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Single-spin state evolution induced by the Landau-Zener-Stückelberg-Majorana (LZSM) interference in a
Zeeman-spit four-level system in a periodically driven double quantum dot is studied theoretically by the Floquet
stroboscopic method. An interplay between spin-conserving and spin-flip tunneling processes with the electric
dipole spin resonance (EDSR) that is induced in an individual dot and enhanced by the LZSM multiple level
crossings with the neighboring quantum dot is investigated as a function of the microwave (MW) frequency,
driving amplitude, interdot detuning, and magnetic field. A number of special points in the parameter space are
identified, out of which all three features are merged. Under this triple-crossing resonance condition, the interdot
tunneling is combined with a fast spin evolution in each dot at the EDSR frequency. Harmonics of the EDSR are
revealed in the spin-dependent tunneling maps versus variable magnetic field and MW frequency. The results are
applicable for both electron and hole systems with strong spin-orbit interaction and may be useful for developing
new time-efficient schemes of the spin control and readout in qubit devices.
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I. INTRODUCTION

The Landau-Zener-Stückelberg-Majorana (LZSM) phe-
nomenon manifested in the interference patterns for the
transitions between the states [1–7] is a powerful tool for
spectroscopic studies of quantum systems and for the manip-
ulation of qubits based on quantum dot (QD) charge [8–10],
spin [11–22], and valley [23,24] degrees of freedom. The
rich physics of the multilevel evolution under periodic driving
continues to attract interest in studying various structures,
including condensed matter [25–37], interacting Josephson
qubits [38–40], and atomic systems [3,41–46]. Thanks to the
strong spin-orbit interaction (SOI), for example, observed in
hole spin devices [22,29] and narrow band-gap semiconduc-
tors [15–19], the spin levels become strongly coupled during
the LZSM level-crossing processes. This leads to new spin-
dependent phenomena and new opportunities for research and
applications. Additional interest in hole spins is driven by the
prediction of reduced noise caused by the hyperfine interac-
tion with the nuclei spins [47,48].

In the present work, along with LZSM interference, we
bring one more phenomenon into play, i.e., the electric dipole
spin resonance (EDSR) [11–16,49]. In particular, we study
LZSM-induced spin-dependent tunneling and single-spin evo-
lution in a periodically driven system of spin levels with strong
spin-orbit coupling. Being the cause for the interdot spin-flip
tunneling, the SOI is also responsible for another important
phenomenon—the EDSR that lies at the basis of the spin
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operations for quantum information applications. In Ref. [22],
an efficient SOI was achieved by employing strong interdot
coupling of the order of 100 µ eV between the Zeeman-split
spin levels in the neighboring dots. Such a strong coupling
leads to a noticeable admixture of spin states, resulting in
a finite individual spin-flip transition probability under the
EDSR conditions. In the present work, we explore a situation
with much weaker interdot coupling of the order of 1 µ eV,
which is close to the experimental conditions in Ref. [29].

In this paper, we use the Floquet stroboscopic approach to
explore the evolution of Zeeman-split states in a GaAs-based
double quantum dot (DQD) with a multilevel structure and
carefully examine the hybrid situation when LZSM and EDSR
processes occur at the same time. The LZSM transitions in a
multilevel system have been considered before for the linear
[50] or perturbative and, in general, a nonlinear [51] approx-
imation of time dependence for the field-driven levels. In our
model, we consider a periodic driving field which naturally
requires the application of the Floquet stroboscopic technique.
This approach can be successfully applied for the description
of both the tunneling and spin evolution if both processes
are triggered on a timescale of many driving periods [52–55],
which is the case in our model. All three types of transitions
described above (spin-conserving tunneling, spin-flip tunnel-
ing, and the EDSR) are revealed in our simulations. As a test,
for a simple tunneling regime, we apply the well-known an-
alytical expressions for two-level LZSM patterns [1,2,4] and
find their good agreement with our numerical simulations in
the framework of the Floquet approach. We examine various
points in the parameter space and also find the conditions un-
der which all three transitions take place simultaneously. Such
a hybrid resonance cannot be described within a two-level
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model. At minimum, a four-level model is required to simulate
the spin evolution of the system under study. This regime
includes the fast interdot tunneling with the spin flip, where
the spin flip is observed in both dots of the DQD system.
The observed spin dynamics under the hybrid resonance has
a rather complex pattern which resembles the evolution under
the time-shaped profile of the electric field pulses aimed at
speeding up the spin-flip time [56]. The advantage of tuning
the system into such a hybrid regime is much faster spin-flip
transitions in the same QD where the spin state has been
initialized. We predict an enhanced precession that is several
times faster compared to the known spin-orbit-induced EDSR
mechanism in an individual dot [14]. Another important dif-
ference between our four-level model and the two-level EDSR
mechanism [14] is a notable and tunable enhancement of the
spin-flip Rabi frequency observed as a nonlinear function of
the driving strength due to the tunnel coupled states in the
neighboring QD [54].

The main advances of the present manuscript from the
line of the results achieved in Ref. [29] by which our study
is largely motivated are the following. First, we derive the
primary matrix elements defining the typical timescales of
various processes (spin-conserving tunneling, spin-flip tun-
neling, EDSR) directly by the first principles from the
eigenstates in a realistic double dot potential profile reflecting
the actual configurations achieved in experiments. Second, we
explore the space of the system parameters in a greater variety
of directions, where different combinations of the parameters
are considered compared to Ref. [29]. In particular, our main
findings can be seen most clearly in the considered magnetic
field–driving frequency plane. Third, we explore the quantum
state dynamics for the selected points in the parameter space
in the time domain both for the level occupations and the
charge and spin average values that helps in understanding
the entangled dynamics of charge and spin. Finally, when
possible, our numerical results are compared with the well-
established analytical models of the LZSM interferometry
from Refs. [1,2].

