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Effects of localized phonons on interfacial thermal conductance
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Interfacial thermal conduction is traditionally described by the transmission of traveling phonons in their
bulk counterparts. However, recent experiments suggest that localized phonons at an interface may exert a
substantial influence on interfacial thermal conductance. By considering quantum phonon scattering processes at
a weakly interacting interface, we analyze the role of localized phonons at the interface involved in the interfacial
thermal conduction and discover that there is a coupling between traveling phonons and the even orders
of the localized phonons at the interface. Using fourth-order localized phonons as an example, we show that
the traveling phonons can collide with the localized phonons at the interface. Such collisions can significantly
change the transmission probability of the traveling phonons and thus affect the interfacial thermal conductance,
and importantly, such effects become increasingly significant with increasing temperature.
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I. INTRODUCTION

Interfaces play a critical role in the thermal management of
nanoscale devices [1–4]. The prediction of interfacial thermal
conductance requires an understanding of phononic properties
and their scattering mechanisms at the interface. Due to the
breakdown of translational symmetry and peculiar interatomic
interactions at the interface, the phonon modes at an interface
may differ significantly from their bulk counterparts [5,6].
Depending on the nature of the phonons, their modes can
be classified into extended (or traveling) modes and localized
modes [6]. The extended modes involve lattice vibrations on
both sides. Their contribution to interfacial thermal conduc-
tance can be described by using the phonon gas model [7] or
nonequilibrium Green’s function (NEGF) formalism [8–10]
under the assumption that the phonon transport is described
by the probability of phonon transmission across the interface.
On the other hand, due to the breakdown of periodicity and
abrupt change in potential, phonons can be easily localized
at the interface [4,11]. The localized phonons are spatially
confined at the interface, and their carried energies are not
propagating. It is commonly believed that they are not energy
carriers and thus do not contribute to the thermal transport pro-
cesses. Compared with the extended modes, localized modes
draw much less attention.

However, recent experiments surprisingly showed that the
localized phonon modes at an interface could have a substan-
tial influence on the interfacial thermal conductance [12,13].
It was suggested that the localized interfacial modes could act
as a bridge to mediate the transport of bulk modes [14,15]. In
addition, molecular dynamic simulation also suggested that
the localized modes at the interface could play an impor-
tant role in the interfacial thermal conductance [16,17]. We
note that although those experimental and theoretic studies

*zhangyw@ihpc.a-star.edu.sg

presented convincing evidence of the strong effects of local-
ized phonon modes on interfacial thermal conductance, the
underlying mechanisms for the strong effects so far remain
unclear.

In this work, we consider a weakly interacting interface
and formulate a quantum phonon-scattering model to analyze
the effects of localized phonons on interfacial thermal con-
ductance. In order to describe the localized phonon modes and
phonon-phonon interactions, a nonlinear interatomic potential
is taken to describe the interatomic interaction at the inter-
face, which enables the creation of localized phonon modes.
Through the fourth-order interatomic interface, we are able to
consider the interactions between the traveling phonons and
localized phonons. We find that a localized phonon can merge
with a traveling phonon from one side and then emit the trav-
eling phonon into the other side of the interface while keeping
the localized phonon on the original side. Through this pro-
cess, localized phonons are able to catalyze the transport of
traveling phonons and thus affect interfacial thermal transport.
Hence, the present work unveils the underlying mechanisms
for the interactions between traveling and localized modes at
the interface and explains the role of localized modes in the
interfacial thermal conduction observed in experiments.

