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Nonlinearity-induced chiral solitonlike edge states in Chern systems
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We study the nonlinear effect on topological edge states by including a nonlinear term to a Chern insulator
which has two chiral edge states with opposite chiralities. We explore quench dynamics by giving a pulse to
one site on an edge and by analyzing its time evolution. Without the nonlinearity, an initial pulse spreads sym-
metrically and diffuses. On the other hand, with the nonlinearity present, unexpectedly a solitonlike edge state
is formed, undergoes a unidirectional propagation along the edge, and turns at a corner without backscattering
or diffraction. Furthermore, its wave function is well fitted by ∝sech[kx (x − vxt )]. A further increase of the
nonlinearity induces a self-trapping transition, where the pulse is trapped to the initial site.
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I. INTRODUCTION

Both topology and nonlinearity continue to be the main
topics in the history of physics, which have been mainly
studied independently. An interplay between topology and
nonlinearity creates a frontier of physics. Indeed, nonlinear
topological physics is an emerging field, which is now stud-
ied in photonic [1–10], mechanical [11–14], electric circuit
[15–17], and resonator [18] systems. The simplest model is
the nonlinear Su-Schrieffer-Heeger model [2,6,15,19,20].

A characteristic feature of topological systems is the
emergence of topological edge states, which are immune to
disorders and randomness in a sample. A nonzero topologi-
cal number indicates a nontrivial topological structure of the
hopping matrix.

A prominent feature of a continuous nonlinear system is a
soliton, which is an exact solution describing a wave packet
stabilized by the nonlinear interaction. However, a lattice
system cannot support solitons due to the Peierls-Nabarro
potential [21–24] caused by the discreteness of the system.
Solitonlike edge states propagating along a topological edge
of a sample are fascinating objects in lattice systems [1,25–
27]. An interplay or a competition between topology and
nonlinearity is a main issue of nonlinear topological systems.

In this paper, we propose a nonlinearity-induced chiral
solitonlike edge state propagating along an edge by analyzing
a Chern insulator together with a nonlinear term based on
quench dynamics. Quench dynamics provides us with a pow-
erful method to reveal the essence of nonlinear topological
systems [8], where a pulse is given to one site on an edge as the
initial condition. The time evolution reveals both an interplay
and a competition between topology and nonlinearity in the
present system.

First, without the nonlinear term, the initial pulse spreads
symmetrically around the initial site even in the topological
phase. This is because two chiral edge modes with opposite
chiralities are present and because the pulse excites bulk sites
symmetrically as well. Second, with the nonlinear term, the
wave packet moves unidirectionally, because one of the two

chiral edge modes is dominantly excited. Finally, when the
nonlinearity is strong enough, a self-trapping transition is
induced, where the edge modes are trapped to the initial site
and make no motion. However, a much more intriguing phe-
nomenon occurs in the presence of appropriate nonlinearity
before the self-trapping transition occurs. Indeed, unexpect-
edly, a solitary wave is formed and propagates unidirectionally
along the edge. The propagation direction is determined by
the direction of the gauge flux implicit in the Chern insulator.
We call it a nonlinearity-induced chiral solitonlike edge state.
The solitonlike state turns at a corner without backscattering
or diffraction.

II. MODEL

We investigate a nonlinear Schrödinger equation on a lat-
tice [28–34],

i
dψn

dt
+ κ

∑
m

Mnmψm + ξ |ψn|2ψn = 0. (1)

This is the Hamilton equation, idψn/dt = ∂H/∂ψ∗
n , with the

Hamiltonian

H = −κ
∑
n,m

Mnmψ∗
n ψm −

∑
n

ξ

2
|ψn|4 ≡ K + U . (2)

The first term is the kinetic energy K while the second term
is the potential energy U . The Hamiltonian is a conserved
quantity. There is one more conserved quantity,

Nexc =
N∑

n=1

|ψn|2, (3)

which is the excitation number.

III. CHERN INSULATOR

We first study the kinetic term, which involves the hopping
matrix Mnm and the coupling strength κ . We consider the
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FIG. 1. (a) Band structure of the matrix Mnm in nanoribbon ge-
ometry. Curves in red (cyan) indicate the localized down (up)-edge
states, while those in green indicate the bulk states. The edge state
colored in red and pointed by an arrow is right (left) going along
the down edge when it has positive (negative) eigenvalue. The band
Chern number Cn for the nth band is indicated in green while the gap
Chern number Cgap

r for the rth gap is indicated in red. The horizontal
axis is the momentum k ranging from −π to π . The vertical axis
is the eigenvalue. The LDOS |ψn|2 is shown at (b) k = 0.25π and
(c) k = 0.75π . It is localized at the down edge at n = 1 and up edge
at n = 20. The horizontal axis is the lattice site n. The nanoribbon
width is L = 20.

