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Theoretical studies on internal strain of face-centered-cubic metal nanoparticles
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Combining the continuum elastic theory and the first-principles calculations, we systematically studied the
internal strain of nanoparticles of face-centered-cubic (fcc) metals. By taking full account of the surface
anisotropy, the theoretical results are found to be consistent with the previously reported experimental ones
within a wide range of nanoparticle sizes. Furthermore, we demonstrate that among the fcc transition metals, the
largest internal strain of the nanoparticles with size larger than 5 nm occurs in the last column of the Group VIII
(Ni/Pd/Pt), which can be correlated with the filling status of d-band electrons of the metals. Most of the fcc
metal nanoparticles tend to contract with decreasing size with the only exception of strontium, suggesting that
most of the surfaces are dominated by the positive surface stress.
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I. INTRODUCTION

The internal strain of nanoparticles is a classic yet still vital
topic since it is essential for various properties of the nanopar-
ticles [1,2]. Lattice contraction of metal nanoparticles has
been observed by electron reflection [3], electron diffraction
[4,5], x-ray adsorption [6], transmission electron microscopy
[7], etc. A blueshift of the Mie frequency is usually expected if
the lattice parameter diminishes with decreasing particle size
[8]. In addition, the d-band level positions of transition metals
usually shift down with lattice contraction [9], which reduces
the surface reactivity of transition metals [10]. It indicates that
the increasing negative internal strain with decreasing size
of metal nanoparticles is detrimental to chemical catalysis
although the large surface-to-volume ratio can provide more
reactive sites.

The experimental observations sometimes cannot reveal
the intrinsic properties of nanoparticles due to the effect of the
supporting substrate [11–13]. Moreover, active metal surfaces
are also ready to be oxidized during the preparation process.
In this situation, it is actually the surfaces of metal oxides but
not the pure metal surfaces that determine the internal strain
of the nanoparticles [14]. In contrast, theoretical methods are
easy to get rid of effects of substrates or surface oxidation.
Based on the continuum elastic theory, a simplified spherical
model of metal nanoparticles was previously pursued which
suggests that the internal strain is simply proportional to the
surface stress over the size of the nanoparticles once the elastic
constants are determined [15]. A real metal nanoparticle is
certainly not spherical. There are numerous works that intro-
duce the shape factors to consider the orientated anisotropy
[16,17]. However, a sufficient description of the anisotropic
surface properties is still in short. On the other hand, the
internal strain of metal clusters with dozens of atoms has been
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directly simulated [18]. Unfortunately, this bottom-up method
cannot be scaled up to large nanoparticles due to the limit of
the computer capacity. In a word, there is still a lack of work to
investigate the intrinsic internal strain of metal nanoparticles
in a large size range at the same time, not to mention revealing
the relationship between the internal strain of nanoparticles
and the electron configurations of the metals.

In this paper, we study the internal strain of nanoparticles
of face-centered-cubic (fcc) metals systematically by com-
bining the continuum elastic theory and the first-principles
calculations and taking full account of the anisotropy of the
surface of nanoparticles [19]. We find the current results
are consistent with the previous reports within a wide range
of nanoparticle sizes. Furthermore, we demonstrate that the
largest internal strain of nanoparticles of fcc transition metals
occurs in the last column of Group VIII (Ni/Pd/Pt) if the
size is larger than 5 nm. The variation rule of the internal
strain with the nanoparticle size is found to be correlated
with the filling status of the d band of the metals. We also
demonstrate that with the exception of strontium, the fcc metal
nanoparticles tend to contract with decreasing size, suggesting
that most of the surfaces are dominated by the positive surface
stress.

II. METHOD AND DETAILS

Since we aim to reveal the correlation between the internal
strain of nanoparticles and the electron configurations of the
metals, we only focus on one of the typical metal structures,
i.e., the fcc phase. As shown in Table I, we investigate totally
17 metals in fcc phases to study the internal strain of their
nanoparticles. They can be divided into three blocks according
to the orbitals of their valence electrons. Ca, Sr, and Ba are
in the s block, and Al and Pb are in the p block, whereas,
Fe/Co/Ni/Cu, Ru/Rh/Pd/Ag, and Os/Ir/Pt/Au are in the
d block. Actually, in the long periods of the periodic table,
the variation of the most stable crystal structures generally
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TABLE I. The considered 17 fcc metals and their configurations of valence electrons. n means the number of d electrons.

