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We investigate the localization of low-energy single quasiparticle states in 7/9- and 13/15-hybrid nanoribbon
systems in the presence of strong interactions and within a finite volume. We consider two scenarios, the first
being the Hubbard model at half filling, and perform quantum Monte Carlo simulations for a range U that
includes the strongly correlated regime. In the second case, we add a nearest-neighbor superconducting pairing
A and take the symmetric line limit, where A is equal in magnitude to the hopping parameter ¢. In this limit, the
quasiparticle spectrum and wave functions can be directly solved for general on-site interaction U. In both cases,
we extract the site-dependent quasiparticle wave-function densities and demonstrate that localization persists
in these nonperturbative regimes under particular scenarios. Our findings suggest that such localization under

the presence of interactions and within a finite volume is a generic feature of hybrid nanoribbons composed of

topologically distinct regions.
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I. INTRODUCTION

Recently, it was shown that localized, low-energy states
can occur at the junction of two nanoribbons that are topolog-
ically distinct [1]. The presence of such symmetry-protected
topological (SPT) localized states depends on their junction
geometry and topological invariance. The ability to engineer
such hybrid ribbons [2,3] has spurred research into the use of
these systems for manufacturing quantum dots [4], potentially
leading the way to novel, advanced electronic devices and an
avenue for obtaining fault-tolerant quantum computing.

The existence of localized edge states has been widely
explored in, for example, zigzag nanoribbons [5] where, de-
pending on the the presence of interactions and/or disorder,
the ribbon can change from a topological insulator to a trivial
or Mott insulator [6,7]. On the other hand, the hybrid armchair
configurations we consider here are less studied despite their
promise as an interesting nanoengineering candidate. In some
sense, they represent the next simplest ribbon geometry that
can support localized states. As in the zigzag nanoribbon case,
these localized states are manifest in the noninteracting, tight-
binding scenario. However, SPT protection is only strictly
enforced when both ribbons extend infinitely from their junc-
tion, as the topological invariants are calculated for infinite
armchair graphene nanoribbons (AGNRs). The system has a
very small energy gap compared to the hopping parameter.
Though Ref. [1] demonstrated the stability of such states un-
der perturbation, the extent to which these SPT states remain
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low energy, as well as localized, in the strongly interacting
regime is an open question, especially since any practical
implementation of these hybrid systems will be finite in extent
or perhaps in a repeating lattice.

In this paper, we address the question of finite volume
directly by investigating the periodic 7/9- and 13/15-hybrid
nanoribbons in two distinct nonperturbative regimes. The term
finite volume here refers to the fact that the distance between
each junction is finite in length due to the systems’ periodicity.
The first nonperturbative regime we consider is the standard
Hubbard model applied to these systems at the electrically
neutral, half-filling case. Here we perform quantum Monte
Carlo (QMC) simulations for various values of the on-site
coupling U that include the strongly interacting regime. In the
second regime, we consider the so-called symmetric line limit
[6,8], where we introduce a nearest-neighbor superconducting
pairing term A to the Hubbard model but with equal weight as
the hopping term ¢. In this limit, the single-particle spectrum
and wave functions, when expressed in a Majorana basis, can
be determined for any value of the Hubbard on-site interaction
U. In both cases, we observe that the energy of the localized
state depends strongly on the coupling U. However, it still
remains the lowest energy state of the system. Further, we find
that under certain conditions the localization of these states at
the junction persists.

Our paper is organized as follows. In Sec. II, we describe
our 7/9 and 13/15 hybrid lattice geometries. We explicitly
show the 7/9 spectrum in the tight-binding, or noninteract-
ing, limit; the 13/15 spectrum is very similar in nature. We
then introduce a Hubbard on-site interaction U in Sec. III
and show results of our QMC simulations for select values
of U. In Sec. IV, we consider the symmetric line limit by
adding a nearest-neighbor superconducting term A of equal

©2022 American Physical Society
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FIG. 1. Single unit cell of the 7/9 (top) and 13/15 (bottom) hybrid systems considered in this paper. The widths are set by the 7 (13) and
9 (15) armchair nanoribbon parts, while the lengths have six hexagons and ten hexagons for the 7 (13) and 9 (15) parts, respectively. Periodic

boundary conditions are employed at the ends.

magnitude to the hopping term. We demonstrate how this
system can be solved directly for any value of U and show the
dependence of the energy and wave function of the localized
state on U for the 7/9 case. These localized states on op-
posing sublattices, or chiralities, have a potential connection
to domain-wall fermions formulated in lattice gauge theories
in 4 4+ 1 dimensions [9,10]. We comment on this potential
connection in Sec. V. We recapitulate in Sec. VI.

II. GEOMETRY OF THE PERIODIC HYBRID
NANORIBBON

Unit cells in such AGNRs are defined by their terminations,
i.e., shapes of their edges. In Ref. [1], four distinct types
of unit cells were defined. Based on inversion and mirror
symmetries, as well as the width of ribbons, it has been shown
that such systems have an associated conserved quantity, the
so-called Z, topological invariant, that can take the values 0
or 1. The interface of two materials with distinct topological
invariants can support surface modes [11]. Since the existence
of these modes depend solely on the topological factors, they
should remain even under the presence of interactions, given
that these interactions do not change the invariants them-
selves. The two examples used in this paper are the 7/9- and
13/15-hybrid nanoribbons, where parts of the ribbons with
lesser width have topological invariant Z, = 0, while the parts

with greater width have invariant Z, = 1 [1]. The 7/9 system
has recently been experimentally engineered [2,3].

