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Kekulé-induced valley birefringence and skew scattering in graphene
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In graphene, a Kekulé-Y bond texture modifies the electronic band structure, generating two concentric Dirac
cones with different Fermi velocities lying in the � point in reciprocal space. The energy dispersion results
in different group velocities for each isospin component at a given energy. This energy spectrum combined
with the negative refraction index in p − n junctions allows the emergence of an electronic analog of optical
birefringence in graphene. We characterize the valley birefringence produced by a circularly symmetric Kekulé
patterned and gated region using the scattering approach. We found caustics with two cusps separated in space
by a distance dependent on the Kekulé interaction and that provides a measure of its strength. Then at low carrier
concentration, we find a nonvanishing skew cross-section, showing the asymmetry in the scattering of electrons
around the axis of the incoming flux. This effect is associated with the appearance of the valley Hall effect as
electrons with opposite valley polarization are deflected toward opposite directions.
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I. INTRODUCTION

The similarities between the Helmholtz and Schrödinger
equations result in photons and electrons displaying similar
wave phenomena [1]. Furthermore, the propagation of elec-
trons through the two-dimensional honeycomb arrangement
of carbon atoms, known as graphene, leads to the dressing of
electronic states as massless Dirac-like electronic excitations
residing at opposite corners of the Brillouin zone [2], thus
augmenting the analogies between the electronic and optical
phenomena. The ability to control the charge carrier group
velocity via graphene gating [3] has led to the prediction
and experimental realization of electronic Veselago lensing,
where incoming divergent rays become convergent after re-
fraction on a flat surface with a negative index of refraction
[4,5]. The sensitivity of this lensing to the conduction electron
properties aids the detection of anisotropies and tilting of the
Dirac cones [6,7], the presence of strain [8], and disorder [9].
Veselago lensing also facilitates the waveguiding of electrons
in p − n junctions [10,11] and in circular geometries [12] as
well as the emergence of caustics (wave envelopes of refracted
electrons) which often have cusp singularities. Moreover, like
optical birefringence in anisotropic crystals, where the group
velocity depends on light polarization [13] and thus incoming
light rays can be split in two, spin birefringence for electrons
emerges in graphene due to the Rashba spin-orbit interac-
tion [14,15] which leads to distinct Fermi velocities for each
spin component. In circular geometries, spin birefringence
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brings about the formation of caustics with two cusps, with
a space separation that depends on the strength of the Rashba
spin-orbit coupling [16,17]. However, spin-orbit interactions
in graphene are small which makes the detection of spin
birefringence experimentally challenging.

In addition to spin, electrons in graphene possess the valley
degree of freedom [18]. The valleys in graphene have a large
separation in momentum space [19], which suggests that this
degree of freedom can be potentially used in applications
where it will play a role like spin in spintronics [20,21].
The field that aims to manipulate and control the valley de-
gree of freedom in applications is known as valleytronics
[22–34]. Like spin-orbit interactions in spintronics, interac-
tions contrasting the degenerate valleys in graphene play
an essential role in valleytronincs. Such interactions include
the Kekulé patterning of graphene [35,36], i.e., the periodic
bond modulation of the graphene lattice. Depending on the
bond modulation pattern [37], two different Kekulé distortion
phases can emerge: the Kekulé-Y [38] found in graphene
deposited on Cu[111] and the Kekulé-O [39–43] that arises
in bilayer graphene intercalated with Li. The tight-binding
calculations by Gamayun et al. [37] found that Kekulé-Y pro-
duces an effective interaction that leads to valley-momentum
locking, while Kekulé-O leads to the formation of a gap in the
electronic spectrum.

Kekulé-Y-patterned graphene breaks a valley degener-
acy through valley-momentum locking which produces a
low-energy spectrum with two nested Dirac cones with differ-
ent Fermi velocities [37]. The energy-momentum dispersion
modification caused by Kekulé-Y patterning leads to dras-
tic modifications in the magnetic and optical response of
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FIG. 1. Schematic of the system (not to scale). A graphene lattice
where an incoming flux of electrons in the x direction approaches a
circular region of radius R with a gate potential and Kekulé-Y bond
texture (red bonds).

graphene [44–49] and crucially aids the control of the valley
degree of freedom in the electronic transport [50–57]. In this
paper, we study the scattering of Dirac fermions from circu-
larly Kekulé-Y-patterned regions in the semiclassical limit,
and we explore the effects of this interaction on electron
optics and the appearance of valley birefringence. We also
investigate the scattering of charge carriers in graphene from
short-range scattering regions with locally enhance Kekulé-Y
interactions due to adatom deposition. Our analysis of the
total, transport, and skew cross-sections for these short-range
scatterers reveals the dependence of these cross-sections on
the strength of the Kekulé-Y interaction, and we show the
appearance of valley Hall effects due to skew scattering from
these scatterers.

The layout of this paper is as follows. In Sec. II, we present
the model. Section III is devoted to the scattering calculations.
Valley birefringence is analyzed in Sec. IV, while in Sec. V,
we study the low-energy scattering. Finally, we conclude by
discussing our main findings.

