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Non-Hermitian skin effect and lasing of absorbing open-boundary modes in photonic crystals
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We explore absorbing open-boundary modes in non-Hermitian photonic systems. The modes have a contin-
uum spectrum in the infinite-system-size limit and can exhibit the non-Hermitian skin effect. In contrast to the
conventional non-Hermitian skin modes under the fixed-end open-boundary condition, the modes concerned
exhibit a strongly size-dependent spectrum that gradually converges to the non-Bloch-band dispersion. The
modes correspond to the poles of the S matrix and are closely related to the lasing. We demonstrate these
properties in a two-dimensional non-Hermitian photonic crystal with gain having a point-(pseudo)gap topology.
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I. INTRODUCTION

Recently, much attention has been paid to non-Hermitian
systems of quantum particles [1,2], photonics [3,4], mechan-
ics [5], and so on. The non-Hermiticity generally results in a
lifting of the eigenvalues away from the real axis, giving rise
to many fascinating phenomena tied with topology [6–9].

Among all, the non-Hermitian skin effect (NHSE) [10] is
intriguing and is not available in Hermitian systems. In the
NHSE, the bulk eigenmodes are localized near the boundary,
depending on the boundary condition, and the conventional
bulk-boundary correspondence [11] apparently becomes in-
valid. The physics behind the NHSE is fertile and inspires
applications such as sensing [12].

So far, the NHSE has been explored mainly in tight-binding
models, where the open boundary with vanishing field com-
ponents is usually employed. The tight-binding model is a
discrete model defined on lattice sites. The open-boundary
condition with vanishing field components is a natural bound-
ary condition in finite lattices. These two items implicitly rely
on electronic systems, where the electrons are often tightly
confined in atomic orbitals and bounded in media by work
functions.

If we turn our attention to photonic systems, we will find
that such a tight-binding description with the open boundary
is not necessarily realistic, although it is widely used in var-
ious theoretical treatments. The tight-binding model is often
employed in coupled cavity systems, and the open-boundary
condition is represented as the perfect-electric-conductor
(PEC) or perfect-magnetic-conductor (PMC) boundary con-
dition. However, the radiation field is generally extended in
entire photonic systems and nonvanishing near fields at the
boundary often play important roles.

One of the distinctive features of photonic systems is that
they interact strongly with outer systems. The outer systems
act as reservoirs of the continuum radiation modes [13]. As a
result, boundaries in photonic systems provide dissipative or
decay routes to the outer systems. This dissipation and the in-
trinsic dielectric dispersion with the Kramers-Kronig relation

make the photonic systems lossy and non-Hermitian. More-
over, optical gains are easily implemented in photonic systems
by the population inversion. Thus, the non-Hermiticity is
built-in and quite rich in photonic systems.

Because of these features in photonic systems, various
engineered non-Hermiticity has been explored in photonic
platforms [3,4,14]. However, there have been limited studies
on the NHSE in photonic systems so far [15–21].

Here, we consider yet another aspect of the NHSE in
photonic crystals (PhCs) by introducing gains. We focus on
rather uncovered eigenmodes inherent in photonic systems.
The modes focused on here are absorbing open-boundary
modes that merge with the reservoir of continuous radiation
modes in the outer systems. Like the conventional fixed-end
open-boundary modes, which do not mix with the reservoir,
the modes here can exhibit the NHSE. The absorbing open-
boundary modes correspond to the poles of the S matrices
in finite-thickness PhCs. Since the S matrix is like a ratio
between output and input, the poles imply finite outputs for
vanishing inputs. Thus, the modes are directly related to the
lasing. Here we explore the fundamental properties of the ab-
sorbing open-boundary modes and their relation to the lasing
in detail.

This paper is organized as follows. In Sec. II, we present
a theoretical formulation via the S matrix for non-Hermitian
PhCs and their eigenmode properties. In Sec. III, we give
the explicit form of the S matrix of a certain class of two-
dimensional (2D) PhCs. In Sec. IV, we present numerical
results of the NHSE in a 2D PhC. In Sec. V, we present how
the absorbing open-boundary modes affect the lasing in the
PhC with gain. Finally, in Sec. VI, we summarize the results.