Both systems are shown in Fig. 1. In both cases, the
figure depicts a single unit cell. The 7/9 (13/15) has N =
132 (228) total lattice sites and is composed of six hexagonal
units lengthwise for the lesser AGNR part, and ten hexagons
lengthwise for the greater AGNR part. In terms of the lattice
spacing a between sites, the entire length of the unit cell is
L = 24a. The system is bipartite, meaning we can divide the
lattice into two independent sublattices, which we label one as
consisting of A sites, and the other B sites. We apply periodic
boundary conditions at the ends so the unit cell shown in Fig. 1
repeats itself.

Under the tight-binding approximation or, equivalently, the
noninteracting limit, we have

Hy = —t Z aLaj(, +H.c.,
(i,)),0

ey

where ¢ is the hopping parameter’, a; (a;) is the fermionic
creation (annihilation) operator at lattice site j, o the spin,
H.c. stands for Hermitian conjugate, and the sum is over all
nearest neighbors (i, j). As the Hamiltonian is quadratric in

"For the tight-binding description of graphene, t ~ 2.7 eV [12].

195422-2



LOCALIZATION OF ELECTRONIC STATES IN HYBRID ...

PHYSICAL REVIEW B 106, 195422 (2022)

E/t

—31 -0.02  0.00 0.02

-0.05

0.00 0.05

X

FIG. 2. Noninteracting dispersion of the 7/9 hybrid ribbon. The
inset shows the avoided level crossing near the Fermi surface at k, =
0. k, is expressed in units of the inverse length L~! with L = 24a
being the unit cell length and a the lattice spacing. The dispersion for
the 13/15 system has more upper and lower bands but is qualitatively
similar in structure.

the number of creation and annihilation operators, the single
particle dispersion as a function of longitudinal momentum
k. can be easily determined in this limit, which we show
for the 7/9 case in Fig. 2. Note that the dispersion is the
same for both spins. The number of bands shown in Fig. 2
corresponds to the number of lattice sites in the unit cell
(132 for the 7/9 case). Aside from having more upper and
lower bands due to the larger number of unit cell lattice sites,
the dispersion for the 13/15 case is qualitatively similar to
the 7/9 case. Of particular interest is the point at k, = 0
where there seems to be an apparent level crossing at £/t = 0,
denoted as a red point in the main plot in Fig. 2. In fact, upon

closer inspection, as shown in the inset of Fig. 2, there is no
level crossing at this point since it consists of two states with
energies E /t = £0.0015996. For the 13/15 case, there is also
an avoided level-crossing and the corresponding energies are
E/t = £0.0090408. In Fig. 3, we show the wave-function
densities, p(x) = | (x)|?, for each lattice site x on an ex-
tended hybrid system for these states on these two geometries.
These densities are the same for either positive or negative
energy solutions. The localization of the states at the junctions
is apparent in this figure. Further, the localization is confined
to specific sublattices denoted by the red and blue colors in
Fig. 3, and alternates between the different junctions.

In what follows, we assume that the system is electrically
neutral and thus half-filled, meaning that all negative energy
states are occupied. The Fermi surface of the system then
corresponds to zero energy. We thus concentrate on the lowest
unoccupied single-particle state. In the noninteracting case,
this corresponds to the state denoted by the red dot in the inset
of Fig. 2. In the remainder of the paper, we loosely refer to
this state as the localized state, though it remains to be seen if
the state remains localized in the presence of interactions and
within a finite volume.

III. QMC CALCULATIONS OF THE HUBBARD MODEL

We now include a Hubbard on-site interaction,

H=—t Z (a},a,, +Hc.)

1 1
+UY (rm - 5) (nm - 5>, )

where 1, =al 1dyy s the number operator for spin up
fermions at site x and similarly for spin-down fermions. The
form of the interaction ensures that the system remains at half
filling for any value of U. In what follows, we assume that all
stated values of U and § are expressed in units of the hopping
parameter ¢, i.e., U =U/t, B =tB. All derived quantities,
such as energies, are then expressed in units of 7. Without loss
of generality, this is equivalent to setting t = 1 in Eq. (2) for
our simulations.

Note that the on-site interaction is quartic in the num-
ber of creation and annihilation operators, and therefore no
direct diagonalizaton is possible. Therefore, we use QMC
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FIG. 3. Noninteracting single-particle wave-function densities for the 7/9 (above) and 13/15 (below) hybrid ribbons. The 7/9 and 13/15
configurations have noninteracting energies E /t = 0.0015996 and 0.0090408, respectively. The size of the circles is proportional to the density

and the color denotes the two sublattices, red = A sites, blue = B sites.
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FIG. 4. All noninteracting correlators at k, = 0 for the 7/9 system.

simulations to investigate the hybrid systems for values of
the on-site interaction U corresponding to the strongly cou-
pled regime. Our formalism for performing QMC simulations
of low-dimensional Hubbard systems has been described in
detail in Refs. [13-15]. Here we just point out some salient
features pertinent to this paper.