II. MODEL

Our system consists of an infinite sheet of pristine graphene
containing a circularly Kekulé-ordered patch of radius R,
Fig. 1. We consider the scattering of an incoming flux of
electrons in the x direction with momentum k. To describe
the electronic properties of the graphene sheet, we adopt
the low-energy description, i.e., the Dirac Hamiltonian [19].
Nevertheless, the Kekulé-modulated portion of the lattice has
a larger unit cell than the nonmodulated graphene lattice.
Hence, to match the pristine and Kekulé-patterned graphene
wave functions, it is practical to use an enlarged unitary
cell for the case of undistorted graphene. This is equivalent
to considering the group C′′

6v , with a 6-atom graphene unit
cell, which avoids the treatment of degenerate states at two
inequivalent Dirac points [58]. This is more clearly seen if
we start with the Hamiltonian for the Kekulé region, and then
pristine graphene appears as a limiting case.

The space-dependent Hamiltonian describing the system in
Fig. 1 is given by

H = H0 + HY (r) + V (r), (1)

where

H0 = v f (p · σ ) ⊗ τ0 (2)

is the low-energy graphene Hamiltonian with p = −ih̄(∂x, ∂y)
the momentum operator, v f ∼ 106m/s the Fermi velocity, and
σ , τ the sets of Pauli matrices acting on the sublattice and
valley pseudospin spaces, respectively. Here,

HY = �v f σ0 ⊗ (p · τ)�(R − r) (3)

is the Kekulé-Y bond perturbation [37] with amplitude �

within the circular region,

V (r) = V0�(R − r)σ0 ⊗ τ0 (4)

is a constant gate potential with amplitude V0 in the Kekulé
circular patch, and � is the Heaviside function.

The Hamiltonian in Eq. (1) acts on the states expressed in
the valley isotropic representation [59]:

� =
[
ψK ′

ψK

]
=

⎡
⎢⎣

−ψB,K ′

ψA,K ′

ψA,K

ψB,K

⎤
⎥⎦. (5)

Notice that the subindexes A and B in � correspond to each
graphene bipartite lattice, while K and K ′ label the valley.
For regions outside the Kekulé-modulated region, the limit of
pristine graphene is recovered, � = 0, thus having a 4 × 4 op-
erator which represents the Dirac Hamiltonian in the enlarged
unitary cell.

III. SCATTERING

In this section, we study the scattering of Dirac fermions
from a circularly symmetric Kekulé-patterned region. We
adopt the partial wave-scattering method to find the S-matrix,
which requires finding and matching the eigenstates in the
different scattering regions of our system. For any effective
theory that uses an envelope wave function, as is the case
of the Dirac equation for graphene, the matching requires a
supplemental boundary condition of the form � = M� to
retain the hermiticity and preserve currents. Here, M is a
matrix containing the microscopic details and the symmetries
of the problem [59–64]. Since we consider the Kekulé-Y bond
modulation as a perturbation within the same graphene sheet,
no major misalignment is expected, and thus, for small �, we
can consider M as unitary throughout this paper. Here, we
note that we are using a low-energy approximation near the
Fermi level for Kekulé-Y graphene. As in pristine graphene,
the effective equation is circularly symmetric [37]. At ener-
gies away from the Fermi level, the discrete nature of the
lattice is initially reflected via trigonal warping. This part
of the spectrum is not sampled by fermions near the Fermi
energy, as is only visible on other scales of energy. There-
fore, we can safely treat our system as circularly symmetric,
and thus, it is natural to evaluate its eigenfunctions in polar
coordinates. The z component of orbital angular momen-
tum Lz = −ih̄∂θ does not commute with the Hamiltonian,
[H, Lz] = ih̄v f (σ × p)z ⊗ τ0 + ih̄v f σ0 ⊗ (τ × p)z. On the
other hand, the sum of Lz and the intrinsic angular momenta
associated with the valley and sublattice degrees of freedom,
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valley-lattice-angular momentum Jz, is conserved and given
by

Jz = Lz + h̄

2
(σz ⊗ τ0 + σ0 ⊗ τz ). (6)

Here, it is important to notice that (H, h̄
2 σz ⊗ τ0) =

−ih̄v f (σ × p)z ⊗ τ0, and (H, h̄
2 σ0 ⊗ τz ) = −ih̄v f σ0 ⊗ (τ ×

p)z, which leads to (H, h̄
2 σz ⊗ τ0 + h̄

2 σ0 ⊗ τz + Lz ) = 0. We
can express the eigenfunctions in their total pseudo-angular
momentum basis, such that Jz�m = mh̄�m; thus,

�m(r, θ ) = exp(imθ )

⎡
⎢⎣

− exp(−iθ )�B,K ′ (r)
�A,K ′ (r)
�A,K (r)

exp(iθ )�B,K (r)

⎤
⎥⎦, (7)

where θ = tan−1 y/x, and we find the radial part of the wave
functions by applying the Hamiltonian in Eq. (1) to our spinor
in Eq. (7) to get the following set of coupled differential
equations:

L−
m [�A,K ′ (r) + ��A,K (r)] = −i(ε − ν)�B,K ′ (r), (8a)

L+
m−1�B,K ′ (r) − �L−

m+1�B,K (r) = −i(ε − ν)�A,K ′ (r), (8b)

