)
Matsubara frequency ν which is not involved in the summa-
tion when shifted grids are considered for the calculation.
If two indices are used for a core or shell summation, the
notation implies that the tuple lies either within the core or
the shell region.

In the following, we will denote quantities summed over
the core and shell region by corresponding superscripts. Fur-
thermore, we use a tilde to distinguish quantities obtained
through improved summation from ones obtained through
plain summation. For the bare susceptibility (“bubble” term),
this reads as follows:

χνω
0,q = −β

∑
k

Gν
kGν+ω

k+q ,

χω
0,q =

∑
ν∈�ω

c

χνω
0,q +

∑
ν∈�ω

s

χνω
0,q = χ core,ω

0,q + χ shell,ω
0,q .

The asymptotic contribution to the bare susceptibility
χω,shell

0,q can be obtained directly from the high-frequency tails
of the DMFT Green’s functions. Following the derivation of
the high-frequency behavior of the vertex functions F νν ′ω

r,q

and �νν ′ω
r as discussed in Refs. [66,69,70], we obtain for the

improved frequency sums for the calculation of χω
r,q and γ νω

r,q
in Eqs. (5) and (6) the following expressions:

λ̃νω
r,q = (

1 ∓ Uχ shell,ω
0,q

)−1 · (
λcore,νω

r,q + λshell,νω
r,q

)
, (B1)

χ̃ω
r,q =

(
1 − (

Uχ shell,ω
0,q

)2
)−1

· (
χ core,ω

r,q + χ shell,ω
r,q

)
, (B2)

γ̃ νω
r,q = 1 ∓ λ̃νω

r,q

1 ± U χ̃ω
r,q

. (B3)

We have introduced the following abbreviations:

F νν ′ω
m,diag = 1

2
χν−ν ′

d − 1

2
χν−ν ′

m + χν+ν ′+ω
pp,↑↓ ,

F νν ′ω
d,diag = 1

2
χν−ν ′

d + 3

2
χν−ν ′

m − χν+ν ′+ω
pp,↑↓ ,

FIG. 14. Local physical spin susceptibility χω
m as a function of

ω for U = 1 and β = 14 as obtained by summing the generalized
physical susceptibility χνν′ω

m over the fermionic frequencies ν and
ν ′ using the improved frequency sums (red crosses) versus a plain
frequency sum on a finite grid (green filled circles) and the exact
results obtained directly from the impurity solver (empty orange
circles). The inset shows the logarithm of the difference between
normal summation and improved summation to the exact values. In
the main panel, the plain Matsubara summation is cut of at values of
ω where it becomes negative (i.e., unphysical).

λcore,νω
r,q = ±β

∑
ν ′∈�ω

c

(
δνν ′ − χνν ′ω

q

χνω
0,q

)
,

λshell,νω
r,q = Uχ shell,ω

0,q ∓ U 2
∑

ν ′∈�ω
s

F νν ′ω
r,diagχ

ν ′ω
0,q ,

χ core,ω
r,q =

∑
νν ′∈�ω

c

χνν ′ω
r,q ,

χ shell,ω
r,q = ±U

(
χ shell,ω

0,q

)2 − U 2
∑

νν ′∈�ω
s

χνω
0,qF νν ′ω

r,diagχ
ν ′ω
0,q

−
∑

ν ′∈�ω
s

χν ′ω
0,q

⎛
⎝1 + 2U

∑
ν∈�ω

c

(
λ̃νω

r,q ∓ 1
)
χνω

0,q

⎞
⎠.