To extract the quasiparticle energies, we calculate momen-
tum correlators as a function of time,

_ foom L t - BH
Ci(t) = (a;(1)a,(0)) = Z Tr [a,(T)a (0)e™"7],  (3)

where 8 represents an inverse temperature and k = (k,, k) is
a momentum index corresponding to the state. The time 7 €
[0, B), and in our simulations we discretize this variable into
N; time slices. We use N; = 64, 80 and 96 in our simulations
with 8 = 8, 10, and 12, respectively, for the 7/9 system. For
the 13/15 system, we only investigate with (N, 8) = (64, 8).
The variable « is an index corresponding to one of the possible
N = 132 (228) states of the 7/9 (13/15) system for a given
k.. We choose k to correspond to the state with the lowest
possible positive energy. Figure 4 shows all k, = 0 correlators
at the noninteracting U = 0 case and 8 = 8 for the 7/9 sys-
tem. A spectral decomposition of the expression in Eq. (3),
as done in Appendix, shows that these correlators have an
exponential dependence in time, ~e %7, where their argu-
ments correspond to the noninteracting energies of the system
at k, = 0. These energies correspond to both the positive and
negative points that occur at k, = 0 in Fig. 2. In the presence
of interactions U # 0, and within a finite inverse temperature
B, the correlators will have a more complicated dependence
on T due to thermal contamination with excited states and
backward-propagating states. However, these effects are usu-
ally fleeting since the dependence on the excited states is
exponentially suppressed. Therefore, as long as t > 1 but
T < B, the correlators will recover an exponential dependence
but now with fully interacting energies in their arguments. One
can thus extract the fully interacting energies by analyzing
the exponential behavior of the correlators in this regime.
We stress that the correlator in Eq. (3) and the energy Ej
dictating its exponential decay are not related to any response
of the system due to some external probe. The energy Ej

represents the fully interacting single-particle eigenenergy of
the Hamiltonian given in Eq. (2).2

Special care must be taken when dealing with correlators
that represent states with very small energies, Ef < 1, as
is the case in our situation. Here the backward-propagating
states can provide a nearly equally important contribution to
the correlator, essentially making the correlator symmetric
about the T = /2 point. The left panel of Fig. 5 shows exam-
ples of the dependence of the correlators for the localized state
as a function of U. It is indeed the case that these low-energy
correlators cannot be described by a single exponential. We
now describe how we extract energies from these correlators.

A. Energy of the localized states

To extract the energies from these correlators, we first take
advantage of the particle-hole symmetry of our problem that
states that for any energy solution E, there is a corresponding
solution with opposite sign, —Ej. This is also evident from
our correlators, where for each correlator that falls off in time
as C (1) ~ e BT there is a growing correlator, correspond-
ing to the energy with opposite sign, of the form C,j ()~
B (TP We average these two correlators,

G (1) = 1(Cr (1) + CH (), “4)

to effectively make a cosh function of the form cosh[Ey(t —
B/2)] in the regions T > 1 and 7 < .

As a visual aid to estimating the energies of these correla-
tors, we calculate the so-called effective mass mg(7),

M=+ +9)
2Csym ’ (5)
v (T)

1
Mese(T) = 3 cosh™! (

where § is some free parameter. If C;"™ () were exactly a cosh
function, then meg(7) = E; for all t. As the cosh behavior is
only valid for 1 < t < 8, we expect that the effective mass
to flatten out around the region v = 8/2. The right panel of
Fig. 5 shows our extracted effective masses for the localized
state using § = 48/N;. As expected, the region around 7 =
B/2 is flat and corresponds to the interacting energy Ey /t. We
stress, however, that these effective masses are only used as a
visual aid for estimating the energies.

To actually obtain the energies, we instead fit directly the
correlator C;"™ (7). We show our extracted energies for values
of U €[1,2,3,4] and B € [8, 10, 12] in Fig. 6. Our fits are
performed within a finite window around the t = /2 point
and are done under the bootstrap procedure to obtain uncer-
tainties. Looking at Fig. 6, we see a growing dependence on
the energy of the localized state as U increases. We attribute
this dependence to the finite volume of the system, both
spatially and temporally, since within such an environment
the state is no longer protected by SPT. Still, in all cases
we examined we found that the energy of the localized state
remained the lowest, despite its apparent dependence on U'.

2In practice, the calculation of the correlator in Eq. (3) requires
calculating the inverse of the so-called fermion matrix M and then
analyzing its time dependence. More details of this method are pro-
vided, for example, in Refs. [14,19].
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FIG. 5. Dependence of correlators for the lowest energy localized state (left) and its corresponding effective masses (right) as defined in
Eq. (5). In both cases, the black dashed line corresponds to the noninteracting result.

B. Wave-function densities of the localized state

We can also extract the site-dependent densities of the
states in our QMC simulations, which in turn allow us to
demonstrate localization of the states visually. A detailed ex-
planation of our calculation is given in the Appendix, and we
provide only a cursory description here.