II. S MATRIX FORMALISM AND
(NON)-BLOCH-BAND THEORY

In the S matrix formalism, a D-dimensional periodic sys-
tem is regarded as a stack of (D − 1)-dimensional periodic
ones (labeled by n for the layer index). In between the nth
and (n + 1)th layers, the radiation field is expanded by plane
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FIG. 1. Cross-sectional view of the two-dimensional photonic
crystal composed of a parallel array of nonoverlapping cylinders.
Each layer consists of a one-dimensional periodic array of the cylin-
ders. In the empty region between the nth and (n + 1)th layers,
the radiation field is expanded by plane waves whose expansion
coefficients are symbolically denoted as a±

n .

waves whose expansion coefficients are denoted as a±
n . Here,

the superscript refers to the direction of propagation. Figure 1
shows a schematic illustration of a photonic system of D = 2.

The S matrix relates input channels to the layer and output
channels from the layer. It is defined by(

a+
n

a−
n−1

)
= S(ω, k‖)

(
a+

n−1

a−
n

)
, (1)

S(ω, k‖) =
(

S++ S+−

S−+ S−−

)
. (2)

The S matrix is a function of (complex) angular frequency ω

and Bloch momentum k‖ parallel to the (D − 1)-dimensional
layers. The explicit form of the S matrix in a 2D PhC is given
in Sec. III.

Once the S matrix is obtained, the transfer matrix is also
available. It is defined by(

a+
n

a−
n

)
= T (ω, k‖)

(
a+

n−1

a−
n−1

)
, (3)

T (ω, k‖) =
(

T ++ T +−

T −+ T −−

)
, (4)

T ++ = S++ − S+−(S−−)−1S−+, (5)

T +− = S+−(S−−)−1, (6)

T −+ = −(S−−)−1S−+, (7)

T −− = (S−−)−1. (8)

Various properties of non-Hermitian systems, particularly the
NHSE, can be argued in terms of the transfer matrix, as shown

by Kunst and Dwivedi [22]. Here, we focus on photonic
aspects of the S matrix and transfer matrix.

The transfer matrix is diagonalized as

T = U�U −1, (9)

U =
(

A B
C D

)
, � =

(
�+ 0
0 �−

)
, (10)

�+ = diag(λ1, λ2, . . . , λM ), (11)

�− = diag(λM+1, λM+2, . . . , λ2M ). (12)

Here, we assume M input (or output) channels, and eigen-
values λi are ordered such that |λ1| � |λ2| � · · · � |λ2M |. In
Hermitian photonic systems with real ω and k‖, half of the
eigenvalues are outside the unit circle in the complex plane of
λ. The other half is inside. This classification corresponds to
�+ and �−. This property enables us to derive the reflectance
of semi-infinite photonic systems in terms of the eigenvectors
of the transfer matrix [23–25].

We also note that marginal eigenvalues on the unit circle
correspond to Bloch-band modes. They are expressed as λi =
exp(ik⊥d ) for Hermitian systems, where k⊥ coincides with the
Bloch momentum perpendicular to the (D − 1)-dimensional
layer and d is the interlayer distance. In this way, the trans-
fer matrix provides an on-shell photonic-band-calculation
scheme. Namely, a set of k⊥ is obtained as a function of ω

and k‖. In contrast, in an ordinary (off-shell) band calculation,
a set of ω is obtained as a function of (k‖, k⊥).

Using the transfer matrix, the S matrix of the N-layer
system is written as(

a+
N

a−
0

)
= SN (ω, k‖)

(
a+

0
a−

N

)
, (13)

S++
N = T ++

N − T +−
N (T −−

N )−1T −+
N , (14)

S+−
N = T +−

N (T −−
N )−1, (15)

S−+
N = −(T −−

N )−1T −+
N , (16)

S−−
N = (T −−

N )−1. (17)

Note that the transfer matrix TN of the N-layer system is
simply equal to T N .

The eigenmodes in the N-layer system are strongly tied
with the SN matrix and obtained by imposing a boundary
condition. Here, we consider three representative boundary
conditions in photonic systems.