L−
m+1�B,K (r) − �L+

m−1�B,K ′ (r) = i(ε − ν)�A,K (r), (8c)

L+
m [�A,K (r) + ��A,K ′ (r)] = i(ε − ν)�B,K (r),

(8d)

where

L±
m =

(
∂r ∓ m

r

)
. (8e)

Here, ε = E/(h̄v f ) and ν = V0/(h̄v f ). Since L±
m acts as a

ladder operator for the cylindrical Bessel functions Jm,

L±
m Jm(kr) = ∓kJm±1(kr); (9)

thus, a natural ansatz is

�A,K (r) = i(ε − ν)CAJm(kr), (10)

�A,K ′ (r) = i(ε − ν)CBJm(kr), (11)

where CA and CB are constants, and k is the electron wave
number. Inserting the ansatz in Eq. (10) into the relations in
Eqs. (8a)–(8e) results in the exact form of the spinor solutions
and determines the wave numbers:

k± = |E − V0|
h̄v f (1 ± �)

. (12)

Thus, the mth angular momentum eigenstates in the inner
region are

�(inner)
m (r, θ ) = T +

m exp(imθ )

⎡
⎢⎣

Jm−1(k+r) exp(−iθ )
is′Jm(k+r)
is′Jm(k+r)

−Jm+1(k+r) exp(iθ )

⎤
⎥⎦

+ T −
m exp(imθ )

⎡
⎢⎣

Jm−1(k−r) exp(−iθ )
is′Jm(k−r)

−is′Jm(k−r)
Jm+1(k−r) exp(iθ )

⎤
⎥⎦,

(13)

where T +
m and T −

m are determined by s′ = sgn(E − V0) and
the boundary conditions. Since the pseudo-angular momen-
tum is conserved during the scattering process, we can treat
each component of m independently and use the partial wave
method to determine the S-matrix elements. In the region
r > R, we describe the wave function in terms of incoming
(in) and outgoing (out) cylindrical waves, where the corre-
sponding spinor for each valley is

ψ
(out)/(in)
m,K ′ (r, θ ) |K ′〉 =

{
H (1)/(2)

m−1 (kr) exp[i(m−1)θ ]

isH (1)/(2)
m (kr) exp(imθ )

}
|K ′〉 ,

(14a)

ψ
(out)/(in)
m,K (r, θ ) |K〉 =

{−isH (1)/(2)
m (kr) exp(imθ )

H (1)/(2)
m+1 (kr) exp[i(m+1)θ ]

}
|K〉 ,

(14b)

|K ′〉 =
(

1
0

)
, |K〉=

(
0
1

)
. (14c)

Here, |K〉 and |K ′〉 are valley spinors, H (1)
m and H (2)

m are
Hankel functions of the first and second kind, respectively, and
s = sgn(E ). Now we can write the wave functions in terms of
the scattering matrix Sm such that ψm = ψ (in)

m + Smψ (out)
m :

�(outer)
m (r, θ ) =

∑
α

cαψ (in)
m,α (r, θ ) |α〉

+
∑
α,β

cαSm,αβψ
(out)
m,β (r, θ ) |β〉 , (15)

where α = K, K ′ and β = K, K ′ are valley indexes. The sym-
bol Sm,αβ denotes the scattering from α to β valley, cK and
cK ′ are the weights of the valley polarization. We can obtain
the coefficients for Sm, T +

m , and T −
m by applying the boundary

conditions at �(inner)
m (R, θ ) = �(outer)

m (R, θ ), as shown in Ap-
pendix. Additionally, an incident plane-wave in the x direction
can be expressed with the aid of the Jacobi-Anger expansion
as

exp(ikr cos θ ) =
∞∑

m=−∞
inJm(kr) exp(imθ ), (16)

or equivalently as

�0(r, θ ) =
∞∑

m=−∞

∑
α

cα

im

2

[
ψ (out)

m,α (r, θ ) + ψ (in)
m,α (r, θ )

] |α〉 .

(17)
The latter allows one to express �(outer)(r, θ ) in terms of the
incoming plane and the outgoing waves, i.e.,

�(outer)(r, θ ) = �0(r, θ ) +
∞∑

m=−∞

∑
α=K,K ′

ᾱ �=α

× cα

im

2

[
(Sm,αα − 1)ψ (out)

m,α (r, θ ) |α〉

+ Sm,αᾱψ
(out)
m,ᾱ (r, θ ) |ᾱ〉], (18)

and the total wave function is obtained by

�(r, θ ) =
∞∑

m=−∞

[
�(inner)

m (r, θ ) + �(outer)
m (r, θ )

]
. (19)
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IV. VALLEY BIREFRINGENCE