hopping matrix in the form of

Mnm = eiαny |nx + 1, ny〉〈nx, ny|
+ e−iαny |nx, ny〉〈nx + 1, ny|,
+ |nx, ny + 1〉〈nx, ny| + |nx, ny〉〈nx, ny + 1|, (4)

where n = (nx, ny). The system is topological because the
hopping matrix Eq. (4) describes the Chern insulator for
α �= 0, π or the quantum Hall effect with α representing the
penetrated gauge flux into a plaquette of the square lattice.
This model is also realized in photonic systems by making
coupled resonator optical waveguides [33,35–37], where ψ

represents the electric field and α represents a gauge flux in
the Landau gauge.

We take α = ±π/2 explicitly in what follows. When α =
π/2, we have a four-band model given by

M(kx, ky) =

⎛
⎜⎜⎜⎜⎝

2 cos kx 1 0 e−iky

1 −2 sin kx 1 0

0 1 −2 cos kx 1

eiky 0 1 2 sin kx

⎞
⎟⎟⎟⎟⎠
(5)

in the momentum space. When α = −π/2, we have Eq. (5)
with the replacement of kx by −kx. It means that the sign of α

determines the hopping direction.
As a characteristic feature of a Chern insulator, chiral edge

states emerge in nanoribbon geometry. The band structure of
the matrix κM is shown in Fig. 1(a), where we clearly observe
four topological edge states designated by two sets of crossed
red and cyan curves. They are two chiral edge modes with pos-
itive energy connecting two separate bulk bands at k = 0.25π

and negative energy at k = −0.75π , where the direction of the
chirality is opposite. In addition, there are two nonchiral edge
modes at k = 0.75π and k = −0.25π , which are the slightly

FIG. 2. Eigenspectrum of the matrix Mnm in square geometry in
(a1) the linear model (ξ = 0) and (a2) the nonlinear model (ξ = 4κ).
The mean-field approximation is used for the nonlinear case, and the
matrix Mnm is evaluated at the initial time with the initial condition
Eq. (11). The red parts of a curve indicate the edge states while the
green parts indicate the bulk states. The horizontal axis is the eigenin-
dex β of the state ψ̄ (β )

n , while the vertical axis is the eigenvalue.
(b1)–(b3) The component |cβ |2 corresponding to the eigenenergy in
(a1) and (a2), where (b2) is an enlarged figure of (b3). The red points
in (a2) and (b3) represent the isolated eigenmode emerging only in
the nonlinear model whose origin is the initial condition imposed
in the quench dynamics. Eigenindex β is sorted in the increasing
order of Eβ . (c1), (c2) The LDOS |ψn|2 designated by the strength of
red. It is localized along the edges, representing the topological edge
modes. In the presence of the nonlinearity, the topological edge state
detours the initial point (nx, ny ) = (10, 1) as in (c2). We have used a
square with size 20 × 20.

detached ones from the bulk bands. We show the local density
of states (LDOS) at k = 0.25π and k = 0.75π in Figs. 1(b)
and 1(c), where there are two edge states localized at the up
and down edges.

Next, we calculate the eigenspectrum of the matrix M
in square geometry, which is shown in Fig. 2(a1). We also
show the LDOS for an edge state in Fig. 2(c1), where the
eigenfunction is well localized at the edge of the square and
represents a topological edge state.

In the Chern insulator, the Chern number is assigned to
each bulk band and the number of chiral edge states cor-
responds to the difference of the Chern numbers between
two adjacent bands. We call this difference as the gap Chern
number and the ordinary Chern number as the band Chern
number, for clarity, in the following.
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The gap Chern number Cgap
r = tr for the rth gap is deter-

mined by the Diophantine equation [38–40],

r = qsr + ptr, (6)

with the flux α = 2π p/q, where sr and tr are integers and
|tr | � q/2. Here α = π/2 with p = 1 and q = 4. Hence, it is
explicitly solved as

1 = 4sr + tr, (sr, tr ) = (0, 1), (7)

2 = 4sr + tr, (sr, tr ) = (0, 2), (1,−2), (8)

3 = 4sr + tr, (sr, tr ) = (1,−1). (9)

The Chern number Cgap
1 for the first gap is 1 as in Eq. (7) and

the Cgap
3 for the last gap is −1 as in Eq. (9), which corresponds

to the chiral edge states [41]. On the other hand, when the
second and third bands are not separated, the gap and band
Chern numbers are not uniquely fixed [40] as in Eq. (8).
Indeed, there are two edge states (colored in red and blue)
between the second and third bands in Fig. 1(a).

