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We determine the current-phase relation (CPR) of two-terminal configurations of Josephson junctions
containing two-dimensional (2D) time-reversal invariant topological superconductors (TRITOPS), including
TRITOPS-TRITOPS, as well as junctions between topological and nontopological superconductors (TRITOPS-
S). We focus on wide junctions for which several channels intervene in the tunneling coupling. We derive
effective Hamiltonians to describe the topological edge modes for different TRITOPS models, including Hamil-
tonians with p-wave pairing and Hamiltonians combining s-wave pairing with spin-orbit coupling. We also
derive effective low-energy Hamiltonians to describe the Josephson junction. These can be solved analytically
and explain the contribution of the edge states to the Josephson current as a function of the phase bias. We find
that edge modes yield peculiar features to the CPR for both junction types. The primary effects occur for the
response of the Majorana zero modes at half-flux quantum phase φ ≈ π in TRITOPS-TRITOPS junctions and for
integer flux quantum phase φ ≈ 0 for TRITOPS-S junctions, respectively. The former effect is particularly strong
for two-component nematic superconductors. The second effect leads to a spontaneously broken time-reversal
symmetry in the TRITOPS-S junction and to a breakdown of the bulk-boundary correspondence. We analyze in
this case the role of the phase fluctuations. For weakly coupled junctions, we show that time-reversal symmetry
is restored for large enough stiffness in these fluctuations.

DOI: 10.1103/PhysRevB.106.195415

I. INTRODUCTION

Topological superconductivity is among the most active
research topics for some time now [1]. The topological
superconductors are characterized by nontrivial topological
quantum numbers in the bulk, which are usually accompanied
by subgap excitations localized at the edges that behave as
gapless Majorana fermions. Those have attracted great interest
because of their potential application in quantum information
processing [2–4].

The simplest model for topological superconductivity is
Kitaev’s model, which was formulated for spinless (or fully
spin-polarized) fermions with p-wave pairing [2]. In one di-
mension (1D) the subgap states are Majorana bound states at
zero energy that are localized at the ends of the superconduct-
ing wire. The latter are represented by operators satisfying
γ † = γ and γ 2 = 1. In two dimensions (2D) Majorana edge
modes are massless and propagate along the edge in 1D chan-
nels satisfying η

†
k = η−k and {ηk, ηk′ } = δk,k′ . Such models

guided the search for the topological phase in more realis-
tic systems, where singlet superconductivity is the dominant
type. A promising platform for the realization of topological
superconductivity is based upon the combination of s-wave
singlet superconductivity with spin-orbit coupling (SOC) and
magnetic fields, which effectively generates p-wave supercon-
ductivity [5,6]. Several experiments in semiconducting wires

with SOC in proximity with superconductors show features
consistent with these ideas [7–11]. Another avenue to engi-
neer a 1D topological superconductor is based on magnetic
adatoms inducing subgap states in superconducting substrates
[12–14]. Furthermore, the iron-based material FeSeTe, with
intrinsic s-wave superconductivity and surface magnetism
[15], as well as topological insulators in proximity with or-
dinary superconductors and magnetic islands [16,17] are also
considered as a platform to realize Majorana states. Several
results in this direction are reviewed in Refs. [18–21]. All
the systems mentioned above rely on mechanisms breaking
time-reversal symmetry. On the basis of symmetry analysis, it
was recognized early on that other families of topological su-
perconductors may exist [22]. Those preserving time-reversal
symmetry are referred to as members of the DIII-class or
TRITOPS (time-reversal symmetric topological superconduc-
tors). The key ingredient to realize this topological phase is
the existence of two channels in which the pairing function
have opposite signs [23]. Formally, a simple way to gener-
ate this effect is with two copies of Kitaev’s model related
by time-reversal symmetry [24–26] or by considering time-
reversal-symmetric p-wave pairing [27]. Several theoretical
proposals have been formulated in a number of systems. These
include 2D and 3D models [11,23,28,29], as well as architec-
tures of real systems like nanowires with Rashba spin-orbit
coupling with proximitized d-wave [30] or extended s-wave
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[31] configurations of two wires with spin-obit coupling,
s-wave superconductivity and magnetic fields in arrange-
ments globally preserving time-reversal symmetry [25,32–
34], 2D topological insulators in proximity with supercon-
ductors [35–39], and thin films of iron-based superconductors
[40]. As a consequence of the time-reversal symmetry, the
edge modes of these topological systems appear in Kramers’s
pairs of Majorana modes. Their signatures can be identified
in the noise spectrum and in the behavior of the Josephson
current [32,41–52].

The hybridization between the topological edge states of
topological superconductors in a Josephson junction leads to
the formation of Andreev bound states. In 1D TRITOPS, the
edge modes have zero energy and are localized at the end
of the system. The corresponding Andreev bound states are
characterized by symmetry-protected level crossings, which
give rise to jumps in the current-phase relation (CPR) J (φ),
φ being the phase bias at the junction. Such features depend
on the structure of these modes, in particular, on the spin pro-
jection of their particle and hole components [45,49,53,54].
In 2D, the edge modes extend along the boundaries of the
system. One of the goals of the present work is to analyze the
structure of these modes, in particular, their dispersion relation
and their spin structure.

In 2D, the characteristics of the Majorana edge modes are
not universal but depend on the nature of the bulk. We show
that they depend, in particular, on the details of the pairing
mechanism and are also affected by the presence of the spin-
orbit coupling. To properly analyze and compare these effects,
we do not restrict ourselves to a single type of TRITOPS
but consider models with and without spin-orbit coupling.
We focus on two families of BCS models in 2D, which are
representative of the different proposals reported in the litera-
ture: (a) p-wave pairing. Here our aim is to analyze the effect
of spatial symmetry, which enables superconducting phases
represented by one and two-dimensional order parameters.
This is motivated by the observation of a nematic phase in
the doped topological insulator CuxBi2Se3 [55,56], which has
been suggested to be a TRITOPS with odd-parity supercon-
ducting pairing [28]. (b) s±-wave pairing in combination with
SOC, which are the ingredients of the TRITOPS platforms
based on unconventional superconductors [31,40]. We derive
effective Hamiltonians for the edge modes in each case which
we compare with numerical results. These consist of 1D Dirac
Hamiltonians describing the dynamics of the Kramers pairs of
Majorana modes. The velocity of propagation of these modes
as well as the structure of the spinors describing them are
determined by the pairing mechanism of the bulk Hamiltonian
and by the presence of the SOC.

The other goal of the present work is to analyze the impact
that the structure of the edge modes have on the behavior
of the CPR. We consider two types of Josephson junctions:
(i) TRITOPS-TRITOPS and (ii) TRITOPS-S (S denotes a
conventional superconductor). We derive effective low-energy
Hamiltonians for these configurations, which can be solved
analytically. The coupling of the edge modes in the junction
generate φ-dependent mass terms in the Dirac Hamiltoni-
ans, which reveals the different nature of the junction. In
the TRITOPS-TRITOPS case, the mass term is ∝ cos(φ/2),
implying the opening of a gap in the spectrum of the topologi-

cal Andreev modes close to φ = 0. This mass term depends
on the type of pairing and may have a complex structure
which depends on the SOC. Instead, in the TRITOPS-S case,
the mass generation is much more subtle. In this case the
junction separates phases of different topology, and hence
the bulk-boundary correspondence demands the edge to host
gapless modes. This is reflected in the ∝ sin(φ) dependence
of the mass term. This is a consequence of the fact that for
φ = 0 the Kramers’ pair of edge modes remains robust under
the coupling to the nontopological S system. However, as
soon as the time-reversal symmetry is broken by a small φ,
a gap develops in the corresponding Andreev spectrum. We
show that this mechanism is very general and it takes place
irrespective of the details of the pairing mechanism and the
SOC. The outcome is a jump of the CPR at φ = 0, implying
an instability of the bulk-boundary correspondence as soon
as the time-reversal-protecting symmetry is broken. The work
is organized as follows. We introduce the models to be in-
vestigated in Sec. II. Section III is devoted to analyze the
topological properties of the different models and to derive
the effective Hamiltonians for the edge modes. We analyze
the Josephson current in Sec. IV. Here we solve the problem
numerically by diagonalizing exactly the lattice Hamiltonians
and we also derive effective low-energy models based on the
Josephson-tunneling coupling of the edge modes, which can
be solved analytically. In all the cases we focus on junctions
with many transverse channels that we analyze in the mo-
mentum space. Section V is devoted to analyze in detail the
instability of the TRITOPS-S junction. Section VI contains
a summary and conclusions, and some technical details are
presented in Appendixes A–D.