Instead of the momentum correlators calculated in Eq. (3),
we instead consider the half-momentum, half-spatial correla-
tors:

1 .
Ci(x, 7) = {a,(1)a(0)) = ~Tr [a,(0)aj(0)e PH].  (6)

The effective density px(x, T) for state k at each lattice site x
is given by

1y = GG OF
SRR SHTSACS

where the sum in the denominator of the right-hand side is
over all lattice sites in the unit cell. As was the case with

)

t 79B=8 }
0301 ¢ 70B=10 u
4 IPB=12
0257 ¢ 13/158=8
4y 0207
S~
o Y )
g 0151 .
0.10 ¢
L]
0.05 4 -
.‘.
000 ¢
0 1 2 3 4
u/t

FIG. 6. Energy E, of the lowest state as a function of on-site
interaction U obtained from QMC calculations for the 7/9 (dots)
and 13/15 (diamonds) systems. The 7/9 simulations were performed
with three different values of 8, where g = 8 [Eq. (12)] results are
slightly shifted to the left (right) on the x axis so as to make the
points more easily differentiable. Only 8 = 8 was used for the 13/15
system. The black points at U = 0 are the noninteracting results.

the effective masses, we extract the densities by looking at
the region around T = /2 where the effective density is flat.
We plot these densities for the localized state in Fig. 7 for
different values of U for the 7/9 system. We find that the
changes in the densities vary only slightly as a function of U
and are practically indistinguishable in Fig. 7. We see similar
behavior for the 13/15 system. In Fig. 8, we concentrate on a
specific lattice site of the 7/9 system, the bottom and leftmost
sites of the unit cell, and show how the density at this site
varies as U increases. When U = 0, this site is one of four A
sites that has a maximum probability for occupation compared
to other A sites. With increasing U, this density diminishes
but still remains the largest. We find a similar behavior with
other high-density sites on both 7/9 and 13/15 systems. For
sites with initially low probabilities at U = 0, their densities
slightly grow with increasing U. However, the changes are
too small to drastically change the general electron occupation
profile. Thus, the localization of this state persists as U grows
large, despite its growing energy.

Our results definitely show the strong dependence of the
energy on U within a finite volume. The localization, however,
is robust and persists in such environments. A more definitive
QMC investigation of this state would require repeated cal-
culations of this system with more values of 8 and number
of time slices N;, as well as more unit cells, allowing for
extrapolations to zero temperature, to the continuum limit, and
to the infinite volume (length), respectively. We are actively
pursuing this line of research.

Still, the fact that these states remain localized for large
values of U within such an extreme finite volume bodes well
for their potential utilization in advanced electronics, which
by construction are finite in extent.

IV. THE SYMMETRIC-LINE LIMIT

‘We now consider the inclusion of a nearest-neighbor super-
conducting pairing term A to the Hamiltonian:

Hy = — Z (t ajaaja +Ad d + H.c.)

ic™ jo
(i.)).0

1 1
+UZ<nXT—§)<nx¢—§>. (8)
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FIG. 7. Density profile of lowest k, = 0 energy state for different
values U, compared with the noninteracting case (i.e., U = 0).

The pairing term has the same symmetry properties as the
hopping term and, in particular, the Hamiltonian remains in-
variant under time reversal. Therefore, the inclusion of this
term does not change the topology of the system.

As described in Refs. [6-8], for example, when A has
the same magnitude as the hopping parameter ¢, the on-site
interaction term becomes quadratic in the number of creation
and annihilation operators and therefore the spectrum of the
system can be obtained by direct diagonalizations. We repeat
the derivation for our system here. We follow the conventions
introduced in Ref. [6].

Typically, one uses a Bogoliubov-Valatin transformation
[16,17] in theories with pairing terms. However, in this case,

0.032 4 +

00 05 1.0 15 20 25 30 35 40

U/t

FIG. 8. Wave-function density py(x) of the bottom- and leftmost
lattice sites of our unit cell hybrid AGNR as a function of U.

with an eye toward the interacting on-site term, we instead
perform a canonical transformation to a Majorana basis,

. - . .
dic = Nic + Wie>» Gig = Nic — Wie» Ajo = Vjo + Mjo,

aly = Vje — iNjo. ©)
where i € A sites and j € B sites. The Hamiltonian in Eq. (8)
then becomes

H = -2i Z [(A +t)yiayja + (A - t)r’ianja]
(i.j)o

—U Y Qineyne)iver Vo) (10)
xeA&B

We now take the symmetric line limit by setting A =7,
thereby eliminating the n Majorana fermions from the kinetic
energy of the Hamiltonian above:

Hoym = —4it Y YioVje —U Y Qineyney)2ivar vey)-
(i, j)o xeA&B
(11

Notice that the y Majorana fermions have a kinetic term
similar to the original tight-binding Hamiltonian of Eq. (1),
but now with a hopping amplitude 4¢. Indeed, when U = 0 the
dispersion for this system, when normalized by 4, is identical
to the noninteracting dispersion shown in Fig. 2.