On the other hand, the band Chern number Cn for the nth
band is assigned from the relation [38,39,42]

Cn+1 − Cn = Cgap
r , (10)

where the rth band gap exists between the nth and (n + 1)th
bands. They are shown in Fig. 1(a). The Chern numbers for
the second and third bands have ambiguity because they are
touched at the zero energy [40]. We note that the sum of
the Chern number for all bands is zero for the tight-binding
model.

IV. QUENCH DYNAMICS

We solve the nonlinear Schrödinger Eq. (1) under the initial
condition,

ψ ini
n = δnx,Lx/2δny,1, (11)

where Lx is the length of the edge along the x axis with Lx an
even number. This is the quench dynamics, which has been
employed to reveal topological edge states in one dimension
[8,10,13,17,43] and topological corner states in two dimen-
sions [8,10]. The hopping term favors the pulse to expand
all over the sample, while the nonlinear term favors the pulse
to be self-trapped to the initial state. We expect an intriguing
phenomenon to occur in the presence of the topological edge
state, when these two terms compete among themselves.

First, we study the linear model by setting ξ = 0 in Eq. (1).
We expand the initial state Eq. (11) by the eigenfunctions

ψ ini
n =

∑
β

cβψ̄ (β )
n , (12)

where ψ̄ (β )
n is the eigenfunction of the matrix κMnm and β is

the index of the eigenenergy:

κMnmψ̄ (β )
m = Eβψ̄ (β )

n . (13)

The square of the component |cβ |2 is shown in Fig. 2(b1). It
has peaks at the edge states colored in red but it also has values
in bulk states colored in green.

FIG. 3. Time evolution of the LDOS |ψn|2 (b) in the linear model
(ξ = 0), (a) and (c) representing a solitary wave in the nonlinear
model (ξ = ±4κ), and (d) representing a trapped wave in a strong
nonlinear model (ξ = ±10κ). We have used a square sample with
size 20 × 20. The horizontal axes are the lattice site n (1 � n � 20)
and time t (0 � t � 0.5) in unit of 1/κ . (e) A solitonlike edge state
in a rectangular sample with size 500 × 10, whose data are extracted
from Figs. 6(b5)–6(b8). The solid curve represents the solitary wave
function in Eq.(18). Fitting parameters are A = 0.0455, kx = 0.55,
and vx = 0.16. We have used the initial condition Eq. (11) for all.

We show the time evolution of the amplitude |ψn|2 along
the edge in Fig. 3 when a pulse is given to site (Lx/2, 1) as an
initial condition. It exhibits distinct behaviors depending on
ξ . Typical behaviors are as follows. When ξ = 0, the local-
ized state rapidly spreads as in Fig. 3(b). On the other hand,
when ξ = ±4κ , we observe a solitary wave propagation as in
Figs. 3(a) and 3(c). The velocity of the wave packet is opposite
for positive and negative nonlinearity ξ . When ξ = ±10κ ,
the state remains localized as in Fig. 3(d). We explore these
characteristic phenomena in more detail.

A. Linear model

The time evolution of the LDOS |ψn|2 for the linear model
(ξ = 0) is shown in Figs. 4(a1)–4(a5). The amplitude spreads
not only along the edge but also into the bulk in a symmetric
way between the right and left sides. This is because there
are two pairs of chiral edge states with opposite chiralities,
as shown in Fig. 1(a). In fact, the occupation of these two
opposite chiral edge states is identical, as shown in Fig. 2(b1).

FIG. 4. Time evolution of the spatial profile of the LDOS in a
whole square sample with size 20 × 20. (a1)–(a5) The LDOS in the
linear model with ξ = 0, where it diffuses as time passes. (b1)–(b5)
The LDOS in a strong nonlinear model with ξ = 10κ , where it is
unchanged as time passes: The time step is τ = 2 in units of 1/κ .
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Another feature is that considerable amounts of the amplitude
|ψn|2 penetrate into the bulk, although we start with the state
localized at the edge as in Eq. (11). This is because a pulse
excites bulk states as well.