IIA VIII IB · · · IIIA IVA
Period s

· · ·
d (5 < n < 10) p

3 Al (3s23p1)
4 Ca (4s2) Fe (3d64s2) Co (3d74s2) Ni (3d84s2) Cu (3d104s1)
5 Sr (5s2) Ru (4d75s1) Rh (4d85s1) Pd (4d10) Ag (4d105s1)
6 Ba (6s2) Os (5d66s2) Ir (5d76s2) Pt (5d96s1) Au (5d106s1) Pb (6s26p2)

follows the law of IIIB(hcp)-IVB(hcp)-VIB(bcc)-VIIB(bcc)-
VIII(hcp/fcc/fcc)-IB(fcc), which is determined primarily by
the weight of the d orbitals in the hybrid [20]. The fcc
structure is, thus, more common in transition metals with the
number of d electrons n larger than 5. It is worthy to mention
that the fcc phases of Fe and Co are stable only at temperatures
much higher than the room temperature. Besides, fcc phases
are not the most stable one at any temperature for Ba, Ru, and
Os [21,22]. Even though, we include Ba, Ru, Os, Fe, and Co
in order to compare the metals within the same period.

The density functional theory (DFT) calculations are car-
ried out by using the Vienna ab initio simulation package
code [23–25] with the projector augmented-wave method
[26,27] considering the spin polarization. The Perdew-Burke-
Ernzerhof (PBE) [28] generalized gradient approximation is
employed to describe the electron exchange-correlation en-
ergy. The plane-wave energy cutoff of 600 eV is used for
expanding the Kohn-Sham wave functions to ensure the ac-
curacy of the surface stress. The surface is modeled by using
a slab of eight atomic layers plus a vacuum layer of 15 Å.
The structures are fully relaxed until the force on each atom
becomes less than 0.01 eV/Å whereas keeping the shape and
volume of the slab unchanged. The �-centered Monkhorst-
Pack k-point meshes of different sizes are used to sample the
Brillouin zone of the bulk and the (100), (110), and (111)
surfaces of the fcc metals to guarantee the convergence.

For the fcc crystal, the symmetry requires that the off-
diagonal elements of the strain tensor are zero, whereas the
nonzero diagonal ones are equal to each other, i.e., ε11 =
ε22 = ε33 = ε. The bulk elastic energy per volume is [29,30]

�Ebulk (ε) = 9
2 B0ε

2. (1)

Meantime, the change in surface energy of each surface of the
nanoparticle can be written as [31]

�γ (ε) = σ0ε + 1
2 S0ε

2. (2)

Here B0 is the bulk modulus. σ0 = σ11 + σ22 and S0 = S11 +
S22 + 2S12 with σ and S being the surface stress and surface
elastic constant, respectively, and the subscripts 1 and 2 being
the two in-plane perpendicular directions of the surface. B0,
σ0, and S0 can be obtained from the DFT calculations by
fitting �Ebulk and �γ with strain according to Eqs. (1) and
(2), respectively. In the calculation of the surface stress, both
unrelaxed surfaces and relaxed ones are considered for com-
parison. Note that by relaxed surfaces we refer to the surfaces
that are relaxed in the atomic coordinates but not relaxed in
strain.

Note that the change in the total energy of a nanopar-
ticle with volume V0 under a certain strain is �Etotal =
�Ebulk (ε)V0 + ∑

i niAi�γi(ε). By minimizing �Etotal with

respect to ε, one can obtain the internal strain ε of the
nanoparticle,

ε = −
∑

niAiσ0i

9B0V0 + ∑
niAiS0i

. (3)

Here the subscript i is used to distinguish the differently
indexed crystal faces. Ai denotes the area of each exposed
ith surface, and ni is the number of the ith surface (see more
details in Appendix A).

III. RESULTS AND DISCUSSION

First of all, we need to find out the area of each exposed
crystal face of a nanoparticle in equilibrium. The morphology
of a nanoparticle is determined by the condition of minimizing
the total surface energy under the constraint of a fixed bulk
volume V0. According to the Wulff rule [32,33], the distance hi

from the geometric center of the nanoparticle to the ith surface
is proportional to the surface energy γi, i.e., γi

hi
= const. By

this means, the thermally stable morphology of the metal
nanoparticles can be obtained with the orientation-dependent
surface energies.