This paper is organized as follows. In Sec. II, we intro-
duce the Hamiltonian of our system and discuss the time-
independent and periodic contributions as well as the ob-
servables. In Sec. III, we discuss the primary regimes of the
evolution in terms of the associated resonance conditions and
within the framework of a two-level analytical model. We fo-
cus on the spin-conserving tunneling, the spin-flip tunneling,
and the EDSR, as well as on the regime where all three modes
are merged together. It turns out that the onset of each of the
regimes can be described by simple analytical conditions. In
Sec. IV, we introduce the numerical parameters and describe
the tunneling and spin dynamics on the maps of averaged
total and spin-dependent tunneling probability. In Sec. V, we
present the evolution examples for all principal regimes of
our system in terms of the dynamics of observables and level
populations. Finally, in Sec. VI, we summarize the results.

II. MODEL AND OBSERVABLES

Our model is based on the solution of the nonstationary
Schrödinger equation with the Hamiltonian typical for the
one-dimensional (1D) models of double quantum dots with

spin-orbit coupling and subject to constant magnetic and peri-
odic electric fields [54],

H = H2QD + HZ + HSO + V (x, t ). (1)

This Hamiltonian describes the dynamics and the tunneling
which take place essentially in a 1D channel connecting the
QDs. This is close to the situation realized in recent experi-
ments [29] where a DQD was created in a two-dimensional
hole gas by the surface electrostatic gates and the tunneling
occurred in one dimension along the line connecting the dots.
The tunneling is described in a single-particle approximation,
although the models of double dots with two electrons or
holes working as two-qubit systems with time-dependent con-
trol have also attracted considerable attention [57,58]. In (1),
H2QD = k2

x /2m + U0[(x/d )4 − 2(x/d )2] is the Hamiltonian of
the hole with the effective mass m in the lowest subband of
size quantization with the direction of the OX axis pointing
along the double dot structure (hereafter, we use units with
h̄ = 1). Here the symmetric double well potential is described
by the interdot center distance 2d and the barrier height U0.
The next term in (1) is the Zeeman coupling term,

HZ = 1
2 gμBBzσz, (2)

produced by the constant magnetic field along the OZ axis and
g is the effective hole g factor; the parameter controlling the
Zeeman splitting energy and the EDSR condition [22,29] is

�Z = gμBBz. (3)

The third term in Eq. (1) can be expressed as follows:

HSO = βDσxkx, (4)

where βD is the strength of the bulk Dresselhaus SOI which
contains the contribution linear in the wave vector that is the
leading term for GaAs-based low-dimensional structures [12].
The last term V (x, t ) describes the static detuning and driving
produced by the periodic electric field. For t < 0, only the
static detuning potential is present and applied mainly to the
right QD,

V (x, t < 0) = Ud fd (x), (5)

where fd = (x/d1)3 − 3/2(x/d1)2 models the smooth fitting
with the initial double-well potential with d1 = 1.5d . For t �
0, the additional periodic driving is turned on,

V (x, t � 0) = [Ud + Vd sin ωt] fd (x). (6)

In (5) and (6), Ud is the detuning amplitude with Ud < 0
corresponding to the right QD bottom shifted down and Vd

is the driving amplitude. The sum of the double-well poten-
tial H2QD and the detuning (5) creates the potential profile
U (x, t ) = H2QD + V (x, t ) sketched in Fig. 1 showing the dou-
ble well with two pairs of Zeeman-split levels located in each
of the two quantum dots. We perform the numerical diago-
nalization of the time-independent part of the Hamiltonian (1)
for a multilevel double QD and obtain the set of energy levels
En and the eigenfunctions φn(x), with the latter being two-
component spinors. We build a multilevel ensemble of states
representing the actual basis with the degree of completeness
required for the calculation of all the matrix elements for
finding the tunneling and spin-flip transition probabilities.
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FIG. 1. Scheme of the potential profile U (x, t ) = H2QD + V (x, t )
described by Hamiltonian (1) with double dot potential H2QD altered
by detuning and driving V (x, t ). The individual dot potential minima
are at ±d and the spin-resolved ground doublet E1, E2 in the right
QD and E3, E4 in the left QD are characterized by the Zeeman
splitting �Z .

The solution for the time-dependent Schrödinger equa-
tion is found as a sum of the eigenfunctions of the stationary
part of the Hamiltonian with time-dependent coefficients,

ψ (x, t ) =
∑

n

Cn(t )e−iEntφn(x). (7)

In the present work, during the construction of the wave
function (7), we restrict ourselves to the subspace of the four
lowest levels E1, . . . , E4 depicted in Fig. 1 since the primary
regimes of the evolution observed in the experiments [29,30]
can be described in a four-level approximation. In each QD,
we consider a ground pair of spin-resolved levels E1, E2 and
E3, E4, respectively, with primarily opposite z projections of
spin in the presence of the Zeeman term (2) depicted by the
green and red lines in Fig. 1. Our full modeling demonstrates
that around 93% of the wave-function norm is contained
within the four-level subspace throughout the whole dynam-
ics. These four levels correspond to the lowest levels of the
system representing the charge and spin degrees of freedom,
i.e., the states localized in the left or right QD, respectively,
each having the spin up or spin down, similar to the model
that has been adopted in [29]. In the present paper, we explore
the evolution in a much wider area of the parameter space
compared to [29], discovering various regimes described in
the next section. The set of ordinary differential equations is
obtained for the coefficients Cn(t ) in (7) which depend on the
matrix elements Vnl of the driving potential (6). This system
is accompanied by the initial condition Cn(0) describing the
spin-down wave packet injected into the right QD which repli-
cates the experimental conditions in [29,30]. The described
system is solved via the standard Cayley numerical scheme
in the Floquet stroboscopic representation, where the results
are presented at the time moments measured in units of the
driving period, t = NT , where T = 2π/ω is the driving field
period. The observables are calculated using the reconstructed
wave function (7) across the whole double QD at the given
moment of stroboscopic time t = NT . The first observable is
the time-dependent probability PL(t ) to find the particle in the