Now consider the site-dependent operator d; = 2in 47, .
One has that [Hyp, c?j] = 0V j. Therefore, within Eq. (11),
the term 2in,yn. (= c?x) can be replaced, in general, by a
complex number d, (no hat symbol). As can be derived explic-
itly from Egs. (9), the Majorana operators 1 have the property
that n> = 1/4, which implies that 4> = 1/4 [20]. Thus we can
make the following replacement dy — d, = £1/2inEq. (11).
This gives

Hoym = —4it Y VioVjo —2iU Y de(yeryry).  (12)
(i, j)o x€A&B

The equation above shows that in the symmetric line limit,
the n Majorana fermions completely decouple from the the-
ory. They provide a zero-energy topological flat band to the
dispersion, independent of U, but as argued in Ref. [6] these
states do not correspond to localized states.
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FIG. 9. Ferromagnetic dispersion in the symmetric line limit for different values of U. The red horizontal line is the flat band energy for

the decoupled n Majorana fermions.

The Hamiltonian in Eq. (12) is quadratic in the Majorana
operators and therefore can be directly diagonalized once the
coefficients d; are fixed. In principle, given N lattice sites,
there are 2V different possible combinations of d;, all satis-
fying the flat band condition for the n Majorana fermions but
providing a different spectrum for the y Majorana fermions.
We consider two uniform solutions in this paper, the first being
the ferromagnetic solution with d; = 1/2 V i and the other
the antiferromagnetic case where d; = 1/2 for i € A sites
and d; = —1/2 for i € B sites. Lastly, we consider a random
configuration where d; = £1/2 is chosen randomly at each
site .

Since the discussion above applies to any bipartite lattice,
we can directly use it on our systems. In our calculations, both
7/9 and 13/15 systems exhibit nearly identical qualitative
results. To keep the presentation reasonable, we therefore only
present results for the 7/9 system and comment on the 13/15
system when appropriate.

A. Ferromagnetic configuration

In this configuration, we choose d; = 1/2 V i. Our results
are identical if we instead chose d; = —1/2 V i. We show the
dispersion for this system for select values of U in Fig. 9. In
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FIG. 10. Density profile of the lowest k, = 0 energy state at the
symmetric line limit for the ferromagnetic configuration for different
values of U. The result is the same for either spins ¢. Noninteracting
case corresponds to U = 0.

general, the dispersion becomes quite dense and the separation
between the lowest state and the next excited state diminishes
as U is increased.

The wave function densities for the lowest energy state are
shown in Fig. 10. We find that this configuration exhibits no
localization at k, = O for the large U's considered here, though
we have confirmed that it is perturbatively recovered in the
limit U — O.

Finally, the energy E of the lowest state has a complicated
dependence on the interaction term U, as shown in Fig. 11.
This is due to the fact that we consider only the lowest positive
energy level at k, = 0. As U increases, the energy levels

0.200 A
0.175 A
0.150 A
0.125 A

1
1
1
0.100 - 1 \
1
1

Eo/4t

0.075 A 1 \
0.050 A / \ ’ ,I
0.025 A

0.000 47

FIG. 11. Dependence of the lowest positive energy Ey as a func-
tion of U in the ferromagnetic configuration.

from the upper and lower bands come together and eventually
cross each other. Before each crossing, the minimal energy
decreases and after a crossing it begins to increase again.
Eventually, the lowest energy levels cross Ey = 0 after which
the next highest one takes its place.

B. Antiferromagnetic configuration

Figure 12 shows the dispersion of the hybrid ribbon at the
symmetric line limit for select values of U > 0 in the anti-
ferromagnetic configuration. Notice that the lowest positive
energy increases with larger U and forms essentially a flat
band solution. Numerically, we find a linear dependence of
this energy on U, as shown in Fig. 13.

For all Us investigated, the wave-function densities of this
state do not change and remain exactly the same as that of
the noninteracting state shown in Fig. 3. Therefore, this state
remains localized, despite its energy having a linear depen-
dence on U. We conclude that the flat band that develops for
U > 0 is robust and is unaffected by interactions. Unlike the
ferromagnetic case, when we increase U the gap in the an-
tiferromagnetic system increases linearly since no low-lying
energy levels cross each other and therefore no complicated
U dependence is introduced.

C. Random configuration

To a certain extent, a random configuration of d;s is similar
to the antiferromagnetic configuration in that such a config-
uration has no long-range order. Thus, one might expect that
the dispersion in the random configuration is similar to the
antiferromagnetic case. We find this to be true for values of U
as large as U < 2.

To see this, we first show in Fig. 14 the dispersion for
different values U using a single randomly sampled con-
figuration in each case. Not surprisingly, the dispersions
becoming progressively dense and chaotic with increasing U.
To construct the accompanying wave-function densities, we
calculate 100 random configurations for each value of U and
average their wave-function densities, the results of which are
shown in Fig. 15. In this case, the localization of the lowest
state can be seen for U = 1 and U = 2. However, for larger
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FIG. 12. Antiferromagnetic dispersion in the symmetric line limit for different values of U. The red horizontal line is the flat band energy

for the decoupled n Majorana fermions.

U any analogies of the dispersion with the antiferromagnetic
configuration is lost and localization is no longer present.