B. Mean-field theory

It is an intriguing phenomenon that a unidirectional solitary
wave emerges in the nonlinear model(ξ �= 0). To understand
it, we analyze the nonlinear effect in the mean-field approxi-
mation. We approximate the nonlinear term as

ξ |ψn|2ψn � ξ 〈|ψn|2〉ψn, (14)

where 〈|ψn|2〉 is the expectation value of |ψn|2. The Schrö
dinger Eq. (1) is linearized with the hopping matrix Mnm

replaced by

M̃nm = Mnm + (ξ/κ )〈|ψn|2〉δnm. (15)

The nonlinearity term acts as an on-site potential. Let us
diagonalize Eq. (15) at the initial time, where

〈|ψn|2〉 = δnx,Lx/2δny,1, (16)

with use of the initial condition Eq. (11). We study the
case ξ = 4κ . We show the eigenspectrum in Fig. 2(a2) and
|cβ |2 in Fig. 2(b3). Figure 2(b2) is an enlarged figure of
Fig. 2(b3), where the distribution is clearly asymmetric be-
tween the two chiral edge states having positive and negative
eigenvalues. The asymmetry corresponds to the asymmetry
between the right-going and left-going edge states, leading
to a unidirectional motion of the wave packet. Recall that
the edge mode is right (left)-going when it has a positive
(negative) eigenvalue, as explained in the caption of Fig. 1(a).
Hence, the right (left)-going wave-packet motion occurs
for ξ > 0 (ξ < 0).

C. Wave packet

We investigate the wave packet numerically without using
the mean-field theory. The mean position 〈x〉 of the wave
packet is given by

〈x〉 ≡
∑
nx,ny

(nx − Lx/2)|ψnx,ny |2. (17)

We calculate the time evolution of 〈x〉 for various ξ , fit the
position by a linear function 〈x〉 = vxt , and estimate the ve-
locity vx as a function of ξ , whose result is summarized in
Fig. 5(a). The velocity is zero for ξ = 0. It linearly increases
for |ξ | � 4κ , suddenly decreases for |ξ | � 4κ , and makes a
jump at |ξ | ≈ 5.6κ .

D. Chiral solitonlike edge state

In the nonlinear model with ξ = 4κ , the quench dynam-
ics is shown in Figs. 6(a1)–6(a8) for a rectangle with size
80 × 10, and in Figs. 6(b1)–6(b8) for a rectangle with size
500 × 10, and in Figs. 6(c1)–6(c8) for a square with size
20 × 20. A remarkable feature is that the shape of the wave
packet remains unchanged beyond 250 sites, as shown in

FIG. 5. (a) Velocity vx as a function of ξ , which is linear for ξ �
4κ . The vertical axis is velocity in unit κ , while the horizontal axis
is ξ . (b) Amplitude |ψLx/2,1|2 at the initial point as a function of ξ .
Color indicates the value of ξ . The horizontal axis is ξ . We have
used a sample with size 40 × 10.

Figs. 6(b5)–6(b8). It is well fitted by the function

|ψfit(t, x)| = A sech[kx(x − vxt )] (18)

as in Fig. 3(e), where parameters A, kx, and vx are given
in its caption. This is the well-known soliton solution of
the one-dimensional Schrödinger equation, although it is
not a solution of the present two-dimensional model. See
Appendix A.

Furthermore, the wave packet turns at a corner without
backscattering or diffraction, as shown in Figs. 6(c1)–6(c8).
We interpret these phenomena to mean that a chiral solitonlike
edge state is formed from the topological edge modes by the
nonlinear interaction. We have found that it is realized only
around ξ = 4κ in the present system.

E. Self-trapped state

We study the jump around ξ � 5.6κ in Fig. 5(a). We show
the time evolution of the spatial distribution in a strong non-
linear model (ξ = 10κ) in Figs. 4(b1)–4(b5), where the state
remains trapped to the initial site. To show the self-trapping
transition, we calculate the amplitude at the initial site after
enough time:

|ψLx/2,1 |2 ≡ lim
t→∞ |ψLx/2,1(t )|2. (19)

We show it as a function of ξ in Fig. 5(b). There is a sharp tran-
sition around ξ � 5.6κ . The nonlinear-induced self-trapping
transition has been discussed also in other contexts [8,43,44].

In the strong nonlinear regime (ξ � 1), we may approxi-
mate Eq. (1) as

i
dψn

dt
= −ξ |ψn|2ψn, (20)

where all equations are separated one another. The solution is

ψn(t ) = rneiθn (t ), (21)

with a constant rn and θn = ξr2
nt + c. Hence, the amplitude

does not decrease. By imposing the initial condition Eq. (11),
we have rn = 1 for t = 0, namely, the state is strictly localized
at the initial site as in Fig. 3(d).