The first one is the periodic boundary condition, given by
a±

N = a±
0 . This condition results in the secular equation

(1 − SN )

(
a+

N
a−

0

)
= 0. (18)

The second one is the PEC or PMC boundary condition,
which represents a perfect conductor in the vicinity of the
boundary surface. This is a fixed-end (namely, Dirichlet- or
Neumann-type) boundary and is conventionally called the
“open” boundary in non-Hermitian contexts. This boundary
condition relates a±

0(N ) as

a−
0(N ) = L0(N )a

+
0(N ), (19)
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with a linear matrix L0(N ), giving rise to the secular equation[
1 −

(
S+−

N LN S++
N L−1

0

S−−
N LN S−+

N L−1
0

)](
a+

N

a−
0

)
= 0. (20)

The third one is the absorbing boundary condition we focus
on in this paper. This boundary condition assumes an open
boundary, but the field component is not vanishing there. It
merges unidirectionally with the external radiation modes.
The only requirement is that the radiation field decays expo-
nentially away from the boundary without any bouncing [26].
In Hermitian photonic systems, the resulting eigenmodes are
available outside the light cone and represent a guided mode
propagating parallel to the boundary. In non-Hermitian sys-
tems, the notion of the light cone loses its meaning, and the
absorbing open-boundary modes can generally emerge. In this
condition, we impose that solely outgoing waves exist near the
PhC boundary, namely, a+

0 = a−
N = 0. If we divide the N-layer

PhC into (N − n)-layer and n-layer ones, with n an arbitrary
integer from 1 to N − 1, we have(

a+
N

a−
n

)
= SN−n(ω, k‖)

(
a+

n

a−
N

)
, (21)

(
a+

n

a−
0

)
= Sn(ω, k‖)

(
a+

0

a−
n

)
. (22)

Under the absorbing boundary condition, we obtain the secu-
lar equation for a+

n as

(1 − S+−
n S−+

N−n)a+
n = 0. (23)

The above secular equations can be written in terms of
eigenvalues and eigenvectors of the transfer matrix of M input
(or output) channels. In a special case of M = 1, the S matrix
becomes simply a 2×2 matrix. The secular equations reduce
to

λN
1 = 1 or λN

2 = 1 (periodic), (24)

λN
1 = λN

2 (PEC/PMC), (25)

ADλN
2 = BCλN

1 (absorbing). (26)

In the limit of N → ∞, the first equation has an infinite
number of solutions distributed on the curve determined by
|λ1| = 1 or |λ2| = 1 in the complex plane of ω. This con-
dition corresponds to real k⊥. The second equation reduces,
at N → ∞, to |λ1| = |λ2| that corresponds to the non-Bloch-
band dispersion [10,27]. The third one corresponds to the pole
of the S matrix and eventually becomes |λ1| = |λ2| in the limit
of N → ∞. Namely, we have

λ2 = λ1

(
BC

AD

) 1
N

ei2π n
N (n = 1, 2, . . . , N ). (27)

In the limit of N → ∞, the solutions are densely distributed
on the curve defined by |λ1| = |λ2|. In contrast to the solu-
tions of Eq. (25), at finite N , the solutions are systematically
deviated from the curve of |λ1| = |λ2| because of the prefactor
(BC/AD)1/N .

If there are M input (or output) channels, the secular
equations for the periodic and PEC/PMC boundary condi-
tions reduce to the criteria found in the (non-)Bloch-band

theory [28,29]. Namely, |λM | = 1 or |λM+1| = 1 for the peri-
odic boundary condition and |λM | = |λM+1| for the PEC/PMC
boundary condition. These criteria define the curves in the
complex frequency plane for a given k‖. If these curves do
not coincide with each other, the NHSE occurs.

The secular equation for the absorbing open-boundary
modes becomes

det(1 − C−1D�N
−B−1A�−N

+ ) = 0. (28)

This determinant emerges in the expression of T −−
N , so that

the solutions correspond to the pole of the SN matrix. To have
dense solutions in the N → ∞ limit, we need to have

|λM | = |λM+1|, (29)

(C−1D)M1(B−1A)1M

(
λM+1

λM

)N

= 1. (30)

Therefore, the limiting curve of the spectrum of the absorbing
open-boundary modes is the same as in the PEC/PMC bound-
ary condition.