FIG. 2. Four-level system with the Zeeman doublet split by �Z

in left and right QDs in which the bottoms are shifted by the detuning
Ud . The initial state (black arrow) is the spin-down state in the right
QD and the final state is marked by the green or red arrow. The
principal transitions triggered by the driving field include (a) spin-
conserving tunneling during the LZSM level passage, (b) spin-flip
tunneling during the same passage, (c) EDSR in the right QD without
tunneling, and (d) hybrid regime with LZSM level passage and the
EDSR spin flip where the final state, labeled by the framed arrows,
has contributions from all four levels.

left QD representing the tunneling efficiency defined as

PL(t ) =
∫ 0

−∞
|ψ (x, t )|2dx. (8)

The electrical current through the DQD under considera-
tion [29] is produced by holes tunneling from the right lead,
between the dots, and to the left lead, as shown in Fig. 2(a).
Therefore, the electrical current through the DQD system is
proportional to the PL averaged over the observation time. The
second observable is the probability PR(t ) to find the particle
in the right QD, which is found from the normalization con-
dition PL(t ) + PR(t ) = 1. Since in our model the spin enters
as another degree of freedom, we will also be interested in
calculating two more observables: the z projection of spin
σ (L,R)

z (t ) measured in the left or right QD, respectively,

σ (L)
z (t ) =

∫ 0

−∞
〈ψ |σz|ψ〉dx, (9)

σ (R)
z (t ) =

∫ ∞

0
〈ψ |σz|ψ〉dx. (10)

We calculate the time-averaged tunnel probability and the
spin-dependent tunnel probabilities for the N driving periods
as follows:

PL = 1

NT

∫ NT

0
PL(t )dt, (11)

σ (L,R)
z = 1

NT

∫ NT

0
σ (L,R)

z (t )dt . (12)
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The number N of the driving periods used to obtain the
maps of the averaged values (11) and (12) depends on the
typical timescales of the evolution on which the steady picture
is formed. These timescales primarily depend on the matrix
elements of typical transitions in the system. Our explicit
calculations of these matrix elements allowed us to limit the
evolution stroboscopic time to N = 500, . . . , 1000 driving pe-
riods for most of the considered regimes. These limits agree in
general with the ones used in the experiments [29]. It should
also be noted that due to the presence of SOI term (4), the
spin is in general no longer conserved during the evolution
in the whole space of the system states, and the contributions
(9) and (10) are not coupled via the normalization condition.
Nevertheless, we use these observables to visualize the spin
evolution during the LZSM process in both dots since the SOI
may trigger spin flips both with and without the tunneling, as
we will discuss below.

III. REGIMES OF EVOLUTION
AND THE TWO-LEVEL APPROXIMATION

Different kind of transitions can occur in the four-level
system shown in Fig. 1. In Fig. 2, we schematically show
the level structure and the basic regimes of the evolution
which can be triggered by the periodic electric field with the
potential V (x, t ). Its discrete resonance action can be formally
described as due to resonances with certain number of photon
quanta kω, the phenomenon commonly referred as photon-
assisted tunneling (PAT) [1,29,30,52,59]. It should be noted
that the basic mechanism behind it is the interference created
by the multiple-level passage during the periodic driving, i.e.,
of the LZSM type. We will still continue to call such a situa-
tion the PAT regime due to the discreet character of the pattern
in the energy space. The initial and final states assigned to
the spin-up or spin-down level in the corresponding QD are
labeled in Fig. 2 by the black and green or red arrows, respec-
tively, indicating the spin projection.

The following regimes of driven evolution can be identified
in Fig. 2. Figure 2(a) depicts the spin-conserving tunneling
when a number of photon quanta equals the detuning ampli-
tude |Ud | that corresponds to the PAT regime,

|Ud | = k1ω. (13)

Figure 2(b) shows the spin-flip tunneling when a number of
photon quanta equals the detuning amplitude plus the Zeeman
splitting providing the hole to tunnel to the level with another
spin projection,

|Ud | + �Z = k2ω. (14)

Figure 2(c) presents the EDSR without tunneling that takes
place in a single QD when the following condition is satisfied:

�Z = k3ω, (15)

i.e., the driving frequency itself (k3 = 1) or one of its har-
monics (k3 = 2, 3, . . . ) matches the Zeeman splitting (3)
calculated in the presence of SOI.

The specific feature of the regimes with resonances
(13)–(15) is that they involve basically a pair of two levels
in the dynamics. The tunneling regimes (13) and (14) can
be described by the driving applied mainly to one level only

located in the right QD, while in the EDSR regime both levels
in the right QD are driven with the same profile in the time
domain. Thus, the former cases (13) and (14) fall within the
limits of the well-known two-level driven model where the
distance between the levels has a constant detuning part Ud

plus the periodic modulation Vd sin ωt [1,2]. To determine
whether a slow or fast limit of the evolution is present, one
needs to estimate the adiabaticity parameter [1–3],

δ = �2

4v
, (16)

where � is the tunneling amplitude (level coupling) and v =
d (E2 − E1)/dt is the rate of level distance change in energy
space which can be estimated for periodic driving as v = ωVd .
For the system under consideration [29], typical values are
� ∼ 1 µ eV, ω ∼ 10 µ eV, Vd ∼ 100 µ eV so the adiabaticity
parameter δ ∼ 10−3−10−4, which indicates the fast-passage
limit. In such limit, the averaged probability P of a transitions
in a two-level system is given by [1,2,4]

P = 1

2

∑
k

�2
k

(kω − Ud )2 + �2
k

, (17)

where Ud is the detuning and �k = �Jk (Vd/ω), where Jk is
the kth Bessel function. In the next section, we will apply the
analytical estimate (17) for comparison with our numerical
results for the tunneling probability.