V. ANALOGY WITH DOMAIN-WALL FERMIONS

Domain-wall fermions were formulated originally by
Kaplan [9] as a way to circumvent the so-called Nielsen-
Ninomiya no-go theorem [18] in lattice gauge theory, which
states that the number of left-handed chiral fermions
must equal the number of right-handed chiral fermions ¥x in
any discretized, local, Hermitian, and translationally invariant

field theory. Kaplan’s formulation of domain wall fermions
introduced an extra bulk dimension on top of the four space-
time dimensions, whereby a single fermion of one chirality
was localized on the 4D spacetime manifold (the domain
wall where all the relevant physics occurs) of the 5D space,
and another fermion of opposite chirality was constrained on
the opposite 4D domain wall. In this manner, lattice gauge
calculations utilizing domain wall fermions could simulate, in
principle, an odd number of fermions with specific chirality by
concentrating on one of the 4D domain wall manifolds with-
out violating the Nielsen-Ninomiya no-go theorem. Chiral
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FIG. 13. Dependence of the lowest positive energy Ey as a func-

tion of U in the antiferromagnetic configuration for 7/9 ribbon. The
13/15 system presents the same linear relation.

symmetry is still violated since the Ginsburg-Wilson equa-
tion remains nonzero in the bulk. This manifests itself as
a small overlap of the fermion wave functions in the bulk,
which in turn leads to a residual mass u for each fermion
that mixes their chiralities, (V¥ yr + WrY). As the bulk
direction is extended, the overlap reduces leading to a van-
ishingly small residual mass and therefore a vanishing chiral-
symmetry violation. Kaplan’s formulation is actually valid
for any theory in 2n 4 1 dimensions, where 2n represents
the spacetime dimension and the extra dimension represents
the bulk.

Chiral symmetry breaking has been discussed in the
context of the 2D graphene hexagonal lattice (see, e.g.,
Refs. [21,22]). Here chiral symmetry manifests itself as a
sublattice symmetry between the A and B sites and originates
from an underlying time-reversal and charge-conjugate sym-
metry [23,24]. The low-energy Dirac modes of the system can
be described by an effective relativistic field theory in 2 + 1
dimensions. As argued in Ref. [21], the formation of a gap
in these modes is equivalent to a staggered mass [25] for the
fermions that breaks the sublattice symmetry.

In our ribbons, we may treat one of the spatial dimensions
as the manifold, or junction, while the other remaining spatial
dimension between the junctions as the bulk. If we concen-
trate on just the low-energy localized state of our system and
describe it within some effective field theory, then the shift
away from zero energy can also be represented as a staggered
mass that presumably depends on the overlap of the wave
functions of the two chiral edge states within the bulk, and
thus should vanish as the bulk direction is extended. We find
this to indeed be the case in the noninteracting limit, as we
show in Fig. 16. Here we show the energy of the localized
state for both 7/9 and 13/15 ribbons as we extend the bulk
direction. There is a clear exponential decay in energy. Thus
the localized states on opposite A/B sublattices at the junc-
tions of the topologically distinct ribbons offer a potential
physical realization of Kaplan’s domain wall fermions, albeit
in reduced dimensions. A formal description of these chiral
states within an effective field theory context is something we
are currently developing.

VI. CONCLUSIONS

Localized states at the junction of topologically dis-
tinct nanoribbons offer promising avenues in constructing
advanced electronics and potentially provide a means for
topological, fault-tolerant quantum computing. Central to this
idea is the stability of such states not just to slight pertur-
bations, but to large electron correlation effects. In principle,
SPT provides this stability, but only in the limit of infinitely
long ribbons where SPT invariance is manifest. In a finite
volume, this protection is not guaranteed and, as such, the
stability of such states comes into question when electron
correlations become large.

In this paper, we investigated the stability of the (nearly)
zero-mode localized states in finite 7/9 and 13/15 hybrid
nanoribbons with periodic boundary conditions under the in-
fluence of temperature and electron-electron interactions. We
investigated two scenarios, one where we considered just the
Hubbard model at half filling and performed QMC simula-
tions for a range of U that included the strongly interacting
regime. We then introduced to the Hubbard model a nearest-
neighbor superconducting term whose parameter was tuned
to the so-called symmetric line limit. In this limit, when
transforming to a Majorana basis, we could calculate the
single-particle spectrum and wave functions exactly for any
value of U. Provided that we concentrate on the antiferromag-
netic configuration in the latter case, we found that in both
cases the energy of the localized states increased with larger
U, but remained the lowest energy state regardless. More
importantly, we found that the localization of the states per-
sisted at the junctions, indicating that this feature is robustly
maintained in the strongly interacting, finite volume regime.
Though by no means a proof, our observations of persistence
of localization in both 7/9 and 13/15 hybrid geometries sug-
gests that such effects are generic to other hybrid geometries
that support localization, but this remains to be seen. These
findings enhance the possibility of using these systems for
manufacturing novel electronic devices which are inherently
finite in volume.
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APPENDIX: EXTRACTING SITE DENSITIES FROM QMC
SIMULATIONS

To extract the amplitudes for each site, we first calculate
site-dependent spatial correlators of the form

Ci(x, 1) = (a,(1)al(0)) = %Tr la,(D)a(0)e P11, (A1)

where Z = Tr[e #] and the trace is taken over the entire
Fock space of the system. Here x refers to a particular site
on the lattice and k = (k, «) is the momentum variable that
corresponds to the state that we are interested in. The creation
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operator “Z is where the sum is over N, locations of the unit cells located
at positions x, and the ions i within each unit cell. The co-

! efficients C¥ are the noninteracting eigenvector components

a}t - Z o~ ikexu Cr a; o (A2) obtgined from the diagonalizati(?n of the tight-binding Hamil-

Ny - tonian. For the low-energy localized state, we have that k, = 0

K5l
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FIG. 15. Density profile of the lowest k, = 0 energy state at the
symmetric line limit using random configurations for different values
of U. Localization can be seen in the cases with U = 1 and 2, but is
lost for higher values.

and choose « to correspond to the (noninteracting) eigenvector
corresponding to this localized state.