Partially subjecting a graphene sheet to a gate potential that
reverses its carrier character from electrons to holes between
gated and nongated regions leads to many interesting analo-
gies between its electron dynamics and optical phenomena
[4,12,16]. The key ingredient to this phenomena is the reversal
of the group velocity of quasiparticles between the regions
with and without gate potentials. For example and to visualize
the phenomena, we consider that the Fermi level of the system
is EF > 0, such that, for the outer region, it crosses the upper
band. On the hand, in the inner region, EF − V0 < 0, with
V0 > 0, which means that the Fermi level crosses the lower
band. In this case (Fig. 1, with �0 = 0), for r > R, the group
velocity of the quasiparticle is parallel to the wave vector, i.e.,
v(outer)

g = v f [kx,r(outer) x̂ + ky,r(outer) ŷ]/|kr(outer) |. In the inner region,
it is antiparallel v(inner)

g = −v f [kx,r(inner) x̂ + ky,r(inner) ŷ]/|kr(inner) |.
Here, kr(inner) [kr(outer) ] is the wave vector in the inner (outer)
region. Since the group velocity is vg = dE (k)/d (h̄k), if
k is kept fixed, the sign of E (k) changes for the va-
lence and conduction bands, making it parallel to the Fermi
momentum for n-type carriers but antiparallel for p-type
[65].

The reversal of the group velocity from the outer to the
inner region indicates that the gated region will act, in the
semiclassical limit, as a circular electronic lens with a negative
index of refraction n = −kr(inner)/kr(outer) , where kr(inner) is the
wave number inside the gated patch and kr(outer) outside, and
n is deduced from the electronic Snell’s law [4,18]. As shown
in Fig. 1, in the limit kR 	 1, the negative index of refraction
leads to constructive interference between the different partial
wave components and results in a probability density that
forms cardioid caustics and cusps [12], in what mimics the
optical caustics which arise from light refraction through a
shaped medium and belong to a class of cusps in catastrophe
theory [13]. Using differential geometry [12], the positions of
the cusps for each p − 1 internal reflection can be shown to be

xcusp(p) = (−1)p

|n| − 1 + 2p
R, (20)

and in the case shown in Fig. 2(a), as the amplitude decreases
with each internal reflection, we can clearly distinguish the
cusps corresponding to p = 1, 2.

If in addition to the gate potential the circular region con-
tains the Kekulé bond texture, then the electronic bands in this
region will be characterized by E± = ±h̄v f (1 ± �)|k| + V0.
Therefore, the gating of this region leads to the Fermi level in-
tersecting the two degenerate bands, which are characterized
by the two group velocities vg,± = −v f (1 ± �). Then when
� �= 0, in addition to the sign reversal of the group velocity
between both regions, we also have the two different group
velocities in the inner region. Hence, the Kekulé patterned
and gated region will act as a circular lens with two negative
indices of refraction:

n± = −k±,r(inner)

kr(outer)

, (21)

with k±,r(inner) = k+, k−, which are given in Eq. (12). As shown
in Fig. 2(b), the Kekulé patterning of the circular region results
in the doubling of the cusps and caustics of the circular lens,

which reflects its birefringent nature. The degree of birefrin-
gence can be characterized by ζ = |n+ − n−|, and for the set
of parameters in Fig. 2(b), we get ζ ≈ 0.25. Moreover, the
cusp location is now modified to

x±
cusp(p) = (−1)p

|n±| − 1 + 2p
R, (22)

and the spatial separation between the two cusps is found
by |x+

cusp − x−
cusp|. In Fig. 2(c), we show the valley-preserving

amplitude component |ψK ′K ′ (r)|2, which retains the same val-
ley component as the incoming electrons and, in Fig. 2(d),
the valley-mixing component |ψK ′K (r)|2, which flips the
valley degree of freedom. From these figures, we can no-
tice that the Kekulé bond texture leads to the oscillation
of the valley component as electrons travel in the pat-
terned region, in what mimics the spin-momentum coupling
of the electron in the presence of a Rashba interaction
[14,16].

V. LOW-ENERGY SCATTERING

The scattering process can be further analyzed by obtaining
the different types of cross-sections, such as the total cross-
section σt , which tells us the magnitude of the interaction
between the incoming flux and the scattering region, the trans-
port cross-section σtr that describes the average momentum
transfer during the scattering, and the skew cross-section σsk ,
which shows the asymmetry in the scattering around the axis
of the incoming flux. These quantities can be obtained through
the scattering amplitude f (θ ), which can be found in the far
field limit, i.e., via the asymptotic form of the wave function
as r → ∞:

�(r → ∞) → �0 +
∑

m

∑
α,β

cα fm,αβ (θ )
exp(ikr)√

r
|β〉 , (23)

and using the asymptotic expansion of the Hankel functions:

Hm(kr)(1)/(2) →
√

2

πkr
exp

[
±i

(
kr − mπ

2
− π

4

)]
. (24)

By comparing Eqs. (18) and (23), we can deduce the scatter-
ing amplitude for each partial wave component in terms of the
S-matrix components:

fm = exp
(− iπ

4

)
√

2πk

(
Sm,K ′,K ′ − 1 −iSm,K ′,K

iSm,K,K ′ Sm,K,K − 1

)
, (25)

where Sm,αβ are the valley-preserving (α = β ) and valley-
mixing scattering (α �= β ) matrix elements corresponding to
the mth partial wave component (α and β represent the Dirac
points, either K or K ′). Then for each process (valley preserv-
ing and valley mixing), we find the corresponding differential
cross-section:

σαβ (θ ) =
∣∣∣∣∣

∞∑
m=−∞

fm,αβ exp(imθ )