III. S MATRIX IN TWO-DIMENSIONAL
PHOTONIC CRYSTALS

Let us consider a 2D PhC composed of a periodic array of
nonoverlapping cylinders as an explicit example. We assume
that light is propagating perpendicular to the cylindrical axis
(taken to be the z axis). Thanks to the inversion symmetry
concerning the z axis, the radiation field is decoupled into the
transverse-electric (TE) and transverse-magnetic (TM) polar-
ization sectors.

Suppose that the PhC is regarded as the stack of identical
layers of a 1D periodic array of cylinders as shown in Fig. 1.
The relative shift between the adjacent layers is denoted as s.
In the empty space between the nth and (n + 1)th layers, the
radiation field is expanded by plane waves as

ψn(x) =
∑

g

(a+
ngeiK+

g ·(x−xn ) + a−
ngeiK−

g ·(x−xn ) ), (31)

K±
g = (kx + g)x̂ ± �gŷ, �g =

√
q2 − (kx + g)2, (32)

q =
√

ω2

c2
, (33)

where ψ is either Hz (TE polarization) or Ez (TM polariza-
tion), a±

ng is the plane-wave-expansion (PWE) coefficient of
reciprocal lattice g[= 2π (integer)/a], and xn is the reference
point satisfying xn − xn−1 = s. The square root is chosen such
that its imaginary part is always positive. Then, the S matrix
is defined as Eq. (1) for column vector a±

n ≡ (a±
ng1

, a±
ng2

, . . . )t .
In the layer Korringa-Kohn-Rostoker (KKR) formal-

ism [30–32], the explicit form of the S matrix is given
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by [33–35]

S++
gg′ = 2

�ga

∑
αα′ll ′

eiK+
g ·(xn−x̃α )(−i)l eilφ(K+

g )T(αl )(α′l ′ )i
l ′e−il ′φ(K+

g′ )eiK+
g′ ·(x̃α′−xn−1 ) + δgg′ , (34)

S+−
gg′ = 2

�ga

∑
αα′ll ′

eiK+
g ·(xn−x̃α )(−i)l eilφ(K+

g )T(αl )(α′l ′ )i
l ′e−il ′φ(K−

g′ )eiK−
g′ ·(x̃α′ −xn )

, (35)

S−+
gg′ = 2

�ga

∑
αα′ll ′

eiK−
g ·(xn−1−x̃α )(−i)l eilφ(K−

g )T(αl )(α′l ′ )i
l ′e−il ′φ(K+

g′ )eiK+
g′ ·(x̃α′ −xn−1 )

, (36)

S−−
gg′ = 2

�ga

∑
αα′ll ′

eiK−
g ·(xn−1−x̃α )(−i)l eilφ(K−

g )T(αl )(α′l ′ )i
l ′e−il ′φ(K−

g′ )eiK−
g′ ·(x̃α′ −xn ) + δgg′ , (37)

T(αl )(α′l ′ ) = [(1 − tG)−1](αl )(α′l ′ )tα′l ′ , (38)

[1 − tG](αl )(α′l ′ ) = δαα′δll ′ − tαlG(αl )(α′l ′ ), (39)

G(αl )(α′l ′ ) =
∑
n∈Z

′eikxanH (1)
l ′−l (q|x̃α − x̃α′ − nax̂|)ei(l ′−l )φ(x̃α−x̃α′ −nax̂). (40)

Here, index α(α′) is for cylinders per 1D unit cell of lattice
constant a, index l (l ′) refers to the 2D angular momentum, x̃α

is the center coordinate of the αth cylinder, tαl is the so-called
t matrix (or the Mie-scattering coefficient) of the isolated αth
cylinder [36], φ(K ) is the azimuthal angle of 2D vector K, and
H (1)

l is the Hankel function of the first kind and integer order
l . The prime in the lattice sum of G(αl )(α′l ′ ) represents that n =
0 is excluded if α = α′. This lattice sum can be calculated
numerically either directly for large Im[q] or by the Ewald
technique [34].

In this case, the number M of input channels is equal to the
number of reciprocal lattices, g(g′), taken into account in the
numerical calculation.

In what follows, we employ this numerical S matrix for
various calculations.