By expressing the time dependence on the right-hand side
of Eq. (A1) in the Heisenberg picture,

a,(t) = e Mg,
we can perform a spectral decomposition and determine the
leading dependence of this correlator in the large time limit.
We find

1lim/3 Ci(x,t) = Qa2 + k)(Q2 + k|a}:|Q)e*(€Q+k*8sz)t
Lt <

+ e, (A3)

where the ellipsis represents terms that are exponentially
suppressed. The state |€2) and its associated energy e repre-
sents the half-filling global ground state and global interacting
energy minimum, respectively, and the state |2 + k) and as-
sociated energy eqyi is the state with an additional fermion
with momentum k above half filling and its correspond-
ing interacting energy, respectively. The energy difference

107y e P ® 73m/9m
L . ® 133,/15s,
1073 4 A °®
® [ ]
.
1074 4 ® ®
[ ]
+ ? *
1075 4
= °
w
1076 - L
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1078 4 ®
°
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m

FIG. 16. The noninteracting energy of the localized state for both
7/9 and 13/15 ribbons as the bulk direction between junctions is
extended in multiples of m. The width between the junctions is
3m (Sm) for the lesser (greater) ribbon, corresponding 6m (10m)
hexagonal units. When m = 1, we have the unit cells depicted in
Fig. 1.

egqa+k — £q = Ey is exactly the interacting energy that we refer
to in the main text.

The amplitude we are interested in is (2|a,|2 + k). Note
that in the noninteracting limit, we have that (Q2 + k|a;£|Q) =
1 and the amplitude is, up to an overall phase, equivalent
to Cf in Eq. (A2). With interactions, unfortunately, we can-
not extract this amplitude because it is multiplied by the
factor (2 + k|af|Q)eFan—Fa) which we do not a priori
know. However, note that this factor is independent of site x

Uu=0

107!

1072

|(k, olaf|Q)|?

1073

104

FIG. 17. Noninteracting wave-function densities p(x,#) (la-
beled as |(k, alaﬁilQHz above) of the lowest energy localized state,
as defined by Eq. (A4). The different lines correspond to different
lattice sites x and the red/blue coloring refer to A/B sites.
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FIG. 18. Same as is in Fig. 17, but now with nonzero values U. The noninteracting amplitudes at U = 0 are shown in Fig. 17.

and carries the same time dependence for all spatial correla-
tors. Furthermore, we are interested in the densities, pi(x) =
[(Q|a,|Q + k)|> which should be normalized over the lattice
unit cell, Zx pr(x) = 1. With these properties in mind, we
instead analyze the following expression:

o1y = G OP
X

GO DR A

Because of the independence of the unknown factor on spa-
tial site x and its identical time dependence for each spatial
site, this factor cancels in this ratio. The resulting term is

automatically normalized over all lattice sites and thus rep-
resents the density at each site x. In the noninteracting limit,
the cancellation of the unknown factor occurs exactly for
all 7, and so Eq. (A4) has no dependence on t. We have
verified that it produces the exact wave-function densities,
as shown in Fig. 17. For U # 0, the cancellation of the
unknown factor occurs only in the scaling region given in
Eq. (A3), and so we extract the densities in the region where
pr(x, t) exhibits little to no time dependence and is thus
relatively flat. Figure 18 shows examples of the pi(x,t) for
different values of U, including the noninteracting case. In
all cases, we extract the density in a region centered around

t=pBJ2.

195422-13



LUU, MEISSNER, AND RAZMADZE

PHYSICAL REVIEW B 106, 195422 (2022)

[1] T. Cao, F. Zhao, and S. G. Louie, Topological Phases in
Graphene Nanoribbons: Junction States, Spin Centers, and
Quantum Spin Chains, Phys. Rev. Lett. 119, 076401 (2017).

[2] D. J. Rizzo, G. Veber, T. Cao, C. Bronner, T. Chen, F. Zhao,
H. Rodriguez, S. G. Louie, M. F. Crommie, and F. R. Fischer,
Topological band engineering of graphene nanoribbons, Nature
(London) 560, 204 (2018).

[3] O. Groning, S. Wang, X. Yao, C. A. Pignedoli, G. Borin Barin,
C. Daniels, A. Cupo, V. Meunier, X. Feng, A. Narita, K. Miillen,
P. Ruffieux, and R. Fasel, Engineering of robust topological
quantum phases in graphene nanoribbons, Nature (London)
560, 209 (2018).

[4] D.J.Rizzo, J. Jiang, D. Joshi, G. Veber, C. Bronner, R. A. Durr,
P. H. Jacobse, T. Cao, A. Kalayjian, H. Rodriguez, P. Butler, T.
Chen, S. G. Louie, F. R. Fischer, and M. F. Crommie, Ratio-
nally designed topological quantum dots in bottom-up graphene
nanoribbons, ACS Nano 15, 20633 (2021).