∣∣∣∣∣
2

, (26)

total cross-section:

σt,αβ =
∫ π

−π

σαβ (θ )dθ = 2π

∞∑
m=−∞

| fm,αβ |2, (27)
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FIG. 2. Space dependence of the probability density (in log10 scale), for an incoming electron flux in the x direction with valley polarization
K ′ and kR = 300. The dashed line shows the boundary between the scattering regions. A gate potential V0R/(h̄v f ) = 600 is present in the inner
region. (a) Pristine graphene and (b) Kekulé-Y distorted graphene in the r < R region with � = 0.1. The negative refractive index in addition
to the circular geometry leads to an interference pattern that forms a cardioid-shaped envelope with a high concentration at the cusps, which
split in two as we turn on the Kekulé distortion. The position of the cups is given by Eqs. (20) and (22) for the cases of (a) and (b), respectively.
(c) Valley-preserving component and (d) valley-flip component for the case described in (b). As the incoming electron enters the circular
region, its valley state begins to oscillate between K and K ′ [(c) and (d)]. The wavelength of the oscillation depends on the amplitude of �, as
this parameter characterizes the wave numbers k+ and k−.

transport cross-section:

σtr,αβ =
∫ π

−π

σαβ (θ )(1 − cosθ )dθ

= σt,αβ − 2π

∞∑
m=−∞

Re( fm,αβ f ∗
m+1,αβ ), (28)

and the skew cross-section:

σsk,αβ =
∫ π

−π

σαβ (θ )sinθdθ = 2π

∞∑
m=−∞

Im( fm,αβ f ∗
m+1,αβ ).

(29)

By summing over all different allowed processes:

ση =
∑
α,β

ση,αβ, (30)

we obtain the total, transport, and skew cross-sections (η ∈
{t, tr, sk}).

For low carrier concentrations and small regions with
Kekulé bond texture (kR � 1), the most significant scatter-
ing channels are those of angular momentum m = −1, 0, 1.
Within this regime, we show in Fig. 3 the total cross-
section against the strength of gate potential V0. In
the absence of Kekulé patterning, the total cross-section of the
gated region displays one peak which uniquely arises from the
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FIG. 3. Total cross-section σt as a function of V0 for incoming
electrons in the x direction with kR = 1.5 × 10−3. In the regime
kR � 1, the resonances appear near the zeros of J0. Here, we show
the resonances around the first one κ1

0 = 2.4048 [see Appendix,
Eq. (A2a)]. (Inset) Total cross-section for intravalley σt,KK + σt,K ′K ′

and intervalley σt,KK ′ + σt,K ′K processes with � = 0.01. To present
the evolution of the intervalley peaks, this figure only contains a
zoom around the � = 0 peak. Notice that the valley-mixing peaks
are not shown in the figure for the largest two � values. These peaks
are out of the figure range since � shifts to the intervalley peak and
increases its separation from the intravalley peaks.

valley-preserving process and indicates the formation of qua-
sibound states in this region with finite lifetime characterized
by the width of the peak [17,66]. An increasing strength of
the Kekulé interaction leads to the central (valley-preserving)
peak height shrinking and its location shifting, while two new
resonant (valley-mixing) peaks emerge. These two new peaks
correspond to quasibound states forming due to valley-mixing
processes, as shown in the inset of Fig. 3, and consequently,
their height increases with increasing values of �, as shown
in Fig. 3.

When local interactions in a graphene sheet lead to the
breaking of effective time reversal (time reversal per valley)
while preserving the total time reversal, as is the case for
the Kekulé patterning, it is possible to have a skew scatter-
ing, and by symmetry considerations, it can be shown that
[17]

σsk,αα = −σsk,ᾱᾱ, (31a)

σsk,αᾱ = 0. (31b)

The latter equations indicate that electrons with opposite val-
ley polarization get deflected toward opposite directions as
they get scattered, thus producing a valley Hall effect. To mea-
sure the asymmetry of the scattering per valley, we calculate
the skew parameter γV , which is defined as

γV = 1
2 (γK − γK ′ ), (32)

FIG. 4. (a) Differential cross-section for valley-preserving pro-
cesses, K valley (blue) and K ′ valley (red), showing the tilt of
electrons with opposite valley-polarization toward opposite direc-
tions around the x axis. The dashed black line in (a) corresponds
to the differential cross-section without Kekulé distortion. (b) Val-
ley skew parameter γV as a function of both energy and the gate
potential for a region of R = 9 Å and Kekulé amplitude � = 0.1.
The star marker indicates the values used for (a). (c) Average of γV

as a function of energy for 4000 randomly sized Kekulé-Y regions
(9 � R � 18) Å, considering V = 1 eV and different values of �.

where the skew parameter for a valley β = K or β = K ′ is

γβ =
∑

α σsk,αβ∑
α σtr,αβ

. (33)

This quantity is directly connected to the transverse valley cur-
rents and is equal to the valley Hall angle at zero temperature
in the absence of side-jump effects [67]:

�V H = jV H

jx
= γV . (34)