It should be mentioned that all of the types of evolution
regimes with the resonances given in Figs. 2(a)–2(c) are
known for the driven dynamics in double dots [29,30,54]. In
our model, a different hybrid regime is identified, with the
scheme depicted in Fig. 2(d). Here all the conditions (13)–(15)
are satisfied simultaneously which takes place when

k2 = k1 + k3. (18)

The level scheme shown in Fig. 2(d) has the triple framed
green arrow indicating that in a hybrid regime, one can find the
final state with certain probability on all three states besides
the initial one. From the dynamical point of view, such hybrid
regime means that we may observe the partial spin-conserving
and spin-flip tunneling happening on the EDSR frequency or
on its harmonics. It should be noted that the hybrid resonance
(18) has a universal character because the condition (18) can
be satisfied for any set of system parameters which includes
the double dot potential, the detuning, and the driving field
strength. The only two parameters which have to be adjusted
is the driving frequency and the magnetic field. First, we fix
the driving frequency in accordance with the spin-conserving
tunneling condition (13) where any integer k1 can be chosen.
Second, with the defined frequency, we fix the magnetic field
in accordance with the EDSR condition (15), again choosing
any integer k3. After that, one can see that the spin-flip tunnel-
ing is also possible since the condition (14) is also fulfilled if
one chooses the k2 integer to satisfy the condition (18). From
the practical point of view, it means that the hybrid resonance
points can always be found in the map of (driving frequency,
magnetic field) parameters which will be considered in the
following section.

Finally, for the off-resonance driving field where none of
the conditions (13)–(15) are satisfied, the driving does not pro-
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FIG. 3. Contour maps of interdot tunneling probability PL (11), (a) calculated by the analytical two-level approach (17) and (b) found
numerically by (11). Filled arrows mark the spin-conserved tunneling (13) and open arrows mark the spin-flip tunneling (14). The tunneling
becomes effective when the driving exceeds the detuning at Vd > |Ud |.

duce any change of the initial state describing the spin-down
particle in the right QD. The localization in a single dot of a
double dot system during the application of a periodic driving
with certain amplitude and frequency for the case of zero
detuning is known as the coherent destruction of tunneling
(CDT) [52,53]. Here the destructive interference expressed
via the quasienergy crossing can bring the tunneling to a
standstill. Similar localization in the nonresonant 2D areas on
tunneling probability maps plotted for a pair of system param-
eters can be observed for our system with finite detuning Ud ,
even for large driving amplitudes Vd > |Ud |, as will be seen
below in the right-hand parts of the panels in Figs. 3 and 4.
The existence of such areas of largely suppressed tunneling
indicates that for a finite detuning, a resonance condition such
as (13) or (14) is required for the tunneling to be effective.

IV. NUMERICAL PARAMETERS AND TUNNELING
PROBABILITY MAPS

Let us proceed with the numerical results obtained for
the hole GaAs DQD structure with parameters similar to
those in [29]: the hole effective mass mh = 0.11m0, the in-
terdot minima distance 2d = 116 nm, the barrier height U0 =
5 meV, the g factor g = 1.35, and the SOI Dresselhaus con-
stant βD = 3 meV nm. Our calculation shows that under these
conditions, the spin-conserving tunneling rate is about 1 µ eV
and the spin-flip tunneling rate is about 0.45 µ eV, which
is close to the experiments in [29]. The initial state is the
spin-down wave packet with width ∼d centered in the right

QD that represents the hole injected from the right lead to
the ground state of the right QD in accordance with the
experimental settings in Ref. [29]. In our study, we employ
two-dimensional (2D) maps of averaged tunneling probabil-
ity (11) and spin-dependent tunneling probability (12) in the
plane of a specifically chosen sets of parameters where the dif-
ferent regimes depicted in Fig. 2 are identified and explored.

A. Tunneling in the plane of driving amplitude
and inverse frequency

We start with the building of 2D maps for averaged prob-
abilities (11) and (12) under the fixed magnetic field Bz =
0.125 T and fixed detuning Ud = −73 µ eV corresponding to
the ground state being a spin-down state in the right QD at the
Zeeman splitting �Z = 9.75 µ eV. The two variable param-
eters are the driving amplitude Vd and frequency ω = 2π f .
Since the values k j of resonance maxima in (13)–(15) are in-
versely proportional to the frequency ω, it is more convenient
to plot the maps in coordinates (Vd , 1/ f ). First, in Fig. 3(a),
we show the contour plots for tunneling probability obtained
from the analytical estimate (17) in the amplitude range Vd =
0, . . . , 250 µ eV and the frequency band f = 1, . . . , 5 GHz
for two sets of the PAT transitions with resonances given
by (13) marked by the solid arrows and by (14) marked by
the open arrows which are the spin-conserving and spin-flip
tunneling transitions, respectively. In Fig. 3(b), we show the
corresponding map obtained numerically from (11). A very
good agreement is obvious between the two maps, confirming
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FIG. 4. Maps of spin-dependent tunneling probability (12) in (a) left QD and (b) right QD corresponding to Fig. 3. In (a), the dark lines
correspond to the spin-conserving tunneling and the bright lines correspond to the spin-flip tunneling. In (b), both types of tunneling are shown
by bright lines. The additional EDSR lines in (b) described by (15) are marked by arrows. Arrow A marks the primary EDSR line k3 = 1 and
arrow B marks its second harmonic k3 = 2.

that the numerical procedure is correct and therefore can be
used for more complex situations where all four levels play
a role in the spin state evolution. Note that the tunneling
becomes effective when the driving amplitude Vd exceeds the
interdot detuning amplitude |Ud |, i.e., to the right of the line
Vd = |Ud |.