II. MODELS FOR THE TRITOPS PHASE

We consider two different types of 2D models with BCS
pairing defined in the square lattice and hosting a TRITOPS
phase. (a) Models with p-wave pairing preserving time-
reversal symmetry. The most studied case in the literature
consists of two copies of the Kitaev model [23–25], where
each copy has triplet pairing of fully polarized fermions. How-
ever, this is not the only possibility, since it is also possible to
have triplet p-wave pairing between electrons with opposite
spin orientation as it is well known in the context of He3

[57,58]. Taking also into account the symmetry properties of
the underlying lattice, we analyze the structure of the edge
modes in the different irreducible representations of the p-
wave pairing order parameter. This analysis is important in
view of the nematic phase observed in the superconducting
phase of the doped topological insulator CuxBi2Se3 [55,56].
Although this phase takes place in 3D, two-dimensional ar-
chitectures based on this compound could inherit similar
properties. We anticipate that, while the one-dimensional irre-
ducible representations host dispersing edge modes, the edge
modes of the two-dimensional one are dispersionless. (b) We
also study a model where the pairing is of extended s-wave
type in combination with SOC. Here we will see that the
combination of these two ingredients effectively generates a
p-wave-type pairing in the one-dimensional irreducible repre-
sentations of the 2D lattice but with a spin structure of the edge
modes affected by the SOC. In the forthcoming sections we
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will analytically derive effective Hamiltonians for the edge
modes and we will see how all these features lead to different
signatures in the behavior of the CPR.

A. p-wave pairing

We consider the following Hamiltonian in the lattice H =
1
2

∑
k c†

kH p
k ck, with ck = (ck,↑, ck,↓, c†

−k,↓,−c†
−k,↑)T and k =

(kx, ky), while the Bogoliubov–de Gennes Hamiltonian matrix
reads

H p
k = ξkτ

zσ 0 + τ xσ · �
α,β

k . (1)

The Pauli matrices τ x,y,z and σ = (σ x, σ y, σ z ) act, respec-
tively, on the particle-hole and spin degrees of freedom, while
τ 0, σ 0 are 2 × 2 identity matrices. The dispersion relation is
defined in terms of a hopping element t as εk = −2t (cos kx +
cos ky); hence ξk = εk − μ, being μ the chemical potential.
Our results do not rely on the assumption of only nearest-
neighbor hopping in εk and easily carry over to dispersions
with further range hoppings. The p-wave pairing vector func-
tion, restricting to a k dependence with only linear terms in
sin kx and sin ky and preserving time-reversal symmetry, reads

�
α,β

k = 
x sin kx nα + 
y sin ky nβ, (2)

with (
y,
y) real. With the above restrictions, it is possible
to build a pairing vector function for each of the irreducible
representations of the point group D4h:

�A1u
k = 
(sin kx nx + sin ky ny)

�A2u
k = 
(sin ky nx − sin kx ny),

�B1u
k = 
(sin kx nx − sin ky ny),

�B2u
k = 
(sin kx ny + sin ky nx ),

�Eu
k = 
(sin kx ± sin ky) nz, (3)

nx,y,x being unit vectors along the x, y, z directions. The A ju,
B ju, j = 1, 2 are one-dimensional irreducible representations,
while the Eu is two dimensional. For an intrinsic superconduc-
tor, the allowed values for the two components (
x,
y) are
determined by the nonlinear, quartic terms of the Ginzburg-
Landau expansion. The three options that result are, on the
one hand, two solution proportional to either (1,±1) or (1, 0)
and (0, 1). Those are nematic superconductors where the su-
perconducting state breaks a rotation symmetry. On the other
hand, there is the option proportional to (1,±i) which breaks
time-reversal symmetry and hence is not of the type discussed
in this paper. Alternatively, superconductivity could be the
consequence of a proximity effect to a substrate, in which case
all the real combinations of (
x,
y) are consistent with the
time-reversal symmetry. In addition, the edges of the samples
are not necessarily aligned with the crystalline axes. We con-
sider the particular real nematic phase with �Eu

k defined in
Eq. (3), but we have checked that our conclusions hold for
any other choice of (
x,
y).

B. s±-wave pairing and SOC

The second type of model we will analyze is based on BCS
pairing with s-wave symmetry in combination with spin-orbit
coupling. We focus, in particular, on the model proposed

by Zhang-Kane-Mele (ZKM) in Ref. [31], which is a BCS
Hamiltonian with local 
0 plus extended 
1 s-wave pairing
and Rashba spin-orbit coupling (SOC) λ. The Hamiltonian
reads

HZKM
k = ξkτ

zσ 0 + 2λτ z(sin kxσ
y − sin kyσ

x ) + τ xσ 0
k.

(4)

The pairing potential has a local 
0 plus extended 
1

s-wave components, with 
k = 
0 + 2
1(cos kx + cos ky).
This model hosts a topological phase for |μ − ε0| < ε1, with

ε0 = t
0/
1 and ε1 = 2λ

√
|
0/
1| − 
2

0/(4
2
1).

III. EFFECTIVE HAMILTONIANS FOR THE EDGE MODES

The TRITOPS phase is characterized by the existence of
Kramers’ pairs of Majorana edge modes. The aim of this sec-
tion is to derive effective Hamiltonians to analytically describe
the dynamics of these modes. This will be the starting point
to analytically describe the Andreev spectra generated when
these states are coupled in the Josephson junction. We focus
on the two families of models previously introduced. For sim-
plicity, we start the discussion with an analytic investigation
of edge modes in the continuum limit. In the case of the ZKM
model we must rely on an analytical solution of the lattice
model in order to capture all the details introduced by the
SOC. In all the cases we compare with the solution of the
lattice Hamiltonian with a numerical approach.

A. p-wave model with A ju and B ju symmetry

A simple derivation of the effective Hamiltonian to
describe the edge modes is possible by considering the con-
tinuum version of the Hamiltonian of Eq. (1). We start by
analyzing the cases with 


A1u
k and 


B1u
k , which correspond to

H (1) = 1

2

∫
d2x �†(x) H (1) �(x), (5)

with the Bogoliubov–de Gennes Hamiltonian,

H (1) = τ zσ 0[εp − μ(x)] + 
τ x(pxσ
x ± pyσ

y), (6)

where ± corresponds to A1u and B1u, respectively. The Nambu
field operators are defined as �(x) = (ψ (x), iσ yψ†(x))T ,
ψ (x) = [ψ↑(x), ψ↓(x)]T being a spinor in spin space, while
x = (x, y) and px, py denote the momentum in the x and
y direction, respectively, with the dispersion relation εp =
p2/(2m).

The Hamiltonians for the edges along y read (see Ap-
pendix A for details)

Hν =
∑

py�0,σ

vν,σ pyη
†
ν,py,σ

ην,py,σ , (7)

where ν = l, r labels the left or right edges of a long ribbon
along the y direction and vν,σ = sνsσ
 is the velocity of prop-
agation of the modes, with s↑ = −s↓ = 1. The corresponding
Bogoliubov operators are

ην,py,σ = eisν sσ π/4

√
2

(cν,py,σ − isνsσ c†
ν,−py,σ

), (8)
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FIG. 1. Edge states and spectra for the topological phase of
Hamiltonians with p-wave pairing. (a) and (b) correspond to the
Hamiltonian of Eq. (1), with 
k belonging to the one-dimensional
irreducible representations of Eq. (3), while (c) and (d) to the two-
dimensional representation Eu. Only A1u (equal to A2u) is shown. B1u

(equal to B2u) has the same spin structure with opposite chiralities.
The spectra are calculated for a system with open boundaries along
the x direction and periodic boundary conditions along y (only ky � 0
is shown). The edge states are indicated in light blue. These are
twofold and fourfold degenerate in (b) and (d), respectively.

where cν,py,σ is the annihilation operator of a fermion with
momentum py and spin σ at the edge ν. Notice that the
Bogoliubov operators describing the edge modes, given in
Eq. (8), satisfy the condition

η†
ν,py,σ

= ην,−py,σ . (9)

The solution for the edges along the x direction is similar, and
the picture is consistent with two helical Majorana modes with
associated opposite spin orientations circulating along the
edges with opposite chiralities [see sketch of Fig. 1(a)]. The
corresponding spectrum is presented in Fig. 1(b). The analysis
of the representations A2u and B2u is completely analogous,
and the solution is the same with an identical result.