In the presence of the Kekulé-Y modulation, the valley
asymmetry of scattering around the x axis can also be de-
duced from the valley-dependent differential cross-section. In
Fig. 4(a), we present the differential cross-section per val-
ley for the set of parameters indicated by a star marker in
Fig. 4(b). In contrast, we notice a symmetric scattering in
the absence of the Kekulé-Y modulation, which is shown by
the dashed black line in Fig. 4(a). To show the dependence
of the skew scattering in our system on the local potential of
the Kekulé-Y-patterned patches V0 and the Fermi energy (E ),
in Fig. 4(b), we show a map of the skew parameter γV as a
function of V0 and E for Kekulé-patterned regions with R = 9
Å and � = 0.1. In the latter, we should note that the regions of
high γV coincide with the regions of resonant scattering, i.e.,
the resonant regime in the total cross-section (Fig. 3), which
indicates that skew scattering is resonantly enhanced [67]. To
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demonstrate the robustness of skew scattering in the system
to variations in size of the Kekulé-Y-patterned patches, we
consider a uniform random distribution of impurity sizes in
the dilute limit. In Fig. 4(c), we show the average of γV for dif-
ferent values of � and V0. Since skew scattering is resonantly
enhanced, then its detection survives the random variations in
the sizes of the Kekulé-patterned patches in the dilute limit,
which allows for the detection of valley Hall effect signatures
in transport experiments. We also note that, since RV0/(h̄v f )
governs the appearance of the different scattering regimes in
Fig. 3, then skew scattering is also robust to variations in the
locally enhanced potential.

Let us briefly discuss a suitable set of parameters. Here,
� is fixed by the Kekulé pattern bond modulation, which we
will suppose as others [37] of order � ≈ 0.1; although, in
principle, its value can be varied by applying strain [41,68],
a way to determine this parameter is by modeling the Kekulé
lattice using a density functional theory approach and obtain-
ing an effective tight-binding model. The experimental setup
can vary the two parameters V0 and R. For example, in Fig. 4,
we present the results for patches of size R = 9 Å, which is the
minimal size to have multiple unit cells in the patch regions,
so we can still apply our low-energy continuum model; values
above that will be also valid. From the figure, we see that
detection will involve the condition V0R/h̄v f ≈ 2.42, from
which we obtain a gate voltage of ∼0.66 eV. From there, V0

can be diminished at will.

VI. CONCLUSIONS

We have studied the scattering of Dirac fermions from
Kekulé-distorted and gated regions in graphene. For large
Kekulé-patterned and gated regions, we have shown that the
scattering of electrons from these circular patches leads to
the formation of caustics and cusps reminiscent of a circular
birefringent electronic lens with two negative indices of re-
fraction. Moreover, the separation of the cusps in the circular
lens is proportional to the Kekulé interaction and provides a
direct measure of its strength in systems with tailored Kekulé
patches.

For low carrier concentrations, we have shown that the
presence of scatterers with a locally enhanced Kekulé inter-
action and gate potential leads to the electrons from different
valleys deflecting in opposite directions due to the skew scat-
tering produced by the Kekulé distortion. Skew scattering in
the system leads to the appearance of a valley Hall effect.
We have also shown that the skew-scattering-generated val-
ley Hall effect can be present in systems where the Kekulé
patterning is not uniform but when it consists of patches with
random sizes and potentials. The latter suggests the plausible
experimental realization and detection of the skew-scattering-
induced valley Hall effect in Kekulé-patterned graphene
systems via four-probe experiments. Also, it may be worth ex-
tending this study to other short-wavelength modulations, for
example, for

√
3 × √

3 superlattices and twisted multilayered
graphene [69].

Therefore, valley birefringence directly measures the pres-
ence of Kekulé-Y distortion, and its strength relates to
wavefront separation at the cusps. In the case of low-carrier
concentrations, the combination of Kekulé distortion and gate

potential can lead to an asymmetric scattering between valleys
and thus produce a valley Hall effect, even if the Kekulé
pattern is not uniform.

Optical birefringence allows the identification of internal
anisotropies, stresses, and space inhomogeneities of materi-
als and even allows decoupling polarized modes in optical
fibers. Consequently, our results could serve to design con-
figurations that discern broken symmetries and thus be
used to design valley-decoupled electronic analogs to optical
fibers.
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APPENDIX: BOUNDARY CONDITIONS

In this Appendix, we find explicit solutions for the coeffi-
cients in Sec. III, which are found by solving for the boundary
conditions. The solution of the system of equations resulting
from the boundary condition �(inner)

m (R, θ ) = �(outer)
m (R, θ )

gives us the following analytical expressions for the Sm matrix
element s and the amplitudes T ±

m :

Sm,K ′K ′ = ss′[H (1)
m H (2)

m−1Xm + H (1)
m+1H (2)

m Xm−1
]

Dm

− 2H (1)
m+1H (2)

m−1Qm + H (1)
m H (2)

m Zm

Dm
, (A1a)

Sm,KK = ss′[H (1)
m−1H (2)

m Xm + H (1)
m H (2)

m+1Xm−1
]

Dm

− 2H (1)
m−1H (2)

m+1Qm + H (1)
m H (2)

m Zm

Dm
, (A1b)

Sm,K ′K = −ss′YmPm

Dm
, (A1c)

Sm,KK ′ = −ss′Ym−1Pm+1

Dm
, (A1d)