II. THEORETICAL DERIVATION

We model a weakly interacting interface that connects two
harmonic leads by using nonlinear interfacial coupling. In
general, the Hamiltonian can be written as

H = HL + HR + Hint, (1)

where HL = ∑
q

( p̃L
q )2

2m + 1
2ω2

q(x̃L
q )2 and HR = ∑

q
( p̃R

q )2

2m +
1
2ω2

q(x̃R
q )2 are collections of harmonic oscillators. We consider

an interface at which nonlinear phonon scattering contributes
significantly to interfacial thermal conductance. So the
interaction Hamiltonian Hint includes a nonlinear potential
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term that causes multiple-phonon scattering processes in
general. In order to explore in detail how the nonlinearity
in the interface potential gives rise to the phonon-phonon
scattering, a common approach is to expand the potential
with respect to the atomic displacements so that we can
analyze the multiple-phonon scattering processes order
by order. The first-order term vanishes as the atoms
vibrate at the equilibrium positions. The second-order
term contributes to the elastic phonon scattering that accounts
for phonon transmission and backscattering. The lowest-order
term accounting for the phonon-phonon scattering is the
third-order term, which describes phonon merging, splitting,
emission, and reflection. However, it is impossible for the
localized phonon involved in the three-phonon processes
to contribute to interfacial thermal conductance without
changing its phonon states. Hence, the fourth-order term
is the lowest-order term for which localized phonons are
possibly involved in the phonon-phonon scattering processes.
For example, a localized phonon at the interface may absorb a
traveling phonon from lead L and then emit a phonon to lead
R, with the original phonon remaining intact at the interface.
Therefore, the minimum Hamiltonian required to take into
account the effects of localized phonons on the interfacial
thermal conductance should include the fourth or even higher
order of nonlinearity in the potential. With this concern, our
interaction Hamiltonian contains interatomic potentials up to
the fourth order as

V = 1

2!

∑
i j

Ki, jxix j + 1

3!

∑
i jk

(Vi j,kxix jxk + Vi, jkxix jxk )

+ 1

4!

∑
i jkl

(Ti jk,l xix jxkxl + Ti j,kl xix jxkxl + Ti, jkl xix jxkxl ),

where the matrix K is the interatomic force constants (IFCs)
of quadratic coupling, the tensors V are the IFCs of cubic
coupling, and the tensors T are the IFCs of the fourth-order
coupling. Here, we place the subindices of the left-lead side
to the left of the comma, while the subindices of the right lead
are to the right of the comma. The displacement operators at
the interface, for example, xL

i , can be expanded with respect to
the displacement of the normal modes of phonons with wave
vector q in L as xL

i = ∑
q cq

i x̃L
q .

For the calculations of thermal current, we employ the for-
malism developed in Ref. [18] under the assumption that the
interfacial coupling is weak. In this weak-interaction regime,
the thermal current is determined by the correlations of the
operators that are involved in the interface coupling. For ex-
ample, the contribution of quadratic coupling can be written
as

I2p = − 1

4h̄

∑
i j,kl

Ki, jKk,l

∫ ∞

−∞
�ik (t )� jl (t )dt, (2)

where �i j (t ) = d�i j (t )
dt and �i j (t ) = 〈xi(t )x j〉 are the two-

point displacement correlation functions. The two-point
correlation functions can be written in terms of the spectral
densities of the left part �L and right part �R as
�i j (t ) = ∫ ∞

−∞
dω
π

�i j (ω)n(ω)eiωt and �i j (t ) = i
∫ ∞
−∞

dω
π

�i j

(ω)ωn(ω)eiωt . A straightforward derivation shows that Eq. (2)

FIG. 1. Schematic illustration of elastic phonon scattering
caused by atoms that involve (a) and (b) quadratic couplings and
(c)–(f) fourth-order couplings. The orange symbols and lines denote
the atoms and their interatomic forces, respectively. The red lines
denote the forward-scattering process of extended modes, the blue
lines denote the backward-scattering process of extended modes, and
the purple lines denote the localized phonon modes. The dashed line
represents either a transmitted phonon or a backscattered phonon.
Atoms labeled differently can be the same atom physically if they
are on the same side of the interface.

can be cast into the Landauer formula,

I2p = 1

(2!)2

∑
i jkl

Ki, jKk,l Hik jl , (3)

where

Hik jl = 4

h̄

∫ ∞

0

dω

π
ωJL

ik (ω)JR
jl (−ω)[nL(ω) − nR(ω)]. (4)

This result can also be derived from the NEGF approach
developed in the literature [19]. It is well known that the
quadratic coupling between the two leads causes only elastic
scattering processes and its contribution to interfacial thermal
conductance can be estimated through the phonon transmis-
sion function of these extended phonon modes.