B. p-wave model with Eu symmetry

We can proceed in a similar way as in Sec. III A. The
Bogoliubov–de Gennes Hamiltonian for the continuum ver-
sion in the present case reads

HEu = τ zσ 0[εp − μ(x)] + 
τ xσ z(px ± py), (10)

where, as before, we consider 
 > 0, and the topological
phase corresponds to μ > 0. The calculation of the zero
modes for py = 0 leads to a solution with identical structure as
Eq. (A2), but with �ν

0,s being a spinor that satisfies τ yσ z�ν
0s =

sν�
ν
0s, with sr = −sl = 1. Hence, �ν

0+ = 1
2 (1, 1, sν i,−sν i)T

and �ν
0− = 1

2 (1,−1, sν i, sν i)T . Remarkably, the solution for
py �= 0 corresponds to evanescent modes, which is consistent
with a flat band of zero modes localized at the edges. There-
fore the edge modes are nondispersive. The sketch of these
states along with the spectrum is shown in Figs. 1(c) and 1(d),
respectively.

ZKM

x
Y

FIG. 2. (a) Bands of the Hamiltonian HZKM without pairing for
ky = 0. The yellow region indicates the range of values of μ within
which the topological phase develops. The Fermi points indicated
in dots are −kF1, −kF2, kF2, kF1 (from left to right). (b) Sketch
of the edge states for the continuum Hamiltonian. (c) Spectrum of
HZKM with periodic boundary conditions along y and open boundary
conditions along x in a system with Nx = 200. Parameters are 
0 =
−2
1 = −0.4t , λ = 0.5t , and μ = −2t . The (doubly degenerate)
edge states are indicated in light blue.

C. ZKM model

1. Simplified continuum version

To proceed as in the case of the p-wave BCS model, we
define a low-energy continuum Hamiltonian for the lattice
model defined in Eq. (4). The pairing potential of this model
has a nodal surface for which 
k = 0, which encloses the
time-reversal-invariant point k0 = (0, 0) for 
0/
1 < 0, or
k0 = (π, π ) for 
0/
1 > 0 [31], and the topological phase
develops when the Fermi energy approaches this surface. Due
to the SOC, the system without pairing has two bands with
different Fermi surfaces. The dispersion relation for ky = 0
is shown in Fig. 2(a). The continuum model is obtained by
linearizing this Hamiltonian with respect to the Fermi points
of these two bands at the Fermi energy of the nodal surface of

k. The procedure is explained in Appendix B. The effective
low-energy Hamiltonian has p-wave pairing in the representa-
tions A ju or B ju along with SOC as an additional ingredient.

The Hamiltonian for the y edges reads

H ν =
∑

py�0,s=±
vs pyη

†
py,sην,py,s, (11)

with vs = s2λ. Similar to the case of Eq. (8), the Bogoliubov
operators describing the edge modes, given in Eq. (B6), satis-
fies the condition

η†
ν,py,s = ην,−py,s. (12)

Notice, however, that the spin orientation is along the x direc-
tion in the present case. The solution for the edges running
along the x direction is similar but with the spin orientation
along y. The picture is consistent with two helical Majorana
modes circulating along the edges with opposite chiralities
and the spin texture shown in the sketch of Fig. 2(b). This
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is consistent with the spectrum calculated by the exact diago-
nalization of Eq. (4), which is presented in Fig. 2(c).

2. General solution in the Lattice model

In the previous analysis we have linearized the Hamilto-
nian with respect to k points with one component of k0 kept
fixed and the other component on the nodal lines of 
k, and
we have calculated the corresponding effective Hamiltonians
for the edge modes. For the sake of simplicity, we have
neglected low-energy terms corresponding to linearizing the
Hamiltonian with respect to other k values of the 2D Fermi
surface. In those cases, the dispersion relation with respect to
kx keeping ky fixed is similar to the one shown in Fig. 2(b)
but with the orientation of the spin tilted with respect to z. In
order to account for such more general context, we propose
an ansatz for the description of the edge modes in terms of
Bogoliubov operators with the structure of Eq. (B6) but with
fermions having a tilted spin orientation. It reads

ην,k,s = e−issνπ/4

√
2

( f̃ν,k,s + issν f̃ †
ν,−k,s), s = ± , (13)

where k denotes the transverse direction to the finite-length
ribbon, along which the edge localizes. The fermionic opera-
tors f̃ν,k,s are

f̃ν,k,+ = e−iδν,k

[
cos

(
θν,k

2

)
fν,k,↑ + e−iϕν,k sin

(
θν,k

2

)
fν,k,↓

]

f̃ν,k,− = eiδν,k

[
−eiϕν,k sin

(
θν,k

2

)
fν,k,↑ + cos

(
θν,k

2

)
fν,k,↓

]
,

(14)

with θν,k = θν,−k , ϕν,k = ϕν,−k , δν,k = δν,−k , so that they are
time-reversal partners, T f̃ν,k,+T−1 = f̃ν,−k,−, T f̃ν,k,−T−1 =
− f̃ν,−k,+. These operators describe localized fermions
at the ν edge with spin-1/2 orientations along 	nν,k =
(cos θν,k cos ϕν,k, cos θν,k sin ϕν,k, sin θν,k ) in the coordinate
system indicated in Fig. 2. For this reason, the fermions of
Eq. (14) are basically the fermions cν,py,s of Eq. (B6) upon ap-
plying a SU(2) operation that tilts the spin from an orientation
along the x direction to 	nν,k . Following the reasoning of Ref.
[59], we notice that a SU(2) rotation in the fermions defining
Majorana modes comes along with a change in the phases.
For this reason we introduced the phase δν,k in Eq. (14),
which, together with ϕν,k, θν,k , define the generalized Bloch
coordinates for each k value along the edge state.

This heuristic argument can be verified by following a sim-
ilar procedure as in Refs. [60,61], modified to get analytical
results as explained in Appendix C. Concretely, we consider
the following lattice Hamiltonian:

HZKM
k =

Lx∑
j=1

c†
j,k[τ z(ξk − 2λ sin kσ x ) + 
kτ

x]c j,k

+
Lx−1∑
j=1

(c†
j,k[τ z(−t − iλσ z ) + 
1τ

x]c j+1,k + H.c.),

(15)

with c j,k = (c j,k,↑, c j,k,↓, c†
j,−k,↓,−c†

j,−k,↑)T , ξk= − 2t cos
k − μ, 
k = 
0 + 2
1 cos k. This corresponds to the
Hamiltonian of Eq. (4) defined in a slab of Lx sites in the x
direction and periodic boundary conditions in the transverse
y direction (we are simplifying notation ky ≡ k). The solution
in the neighborhood of k = k0,y is given by Eqs. (13) and
(14) with the angles θν,k = π/2, ϕν,k = −sνϕk and the phase
δν,k = sνϕk/2 with

sl = −sr = sgn(λ
1). (16)

Hence, all the angles and phases of the generalized Bloch
coordinates can be expressed in the present case in terms of
a single k-dependent phase ϕk . The fermionic operators fν,k,σ

are related to the fermionic operators of the basis of the lattice
model as follows:

fl,k,σ = Nk

2∑
�=1

αk,�,σ

Lx∑
j=1

z j−1
k,�,σ

ck jσ ,

fr,k,σ = Nk

2∑
�=1

αk,�,σ

Lx∑
j=1

zLx− j
k,�,σ

ck jσ , (17)

where Nk is a normalization factor, while αk,�,↑ = αk,�,↓ ≡
αk,� = α−k,� and zk,�,↑ = zk,�,↓ ≡ zk,� = z−k,� are complex
coefficients which are determined by the open boundary con-
ditions. The Hamiltonian for the edge modes reads

Hν =
∑

k>0,s=±
sελ,k η

†
ν,k,sην,k,s, (18)

with

ελ,k = −2ρkλ sin k. (19)

The parameters ρk and ϕk are related to the parameters α� and
z j through

ρkeiϕk = N2
k

Lx∑
j=1

(
2∑

�=1

αk,�z j−1
k,�

)2

. (20)

Importantly, ρk � ρ, and ϕk � ϕ are approximately constant
close to the Dirac point k0,y, while ρk tends to zero as k signifi-
cantly departs from this point. The structure of the edge modes
corresponds to the sketch of Fig. 2, but with the spins tilted an
angle ϕ with respect to the plane of the superconductor.