To explore the spin-dependent tunneling, let us examine
the spin profile of the tunneling and plot the maps of the
averaged spin projection (12) in left and right QDs. In Fig. 4,
we show such maps for the same parameters as in Fig. 3.
It should be mentioned that while the observables (8)–(10)
vary in the intervals (0,1) and (−1, 1), respectively, their
time averages (11) and (12) have, in general, lower bounds,
which explains the different limiting values of the color bars
in the 2D maps discussed here. In Fig. 4, one can see that
the spin-tunneling maps are described by two sets of maxima
lines. In Fig. 4(a), the first set of lines is dark, correspond-
ing to the spin-conserving tunneling where the negative spin
projection is maintained and follows the resonance condition
(13). The second set of lines is bright, corresponding to the
spin-flip condition (14) where the spin projection is flipped
to positive values during the tunneling. Both corresponding
sets of maxima lines are bright in Fig. 4(b) for the right QD
since any type of tunneling lifts the averaged spin projection
from the background dark color corresponding to the value
σz = −1. It should be noted that the conditions (13) and (14)
may provide the close frequencies for certain combinations of
parameters and values of k j . This means that some of the lines

from different families can, in principle, be very close to each
other. By examining both panels of Fig. 4, one may notice that
it indeed happens for the values k1 = 15 in (13) and k2 = 17
in (14) marked by the arrow B described below. Figure 4(b)
shows the averaged spin σ (R)

z in the right QD. In the lower
part of Fig. 4(b), we see the EDSR line marked by the arrow
A corresponding to the main EDSR line k3 = 1 in (15) and, in
the upper part, we see its second harmonic corresponding to
k3 = 2 in (15) marked by arrow B. For the chosen parameters,
the EDSR harmonic marked by arrow B is very close to the
tunneling lines k1 = 15 and k2 = 17 discussed above. This is
an example of the situation when all three resonances (13)–
(15) coincide, forming a special hybrid resonance with the
four levels involved. Such situations when the three resonance
lines cross can be more conveniently revealed in the map
of variables (Bz, f ) with the variable magnetic field and the
driving frequency, which will be considered in the following
section.

B. Probability maps in the 2D plane of magnetic
field and driving frequency

Since the main tunneling features can be captured by the
spin-resolved tunneling probability maps, in this section, we
focus only on them. We set the detuning Ud = −70 µ eV for
the ground state as the spin-down state in the right QD and
fix the driving strength Vd = 100 µ eV. The magnetic field
is varied between 0 and 0.5 T, and the frequency is varied
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FIG. 5. Maps of time-averaged spin-resolved tunneling proba-
bility (12) in (a) left QD and (b) right QD shown in the (Bz, f )
plane at fixed detuning Ud = −70 µ eV and fixed driving amplitude
Vd = 100 µ eV. Dark horizontal lines in (a) correspond to the spin-
conserving tunneling satisfying the condition (13). Bright angled
lines in (a) are for spin-flip tunneling satisfying the condition (14).
In the right QD in (b), additional steeper angled lines marked by
arrows 1,2,3 represent the EDSR lines satisfying (15) with harmonics
k3 = 1, 2, 3. The crossing of all three lines in points such as point
D can happen under the condition (18) of the hybrid resonance.
Evolution for selected points A–D in the time domain is discussed
in the text.

in the same band, 1–5 GHz. In Fig. 5, we show the contour
plots of the averaged spin projection (12) in the (a) left QD
and (b) right QD, respectively. The spin-conserving tunneling
is independent of the magnetic field and is expressed via
dark horizontal lines in Fig. 5(a) and bright horizontal lines
in Fig. 5(b), each following the resonance condition (13).
An example of such tunneling represented by the point A in
Fig. 5(b) will be discussed in the next section in the time do-
main. The spin-flip tunneling is magnetic field dependent and
is expressed via angled bright lines in both panels following
the resonance condition (14). An example of such tunneling
marked by point B will be discussed in the next section.
Finally, in Fig. 5(b), there is another family of steeper angled
lines corresponding to the EDSR in the right QD, which is
described by the resonance condition (15). The lines marked
by arrows 1,2,3 represent the EDSR lines satisfying (15) with
harmonics k3 = 1, 2, 3. An example of such evolution marked
by point C will be discussed below.

One can see that at certain points of the (Bz, f ) plane in
Fig. 5(b), the resonance lines belonging to all three families
(13)–(15) cross each other. It happens when the condition (18)
is satisfied at points such as point D marked by a red circle in
Fig. 5(b). These points represent the hybrid resonance which
cannot be described in terms of a two-level system, as we
will see in the next section by considering the evolution for
selected points in the time domain.

V. TIME EVOLUTION OF THE OBSERVABLES
AND LEVEL OCCUPATIONS

Here we turn our attention to the stroboscopic evolution
of the observables and the level occupation probabilities for
the selected points A–D in Fig. 5(b) to be shown in the time
domain at t = NT , where T is the driving field period. We
start with point A located on the PAT line (13) with k1 = 4
and representing the spin-conserved tunneling. The evolution

of selected observables and level populations is shown in
Fig. 6. Here the time-dependent tunneling probability PL (8)
in Fig. 6(a) exhibits oscillations with the period 2τt , where
τt ∼ 17T is the tunneling time. For the given frequency, we
have τt ∼ 5 ns, in which the inverse corresponds to the typ-
ical values of spin-conserving matrix element �c ∼ 1 µ eV
coupling the states of the same spin in the left and right
QDs. The spin projections (9) and (10), shown in Figs. 6(b)
and 6(c), reproduce the spin-down population in the left and
right QDs following the tunneling probability behavior. They
demonstrate oscillations with the same period and with the
same average negative value indicating the conservation of
spin during the tunneling in the PAT regime. In Figs. 6(d) and
6(e), we show the evolution of the populations for the states
E1 and E3 from Fig. 1, which are the only states essentially
involved in the dynamics for point A. These states are the
spin-down states in the right and left QDs, respectively, and
their oscillating population reflects the spin-conserving tun-
neling described above. We see that here the dynamics can be
described in the framework of the two-level subspace where
the transition probability is given by (17) under the resonance
condition (13).