Usually only the low index surfaces are exposed due to
their low surface energies. Here we consider the (111), (100),
and (110) surfaces for all the fcc metals, and their surface en-
ergies are shown in Appendix B (Fig. 6). According to the re-
sults, we found that the exposed facet number of the nanopar-
ticles are 26 and 14 for metals with small and large atomic
numbers, respectively, as shown in blue and red in the insets of
Fig. 1. It suggests that the surface anisotropy of the considered
metals generally increases with increasing atomic number.
The 14-facet gold nanoparticle was adopted theoretically
[34] and was observed experimentally [35], which means
that by considering the three low index surfaces the surface
anisotropy of the metals has been sufficiently accounted for.

As the internal strain depends on the elastic properties,
we further calculate the bulk modulus as well as the surface
stress and surface elastic constants of (111), (100), and (110)
surfaces of all involved metals. The results are shown in
Appendices C and D (Figs. 7–9). Based on the equilibrium
morphology of a specific metal, the internal strain depending
on the nanoparticle size can be obtained according to Eq. (3)
by using the obtained bulk and surface elastic properties. The
internal strain of all the fcc metal nanoparticles with different
sizes is shown in Fig. 1. One can see that the magnitude of the
internal strain of Au or Pt nanoparticles can reach 2.5% when
the sizes are about 3 nm, whereas it is less than 0.5% for the
nanoparticles with the size of 10 nm.

Before further discussing the general rule of the findings
for the fcc metals, we need to verify our models by selecting
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FIG. 1. The variation of the internal strain with the size of the fcc
metal nanoparticles. Metals with 26 facets and 14 facets are shown
in (a) and (b), respectively.

typical metals to compare the current results with the
previously reported ones. The data are collected from the
literature for metals Al [13,36,37], Cu [5,6], Pd [7], Ag
[4,36,38], Pt [5], and Au [3,39]. As shown in Fig. 2, the data
in the literature are divergent from each other so that it is
impossible for any theoretical model to be consistent with all
the data. Even so, our results are consistent with data from
specific sources within a wide range of the nanoparticle size,
especially for Al and Cu. It demonstrates that our theoretical
models are reliable.

We stress that there is a crossover from noncrystalline to
crystalline at very low size. Such crossover generally happens
to metals less than 3 nm, e.g., Co [40], Pd, Pt, Au [41], and Rh
[42]. For Ag and Cu, the crossover occurs at a larger diameter
of about 5 nm [41]. Fortunately, as shown in Fig. 2(a) for
Al and Fig. 2(b) for Cu, by fully considering the anisotropy
of nanoparticles our theoretical results are roughly consistent
with the previously reported data even at size smaller than
5 nm.

Now back to the general rule of the fcc metals. One of
the findings in Fig. 1 is that the largest internal strain of
the fcc transition metals is always in the last column of the
Group VIII (Ni/Pd/Pt) when the size is greater than 5 nm.
To visualize it more clearly, the internal strain of d1 = 10
and d2 = 5 nm of d-band metal nanoparticles in this paper
is shown in Fig. 3. Ni/Pd/Pt obviously lie on the lowest sites
in each section of the lines.

FIG. 2. Comparison of the current paper with the previous re-
ported ones for six typical kinds of fcc metal nanoparticles.

In order to explain why metals in the last column of Group
VIII have the largest internal strain among the fcc transi-
tion metals, we approximate Eq. (3) by ignoring the surface
anisotropy and only include the contribution of the (111) sur-
face due to its lowest surface energy. Moreover, the quadratic
term contributed by S0 can be omitted for nanoparticles with
diameters larger than 5 nm. Under these assumptions, we can
use the ratio of surface stress σ0 of the (111) surface to the bulk
modulus B0 to measure the internal strain of a nanoparticle
with size of d ,

εd ∝ −σ0(111)

B0
. (4)

FIG. 3. The internal strain of the transition-metal nanoparticles
with the size of 10 nm (open squares) and 5 nm (solid squares),
respectively.