IV. JOSEPHSON JUNCTION AND CPR

Our goal now is to analyze of the impact on the Josephson
current of the different types of edge states corresponding
to the different platforms for realizing the TRITOPS phase.
To this end, we consider two superconductors contacted in
a Josephson junction. The hybridization of the states of the
two superconductors leads to the development of Andreev
states with energies below the superconducting gap. In the
topological phase, these states are mainly originated by the
hybridization between the edge states, which leads to peculiar
features in the CPR. We analyze junctions between two TRI-
TOPS as well as junctions between TRITOPS and an ordinary
superconducting phase (S).
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The Hamiltonian for the full system containing the two su-
perconductors S1, S2 and the tunneling junction is expressed
as H = ∑

k Hk with

Hk =
∑

α=S1,S2

Hα,k + HJ,k . (21)

The Hamiltonian Hα,k corresponds to the TRITOPS Hamilto-
nian expressed in a slab of length Nx and periodic boundary
conditions in the transverse direction, adopting a representa-
tion as in Eq. (15). The Hamiltonian for the tunneling junction
is HJ = ∑

k HJ,k , with

HJ,k = tJ
∑

σ

(eiφ/2c†
S1,k,1σ

cS2,k,1,σ + H.c.), (22)

where c†
S1,k,1,σ

(c†
S2,k,1,σ

) creates an electron with spin σ in
the superconductor S1 (S2) at the boundary contacting the
junction with wave vector k in the transverse direction. The
phase bias at the junction, φ = 2π�/�0, is defined by the
total magnetic flux �, with �0 = h/2e being the flux quan-
tum. Our aim is to analyze features originated in the intrinsic
properties of the topological edge states. For this reason we
focus on Josephson junctions without spin-orbit effects. The
latter usually introduce extra phases which affect the behavior
of the Josephson current [54].

We calculate the Josephson current by diagonalizing ex-
actly Hk and evaluating the energy of the ground state of this
many-body Hamiltonian as [59,62]

E0(k, φ) = −1

2

∑
s=±

εk,s(φ), J (k, φ) = 2e

h̄

∂E0(k, φ)

∂φ
.

(23)
The energies εk,s(φ) are the negative single-particle energies
of Hk . The total Josephson current as a function of φ (CPR)
is simply calculated as J (φ) = ∑

k Jk (φ). In all the cases we
compare the exact numerical results with analytical ones that
are obtained by substituting the exact Hamiltonians for the
superconductors by effective Hamiltonians representing only
the edge modes of the TRITOPS and/or a simplified version
of the ordinary superconductor.

A. TRITOPS-TRITOPS junction

1. p-wave model

Results for the Josephson current for different k values in
junctions between TRITOPS with p-wave pairing are shown
in Fig. 3. The two panels of the figure illustrate the behavior
of this quantity for the different representations of the p-wave
pairing introduced before. The different colors distinguish
the contributions associated to the hybridization of the edge
modes from those corresponding to the hybridization of the
continuum states. We can see the impact of the different
structure of edge modes in the two cases.

The B1u case is shown in the upper panel, and we recall
that the spectrum of the edge modes has a linear dispersion
relation. The contribution of the zero mode leads to a Joseph-
son current which has a discontinuity at φ = π (see light-blue
plot). This is the same behavior observed in topological super-
conducting wires and is a consequence of a level crossing of
the Andreev states resulting from the hybridization of the Ma-
jorana zero modes [17,25,27,49,53]. Instead, the Josephson
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FIG. 3. k-resolved Josephson current (in units of e/h̄) as a func-
tion of the phase difference in the topological phase for a junction
of 2D topological superconductors with p-wave pairing calculated
with numerical exact diagonalization. The upper and lower panels
correspond to the representations A1u (identical results are obtained
for the A2u and B ju, j = 1, 2) and Eu, respectively. The plots in thick
lines correspond to k = 0. Plots in violet correspond to the edge
states, while the other k values are shown in red. The parameters are
tJ = λ = 0.5t , 
 = t , and μ = −3t . A similar behavior is observed
for other parameters within the topological phase (−4t � μ � 4t)

current is continuous as a function of φ for all the other edge
modes with finite energy. Nevertheless, the observed behavior
differs from the usual ∝ sin(φ) function of nontopological
junctions (see violet plots). The latter behavior is observed
only for k values associated to the continuum states (see
red plots). We will see below that the Josephson coupling
introduces a mass term in the effective Dirac Hamiltonian
describing the free edge states, which explains the peculiar
CPR of the propagating Majorana edge states. Identical results
are obtained for the representations A2u and B ju, j = 1, 2.
For the Eu case, where the edge modes form a flat band at
zero energy, not only the k = 0 mode but all the edge modes
show a discontinuity at φ = π (see lower panel of Fig. 3).
The CPR is shown in Fig. 4 and is a superposition of all the k
components.
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FIG. 4. Josephson current (in units of e/h̄) as a function of
the phase difference in the topological phase for a junction of 2D
topological superconductors with p-wave pairing calculated by nu-
merically diagonalizing the coupled lattice Hamiltonians. Solid and
dashed lines correspond to the representation B1u and Eu for tJ = λ =
0.5t , 
 = t , and μ = −3t .

In both types of junctions, the behavior of the Joseph-
son current for k values associated to the edge states can
be explained in terms a low-energy effective Hamiltonian
for the junction [46,53,59], where we replace the fermionic
operators for the TRITOPS’ boundaries close to the junc-
tion cS1,k,1,σ ≡ cr,k,σ and cS2,k,1,σ ≡ cl,k,σ in Eq. (22) by their
projections on the low-energy subgap excitations given by
Eq. (8). Concretely, we perform the gauge transformation
η

†
ν,k,σ

→ eisνsσ π/4η
†
ν,k,σ

and we substitute

c†
ν,k,σ

� 1√
2
η

†
ν,k,σ

, c†
ν,−k,σ

� isνsσ√
2

ην,k,σ .

Introducing ην,k = (ην,k,↑, ην,k,↓)T , for k � 0, we get the
following effective Hamiltonian for the junction, obtained
after adding the contributions of k and −k in the original
Hamiltonian:

H p−p
eff,k = tJ cos(φ/2)η†

l,kηr,k + H.c. + vk
∑

ν

sνη
†
ν,kσ

zην,k .

(24)
For the case of the Eu representation we have v = 0, and

for the other representations we have v = ±
.
Defining the spinor ηk = (ηl,k,↑, ηl,k,↓, ηr,k,↑, ηr,k,↓)T , this

effective Hamiltonian can be expressed as

H p−p
eff,k = η

†
k [tJ cos(φ/2) τ̃ x + vkη

†
k τ̃ zσ z]ηk, (25)

where the Pauli matrices τ̃ j act on the left-right degrees of
freedom. We see that it has the structure of a Dirac Hamilto-
nian with a mass term ∝ cos(φ/2). The Hamiltonian of (25)
can be diagonalized and has eigenenergies ±ε

p−p
k (φ) with

ε
p−p
k (φ) =

√
(vk)2 + t2

J cos2(φ/2), (26)

which defines the Andreev spectrum. As a consequence of
the dependence of the mass term with φ, a gap opens for
arbitrary small φ. The derivative ∂Ek,−/∂φ leads to a behavior
of Jk that is perfectly consistent with the behavior reported in
Fig. 3. For the Eu representation, the different amplitude of the

FIG. 5. (a) k-resolved Josephson current as a function of the
phase difference in the topological phase for a junction of 2D topo-
logical superconductors with tJ = t/2, 
0 = 2
1, and μ = ε0. The
plot in thick lines corresponds to k = π . Plots in violet correspond to
the edge states, while the other k values are shown in red. The upper
insets show the total Josephson current and the effective Josephson
current. The lower inset shows the comparison of the exact numerical
solution with the prediction based on Eq. (35) with the effective
parameters calculated with the exact solution as explained in Ap-
pendix C (dashed lines). (b) Same as top panel for 
0 = 
1 and
tJ = t .

discontinuity for different k values can be explained by taking
into account the renormalization of tJ due to the k-dependent
projection of the edge modes on the fermionic operators of the
boundary in Eq. (24).

2. ZKM model

The Josephson current for the different k values as a func-
tion of the phase bias φ for the ZKM model is shown in
Fig. 5. As in the previous section, we distinguish with different
colors the contribution of the continuum states (red) and the
edge modes (violet), highlighting the component of the zero
modes corresponding to the time-reversal symmetric points
k0 = 0, π (light blue). The latter mode presents the same type
of discontinuity at φ = π observed in the p-wave models. We
also observe the typical ∝ sin(φ) behavior in the contribution
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of the states well inside the continuum. The behavior of the
edge modes is more clearly distinguished for the parameters
corresponding to the upper panel, and we will provide an
analytical description below. The lower panel corresponds to
parameters for which the superconducting gap is smaller. In
this case, there is a strong hybridization between the topo-
logical edge states and those belonging to the quasiparticle
continuum. We see interesting features, including several sign
changes of Jk (φ) for such mixed states. The total CPR for
different parameters is shown in the top insets of both panels.