IV. NON-HERMITIAN SKIN EFFECT

Let us consider a 2D PhC composed of dielectric cylinders
with an optical gain. The optical gain is represented by a
negative imaginary part in the dielectric constant of the cylin-
ders. This non-Hermiticity of the optical gain corresponds to
a complex on-site (or, in other words, scalar) potential in a
tight-binding picture of the system, instead of the complex
vector potential of the Hatano-Nelson model [1]. However,
we should remind the reader that the tight-binding picture
is available for limited cases, e.g., coupled cavity arrays, in
photonic systems.

Let us further assume a composite square-lattice PhC with
two cylinders per unit cell. The positions of the cylinders
are taken to be (−a/8,−a/8) and (a/8, a/8), where a is the
lattice constant. In this case, the system breaks the x and y in-
version symmetries, whereas the exchange symmetry between
x and y holds. In addition, the reciprocity, namely, the sym-
metry under the transpose of the permittivity tensor, results
in ω(−kx,−ky) = ω(kx, ky), where ω(kx, ky) is the complex
eigenfrequency under Bloch momentum (kx, ky ) [16].

These symmetry properties imply that the NHSE and the
point-(pseudo)gap topology [37] emerge in the boundary

parallel or perpendicular to the �X direction, whereas they
are forbidden in the boundary parallel or perpendicular to
the �M direction. The breaking y inversion symmetry re-
sults in ω(kx,−ky) 	= ω(kx, ky); however, at kx = 0,±π/a,
the equality is recovered by the reciprocity. Therefore, if
we fix kx( 	= 0,±π/a), we have a loop in the complex fre-
quency plane as we scan ky from −π/a to π/a, giving
rise to a point-(pseudo)gap and the NHSE. In contrast, the
loop does not emerge in the �M direction. Consequently,
the NHSE does not emerge. In the boundary parallel to

FIG. 2. The photonic band structure of the TE polarization in the
composite square lattice of dielectric cylinders with gain. The band
structure is plotted (a) on the plane of the real part of the angular
frequency, Re[ω], and (real) momentum, ky, and (b) on the complex
frequency plane. The cylinder has dielectric constant ε = 12 − i and
radius r = √

2a/8, where a is the lattice constant of the square
lattice. The cylinders are placed at (−a/8, −a/8) and (a/8, a/8) in a
unit cell. The Bloch momentum kx is kept fixed at 0.4π/a. The inset
in (a) shows the first Brillouin zone and the dashed line represents
the scanned momentum axis.
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FIG. 3. (a) The Bloch-band map overlaid by the spectrum of finite-N eigenmodes under the periodic boundary condition. (b) The non-
Bloch-band map overlaid by the spectrum of finite-N eigenmodes under the perfect-electric-conductor boundary condition. (c) The non-
Bloch-band map overlaid by the spectrum of finite-N eigenmodes under the absorbing open-boundary condition. The Bloch-band map is the
contour plot of |(|λM | − 1)(|λM+1| − 1)| whose zeros correspond to the Bloch-band dispersion. The non-Bloch-band map is the contour plot
of |λM | − |λM+1| whose zeros correspond to the non-Bloch-band dispersion.

�M, the exchange symmetry directly results in ω(k‖,−k⊥) =
ω(k‖, k⊥). In the boundary perpendicular to �M, the ex-
change symmetry gives ω(−k‖, k⊥) = ω(k‖, k⊥). Combining
with the reciprocity ω(−k‖,−k⊥) = ω(k‖, k⊥), we have again
ω(k‖,−k⊥) = ω(k‖, k⊥). Therefore, if we fix k‖ and scan k⊥,
the point-(pseudo)gap loop is forbidden.

Figure 2 shows the photonic band structure of the sys-
tem with gain. The band structure is of the TE polarization
and was calculated by the PWE with the Ho-Chan-Soukoulis
method [38]. The y-inversion symmetry is broken, as shown
in Fig. 2(a), resulting in the multiple loops in Fig. 2(b) and
a point-(pseudo)gap topology. A large loop is found around
Re[ωa/2πc] = 0.7. This loop is not caused by a single band,
but by the three bands entangled in the (ky, Re[ω], Im[ω])
space, as seen in Fig. 2(a). In contrast, the loops around
Re[ωa/2πc] = 0.3 and 0.5 consist of the respective single
band.