195419-3



XIN WEI AND DA-JUN SHU PHYSICAL REVIEW B 106, 195419 (2022)

FIG. 4. (a) The negative ratio of surface stress to bulk modulus −σ0(111)/B0, (b) the surface stress σ0(111), and (c) the bulk modulus B0

as a function of the number of d electrons.

As shown in Fig. 4(a), Ni, Pd, and Pt lie on the lowest points
in each period, inconsistent with what shown in Fig. 3. It
indicates that the simplification from Eqs. (3) to (4) is rea-
sonable, and the ratio of σ0(111)

B0
plays key roles in determining

the internal strain.
Therefore, the phenomenon that the magnitudes of the in-

ternal strain of Ni, Pd, and Pt are the largest can be understood
from the intrinsic variation of B0 and σ0 of the transition
metals. According to the Friedel model [43,44], the curve of
bulk cohesive energies or unrelaxed surface energies of both
4d and 5d metals with n looks like a parabola with an opening
downward, where n is the number of d electrons ranging from
1 to 10 [45]. The modified Friedel model gives a M-like shape
for 3d metals varying with n due to the spin polarization [46].
Variations of the bulk modulus B0 and the surface stress σ0 of
the unrelaxed surface with n also follow the same trends, i.e.,
in the n-like shape for 4d and 5d metals and the M-like shape
for 3d metals. For the considered fcc metals in this paper, the
number of the d electrons is n > 5. Thus, only the right half
of the M-like curve (3d) or n-like curve (4d and 5d) appears
as shown by the dashed curves for the unrelaxed σ0 and the
solid curves for B0 in Figs. 4(b) and 4(c), respectively.

The surface stress σ0 can be further affected by the surface
relaxation. For most of the transition metal the topmost layer
tends to relax inward, whereas for some noble metals the out-
ward relaxation occurs [47–50]. As only the inward relaxation
favors a smaller surface stress [51], there is a large difference
for different metals in the change in surface stress before
and after the surface relaxation. As shown by comparison
between the dashed curves and the solid ones in Fig. 4(b),
the surface stress decreases obviously for n < 8. However, for
metals with more d-band filling, for instance, Ni/Pd/Pt and
Cu/Ag/Au, the surface stress changes little. In fact, we note
that the surface stress of Pd(111), Pt(111), and Au(111) even
increases after surface relaxation in Fig. 4(b). Considering that
both σ0 and B0 are concave downward with the change in n,
the largest ratio σ0/B0 occurs more likely at n of 8 ∼ 9, i.e.,

the group of Ni/Pd/Pt. It indicates that internal strain of a
metal nanoparticle eventually depends on the d-band filling
for transition metals.

Another feature shown in Fig. 1 is that with the exception
of Sr, all the fcc metals exhibit a negative internal strain,
which means that a fcc metal nanoparticle usually tends to
contract. The negative internal strain of nanoparticles suggests
that most of the surfaces are dominated by the positive surface
stress. Among the considered metals, however, the metal Sr
shows a positive internal strain. Since both Ca and Sr have
two s-valence electrons in order to understand the abnormality
of Sr, we compare the variations of (111) and (100) surface
energy of Ca and Sr with externally applied biaxial strain in
Fig. 5. The (110) surface is omitted since its proportion is
relatively small, as shown in Table II. We find that the (100)
surfaces of Ca and Sr have positive surface stress, just like the
other normal fcc metals. However, both (111) surfaces have
negative surface stress, consistent with what reported is in

FIG. 5. The change in the surface energies of (111) (solid
squares) and (100) (solid circles) of Ca (a) and Sr (b) crystals under
the externally applied biaxial strain. The solid lines are the fitting
curves according to Eq. (2).
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TABLE II. The surface energy γ of three low-index surfaces and
their area percentage A (%). γa (J/m2) is the data of the current paper
and γb (J/m2) is reproduced from Ref. [33].