The elastic phonon scattering processes are phenomeno-
logically shown in Figs. 1(a) and 1(b). Here, we focus on a
phonon with a specific frequency ω. It should be noted that
the phonon energy and phonon frequency will not change
during the elastic scattering. The atoms labeled 1 and 2 are
the interfacial atoms that involve interactions with atoms on
their own side of the interface. The coupling between atoms
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1 and 2 is of quadratic order. Through the coupling, there are
probabilities that a phonon of energy h̄ω can be annihilated at
atom 1 and, simultaneously, a phonon of the same energy can
be created at atom 2 and then thermalized into the right lead.
Through this process, an energy of amount h̄ω is transmitted
across the interface. There are also probabilities that it is
backscattered into atom 1 and then thermalized into the left
lead. As required by detailed balance, a phonon may also
experience a backward-scattering process, as shown in blue
in Fig. 1(b), where a phonon of energy h̄ω is transmitted
from atom 2 to atom 1. During the cycles of phonon creation
and annihilation between atoms 1 and 2, phonons are either
dissipated into or emitted from the baths of both sides. The
amount of net heat flow is determined by the competition
between the phonon emission and dissipation rates of both
baths.

For third-order coupling, we have shown that it contributes
to three-phonon processes, which consist of phonon splitting,
merging, partial reflection, and partial transmission [18,20].
However, in all three-phonon processes, all the phonons are
not conserved. They are either destroyed or newly created
in the scattering process during thermal transport. Therefore,
the localized phonons are not involved. In other words, third-
order coupling contributes to only three-phonon scatterings
between the traveling phonons, and its coupling order is not
high enough to consider interactions between the localized
phonons and traveling phonons. We will show that the latter
interaction is rooted in the fourth-order interatomic potential.

It is known that the fourth-order coupling contributes to
the four-phonon processes, which may involve processes of a
single phonon splitting into three phonons or three phonons
merging into one or two phonons merging together with the
emission of two new phonons. However, surprisingly, in ad-
dition to the normal four-phonon processes, we find a special
kind of four-phonon process, as illustrated in Figs. 1(c)–1(f),
can interact with traveling phonons. For example, in Fig. 1,
a phonon mode from atom 3 collides with a phonon from
vibrations between atoms 1 and 2 on the left side of the
interface, and then it can emit the original phonon to atoms
1 and 2 and another phonon to atom 4. Here, the vibrations
between 1 and 2 are localized phonons since they do not travel
across the interface. On the other hand, the vibrations between
3 and 4 are extended or traveling phonons as they travel across
the interface. This four-phonon process can be described as a
collision between the extended modes and localized modes.
Below, we will show that the existence of such collisions
will substantially affect the transmission of the extended
modes.

Mathematically, such collisions come from both the cross
term between quadratic and fourth-order couplings and the
fourth-order couplings themselves. To calculate the thermal
current, one needs to consider the net heat flow from all
the combinations between a forward process [Figs. 1(a), 1(c)
and 1(d)] and a backward process [Figs. 1(b), 1(d) and 1(f)].
Except for the process in Figs. 1(a) and 1(b), they all involve
the contribution of localized phonons. In the following, we
analyze these processes in details.

We first analyze the contribution of the correlation between
the term

∑
i j Ki, jxix j and the term 1

4!

∑
i jkl Ti jk,l xix jxkxl ,

where the forward process is mediated via the coupling of

∑
i j Ki, jxix j while the backward process is mediated via the

coupling 1
4!