In order to analyze the contributions of the edge states in
the present case, we follow the same procedure as the pre-
vious section. Introducing the gauge transformation η

†
ν,k,s →

e−issνπ/4η
†
ν,k,s we have

f̃ν,k,s = 1√
2
ην,k,s, f̃ †

ν,−k,s = −issν

1√
2
ην,k,s, (27)

with the fermionic operators defined in Eq. (14).
Therefore, assuming λ
1 > 0,

fν,k,↑ = eisνϕk/2

2
(ην,k,+ − ην,k,−),

fν,k,↓ = e−isνϕk/2

2
(ην,k,+ + ην,k,−),

f †
ν,−k,↑ = −isν

e−isνϕk/2

2
(ην,k,+ + ην,k,−),

f †
ν,−k,↓ = −isν

eisνϕk/2

2
(ην,k,+ − ην,k,−). (28)

Finally, we use the relation to the parameters of Eq. (17)
corresponding to the wave function of the lattice Hamiltonian,
which leads to

c†
ν,±k,σ

= �ν,k,σ f †
ν,±k,σ

, (29)

with

wl,k = �l,k,↑ =Nk

2∑
�= 1

αk,� = �r,k,↑ = �l,k,↓ =�r,k,↓ = wr,k .

(30)

Substituting in Eq. (22), and assuming that the right edge of
S1 is connected to the left edge of S2, leads to the effective
Hamiltonian for the junction. Including the contribution of the
free edge states described by Eq. (18) we get

HZKM−ZKM
eff,k

= cos(φ/2)
∑
s=±

[t1,kη
†
r,k,sηl,k,s + it2,kη

†
r,k,sηl,k,−s + H.c.]

+
∑
s=±

sελ,k η
†
ν,k,sην,k,s, (31)

where ελ,k is defined in Eq. (19), and we have introduced the
definitions

t1,k = tJRe
(
w2

k eisrϕk
)
, t2,k = tJIm

(
w2

k eisrϕk
)
. (32)

The term in the first line of Eq. (31) describes the hy-
bridization of the edge states through the Josephson-tunneling
process, while the second one corresponds to the free edge
states. In analogy to the case of the p-wave model, we

can introduce the spinor ηk = (ηl,k,+, ηl,k,−, ηr,k,+, ηr,k,−)T , in
terms of which the effective Hamiltonian reads

HZKM−ZKM
eff,k = η

†
k [cos(φ/2)(t1,k τ̃

x + t2,k τ̃
yσ x )

+ ελ,kσ
z]ηk. (33)

We see that in the present case, the effective Hamiltonian
for the coupled edge modes has the structure of the Dirac
Hamiltonian as in the case of the p-wave model, but with two
mass terms. Both mass terms are ∝ cos(φ/2), which implies
the opening of a gap in the Andreev spectrum for arbitrary
small φ. It is interesting to notice that, unlike the p-wave case,
the two massive terms are k-dependent in this case. This is a
consequence of the spin structure of the edge modes, which
do not have a fixed direction in space but have a k-dependent
tilt ϕk . The effective Hamiltonian can be diagonalized and has
the following eigenenergies ±εZKM

k,± (φ) with

εZKM
k,± (φ) =

√
[t1,k cos(φ/2) ± ελ,k]2 + t2

2,k cos2(φ/2). (34)

The calculation of the Josephson current for this effective
Hamiltonian results in

Jeff,k (φ) = 1

2
teff (φ) sin

(
φ

2

)
,

teff (φ) = [t1,k cos(φ/2) + ελ,k]t1,k + t2
2,k cos(φ/2)

εZKM
k,+ (φ)

+ [t1,k cos(φ/2) − ελ,k]t1,k + t2
2,k cos(φ/2)

εZKM
k,− (φ)

. (35)

For the time-reversal symmetric points k0 = 0,±π , there
is a level crossing in the spectrum because of which the
ground-state energy E0,eff (k, φ) has a cusp and its derivative
is discontinuous at φ = π , which explains the jump in the
Josephson current at this value of the phase. Other k values
corresponding to the edge modes are semiquantitatively de-
scribed by Eq. (35). An illustration is shown in the lower
inset of Fig. 5(a), where the Josephson current calculated from
exact diagonalization of the full lattice model is explicitly
compared with the prediction of Eq. (35) based on the analyt-
ical calculation of the parameters wk and ϕk from Eqs. (C10)
and (C15). Although these parameters depend on k, close to
the Dirac point, such dependence can be neglected. We see
that the agreement is very good, and the slight quantitative
mismatching can be understood by recalling that the analytical
calculation introduces some approximations, namely, it treats
λ perturbatively and also assumes strongly localized edge
modes [see Eqs. (C14) and (C15)]. The plots of Fig. 5(b)
correspond to parameters for which the superconducting gap
is smaller. Under these conditions, the topological edge modes
of each topological superconductor hybridize in the junction,
not only with the topological edge states of the other su-
perconductor but also with the nontopological states above
the gap. As a consequence of this mixed hybridization, other
features emerge, like the sign changes and a sawtooth-type
behavior observed in these plots. This peculiar behavior can
be qualitatively explained in terms of an effective Hamiltonian
for the junction, which consists in adding a term representing
the high-energy states to the effective low-energy Hamiltonian
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FIG. 6. k-resolved Josephson current for a junction tilted an
angle β = π/4 respect to the xz plane with tJ = t/2, 
0 = 2
1,
μ = ε0. Inset: Comparison with the effective model. Dashed lines
correspond to Eq. (35), with the parameters defined in Eq. (36).

of Eq. (33). Such a procedure is similar to the one explained
in the next section for the description of the TRITOPS-S
junction.

We have considered so far junctions between TRITOPS
with SOC oriented in the same direction. It is also interesting
to consider a configuration where the two planes hosting the
superconductors are tilted in an angle β around the z axis in
the coordinate frame of Fig. 2(b). Introducing such a rotation
in the Hamiltonian of S2 in Hk and in Eq. (22) leads to the
k-resolved Josephson current shown in Fig. 6. We appreci-
ate some different features for the k values corresponding to
the edge modes, in comparison to Fig. 5(a), which has been
calculated for the same parameters of the Hamiltonian in a
junction without any tilt (β = 0). As before, the behavior
of Jk (φ) for k belonging to the edge modes can be captured
with a good degree of accuracy by the description provided
by the effective Hamiltonian describing the Josephson-tunnel
coupled edge modes. In the present case, this corresponds
to Eq. (31) suitably modified to account for the tilt, which
implies modifying the parameters to

t1,k = tJRe
(
w2

k e−i(ϕk+ β

2 )), t2,k = tJIm
(
w2

k e−i(ϕk+ β

2 )). (36)

This merely adds a shift β/2 to the tilt of the spins of the
edge modes with respect to the plane of the superconductor.
The corresponding contribution to the Josephson current cal-
culated from this effective model is given by Eq. (35) with
these modified parameters.

The net Josephson current, resulting from adding the con-
tribution of all the transverse k channels, is shown in the upper
right inset of Figs. 5(a) and 5(b). In the topological case, it
shows a smooth but richer structure, which should be traced
back to the maxima, minima, and crossings that take place
for the k values corresponding to the edge states for these
parameters.

B. TRITOPS-S junction

We now consider a Josephson junction between a TRI-
TOPS and a nontopological superconductor. Concretely, we
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FIG. 7. k-resolved Josephson current as a function of the phase
difference in the topological phase for a junction between a 2D
topological superconductor with p-wave pairing (upper and middle
panels) and a nontopological one with s-wave pairing. These panels
correspond to the representation A1u and Eu, respectively. The lower
panel corresponds to a junction between the ZKM model and an
ordinary superconductor (corresponding to 
1 = λ = 0). The pa-
rameters are tJ = λ = 0.5t , 
 = 
0 = 2
1 = 0.4t , μ = 
0/
1t .

consider the Hamiltonian of Eqs. (21) and (22), with S1 be-
ing a BCS superconductor with only local pairing 
0. This
corresponds to Eq. (4) with λ = 
1 = 0. The results for the
k-resolved Josephson current for S1 modeled by the three
TRITOPS Hamiltonians studied in the previous sections are
shown in Fig. 7.

The common pattern we can identify in these three configu-
rations is the behavior of the k0 component. It is characterized
by three remarkable features, in striking contrast with the
TRITOPS-TRITOPS junctions: (i) a sign change in Jk0 (φ), (ii)
twice the periodicity in φ, and (iii) a discontinuous jump at
φ = 0. Such a peculiar behavior was discussed in the context
of 1D systems in Refs. [23,41,49]. In the case of the Eu repre-
sentation, these features are observed not only for k0, but also
for all the k values belonging to the (zero-energy) edge modes.
A similar behavior was discussed in the framework of Joseph-
son junctions between a superconductor with dx2−y2 pairing
and superconductors with s-wave pairing [63–65]. A jump in
the CPR akin to the one observed in Fig. 7 is predicted when
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the nodal line of the d-wave superconductor is perpendicular
to the junction, as a consequence of zero modes in the inter-
face. In our case, the existence of the zero modes is associated
to the topological edge states. It is important to notice that this
feature is, however, different from the so-called “anomalous
Josephson effect” taking place when time-reversal symmetry
is broken in the superconductor and/or in the junction at
φ = 0 [66–69]. In fact, as a consequence of the time-reversal
symmetry, the CPR in the TRITOPS-S junction obeys J (φ =
0) = 0,∀k. A finite, albeit arbitrary small φ is necessary to
induce the jump in Jk (φ) for k belonging to the zero-energy
modes.