T +
m = c1

[
j−m+1H (1)

m − ss′ j−m H (1)
m+1

]
Pm

Dm

+ c2
[

j−m−1H (1)
m − ss′ j−m H (1)

m−1

]
Pm+1

Dm
, (A1e)

T −
m = c1

[
j+m+1H (1)

m − ss′ j+m H (1)
m+1

]
Pm

Dm

− c2
[

j+m−1H (1)
m − ss′ j+m H (1)

m−1

]
Pm+1

Dm
, (A1f)
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where we defined

Dm = −ss′[H (1)
m H (1)

m−1Xm + H (1)
m+1H (1)

m Xm−1
]

+ 2H (1)
m+1H (1)

m−1Qm + H (1)
m H (1)

m Zm, (A2a)

Xm = j+m j−m+1 + j+m+1 j−m , (A2b)

Ym = j+m j−m+1 − j+m+1 j−m , (A2c)

Zm = j+m−1 j−m+1 + j+m+1 j−m−1, (A2d)

Qm = j+m j−m , (A2e)

Pm = H (1)
m H (2)

m−1 − H (1)
m−1H (2)

m . (A2f)

Here, all Hankel functions are evaluated at kR and
j±m = Jm(k±R).
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[33] M. M. Grujić, M. Tadić, and F. M. Peeters, Phys. Rev. Lett. 113,
046601 (2014).

[34] M. M. Asmar and S. E. Ulloa, Phys. Rev. B 96, 201407(R)
(2017).

[35] C.-Y. Hou, C. Chamon, and C. Mudry, Phys. Rev. Lett. 98,
186809 (2007).

[36] C. Chamon, Phys. Rev. B 62, 2806 (2000).
[37] O. Gamayun, V. Ostroukh, N. Gnezdilov, I. Adagideli, and C.

Beenakker, New J. Phys. 20, 023016 (2018).
[38] C. Gutiérrez, C.-J. Kim, L. Brown, T. Schiros, D. Nordlund,

E. B. Lochocki, K. M. Shen, J. Park, and A. N. Pasupathy, Nat.
Phys. 12, 950 (2016).

[39] C. Bao, H. Zhang, T. Zhang, X. Wu, L. Luo, S. Zhou, Q. Li, Y.
Hou, W. Yao, L. Liu et al., Phys. Rev. Lett. 126, 206804 (2021).

[40] C. Bao, H. Zhang, X. Wu, S. Zhou, Q. Li, P. Yu, J. Li, W. Duan,
and S. Zhou, Phys. Rev. B 105, L161106 (2022).

[41] D. Eom and J.-Y. Koo, Nanoscale 12, 19604 (2020).
[42] A. Qu, P. Nigge, S. Link, G. Levy, M. Michiardi, P. Spandar,

T. Matthé, M. Schneider, S. Zhdanovich, U. Starke et al., Sci.
Adv. 8, eabm5180 (2022).

[43] M.-H. Zhang, Y.-N. Ren, Q. Zheng, X.-F. Zhou, and L. He,
arXiv:2208.01286 (2022).

[44] Y. Mohammadi and S. Bahrami, Chin. Phys. B 31, 017305
(2022).

[45] E. Andrade, R. Carrillo-Bastos, P. A. Pantaleón, and F. Mireles,
J. Appl. Phys. 127, 054304 (2020).

[46] S. A. Herrera and G. G. Naumis, Phys. Rev. B 101, 205413
(2020).

[47] S. A. Herrera and G. G. Naumis, Phys. Rev. B 102, 205429
(2020).

[48] Y. Mohammadi, ECS J. Solid State Sci. Technol. 10, 061011
(2021).

[49] A. Santacruz, P. E. Iglesias, R. Carrillo-Bastos, and F. Mireles,
Phys. Rev. B 105, 205405 (2022).

195413-8

https://doi.org/10.1038/nphys384
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1138020
https://doi.org/10.1038/nphys3460
https://doi.org/10.1103/PhysRevB.97.205437
https://doi.org/10.1088/1367-2630/ab4d8f
https://doi.org/10.1103/PhysRevB.98.205421
https://doi.org/10.1088/1361-648X/aa565e
https://doi.org/10.1038/nnano.2011.3
https://doi.org/10.1021/acs.nanolett.9b02720
https://doi.org/10.1103/PhysRevLett.99.246801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevB.87.075420
https://doi.org/10.1103/PhysRevB.91.165407
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1016/j.jestch.2016.05.002
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1038/nphys547
https://doi.org/10.1103/PhysRevLett.106.136806
https://doi.org/10.1103/PhysRevB.89.121407
https://doi.org/10.1103/PhysRevB.87.195445
https://doi.org/10.1088/0953-8984/27/4/045501
https://doi.org/10.1103/PhysRevB.82.115442
https://doi.org/10.1103/PhysRevB.84.245413
https://doi.org/10.1103/PhysRevB.86.115431
https://doi.org/10.1103/PhysRevB.89.245421
https://doi.org/10.1103/PhysRevLett.100.236801
https://doi.org/10.1103/PhysRevLett.110.046601
https://doi.org/10.1103/PhysRevLett.113.046601
https://doi.org/10.1103/PhysRevB.96.201407
https://doi.org/10.1103/PhysRevLett.98.186809
https://doi.org/10.1103/PhysRevB.62.2806
https://doi.org/10.1088/1367-2630/aaa7e5
https://doi.org/10.1038/nphys3776
https://doi.org/10.1103/PhysRevLett.126.206804
https://doi.org/10.1103/PhysRevB.105.L161106
https://doi.org/10.1039/D0NR03565C
https://doi.org/10.1126/sciadv.abm5180
http://arxiv.org/abs/arXiv:2208.01286
https://doi.org/10.1088/1674-1056/ac1b82
https://doi.org/10.1063/1.5133091
https://doi.org/10.1103/PhysRevB.101.205413
https://doi.org/10.1103/PhysRevB.102.205429
https://doi.org/10.1149/2162-8777/ac08d5
https://doi.org/10.1103/PhysRevB.105.205405