Next we consider point B in Fig. 5(b) located on the angled
spin-flip line (14) with k2 = 6. The evolution of observables
and level population is shown in Figs. 7(a)–7(c) and 7(e) and
7(f), respectively. The tunneling probability period in Fig. 7(a)
corresponds to the tunneling time τ f ∼ 55T , which is in
agreement with the ratio � f /�c ∼ 0.45 of the spin-flip � f

and the spin-conserving �c tunneling matrix elements in our
model, so the spin-flip tunneling takes a longer time, as can be
seen by comparing Figs. 6(a) and 7(a). The spin projection (9)
and (10) in the left and right QDs demonstrates oscillations
with the same period 2τ f as the tunneling probability, but
they have an opposite sign in the left and right QDs. For the
left QD, one observes in Fig. 7(b) that σ L

z (t ) > 0, meaning
that the spin is flipped during the tunneling and, in the right
QD, one can see in Fig. 7(c) that σ R

z (t ) < 0, meaning that the
spin is flipped back when the particle returns to the right QD.
The corresponding spin-flip tunneling time is relatively fast,
τ f ∼ 14 ns, which is below the typical spin relaxation time
in good-quality GaAs samples and points to the possibility to
observe such spin rotations experimentally.

Since point B in Fig. 5(b) represents an example of spin-
flip dynamics, in Fig. 7(d) we show the stroboscopic evolution
of the spin vector,

S(t ) = [σx(t ), σy(t ), σz(t )], (19)

shown within the Bloch sphere with the starting point at the
south pole S. The mean values of all spin projections in (19)
are defined as σ j (t ) = ∫ ∞

−∞〈ψ (x, t )|σ j |ψ (x, t )〉dx, j = x, y, z,
where the area of the whole double dot system provides a
contribution. This usual definition of the Bloch spin vector
indicates certain differences with our plots of observables
shown for a particular left or right QD. We thus consider the
evolution of the Bloch vector (19) as an auxiliary tool, visually
indicating the regime of simple/complicated spin evolution.
From Fig. 7(d), it can be seen that for point B, the spin
demonstrates a flip along the z axis accompanied by the slow
and low-radius in-plane precession during the tunneling. It
should be noted that in a multilevel system in the presence
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FIG. 6. Time dependence on 400 driving periods for point A in Fig. 5(b) showing (a) tunneling probability and (b), (c) spin projection
in left and right QDs. The spin-conserving tunneling is observed. (d), (e) Evolution of the occupation probabilities for the states E1, E3 from
Fig. 1 participating in the dynamics, which essentially has a two-level character.

of SOI, the spin is no longer conserved during the driven
evolution and thus the spin vector (19) can be found not only
on the surface, but also inside the Bloch sphere [56]. Finally,
the evolution of the population of states E1 and E4 is shown
in Figs. 7(e) and 7(f) since these two levels are predominantly
involved in the spin-flip tunneling corresponding to the spin-
down state E1 in the right QD and the spin-up state E4 in the
left QD. We can conclude that point B represents an example
of predominantly two-level dynamics of tunneling between
levels with opposite spins, which can also be approximated
by the analytical expressions (17) and (14).

We move to the next point, C, in Fig. 5(b) corresponding
to the EDSR in the right QD and described by the angled line
obeying (15) with k3 = 1, i.e., it is the basic EDSR line. The
evolution of observables, the spin dynamics of the vector (19)
on the Bloch sphere, and the level population dynamics are
shown in Fig. 8 in the same sequence as in Fig. 7, but on the
longer time interval of 600T . One can see that the tunneling
probability in Fig. 8(a) and the spin projection in the left QD in
Fig. 8(b) are stable at almost zero value, indicating that there
is no effective tunneling in such regime. The spin projection in
the right QD shown in Fig. 8(c) demonstrates a slow spin flip

FIG. 7. (a)–(c) Same as in Fig. 6, shown for point B in Fig. 5(b) for the spin-flip tunneling regime with (d) the spin vector dynamics within
the Bloch sphere with the start point on the south pole S. Spin flip with the low-radius in-plane precession accompanying the tunneling is
observed. (e), (f) Evolution of the occupation probabilities for the states E1, E4 participating in the dynamics.
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FIG. 8. Same as in Fig. 7, shown for point C in Fig. 5(b), on 600 driving periods. The EDSR regime in the right QD is observed (c) with
the spin flip and (a), (b) without the effective tunneling. (d) The spin vector on the Bloch sphere demonstrates a slow spin flip on ∼520 driving
periods starting from the south pole S and finishing near the north pole. (e), (f) Evolution of the occupation probabilities for the states E1, E2

from the right QD primarily participating in the dynamics and (g), (h) for the states E3, E4 in the left QD. (i) Dependence of the Rabi spin-flip
frequency �R in units of the driving frequency ω on the driving amplitude Vd . The numerically obtained curve A for the four-level model is
compared with the linear two-level dependence B. For curve A, the spin flip is enhanced for most of the driving strength range. Curve C is the
tunneling probability P̃L (right axis) defined similarly to (8), but averaged over one spin-flip period and demonstrating the peaks coinciding
with the ones for the Rabi frequency on curve A.

with the flip time τ f ∼ 520T , which is about 130 ns. This slow
spin flip can be seen in Fig. 8(d) for the spin vector (19) on the
Bloch sphere where the initial point is on the south pole S and
the end point can be observed near the north pole. The level
occupations are shown in Figs. 8(e)–8(h), where it can be seen
that the two lowest states E1 and E2 in the right QD play the
dominating part in the dynamics, although the fast-oscillating
low-amplitude contributions from the states E3 and E4 are
also present. For the two-level dynamics in the EDSR regime
taking place in a single QD without the effective tunneling, an
estimate of the spin-flip Rabi frequency �R was reported in
Ref. [14]. In this paper, the authors suggested the mechanism
of EDSR due to the spatial oscillations of the QD potential
minimum by the applied electric field in the presence of SOI.
Since these oscillations are significantly smaller in amplitude
than the interdot oscillations (by approximately two orders of
magnitude), the corresponding spin-flip Rabi frequency �R is
significantly smaller than the one observed for the spin-flip
tunneling described above. In [14], the following estimate of

the spin-flip Rabi frequency was presented:

�R = gμB|Beff |
2h̄

, (20)

where the effective magnetic field created by SOI can be
estimated as

|Beff | = 2Bz
�x0

lSO
. (21)

In (21), Bz is the applied magnetic field, lSO = h̄2/mβD

is the spin-orbit precession length, and �x0 is the ampli-
tude of the potential minimum displacement caused by the
periodic electric field. The analytical solution for the poten-
tial minimum displacement can be derived from the explicit
form of the sum of the double dot potential U (x) and
the detuning/driving potential Ud (x) = Ud fd (x) discussed in
Sec. II. For point C in Fig. 5(b), we find that �x0 ∼ 0.2 nm,
which is small compared to the spin-orbit precession length
lSO ∼ 200 nm or to the interdot travel distance 2d = 116 nm.
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We obtain from (21) that |Beff | ∼ 2 × 10−3Bz, which accord-
ing to (20) gives the spin-flip time τ f ∼ 500T ∼ 110 ns for
point C in Fig. 5(b). This estimate is close to the numerical
result τ f ∼ 520T seen in Fig. 8(c) for this point.

The description of the EDSR in a double dot system re-
quires the discussion of a possible influence of the interdot
tunneling on the spin flip. Spin-orbit interaction is more ef-
fective for longer traveling distances; therefore, we should
take into account the tunneling between the right and left
QDs since even small level populations in the left QD weakly
coupled to the right QD can lead to noticeable spin-flip events
on longer than single tunneling timescales. The presence of
even weak tunnel coupling to the other pair of spin levels in
the neighboring QD visible in Figs. 8(g) and 8(h) may produce
certain differences to the EDSR mechanism during the driven
level passage. It is known [54] that in a multilevel system,
the spin-flip Rabi frequency �R can differ in its dependence
on the driving amplitude Vd from a simple two-level form
�R = V12, where V12 ∼ Vd is the matrix element of the driving
field coupling the two spin states 1 and 2 participating in
EDSR. The dependence on Vd can become nonlinear if more
than two levels participate in the dynamics. In Fig. 8(i), curve
A is the dependence of the Rabi spin-flip frequency �R in
units of the driving frequency ω on the driving amplitude Vd

for our four-level model. Line B is the canonical two-level
result for �R discussed above. Note that all the panels in
Fig. 8, except Fig. 8(i), are for the same point C in Fig. 5(b) in
the plane (Bz, f ) with fixed driving amplitude Vd = 100 µ eV,
and, in Fig. 8(i), we move along the driving strength axis Vd

being perpendicular to this plane in the limits corresponding
to the efficient tunneling. It can be seen that although the same
growing trend with the increasing driving strength can be seen
in both cases, the numerically obtained data (curve A) differ
from the linear two-level dependence B.

The estimate of the effect of the tunneling on the spin-flip
frequency can be done as follows: the contributions from the
states E3 and E4 in the left QD compared to the ones in the
right QD observed from Figs. 8(g) and 8(h) give us the ratio
x1 ∼ |C3,4|2/|C1,2|2 ∼ 10−2. This ratio is combined with the
ratio x2 of the interdot travel distance �xt ∼ 2d and the poten-
tial minima displacement �x0 giving x2 ∼ �xt/�x0 ∼ 103.
The spin-flip effectiveness can be expected to be proportional
to both of the x1 and x2 factors providing the variations
of �R/ω to be of the order of unity, which is observed in
Fig. 8(i). By comparing curves A and B, one can conclude
that the spin-flip frequency in the four-level case is mainly
greater. The enhancement ratio of the spin-flip frequency for
four- and two-level models is maximal for low and moderate
driving fields, which is favorable for practical applications.
In Fig. 8(i), another curve labeled C is presented, showing
the tunneling probability P̃L (right axis) defined similarly to
(8), but averaged over one spin-flip period. One can see that
its peaks correlate well with the ones for the Rabi frequency
on curve A, reflecting the EDSR enhancement via the LZSM
tunneling. The shape of the curve C resembles the one for the
Bessel functions defining the tunneling probability in the two-
level model (17), in accordance with our results obtained for
the tunneling regimes. We thus may call the discussed EDSR
mechanism in Fig. 8 an LZSM-enhanced EDSR. It should

be mentioned that a similar enhancement of the spin-flip fre-
quency has been reported recently for the EDSR modeling in a
double quantum dot formed in silicon with the magnetic field
gradient [24]. In that model, both the interdot tunneling and
the valley degree of freedom have been taken into account.

Another consequence of the LZSM fast level passage on
the EDSR is the generation of several harmonics visible as
lines 2 and 3 in Fig. 5(b), in addition to the main EDSR line 1
in Fig. 5(b). The higher harmonics generation can be viewed
as a result of the periodic sequence of short δ-like interac-
tion pulses between the states in neighboring QDs during the
periodic driving with a large amplitude leading to the short
interaction time between the states.