Metal Ca Sr

Surface i (111) (100) (110) (111) (100) (110)
γa (J/m2) 0.47 0.45 0.53 0.34 0.35 0.41
γb (J/m2) 0.46 0.46 0.54 0.35 0.34 0.41
A (%) 44 44 12 62 36 2

Ref. [52] with a larger magnitude for Sr(111) than Ca(111).
Furthermore, the total surface area occupied by the (111)
plane of Sr is 62%, larger than the corresponding value of
Ca as shown in Table II. Thus, the negative surface stress of
Ca(111) is compensated by the positive surface stress of the
Ca(100) surface, which makes the Ca nanoparticle show a nor-
mal negative internal strain. In contrast, the Sr nanoparticle is
dominated by the (111) surface due to its higher ratio, showing
the abnormal positive internal strain, i.e., lattice expansion.
This difference between Ca and Sr comes from the larger
surface anisotropy of Sr than Ca because of its larger atomic
number.

Negative surface stress is unusual in metals, but it is rela-
tively more common in semiconductors. The abnormality of
Sr can partly be explained by its special band structure which
suggests that Sr is a semimetal, and even a small gap can be
opened up by the spin-orbit interaction [53].

IV. CONCLUSION

To summarize, based on the density functional theory, the
bulk and surface elastic properties of fcc metals in plus of the
surface energies of all the fcc metals are calculated. According

FIG. 6. The surface energies of (100), (110), and (111) surfaces
of the fcc metals after the surface relaxation.

to the orientation-dependent surface energies, the stable mor-
phologies of nanoparticles are obtained and are used to study
the internal strain as a function of the size. We found that our
theoretical results are consistent with the previously reported
experimental ones within a wide range of nanoparticle sizes.
We also demonstrate that the largest internal strain of the
fcc transition-metal nanoparticle larger than 5 nm occurs in
the last column of Group VIII (Ni/Pd/Pt), and the fcc metal
nanoparticles tend to contract with decreasing size with the
only exception of Sr. These findings would help the commu-
nity to understand the rules and the mechanism of the internal
strain of fcc metal nanoparticles.
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TABLE III. The comparison of surface energies between this paper and references.

This paper (J/m2) Other theoretical simulation (J/m2) Experimental value (J/m2)

Period Element γ (100) γ (110) γ (111) γ (100) γ (110) γ (111) γ̄

3 Al 0.99 0.99 0.83 0.91 0.98 0.77 1.16b/0.98c

4 Ca 0.45 0.53 0.47 0.46 0.54 0.46 0.49b

Fe 1.79 2.27 2.17 2.133a 2.255a 2.077a 1.95c

Co 2.50 2.44 2.08 2.48 2.42 2.04 3.0d

Ni 2.23 2.27 1.93 2.21 2.29 1.92 2.45b/2.28c

Cu 1.50 1.53 1.38 1.47 1.56 1.34 1.825b/1.725c

5 Sr 0.35 0.41 0.34 0.34 0.41 0.35 0.41b

Ru 3.04 2.88 2.42 2.98 2.81 2.39 hcp 3.05b

Rh 2.30 2.39 2.02 2.35 2.33 1.98 2.7b

Pd 1.52 1.77 1.39 1.52 1.57 1.36 2.05b

Ag 0.87 0.87 0.73 0.82 0.87 0.76 1.25b/1.14c

6 Ba 0.29 0.37 0.30 * * * *
Os 3.68 3.33 2.61 * * * 3.45b

Ir 2.87 2.88 2.33 2.88 2.83 2.36 3.0b

Pt 1.89 1.86 1.50 1.86 1.87 1.49 2.475b/3.0c

Au 0.85 0.93 0.69 0.86 0.91 0.71 1.5b/1.485c

Pb 0.22 0.30 0.25 0.33 0.33 0.26 0.6b

The data of the theoretical simulations without labels are from Ref. [33]; aRef. [54]; bRef. [55]; cRef. [56]; dRef. [58].
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TABLE IV. The comparison of elastic constants for 17 fcc metals.

This paper (GPa) Theoretical worka (GPa) Experimental workb (GPa)

Period Element C11 C12 C44 C11 C12 C44 C11 C12 C44

3 Al 126 54 32 104 73 32

Ca 20 13 13 21 15 14
Fe 318 124 182 −4 262 28

4 Co 288 162 146 289 173 148
Ni 263 151 128 276 159 132
Cu 179 111 80 180 127 78 176 125 82

Sr 12 8 9 15 10 12
Ru 482 222 261 476 226 243

5 Rh 414 181 187 397 182 177 413 194 *
Pd 199 148 71 187 147 71 234 176 72
Ag 130 73 52 100 82 41

Ba 10 8 10 * * *
Os 595 300 281 579 323 342
Ir 581 230 252 576 231 252 600 256 268

6
Pt 299 226 58 303 220 54 358 254 77
Au 165 127 40 144 134 29 202 170 45
Pb 39 41 6 47 32 18

aRef. [59]; bRef. [60].