The local physical susceptibilities χω
r for the diagonal term

F νν ′ω
r,diag of the full vertex are local and can be obtained directly

from the DMFT impurity solver. The contributions from F νν ′ω
r,diag

are typically negligible, when the physical susceptibilities in
the three channels fall off sufficiently fast with increasing
frequency. Figure 14 shows a benchmark for our improved
summation method for the summation of the purely local
generalized susceptibility χνν ′ω

m (in the spin channel) over
the fermionic Matsubara frequencies ν and ν ′ yielding the
physical susceptibility χω

m. The χω
m obtained via our improved

summation technique (red crosses) agrees excellently with the
exact results (orange empty circles) obtained directly from
the impurity solver. The χω

m obtained through a plain sum
on a finite frequency grid (green filled circles), on the other
hand, shows substantially larger deviations from the exact
results (see inset in Fig. 14) and eventually features unphysical
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FIG. 15.
∑

ωq χλ,ω
↑↑,q − n

2 (1 − n
2 ) = 1

2

∑
ωq(χλd ,ω

d,q + χλm ,ω
m,q ) −

n
2 (1 − n

2 ) for λd = 0 showing the root for the equation (which
determines λm) and poles for λm < λm,min.

negative values at larger frequencies ω which is not observed
for the improved frequency sum.

APPENDIX C: ROOT FINDING PROCEDURE

Finding the roots λd and λm for Eqs. (8a) and (8b) can be
done with any root finding algorithm, but requires two con-
siderations in order to yield reasonable results: (i) the physical
tails must be free of finite size effects and (ii) the unphysical, q
dependent poles of Eq. (9) must be avoided in the calculation
(i.e., the resulting λ corrected physical susceptibility must
non-negative).

The first difficulty can be overcome by using the proce-
dure for treating the high-frequency asymptotic tails of all
correlation functions as explained in Appendix B. The second
requirement has been avoided by the procedure described in
Sec. III A. However, this method is not applicable for large
simulations, due to the numerical cost of the many evaluations
of the equation of motion, required to obtain the curves in
Figs. 1 and 2 over a large range of λ values. Instead, a more
elaborate root finding algorithm, such as the Newton method,
is preferable requiring substantially fewer evaluations of the
EOM. To avoid unphysical solutions, let us consider that
the λ corrected physical susceptibilities are continuous and
monotonically decreasing (as a function of λ) for all λ values
larger than the largest pole, i.e., λr > λr,min [71]. The location

of the largest pole is

λr,min = min
q

1

χω=0
r,q

.

The monotonously decreasing behavior follows directly
from the derivative of χλr ,ω

r,q with respect to λr :

d

dλr

∑
ωq

χλr ,ω
r,q = −

∑
ωq

(
χλr ,ω

r,q

)2 � 0.

In Fig. 15, the difference between right- and left-hand side
of Eq. (8a) is shown for U = 1 and β = 14 as a function of
λm. Here we see the q-sampling dependent divergences for
λm < λm,min. Since both λ corrected physical susceptibilities
exhibit the same behavior, the λr,min values can be deter-
mined independently. This pole structure leads to an interval
[λr,min,∞) in which a single root for Eq. (8a) is located.
Eq. (8b) could in principle exhibit nonmonotonous behavior,
since the right-hand side is a function of both λ corrected
physical susceptibilities. However, as discussed in Sec. III A
(see Figs. 1 and 2), this does not happen for our calculations.
Therefore, by means of the following transforming one can
obtain a result, guaranteed to yield exactly one, physically
correct, root.

λ̃r = λr,min − λr,max

2
(tanh (λr ) + 1) + λr,min (C1)

λr,max can in principle be arbitrarily large, but a reasonable
value can be chosen from the known fluctuations strength of
the system. This transformation is then applied to the function,
before it is handed over to the solver and the resulting root is
transformed in the same way.

For our purposes, we use the multivariate Newton method,
which is a reasonable choice due to the low dimensionality
of our problem and the smoothness of the search space (see
Sec. III A). The Jacobian was determined by finite differences
since Eq. (8b) involves a convolution over numerical data,
making automatic and analytic differentiation challenging.
Note that the transformation in Eq. (C1) concentrates sam-
pling points at the borders of the search interval. For very high
precision, especially at strong coupling where the Jacobian be-
comes small (see also Fig. 1), one can first run a low precision
pass with the transformation and then use the obtained result
as a starting point for a high precision search.
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