∑
i jkl Ti jk,l xix jxkxl [Figs. 1(a) and 1(d)]. The eval-

uation of this term involves the calculation of the four-point
correlation function. By using Wick’s theorem, we can find
that

φL
i jkl (t ) = 〈xi(t )x jxkxl〉 = cL

i j (t )ZL
kl + cL

ik (t )ZL
jl + cL

il (t )ZL
jk,

where ci j (t ) = 〈xi(t )x j (0)〉 are the displacement-correlation
functions and we have defined Zi j = 〈xix j〉 = ci j (0) as the
correlation functions when t = 0. If i = j, it is the expectation
value of the square of the amplitude of atomic vibration.
Therefore, it increases with temperature as well as the spec-
tral density of that atom. In the high-temperature limit, it
should be proportional to temperature according to the equal-
partition theorem.

With the correlation function, we find that its contribution
to the thermal current is

Ih = 1

2!

1

4!

∑
i jklmn

6Ki, jTklm,nZL
lmHik jn. (5)

We immediately find that its contribution to the thermal
current is proportional to ZL, which provides an extra
temperature-dependent component. As we know, Hik jn will
saturate in the high-temperature limit. So this term will even-
tually linearly increase with temperature.

This phonon scattering process can be phenomenologically
explained through the scattering process shown in Fig. 1. It
describes a combination of two cycles of scattering processes.
In the first cycle, the forward process is carried out through
the quadratic coupling [Fig. 1(a)], and the backward scatter-
ing is through the fourth-order coupling [Fig. 1(d)]. In this
backward-scattering process, the transmitted phonon main-
tains its energy across the interface. So it is regarded as elastic
scattering with an extended mode. This happens when the vi-
brations of the other two atoms that involve in the fourth-order
coupling, atoms 1 and 2, are in a localized phonon mode, such
that the phonon forms a closed cycle on the left side and does
not travel to the other side of the interface. However, whenever
an elastic scattering from atom 4 to atom 3 happens, a phonon
conversion simultaneously occurs between atoms 1 and 2 due
to the fact that their interatomic coupling is in the fourth order.
In such a way, the localized phonon between atoms 1 and
2 will affect the scattering probability between atoms 3 and
4 and thus influence the interfacial thermal conduction. We
note that atoms 1 and 2 can physically be the same atom. In
such cases, the creation and annihilation processes at atom
1, although they do not affect the vibrational state of atom
1, will simultaneously trigger the transmission processes of
traveling phonons between atoms 3 and 4 and thus affect the
interfacial thermal conductance. This effect is quantitatively
described by the quantity ZL. In the other cycle, on the other
hand, the forward process is carried out by the fourth-order
coupling [Fig. 1(c)], and the backward process is carried out
by the quadratic coupling [Fig. 1(b)]. Similarly, the direction
of the net heat flow is determined by the phonon emission and
dissipation ratio of the two baths.

Above, we showed a typical example in which a high-order
potential can cause phonon scattering mediated by localized
phonons. In a similar manner, we can also calculate the
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other contributions. Next, we consider the cross term between∑
i j Ki, jxix j and 1

4!

∑
i jkl Ti, jkl xix jxkxl . The thermal current

turns out to be

Ih = 1

2!

1

4!

∑
i jklmn

3Ki, jTk,lmnZR
mnHik jl . (6)

Its phenomenological illustration can also be described by two
cycles: The first one is illustrated in Figs. 1(a) and 1(f), and the
second one is illustrated in Figs. 1(b) and 1(e). We find that the
second term depends on ZR. This term together with the first
term causes an asymmetry between the left and right baths,
resulting in a thermal rectification effect under a temperature
bias.