We can also derive an effective low-energy Hamiltonian for
the TRITOPS-S junction. To this end, we consider the edge
modes of the topological side, coupled to the high-energy
quasiparticle excitations of the nontopological (S) one. In or-
der to simplify the calculations, we neglect the free dispersion
relation and we consider the following model for the S side:

HS,k = 
0(c†
k,↑c†

−k,↓ + H.c.) =
∑
s=±

s
0 d†
k,sdk,s + constant,

(37)
with dk,s = (ck,↑ ± c†

−k,↓)/
√

2.
Considering the Hamiltonian of Eq. (8) for the edge states

of the p-wave Hamiltonian expressed in the basis of the spinor
ην,k = (ην,k,↑, ην,k,↓)T and integrating out the degrees of free-
dom of the ordinary superconductor in the second order of
perturbation theory in the tunneling coupling tJ, we get

H p−S,eff
k = η

†
k

[
ε̃

p
k σ z + mp sin(φ)σ y

]
ηk (38)

with

ε̃
p
k = vksν, mp = −|tJ|2/
0. (39)

For the case of the ZKM model, we can consider the
projections on the edge modes of the fermionic operators at
the end of the TRITOPS by using Eqs. (27), (28), and (29)
and integrate out the fermions of the S side in a similar way
as before. This leads to the following effective Hamiltonian
for the junction expressed in the basis of the spinor ηk =
(ην,k,+, ην,k,−)T (see Appendix D for details):

HZKM−S,eff
ν,k = η

†
k

[
ε̃ZKMσ z + mZKM

k sin(φ)σ x
]
ηk, (40)

where we adopt the same notation as in Sec. IV A 2 and we
have introduced

ε̃ZKM
k = ελ,k (1 − mZKM/
0), mZKM = 2sνt2

J |wk|2/
0.

(41)
The diagonalization of the two Hamiltonians defined in

Eqs. (38) and (40) for the TRITOPS-S junction leads to the
eigenstates ±εT−S

k (φ) with

εT−S
k (φ) =

√
(mZKM)2 sin2(φ) + ε̃2

k , (42)

with the parameters defined in Eqs. (39) and (41) for the p-
wave and ZKM Hamiltonians for the TRITOPS, respectively.
This leads to the many-body ground-state energy E0(φ) ≡
−εT−S

k (φ). Hence, the Josephson CPR is given by

Jeff,k (φ) = − 1

2εT−S
k (φ)

(mZKM)2 sin(2φ). (43)
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FIG. 8. Total Josephson current as a function of the phase differ-
ence in the topological phase for a junction between a 2D topological
superconductor and a nontopological one with s-wave pairing. Light
blue, violet, and red colors correspond to the A1u, Eu, and ZKM
models, respectively.

This analytical expression is in full agreement with the be-
havior of the Josephson current for k corresponding to the
edge states shown in Fig. 7. In the case of the p-wave pairing
within the Eu representation, which is shown in the middle
panel, all the k components close to the Dirac point have a
jump at φ = 0 because the edge channels are dispersionless,
and hence ε̃k = 0 in Eq. (42).

To finalize, we show in Fig. 8 the total CPR obtained by
adding all the k components for the three models. We see that
all three cases are characterized by a jump at φ = 0, mod(π ).
As expected, the amplitude of this feature is much more pro-
nounced in the case of the Eu-type p-wave pairing.

V. INSTABILITIES AND BULK-BOUNDARY
CORRESPONDENCE

In this section we discuss how our findings are re-
lated to the expectations that follow from the bulk-boundary
correspondence. We will see that the behavior at TRITOPS-
TRITOPS junctions is fully in line with the bulk-boundary
correspondence. The junction separates two topologically
nontrivial systems. Hence states in the junction area should
be gapped. The tunneling term between two TRITOPSs must
therefore induce a gap of the edge states of both topolog-
ical superconductors. By the same logic one would expect
massless states at the TRITOPS-S junction, as it separates a
topologically trivial and nontrivial state. However, our results
imply that TRITOPS-S junctions violate the bulk-boundary
principle. We will argue that this is a consequence of the spon-
taneously broken time-reversal symmetry in the TRITOPS-S
junction itself. With the protecting symmetry spontaneously
broken at the edge, edge states become massive. We expect
this to be a fully generic feature of TRITOPS-S junctions.

The low-energy states of both junctions can be described
in terms of a Majorana spinor with Hamiltonian

Hedge = vpα + m(φ)v2β. (44)
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For the TRITOPS-TRITOPS junction we have a four-
component Majorana spinor. We focus on the p-wave case
Eq. (40), for which α = τ̃ zσ z and β = τ̃ x. In addition, the
fermion mass depends on the relative phase according to
m(φ) = m0 cos(φ/2), where m0 is linearly proportional to the
tunneling matrix element tJ . In distinction, at the TRITOPS-S
junction we have a two-component Majorana spinor with α =
σ z, β = σ x. The most crucial difference is the phase depen-
dence of the mass m(φ) = m0 sin φ, where m0 ∝ t2

J /
0 with
pairing gap 
0 of the topologically trivial superconductor.

So far, we have considered the phase bias of the junction
as a parameter that is fixed by external conditions, like imple-
menting the junction in a ring-shape structure threaded by a
magnetic flux. We now consider the junction regarding φ as
an internal degree of freedom in order to analyze the stability
close to φ = 0. The usual phase dependence of the Josephson
energy is

EJ,0(φ) = 1

2λ2
J

(1 − cos φ), (45)

which yields an equilibrium phase φ∗ = 0 mod(2π ). Equa-
tion (45) is the result of tunneling due to states above the
bulk pairing gap, just like in any other superconductor. Us-
ing this value for the equilibrium phase difference φ∗ and
inserting in the two mass-phase relations for the two junction
types, edge states are massive for TRITOPS-TRITOPS junc-
tions [cos(φ∗/2) �= 0] and massless for TRITOPS-S junctions
[sin(φ∗) = 0]. This is in line with the expectation that follows
from the bulk-boundary correspondence.

It is, however, important to analyze the impact of the edge
states on the current-phase relation, i.e., to properly include
the edge-state contribution to the Josephson energy:

EJ (φ) = EJ,0(φ) + δEJ (φ). (46)

Here,

δEJ (φ) = 〈Hedge〉φ − 〈Hedge〉φ=0 (47)

is the phase-dependent expectation value of the energy due
to edge modes. We made the assumption that the phase stays
constant in space along the junction, an assumption that we
will relax below.

In order to determine δEJ (φ), we integrate out the edge-
state fermions. To justify this we assume and check later for
consistency that the fermion mass is finite. It follows from
Hedge of Eq. (44) that

δEJ (φ) = − v

8π
m(φ)2 log

(
�2

m(φ)2

)
. (48)

Here � is the high-energy cutoff.
Let us first comment on the impact of edge modes on

the current-phase relation of TRITOPS-TRITOPS junctions.
If we use m(φ) = m0 cos(φ/2) in Eq. (48), the minimum in
EJ (φ) continues to be at φ = 0 mod(2π ) and the edge modes
are indeed massive m(φ∗) = m0 �= 0, fully consistent with the
bulk-boundary correspondence. Only near φ = π , where the
fermion mass changes sign, do we find a singular behavior for
the current:

J (φ) ∼ − log

(
�2

m2
0(φ − π )2

)
(φ − π ). (49)

This is the main effect of edge modes for TRITOPS-TRITOPS
junctions.

More dramatic behavior occurs at the TRITOPS-S junc-
tion. With m(φ) = m0 sin φ, one easily finds that the singular
logarithmic dependence near φ = 0 implies that the minimum
in EJ (φ) is always shifted to a finite phase φ∗, yielding a finite
fermion mass, which corresponds to broken chiral symme-
try. Using C = PT for the chiral, parity, and time-reversal
symmetries, we see that broken C with intact P breaks the
time-reversal symmetry, as expected for a junction with non-
trivial phase difference φ �= 0, π . Clearly the bulk-boundary
correspondence does not apply.

We conclude that the edge modes at the junction between a
TRITOPS and a conventional superconductor are not gapless
but massive, which is closely connected to a finite equilibrium
phase difference at the junction. The bulk-boundary corre-
spondence at the edge is invalidated, as the gapless modes
are unstable against an infinitesimal Josephson coupling. The
protecting time-reversal symmetry is broken at the junction as
a consequence of the phase-edge mode coupling.