APPENDIX A: GEOMETRY OF NANOPARTICLES

In Eq. (3), B0, σ0, and S0 can be directly obtained from DFT
calculations. Ai, ni, and V0 are determined by the morphol-
ogy of the nanoparticles constructed according to the Wulff
rule. Let us take the distance from the geometric center of a
nanoparticle to the exposed (111) surface as h1, to the exposed
(100) surface as h2, and to the exposed (110) surface as h3. For
convenience 2h2 is denoted as d .

(1) The 26-facet nanoparticle:
V0 = 4

√
3h3

1 + 4h3
2 + 16

√
2h3

3 + 48
√

6h1h2h3 −
12

√
3h1h2

2 − 36h2
1h2 − 24

√
3h1h2

3 − 48h2h2
3.

A100 = −6h2
1 + 2h2

2 − 8h2
3 − 4

√
3h1h2 + 8

√
6h1h3.

A110 = 4
√

2h2
3 + 4

√
6h1h2 − 4

√
3h1h3 − 8h2h3.

A111 = 3
√

3
2 h2

1 − 3
√

3
2 h2

2 − 3
√

3h2
3 − 9h1h2 + 6

√
6h2h3.

n100 = 6; n110 = 12; n111 = 8.

(2) The 14-facet nanoparticle:
V0 = 4h3

2 − 8
√

3h3
1 − 12

√
3h1h2

2 + 36h2
1h2.

A100 = 6h2
1 + 2h2

2 − 4
√

3h1h2.

A111 = 9h1h2 − 3
√

3h2
1 − 3

√
3

2 h2
2.

n100 = 6; n111 = 8.

FIG. 7. The bulk modulus B0 of the fcc metals.

APPENDIX B: THE SURFACE ENERGY

As shown in Fig. 6, the (111) surface always has the lowest
surface energy for all these fcc metals. Note that Fe(111) is
abnormal partly due to that γ -Fe (fcc) is less stable than the
most stable α-Fe (bcc). Actually we find it difficult to reach
the convergence during the self-consistent DFT calculations
of γ -Fe (fcc). The data of the surface energies are also given
in Table III.

APPENDIX C: THE BULK ELASTIC PROPERTIES

The elastic constants of the fcc metals C11, C12, and C44

from the DFT calculations are given in Table IV where the
referenced theoretical data are reproduced from [57]. The
current data are consistent with the previous work [59] with
the exception of C11 of γ -Fe. It is also worthy to note
that for Au, there is about 30% difference between the
theoretical value C11 (144 GPa) and the experimental value

FIG. 8. The surface stress σ0 of the fcc metals after the surface
relaxation.
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FIG. 9. The surface elastic constant S0.

[60] (202 GPa). In this paper, we use the experimental value
to obtain the bulk modulus of Au [61].

The bulk modulus for the fcc crystal B0= 1
3 (C11 + 2C12) is

obtained by using the results shown in Table IV. As shown

in Fig. 7, Ca, Sr, and Ba have smaller B0 than the transition
metals. The bulk moduli of the 4d- and 5d-fcc transition
metals tend to decrease from left to right. Among them, the
metal Os has the largest B0 of nearly 400 GPa.

Note that for the magnetic systems Fe, Co, and Ni, the
DFT-PBE method also provides elastic properties compara-
ble with the experimental data [62–65]. Spin-orbit coupling
(SOC) may renormalize the elastic properties for heavy el-
ements [66,67]. Fortunately, it has negligible impact on the
main conclusion in this paper since the bulk moduli of Pt and
Au change little after SOC is included [61].

APPENDIX D: THE SURFACE ELASTIC PROPERTIES

The surface elastic properties are calculated according to
Eq. (2). The surface stress is shown in Fig. 8 and the surface
elastic constants in Fig. 9 for the relaxed surface. The surface
elastic constants are obtained by applying various strain of
−1 ∼ 1% within the harmonic approximation.
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