Our calculation shows that the cross term between∑
i j Ki, jxix j and

∑
mnop Tmn,opxmxnxoxp does not contribute to

the thermal current since a closed cycle cannot be formed.
So far, we have analyzed the cross term between the

quadratic and fourth-order couplings. We show that the
cross term increases linearly with temperature in the high-
temperature limit. Next, we work on the terms coming solely
from the fourth-order coupling. We first analyze the term
from the coupling between Ti jk,l and Tmno,p. We find that such
coupling contributes not only to the four-phonon process but
also to the elastic scattering process. Its contribution to the
elastic scattering process is illustrated through cycles shown
in Figs. 1(c) and 1(d). In this case, two localized phonons
form on the left side, which affects both the forward and
backward processes. Mathematically, its contribution to the
thermal current is given by

Ih(2p) = 1

(4!)2

∑
i jklmnop

9Ti jk,l Tmno,pZL
i jZ

L
noHkml p. (7)

We find that the thermal current depends on the second order
of Z and increases quadratically with increasing temperature
in the high-temperature limit. Similarly, the contribution from
the coupling between Tl,i jk and Tp,mno is

Ih(2p) = 1

(4!)2

∑
i jklmnop

9Tl,i jkTp,mnoZR
i jZ

R
noHl pkm, (8)

and it is illustrated in Figs. 1(e) and 1(f). The contribution
from coupling between Ti jk,l and Tm,nop is

Ih(2p) = 1

(4!)2

∑
i jklmnop

9Ti jk,l Tm,nopZL
i jZ

R
opHkmln, (9)

and the scattering processes are illustrated in Figs. 1(c) and
1(f) and 1(d) and 1(e). We also find that cross term be-
tween

∑
i jkl Ti j, jkxix jxkxl and

∑
mnop Tmn,opxmxnxoxp does not

contribute to the elastic scattering. In this case, only the
four-phonon processes contribute to phonon transport. These
localized phonons are not able to affect the phonon transport
processes.

Now, we have evaluated all the combinations. By defining

SL
i j =

∑
mn∈L

Timn, jZ
L
mn, SR

i j =
∑
mn∈R

Ti,mn jZ
R
mn, (10)

FIG. 2. Illustration of the setup used in the calculation. The in-
terface is modeled by the Morse potential, which has a minimum
energy of De at the equilibrium position re. The left and right leads
are assumed to be Rubin baths.

the total thermal current can be written in a concise form as

Ih(2p) =
∑
i j,kl

Hi jkl

(
1

2!
Kik + 3

4!

(
SL

ik + SR
ik

))

×
(

1

2!
Kjl + 3

4!

(
SL

jl + SR
jl

))
.

(11)

We have shown that the fourth-order coupling at the in-
terface can influence the transmission of extended modes.
By making a comparison with Eq. (2), we find that the
temperature-dependent quantity S can be regarded as an ef-
fective quadratic force constant. The value of S increases
linearly with temperature. Therefore, this effect will increase
with the increase in temperature and will eventually become
dominant in the high-temperature regime. This finding sug-
gests that to calculate the thermal current across a weakly
interacting interface, it is insufficient to consider only the
quadratic interatomic force constant K . It is necessary to
evaluate the effective force constant S that includes the con-
tribution from the fourth-order potential, which essentially
considers the localized phonons. This is particularly important
at higher temperatures as the impacts from localized phonons
are stronger.

III. NUMERICAL RESULTS OF AN APPLICATION

Next, we use a one-dimensional chain to demonstrate this
effect. In the simplest model, the interface connects two Rubin
baths, as shown in Fig. 2. At the interface, only the nearest
atoms interact with each other. The interatomic force con-
stant within the bath is characterized by k. At the interface,
we use Morse potential V (r) = De(e−2a(r−re ) − 2e−a(r−re ) ) to
simulate the coupling potential between the two baths. The
interatomic coupling within the lead K is significantly larger
than that of the interface coupling.