Other physical effects may play a role. Particularly inter-
esting is the role of phase fluctuations, which could induce
mechanisms tending to restore the broken time-reversal sym-
metry in the TRITOPS-S junction. Another interesting effect
that could take place in the coupled dynamics of the edge
states and the phase fluctuations is the emergence of Majorana
zero modes that are tied to solitonic phase slips. Those local-
ized zero modes are expected for both junction types. All these
phenomena are worthy of being analyzed in combination with
capacitive electron-electron interactions in the junction. The
starting points to this goal are the effective Hamiltonians of
Eqs. (25), (33), (38), and (40), which we have derived for
the different junctions, suitable for extension to address these
other effects.

VI. CONCLUSIONS

We have studied different models for two-dimensional
time-reversal symmetric topological superconductors (TRI-
TOPS), with and without spin-orbit coupling. To this end, we
have derived effective Hamiltonians for the edge modes and
shown that their spectrum and spin texture strongly depend
on the point-group symmetry of the superconducting pairing
as well as on the spin-orbit coupling.

We then analyzed wide Josephson junctions between two
topological superconductors (TRITOPS-TRITOPS), as well
between a topological superconductor and an ordinary s-wave
superconductor (TRITOPS-S). The discontinuous current-
phase relation near φ = π , known from junctions between
two one-dimensional topological superconductors, continues
to be visible in our wide TRITOPS-TRITOPS junctions. It
is particularly pronounced in the two-component, nematic
superconductors, where edge modes are nondispersive. This
result follows not only from our approximate continuum’s
theory but is equally present in the full numerical solution of
the lattice version. Singular behavior near φ = π is, however,
also present in other junctions between two TRITOPSs, al-
beit weaker given the edge-state dispersion. This behavior is
caused by vanishing mass of the edge modes at φ = π .
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The behavior is rather different in TRITOPS-S junctions
between a time-reversal symmetric topological and a topo-
logically trivial superconductor. Now the edge-mode gap
vanishes for φ = 0, and minimization of the energy leads to a
finite but small φ leading to time-reversal symmetry breaking
in the edge. This endows the edge modes with a mass and
generates an unexpected jump in the Josephson current.

These results provide useful hints in the experimental
search of the TRITOPS phase. In addition, the effective
Hamiltonians for the different junctions we have derived in the
present work are the foundation stones to investigate several
other interesting phenomena that may take place in Josephson
junctions with time-reversal symmetric topological supercon-
ductors and can be extended to analyze the effect of phase
fluctuations, the generation of solitonic modes, and charging
effects.
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APPENDIX A: DETAILS OF THE DERIVATION OF THE
EDGE STATES OF THE p-WAVE MODEL

We assume 
 > 0, and the topological phase corresponds
to μ > 0. We focus on an edge intersecting the horizontal axis
at the x = 0 of a slab of infinite length along the y direction. To
analyze the right/left edge, we consider a domain wall of the
form μr/l (x) = ∓sgn(x)|μ0|, which corresponds to the topo-
logical phase in the region with x < 0 / x > 0, respectively.

For py = 0, there exists a Kramer’s pair of Majorana zero
modes, which can be calculated from the solution of

{−μν (x)τ zσ 0 + 
τ x(−i∂xσ
x )}�ν

0(x) = 0, (A1)

where we have neglected, for simplicity, the dispersion rela-
tion. The solutions are

�ν
0,s(x) = gν (x)�ν

0s, gν (x) = g0esν

∫ x
0 dx′ μν (x′ )


 , (A2)

with �ν
0,s being a spinor that satisfies τ yσ x�ν

0s = sν�
ν
0s, with

sr = −sl = 1 and s = ±. Hence, �ν
0s = 1

2 (1, s, sνsi, sν i)T .
For finite py we look for solutions of the form

�(x, t ) =
∑
py>0

e−iE ν
py t(

�ν
py

(x)ην,py + CT�ν
py

(x)η†
ν,py

)
, (A3)

with CT ≡ −iτ yiσ yK , where C is the charge conjuga-
tion, T is the time-reversal operator in Nambu space, K is
complex conjugation, and the Bogoliubov operator is ην,py =∫

d2x�ν†
py

(x)�(x). Hence, we must solve

{−μν (x)τ zσ 0 + 
τ x(−i∂xσ
x ∓ i∂yσ

y)}�ν
py

(x) = E ν
py

�ν
py

(x).
(A4)

We find two degenerate solutions, which we label with
σ = ↑,↓ for each py. The eigenenergies are

E ν
py,σ

= ±vν,σ py , (A5)

with vν,σ = sνsσ
, with s↑ = −s↓ = 1. The eigenfunctions
are

�ν
py,σ

(x, y) = gν (x)eisνsσ π/4eipyy�ν
0,σ ,

�ν
0,σ =

(
�ν

0,+ + sσ�ν
0,−

)
√

2
. (A6)

The corresponding Bogoliubov operators are

ην,py,σ = eisν sσ π/4

√
2

(cν,py,σ − isνsσ c†
ν,−py,σ

). (A7)

APPENDIX B: DERIVATION OF AN APPROXIMATE
CONTINUUM HAMILTONIAN FOR THE ZKM MODEL

We find it convenient to transform the Hamiltonian of
Eq. (4) by means of a rotation R = e−iπ/4σ x

in the spin degrees
of freedom, which transforms σ y → σ z. The derivation of the
continuum Hamiltonian is particularly simple for 
0 = ±2
1

and we shall focus on λ, 
1 > 0. Let us assume, for concrete-
ness, the case with 
0 = −2
1, λ > 0, and ky = 0, in which
case the nodal surface crosses at the nodal points (±π/2, 0),
and the two bands have a well-defined z component of the spin
± 1/2.

For |μ + 2t | � 2λ, there are four Fermi points in the kx

axis [see Fig. 2(a)]. We call them ±kF
1 ,±kF

2 , with kF
1 and kF

2
belonging to the different branches ↑,↓, respectively. Hence,
linearizing with respect to the Fermi points, the spectrum
without pairing has right and left movers with ↑,↓ z com-
ponent of spin. Projecting the pairing potential on the Fermi
points and expanding with respect to the points ±π/2, which
are precisely the nodal points of this potential, we have the
following low-energy Hamiltonian

H
ky=0
p = −δμτ zσ 0 + 2
1 pxτ

xσ z + 2λpyτ
zσ x, (B1)

which is defined in the basis of the spinor
(ckF

1 ,↑, ckF
2 ,↓, c†

−kF
1 ,↓,−c†

−kF
2 ,↑)T with |px| = kF

1 − π/2 =
π/2 − kF

2 , py = ky, p = (px, py), and δμ = μ + 2t − 2λ.
We can repeat the argument along ky for kx = 0. The dif-

ference is that the two bands represented in Fig. 2(a) have spin
components along the x direction instead of z. The resulting
Hamiltonian is

Hkx=0
p = δμτ zσ 0 + 2
1 pyτ

xσ x − 2λpxτ
zσ z, (B2)

with py = ky ∓ π/2, px = kx. Furthermore, a similar reason-
ing can be followed for the case with 
0 = 2
1 for |μ −
2t | � 2λ and the same values of the other parameters. For
simplicity, we have neglected the momentum dependence of
the dispersion relation of the two bands without pairing at the
Fermi energy.

We now consider the Hamiltonian H
ky=0
p given by Eq. (B1)

to derive the wave function and the effective Hamiltonian
for the edge states along the y direction. The structure of
the solution for the case py = 0 is identical to Eq. (A1). In
turn, as pointed out in the previous section, this solution has
an identical structure as Eq. (A2), but �ν

0,σ is now a spinor
that satisfies τ yσ z�ν

0σ = sν�
ν
0σ , with sr = −sl = 1 and σ =

↑,↓. Hence, �ν
0↑ = (1, 0, sν i, 0) and �ν

0↓ = (0, 1, 0,−sν i).
For py �= 0, we consider a field operator with the structure of
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Eq. (A3), where the spinors should satisfy

{−μν (x)τ zσ 0 + 2
1τ
x(−i∂xσ

z ) + 2λpyτ
zσ x}�ν

py
(x)

= E ν
py

�ν
py

(x). (B3)

We find two degenerate solutions, which we label with s =
+,− for each py. The eigenenergies are

E ν
py,s = vs py (B4)

with vs = s2λ. The eigenfunctions are

�ν
py,s(x, z) = gν (x)e−issνπ/4eipyy�ν

0,s,

�ν
0,s =

(
�ν

0,↑ + s�ν
0,↓

)
√

2
, (B5)

and the corresponding Bogoliubov operators can be expressed
as

ην,py,s = e−issνπ/4

√
2

(cν,py,s + issνc†
ν,−py,s),

cν,py,s = 1√
2

(cν,py,↑ + scν,py,↓), 
0/
1 < 0. (B6)

The corresponding effective Hamiltonians for the edges are
given in Eq. (11).