[5] K. Wakabayashi, Ken-ichi Sasaki, T. Nakanishi, and T. Enoki,
Electronic states of graphene nanoribbons and analytical solu-
tions, Sci. Tech. Adv. Mater. 11, 054504 (2010).

[6] M. Ezawa, Exact solutions for two-dimensional topolog-
ical superconductors: Hubbard interaction induced sponta-
neous symmetry breaking, Phys. Rev. B 97, 241113(R)
(2018).

[7]1 S. R. Eric Yang, M.-C. Cha, H. J. Lee, and Y. H. Kim, Topolog-
ically ordered zigzag nanoribbon: e/2 fractional edge charge,
spin-charge separation, and ground state degeneracy, Phys. Rev.
Res. 2, 033109 (2020).

[8] J.-J. Miao, D.-H. Xu, L. Zhang, and F.-C. Zhang, Exact solution
to the Haldane-BCS-Hubbard model along the symmetric lines:
Interaction-induced topological phase transition, Phys. Rev. B
99, 245154 (2019).

[9] D. B. Kaplan, A Method for simulating chiral fermions on the
lattice, Phys. Lett. B 288, 342 (1992).

[10] Y. Shamir, Chiral fermions from lattice boundaries, Nucl. Phys.
B 406, 90 (1993).
[11] J.-W. Rhim, J. Behrends, and J. H. Bardarson, Bulk-boundary

correspondence from the intercellular Zak phase, Phys. Rev. B
95, 035421 (2017).

[12] R. Kundu, Tight binding parameters for graphene, Mod. Phys.
Lett. B 25, 163 (2011).

[13] T. Luu and T. A. Lihde, Quantum Monte Carlo calculations for
carbon nanotubes, Phys. Rev. B 93, 155106 (2016).

[14] J. Ostmeyer, E. Berkowitz, S. Krieg, T. A. Lédhde, T. Luu, and
C. Urbach, Semimetal-Mott insulator quantum phase transition
of the Hubbard model on the honeycomb lattice, Phys. Rev. B
102, 245105 (2020).

[15] J. Ostmeyer, E. Berkowitz, S. Krieg, T. A. Lédhde, T. Luu, and
C. Urbach, Antiferromagnetic character of the quantum phase
transition in the Hubbard model on the honeycomb lattice, Phys.
Rev. B 104, 155142 (2021).

[16] N. N. Bogolyubov, On a New method in the theory of super-
conductivity, Nuovo Cim. 7, 794 (1958).

[17] J. G. Valatin, Comments on the theory of superconductivity,
Nuovo Cim. 7, 843 (1958).

[18] H. B. Nielsen and M. Ninomiya, No Go Theorem for Regular-
izing Chiral Fermions, Phys. Lett. B 105, 219 (1981).

[19] C. Gattringer and C. B. Lang, Lect. Notes Phys. 788, 1 (2010).

[20] Z. Chen, X. Li, and T. Ng, Exactly Solvable BCS-Hubbard
Model in Arbitrary Dimensions, Phys. Rev. Lett. 120, 046401
(2018).

[21] G. Semenoff, Condensed Matter Simulation of a Three-
Dimensional Anomaly, Phys. Rev. Lett. 53, 2449 (1984).

[22] G. Semenoft, Chiral symmetry breaking in graphene, Phys. Scr.
T146, 014016 (2012).

[23] B. Bernevig and T. Hughes, Topological Insulators and Topo-
logical Superconductors (Princeton University Press, New
Jersey, 2013).

[24] T. Stanescu, Introduction to Topological Quantum Matter &
Quantum Computation (CRC Press, Taylor & Francis Group,
Florida, 2017).

[25] D. Smith and L. Smekal, Monte-Carlo simulation of the tight-
binding model of graphene with partially screened Coulomb
interactions, Phys. Rev. B 89, 195429 (2014).

195422-14


https://doi.org/10.1103/PhysRevLett.119.076401
https://doi.org/10.1038/s41586-018-0376-8
https://doi.org/10.1038/s41586-018-0375-9
https://doi.org/10.1021/acsnano.1c09503
https://doi.org/10.1088/1468-6996/11/5/054504
https://doi.org/10.1103/PhysRevB.97.241113
https://doi.org/10.1103/PhysRevResearch.2.033109
https://doi.org/10.1103/PhysRevB.99.245154
https://doi.org/10.1016/0370-2693(92)91112-M
https://doi.org/10.1016/0550-3213(93)90162-I
https://doi.org/10.1103/PhysRevB.95.035421
https://doi.org/10.1142/S0217984911025663
https://doi.org/10.1103/PhysRevB.93.155106
https://doi.org/10.1103/PhysRevB.102.245105
https://doi.org/10.1103/PhysRevB.104.155142
https://doi.org/10.1007/BF02745585
https://doi.org/10.1007/BF02745589
https://doi.org/10.1016/0370-2693(81)91026-1
https://doi.org/10.1007/978-3-642-01850-31
https://doi.org/10.1103/PhysRevLett.120.046401
https://doi.org/10.1103/PhysRevLett.53.2449
https://doi.org/10.1088/0031-8949/2012/T146/014016
https://doi.org/10.1103/PhysRevB.89.195429