In our setup, we allow the adjustment of the interatomic
distance at the interface, and as a result, the interface cou-
pling can be adjusted. If we stretch the two leads, then the
interatomic distance between the leads and within the leads
will increase. They will reach a new equilibrium position at
the point where V ′(r) = kr. The interfacial atoms at this new
position are balanced by both the Morse potential and the
quadratic potential within the lead. However, concerning the
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FIG. 3. The mean square of the vibrational amplitude Z is plotted
against temperature under different interatomic force constants: k =
50 N/m, k = 100 N/m, and k = 350 N/m.

interface coupling, both the second-order and higher-order
force constants are adjusted. The quadratic and fourth-order
IFCs can be calculated via the calculations of the derivatives
of Morse potential with respect to the new equilibrium posi-
tion.

Figure 3 shows the temperature dependence of Z , which
can be regarded as the mean square of the vibrational am-
plitude of interfacial atoms. It is seen that Z increases with
the increase in temperature. Theoretically, it will eventually
linearly increase with respect to temperature in the high-
temperature regime. Figure 3 also shows that Z is larger when
k is smaller. The magnitude of Z in comparison with the
ratio of fourth-order and second-order IFCs (η = T/K) will
determine how important the fourth-order potential is for the
elastic scattering processes. If Z is comparable to η, the impact
of fourth-order IFCs will have a comparable effect on the
elastic scattering processes with respect to the quadratic IFCs.
Hence, we can conclude the following: (1) Localized phonons
are less important in the low-temperature regime and become
increasingly important with the increase in temperature. This
result is consistent with previous findings [21]. (2) Localized
phonons are more important when the interatomic bonds in
the baths are weaker (smaller k) but less important when the
bonds are stronger. This is also consistent with the previous
studies showing that elastic scattering normally dominates for
phonons in graphene, in which the carbon-carbon bonds are
strong [22].

Figure 4 shows the temperature-dependent contribution
of extended modes to the interfacial thermal conductance,
with and without considering the collisions with the local-
ized modes. Here, we have used the interatomic distance at
the interface to adjust the potential. We find that localized
phonons can both enhance and inhibit the elastic scattering
processes, depending on the distance and temperature. When
r = 0.4 nm, the fourth-order potential suppresses the elastic
scattering process at a low temperature but enhances it at
a high temperature with a crossover temperature at around
T = 300 K. When r = 0.5 nm, localized phonons suppress

FIG. 4. Temperature-dependent thermal conductance with or
without considering the localized phonons at different distances.
Parameters: a = 1/Å, De = 0.5 eV, k = 350 N/m, and re = 0.3 nm.

the elastic scattering process, while at r = 0.6 nm and
r = 0.7 nm, they enhance the elastic scattering process. In this
particular one-dimensional model, the effect is determined by
the sign of the second-order and fourth-order IFCs. Specifi-
cally, when r = 0.5 nm, the localized phonons will suppress
the elastic scattering process when the sign of the fourth-order
IFC is different from that of the second-order IFC. For r =
0.4, 0.6, and 0.7 nm, the localized phonons will enhance the
elastic scattering since the sign of the fourth-order IFC is the
same as that of the second-order IFC. It is noted that with
the increase of lead-lead distance, the interfacial coupling
decreases exponentially, as seen from the Morse potential, and
as a result, the thermal conductance decreases dramatically.

IV. CONCLUSION

In this work, we studied the interactions of extended
phonons and localized phonons and their effects on interfacial
thermal conduction across a weakly interacting interface. For
heat conduction at the interface without localized phonons,
phonons with extended modes are heat carriers responsible
for interfacial thermal conductance. However, in the presence
of fourth-order interatomic potential, phonons with extended
modes will collide with the localized phonons, and through
such collisions, the localized phonons can significantly affect
the transmission of phonons with extended modes. This effect
becomes increasingly significant with the increase in temper-
ature. From our model calculation, we show that the localized
modes can either enhance or suppress the elastic scattering
processes, depending on the coupling coefficients and temper-
ature. This work suggests that in order to accurately evaluate
phonon transmission across an interface, one needs to con-
sider the effects of localized phonon modes, especially when
the temperature is high.
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