KEKULÉ-INDUCED VALLEY BIREFRINGENCE AND … PHYSICAL REVIEW B 106, 195413 (2022)

[50] J. J. Wang, S. Liu, J. Wang, and J.-F. Liu, Phys. Rev. B 98,
195436 (2018).

[51] E. Andrade, R. Carrillo-Bastos, and G. G. Naumis, Phys. Rev.
B 99, 035411 (2019).

[52] D. A. Ruiz-Tijerina, E. Andrade, R. Carrillo-Bastos, F. Mireles,
and G. G. Naumis, Phys. Rev. B 100, 075431 (2019).

[53] Q.-P. Wu, L.-L. Chang, Y.-Z. Li, Z.-F. Liu, and X.-B. Xiao,
Nanoscale Res. Lett. 15, 1 (2020).

[54] J. J. Wang, S. Liu, J. Wang, and J.-F. Liu, Phys. Rev. B 101,
245428 (2020).

[55] W. Zeng and R. Shen, Phys. Rev. B 104, 075436 (2021).
[56] S. G. y García, T. Stegmann, and Y. Betancur-Ocampo, Phys.

Rev. B 105, 125139 (2022).
[57] E. Andrade, G. G. Naumis, and R. Carrillo-Bastos, J. Phys.:

Condens. Matter 33, 225301 (2021).
[58] H. Ochoa, A. H. Castro Neto, V. I. Fal’ko, and F. Guinea, Phys.

Rev. B 86, 245411 (2012).
[59] C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).
[60] E. McCann and V. I. Fal’ko, J. Phys.: Condens. Matter 16, 2371

(2004).

[61] D. J. Alspaugh, M. M. Asmar, D. E. Sheehy, and I. Vekhter,
Phys. Rev. B 105, 054502 (2022).

[62] E. Thareja, I. Vekhter, and M. M. Asmar, Phys. Rev. B 102,
125308 (2020).

[63] M. Tanhayi Ahari, G. Ortiz, and B. Seradjeh, Am. J. Phys. 84,
858 (2016).

[64] L. Isaev, G. Ortiz, and I. Vekhter, Phys. Rev. B 92, 205423
(2015).

[65] S. Chen, Z. Han, M. M. Elahi, K. M. Habib, L. Wang, B. Wen,
Y. Gao, T. Taniguchi, K. Watanabe, J. Hone et al., Science 353,
1522 (2016).

[66] M. M. Asmar and S. E. Ulloa, Phys. Rev. Lett. 112, 136602
(2014).

[67] A. Ferreira, T. G. Rappoport, M. A. Cazalilla, and A. H. Castro
Neto, Phys. Rev. Lett. 112, 066601 (2014).

[68] D. Q. Khoa, C. V. Nguyen, L. M. Bui, H. V. Phuc, B. D. Hoi,
N. V. Hieu, V. Q. Nha, N. Huynh, L. C. Nhan, and N. N. Hieu,
Mater. Res. Express 6, 045605 (2019).

[69] S. A. Herrera and G. G. Naumis, Phys. Rev. B 104, 115424
(2021).

195413-9

https://doi.org/10.1103/PhysRevB.98.195436
https://doi.org/10.1103/PhysRevB.99.035411
https://doi.org/10.1103/PhysRevB.100.075431
https://doi.org/10.1186/s11671-019-3237-y
https://doi.org/10.1103/PhysRevB.101.245428
https://doi.org/10.1103/PhysRevB.104.075436
https://doi.org/10.1103/PhysRevB.105.125139
https://doi.org/10.1088/1361-648X/abef9a
https://doi.org/10.1103/PhysRevB.86.245411
https://doi.org/10.1103/RevModPhys.80.1337
https://doi.org/10.1088/0953-8984/16/13/016
https://doi.org/10.1103/PhysRevB.105.054502
https://doi.org/10.1103/PhysRevB.102.125308
https://doi.org/10.1119/1.4961500
https://doi.org/10.1103/PhysRevB.92.205423
https://doi.org/10.1126/science.aaf5481
https://doi.org/10.1103/PhysRevLett.112.136602
https://doi.org/10.1103/PhysRevLett.112.066601
https://doi.org/10.1088/2053-1591/aaf914
https://doi.org/10.1103/PhysRevB.104.115424