For the case with 
0/
1 > 0, we can follow a similar
approach, taking into account that the expansion leading to the
effective continuum Hamiltonian must be done with respect to
k0 = (π, π ). In such a case, we would get for H

ky=π
p , with

px = kx ± π/2, py = ky − π , and Hkx=π
p ,with px = kx − π ,

py = ky ± π/2, expressions like those of Eqs. (B1) and (B2)
but with opposite sign of the pairing term.

APPENDIX C: EXACT SOLUTION OF THE ZKM
HAMILTONIAN FOR A TRANSVERSE CHANNEL

We consider the ZKM model in a ribbon of finite length
Nx along the x direction and periodic boundary conditions in
the transverse direction. For a single k channel as defined in
Eq. (15), this Hamiltonian is one dimensional, and hence it is
possible to solve it with a similar method as that introduced in
Refs. [60,61]. The procedure is very similar to that explained
for this specific model in Ref. [48]. We explain below the main
steps.

We express the Hamiltonian as follows:

Hk =
∑

j

Ha
k j + Hb

k j + Hλ
k j, (C1)

where the first term is

Ha
k j = ξk

∑
σ

c†
k jσ ck jσ + (
kc†

k j↑c†
−k j↓ + H.c.), (C2)

and the second one is

Hb
k j = −t (c†

k j+1σ
ck jσ + H.c.)

+ [−iλ(c†
k j+1↑ck j↑ − c†

k j+1↓ck j↓)

+
1(c†
k j↑c†

−k j+1↓ + c†
−k j+1↑c†

k j↓) + H.c.]. (C3)

These two terms are combined as follows:

H0
k =

∑
j

(
Ha

k j + Hb
k j + Ha

−k j + Hb
−k j

)
, (C4)

and this Hamiltonian is solved exactly. The third term is

Hλ
k j = −2λ sin k(c†

k j↑ck j↓ + c†
k j↓ck j↑), (C5)

and it is treated as a perturbation, by defining

Hλ
k =

∑
j

(
Hλ

k j + Hλ
−k j

)
. (C6)

As in previous works [48,59], the Hamiltonian matrix is ex-
pressed in a basis constructed by mapping the annihilation (a)
and creation (c) operators to different states:

cα ↔ |αa〉, c†
α ↔ |αc〉. (C7)

A solution for H0
k in a chain of Nx sites with open boundary

conditions with the structure of states of the generalized Bloch
form

|zkσb〉 =
Nx∑
j=1

z j−1|k jσb〉, (C8)

where b = a or c, is proposed. Following the same steps as in
Refs. [48,59], a zero mode localized at the left (L) side of the
stripe is obtained:

γLk↑ = Nk

2∑
i=1

αi

Nx∑
j=1

z j−1
i (ck j↑ + iζc†

−k j↓), (C9)

where the (k dependent) zi and αi are determined by request-
ing that Eq. (C8) is an eigenstate of H0

k with zero energy,
which leads to a second-order polynomial in z, with roots
z1, z2. ζ = sgn(λ
1) has been chosen to lead to |zi| < 1. The
normalization factor Nk is determined from {γk↑, γ

†
k↑} = 1,

N−2
k = 2

Nx∑
j=1

∣∣∣∣∣
2∑

i=1

αiz
j−1
i

∣∣∣∣∣
2

� 2

(
2∑

i=1

|αi|2
1 − |zi|2

+ α1ᾱ2

1 − ziz̄2
+ ᾱ1α2

1 − z̄1z2

)
, (C10)

where in the last equality, it has been assumed that Nx is much
larger than the localization length of the zero mode.

Using time-reversal symmetry, the corresponding solution
for the Kramer’s partner with spin down is obtained:

γLk↓ = Nk

2∑
i=1

ᾱi

Nx∑
j=1

z̄ j−1
i (ck j↓ + iζc†

−k j↑), (C11)

where we have used that Nk , αi, and zi are even in k. Moving
the parameters, this continues to be valid by continuity until
|zi| = 1 is reached for one of the roots. At this point the zero
mode disappears [the normalization factor in Eq. (C9) van-
ishes, see Eq. (C10)] and the system ceases to be topological.
Note that

γ
†
Lkσ

= −iζγL−k−σ . (C12)

So far, we have obtained exactly the zero modes of the
Hamiltonian disregarding Hλ

k . Using Eq. (C9), we obtain for
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the complete Hamiltonian

[γLk↑, H] = (−2λ sin k)Nk

2∑
i=1

αi

Nx∑
j=1

z j−1
i (ck j↓ + iζc†

−k j↑).

(C13)
The second member of this equation has a low-energy part
proportional to γLk↓ and a high-energy part. In first-order
perturbation theory in Hλ

k we consider only the former part,
which is obtained by anticommuting the second member with
γ

†
Lk↓. The result is

[γLk↑, H] = −2λρkeiϕk sin kγLk↓ + · · · , (C14)

where · · · denotes the high-energy part (a continuum of ex-
cited states), and ρk and ϕk are the modulus and phase of the
complex number,

ρkeiϕk = 2N2
k

Nx∑
j=1

(
2∑

i=1

αiz
j−1
i

)2

� 2N2
k

(
2∑

i=1

α2
i

1 − z2
i

+ 2α1α2

1 − z1z2

)
, (C15)

where in the last equality it has been assumed that Nx is much
larger than the localization length of the zero mode. Note that
all quantities in Eq. (C15) are even in k.

Using Eq. (C14) we obtain the eigenmodes

ηLk± = 1√
2

(γLk↑ ± eiϕk γLk↓), [ηLk±, H] = ±ελ,k,

ελ,k = −2λρk sin k. (C16)

Under time reversal K these operators transform as

KηLk±K† = ∓e−iϕk ηL−k∓. (C17)

Using Eq. (C12), the following property is easily proved:

η
†
L−k± = ∓iζe−iϕk ηLk±. (C18)

The resulting energies are in excellent agreement with
numerical results for parameters well inside the topological
region, for which ρk ∼ 1, for example, t = 1, μ = 2, 
0 = 4,

1 = 2.2, λ = 7, and k near π . If the largest |zi| approaches

1, ρk is small and the results lose accuracy. The dependence
of ρk with k is important. In general, the system is topological
for small ξk and 
k [see Eq. (C2)] [31], a condition difficult
to satisfy for all k, except for very small t and 
0.

The low-energy states with important amplitude for sites
near j = Nx can be obtained from those derived above by
reflection (where j is interchanged with Nx + 1 − j) and
complex conjugation (as done before [48] and confirmed nu-
merically). Then we have

γRk↑ = Nk

2∑
i=1

ᾱi

Nx∑
j=1

z̄Nx− j
i (ck j↑ − iζc†

−k j↓),

γRk↓ = Nk

2∑
i=1

αi

Nx∑
j=1

zNx− j
i (ck j↓ − iζc†

−k j↑),

ηRk± = 1√
2

(γRk↑ ± e−iϕk γRk↓), (C19)

with the following properties similar to Eqs. (C12) and (C18):

γ
†
Rkσ

= iζγR−k−σ , η
†
R−k± = ±iζeiϕk ηRk±. (C20)

APPENDIX D: DERIVATION OF THE EFFECTIVE
HAMILTONIAN FOR THE TRITOPS-S JUNCTION

We consider the low-energy effective Hamiltonian for the
TRITOPS (S2) in Eq. (22):

HS2 =
∑
k>0

ελ,k (η†
k+ηk+ − η

†
k−ηk−), (D1)

with ελ,k given by Eq. (19). The nontopological superconduc-
tor (S) is modeled by Eq. (37). We substitute Eqs. (29) and
(30) in the operators of the TRITOPS side, while for the S
side we use

c†
k↑ = 1√

2
(d†

k+ + d†
k−), c†

k↓ = 1√
2

(d−k+ − d−k−). (D2)

The effective phase-dependent tunneling Hamiltonian for the
junction, obtained after adding the contributions of k and −k,
reads

√
2Hk

J

tJ
= η

†
Lk+[wkg−(φ)dk+ + wkg+(φ)dk− + w̄keiϕk g−(φ)d†

−k+ − w̄keiϕk g+(φ)d†
−k−]

+ η
†
Lk−[wkg−(φ)dk+ + wkg+(φ)dk− − w̄keiϕk g−(φ)d†

−k+ + w̄keiϕk g+(φ)d†
−k−] + H.c., (D3)

where

g±(φ) = e−iφ/2 ± iζeiφ/2. (D4)

The fermionic degrees of freedom of S can be “integrated-
out” by treating Hk

J in second order of perturbation theory.
The result is the effective Hamiltonian for the TRITOPS edge
given in Eq. (40).
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