V. DISCUSSION

We studied nonlinear effects on the chiral edge state
in the nonlinear Schrödinger equation. Our results would
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FIG. 6. Time evolution of the LDOS |ψn|2 in the nonlinear model (ξ = 4κ). (a1)–(a8) Spatial profile of the LDOS along the edge of a
rectangular sample with size 80 × 10. Each inset shows an enlarged figure of a soliton. (b1)–(b8) The LDOS along the edge of a rectangular
sample with size 500 × 10. (c1)–(a8) The LDOS in a whole square sample with size 20 × 20. A wave packet is found to turn at a corner
without backscattering or diffraction. The time step is τ = 10 in units of 1/κ . The horizontal axis is the lattice site n.

be experimentally observed in nonlinear topological pho-
tonic systems [1–3,5–9], where the topological edge states
must be directly observed by photoluminescence. It is
also possible to observe the time evolution of the edge
states [33,36].

Comments are in order. First, the nonlinearity parameter
ξ is introduced by the Kerr effect in the case of photonics
[31,32] and fixed in each sample. Nevertheless, it is enough
to prepare a sample with one fixed ξ , which we explain in
Appendix B. Second, it is necessary to tune α = π/2 to real-
ize the present model because the number of bands is given
by 2π/α. The system turns into a quasicrystal when 2π/α is
irrational. However, it is possible to make a fine-tuning of α

in optical experiments [35,36].
In this paper, we have studied a Chern insulator with

two opposite chiral edges. What happens in a Chern in-
sulator with one chiral edge is an interesting problem. A
typical example is the Haldane model, which we discuss in
Appendix C. As far as we have checked, no solitonlike states
are formed.
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APPENDIX A: NONLINEAR SCHRöDINGER EQUATION

The one-dimensional tight-binding nonlinear Schrödinger
equation is given by Eq. (1). The corresponding continuum
theory reads

i
dψ

dt
+ κ

d2ψ

dx2
+ ξ |ψ |2ψ = 0. (A1)

There is an exact soliton solution given by

ψ (t, x) =
√

�sech

[√
�

(√
ξ

2κ
x − ξv0

2
t

)]

× exp

[
i

√
ξ

2κ

v0x

2
− i

ξ

2

(
v2

0

4
− �

)
t

]
(A2)

or

|ψ (t, x)| = A sech[kx(x − vx )t], (A3)

with

A =
√

�, kx =
√

�ξ

2κ
, vx = v0

√
ξκ

2
. (A4)

This is the fitting function Eq. (9) in the main text, although it
is not an exact solution of the present two-dimensional tight-
binding model.

APPENDIX B: SCALE TRANSFORMATION

We point out that the nonlinearity strength is controlled
only by changing the initial condition without changing a
sample. By making a scale transformation ψn = 1/

√|ξ |ψ̃n,
it follows from Eq. (1) that

i
dψ̃n

dt
+ κ

∑
m

Mnmψ̃n + |ψ̃n|2ψ̃n = 0, (B1)

where the nonlinearity parameter ξ is removed.
In the dynamics starting from a localized state at (Lx/2, 1)

under the initial condition Eq. (6) in the main text, this initial
condition is transformed to

ψ̃ ini
n =

√
|ξ |δnx,Lx/2δny,1, (B2)

namely, the quench dynamics subject to Eq. (1) is reproduced
with the use of the nonlinear Eq. (B1) with the modified
initial condition Eq. (B2). Consequently, it is possible to use
a single sample to investigate the quench dynamics at various
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FIG. 7. Time evolution of the spatial profile of the LDOS |ψn|2 in the Haldane model. (a) Linear model with ξ = 0 and (b) the nonlinear
model with ξ = 4κ . The time step is τ = 10 in units of 1/κ . We have set λ = 0.2.

nonlinearity strength only by changing the initial condition as
in Eq. (B2).

APPENDIX C: HALDANE MODEL

In the main text, we have studied the Chern insulator which
has two opposite chiral edge modes. What happens if we
introduce the nonlinear term in the model with one chiral edge
mode is an interesting problem. The typical example is the
Haldane model defined by

MHaldane =
∑
〈i, j〉

|i〉〈 j| + i
λ

3
√

3

∑
〈〈i, j〉〉

νi j |i〉〈 j|, (C1)

where |i〉〈 j| represents a hopping form site j to site i in
the honeycomb lattice, and 〈i, j〉/〈〈i, j〉〉 run over all the
nearest-/next-nearest-neighbor hopping sites. The first term
represents the nearest-neighbor hopping with the transfer en-
ergy and the second term represents the effective spin-orbit
interaction, where νi j = +1 if the next-nearest-neighboring
hopping is anticlockwise and νi j = −1 if it is clockwise with
respect to the positive z axis.

We show the time evolution starting with the initial condi-
tion which is localized at one site in Fig. 7. The propagation
of the edge modes is found to be almost insensitive to ξ .
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