We conclude our analysis of the evolution for the selected
points in the parameter space with point D in Fig. 5(b) cor-
responding to the hybrid resonance where all the conditions
(13)–(15) are satisfied together. Point D is characterized by
the numbers k1 = 5, k2 = 6, and k3 = 1 for the resonance
conditions (13)–(15) which satisfy the condition (18) of the
hybrid resonance resulting from the crossing of three types
of resonances observed for points A–C described above. The
evolution of observables for point D is shown in Figs. 9(a)–
9(c), the dynamics of the spin vector on the Bloch sphere is
shown in Fig. 9(d), and the evolution of level occupations
is shown in Figs. 9(e)–9(h). One can see that the tunneling
probability dynamics in Fig. 9(a) demonstrates the tunneling
on short times of about 20T typical for the spin-conserving
tunneling under the condition (13). This tunneling is accom-
panied by the spin flip, which happens according to Figs. 9(b)
and 9(c) in both left and right QDs on a typical timescale
τ f ∼ 100T ∼ 29 ns, which corresponds to the flip time for the
spin-flip tunneling under the condition (14) and is about four
times faster than the spin flip under the EDSR condition in
Fig. 8. Overall, the spin and tunneling probability dynamics
are modulated by a long-time envelope function with the
period of around 300T being typical for slow EDSR under
the resonance condition (15). We can conclude that the hybrid
resonance has the traits of all three resonances found sep-
arately, namely, the spin-conserving tunneling, the spin-flip
tunneling, and the EDSR in a single dot. The spin dynam-
ics on the Bloch sphere shown in Fig. 9(d) demonstrates a
complicated behavior with traits typical both for short-radius
rotations during the spin-flip tunneling [see Fig. 7(d)] and the
large-scale smooth dynamics typical for the EDSR in a single
dot [see Fig. 8(d)]. The level population dynamics for point
D shown in Figs. 9(e)–9(h) clearly demonstrates that all four
levels E1, . . . , E4 provide equal contributions to the dynamics.
The basic frequency of the oscillations in Figs. 9(e)–9(h) is
the fastest frequency of spin-conserving tunneling. However,
the spin can be flipped under such hybrid regime and not only
in the left QD, but also in the right QD, as can be seen in
Figs. 9(b) and 9(c), on the timescale which is significantly
shorter than the one for the pure EDSR in a single dot pre-
sented in Fig. 8. This finding can be important for the design
of the experiments and devices utilizing a fast spin control by
purely electric driving fields.

If none of the conditions (13)–(15) is satisfied, then the
system evolution corresponds, in general, to a dot placed in a
dark background of the tunneling maps on Figs. 3 and 4(b),
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FIG. 9. Same as in Fig. 7, built for point D in Fig. 5(b), showing the stroboscopic evolution in the hybrid resonance regime (18) for
(a) tunneling probability and (b), (c) spin projection in the left and right QDs demonstrating the tunneling with partial spin flip. (d) Evolution
of the spin vector (19) within the Bloch sphere showing a combination of spin-flip and in-plane precession with the start point at the south pole
S and the finish point near the north pole. (e)–(h) Level occupations |Cn(t )|2 demonstrating that all four states E1, . . . , E4 provide comparable
contributions, indicating that the system is in the multilevel regime far from the two-level approximation.

or in a light background in Fig. 4(a) shown above. In such
point, as expected, no effective tunneling and no spin flip can
be observed for the parameters considered in our examples for
the double dot with a large detuning since the system rests in
its initial state which is the ground state being the spin-down
state E1 in the right QD.

To summarize this section, we see that the tunneling and
the spin flip may manifest themselves in both separate and
combined processes depending on the location in the param-
eter space. The effective tunneling can be realized in both
spin-conserving (Fig. 6) and spin-flip (Fig. 7) regimes. In
the latter case, the spin flip takes place during tunneling to
the neighboring QD. If only the EDSR condition is satisfied,
a spin operation can be performed in the same QD where
the spin is initialized (see Fig. 8), but generally on a longer
timescale due to the low contributions from the states of the
neighboring QD and small amplitude of the potential mini-
mum displacement in the individual QD. If one wishes a fast
spin flip in the same QD where the spin has been initialized,
then a possible way to trigger it, according to our modeling,
is by initializing a hybrid resonance regime. When the system
parameters correspond to condition (18), then both the EDSR
condition (15), the spin-conserving (13) and the spin-flip con-
dition (14) are satisfied. Here we predict a substantially faster
spin flip taking place in both left and right QDs with the
spin-flip time τf ∼ 29 ns enhanced by SOI.

Final remarks should be made in regard to the consider-
ation of the noise and its influence on the spin decoherence
time τ2. While a detailed study of noise can be the subject of
a separate paper, one can estimate the spin decoherence time
τ2 induced by the charge noise originating from the interdot
tunneling as the main source of the charge noise since, for the
EDSR regime occurring mainly in a single dot, the traveling
distance is negligible. From the known models of charge noise
in double dots with spin-orbit coupling [6,20,58,60] in the
100-mK temperature range, which is relevant to the experi-
ments [29] that we are focused on, these estimates give the
range of τ2 in excess of 100 ns. The typical spin manipulation
times obtained in the present modeling are within the 15–30 ns
range, indicating that one can execute at least several coherent
spin rotations. Other mechanisms of spin decoherence can
also be important and deserve further investigation, which
again is outside the scope of the present paper.

VI. CONCLUSIONS

A multilevel LZSM-driven tunneling was studied theo-
retically under the conditions close to the recent LZSM
experiments in a single-hole DQD [29]. The Floquet mod-
eling of the driven dynamics revealed several remarkable
features in the space of the system parameters. We carefully
examine the situation when the condition for EDSR or its
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harmonics is satisfied. We predict the LZSM-enhanced EDSR
and its harmonics that can be observed experimentally. The
spin-dependent character of the tunneling is revealed in the
2D tunneling maps vs various system variables, i.e., the mi-
crowave frequency, driving amplitude, detuning, and magnetic
field. We explore the interference of the spin-conserved tun-
neling, the spin-flip tunneling, and the EDSR in a four-level
Zeeman-split system in a DQD. We identify the conditions
where the three resonances mentioned above occur simulta-
neously. In this condition of the hybrid resonance, we predict
the spin-flip times to be around 50–100 periods for the driving
frequency f = 2, . . . , 4 GHz. This gives us the the scale of
14–29 ns for both the spin flip during the tunneling and for
the spin flip in a single QD. The efficiency of the spin-flip

processes can be further optimized. The results may be rele-
vant for developing the schemes of spin control and readout
in semiconductor devices by alternating electric fields.
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