Figure 3 shows the Bloch-band and non-Bloch-band
maps overlaid by the complex eigenfrequency spectra under
the periodic, PEC (fixed-end open), and absorbing bound-
ary conditions of finite N , calculated with the layer KKR
method. The Bloch-band map is the contour plot of |(|λM | −
1)(|λM+1| − 1)|, whose zeros form curves in the complex
frequency plane. These curves correspond to the Bloch-band

dispersion and coincide with those in Fig. 2(b). The non-
Bloch-band map is the contour plot of |λM | − |λM+1|, whose
zeros form curves of the non-Bloch-band dispersion. We
can see that these curves are completely different between
Figs. 3(a) and 3(b). We also see that the finite-N eigenmodes
under the periodic boundary condition follow the Bloch-band
dispersion, whereas those under the PEC boundary condition
follow the non-Bloch-band dispersion. This property indicates
that the NHSE occurs for the eigenmodes under the PEC
boundary condition.

Remarkably, a strong N dependence is observed for the
absorbing open-boundary modes. They tend to converge to the
non-Bloch-band dispersion at N → ∞. In contrast, the eigen-
modes under the PEC boundary condition converge rapidly to
the non-Bloch-band dispersion.

Figure 4 shows a comparison of the eigenmodes around
Re[ωa/2πc] = 0.7, regarding the field profiles. Here we plot
the norm Nn of the PWE coefficients in the empty region
between the nth and (n + 1)th layers, as a function of n. The
norm is defined as

Nn =
∑

g

(|a+
ng|2 + |a−

ng|2), (41)
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FIG. 4. The norm Nn of the plane-wave expansion coefficients
of the finite-N eigenmodes under the periodic, PEC, and absorbing
boundary condition, as a function of layer index n. The total number
of the layers is taken to be N = 64. The eigenmodes are indicated
by the arrows in Fig. 3. The dashed lines represent the exponential
curves of |λM |2n and |λM+1|2n at the eigenfrequency of the absorbing
boundary mode.

where we take the normalization of NN/2 = 1. We can see
that the eigenmodes under the PEC and absorbing boundaries
are localized near the top (n = N) boundary. The PEC mode
behaves like a single exponential, and the absorbing bound-
ary mode behaves like a sum of two exponential terms. In
contrast, the eigenmode under the periodic boundary condi-
tion exhibits the constant norm.

The composite spatial decay in the NHSE of the absorbing
boundary mode is a general feature reflecting the slow con-
vergence to the non-Bloch-band dispersion at finite N . The
spatial decays of the skin modes are described by the two
eigenvalues λM and λM+1 of the transfer matrix, located near
the unit circle. The other eigenvalues are not relevant. The two
exponential terms of the absorbing boundary mode are well
approximated by |λM |2n and |λM+1|2n, as shown in Fig. 4. The
PEC mode of N = 64 is found on the non-Bloch-band dis-
persion defined by |λM | = |λM+1|, so that these two terms are
almost the same, showing the single exponential decay. The
absorbing boundary mode is found off the non-Bloch-band
dispersion even at N = 64, so that |λM | 	= |λM+1|, showing
the two exponential terms.

If we invert kx, the PEC and absorbing boundary modes of
Fig. 4 are found at the same complex eigenfrequencies, but
localized near the bottom (n = 1) layer. We also note that if
the non-Hermiticity is introduced as the loss by the complex
conjugation of the dielectric constant, the band structure in
Fig. 2 is flipped to negative Im[ω] regions. Accordingly, the
field localization of the NHSE of Fig. 4 is switched to the
bottom layer.

FIG. 5. The amplification AN spectra of the composite square-
lattice PhC with various N . The incident plane-wave light has the
real angular frequency ω and real parallel momentum kx (= 0.4π/a).

V. LASING

The absorbing open-boundary modes correspond to the
poles of the S matrix in the complex frequency plane. The S
matrix defines the linear relation between the input and output
coefficients. Therefore, if a pole is on the real frequency axis,
it represents a finite output under a vanishing input of the
real frequency. This is simply the lasing condition. Thus, the
absorbing open-boundary modes are related to the lasing.

Even if the pole is close to but not on the real axis, it
strongly affects the amplification of the incident light of a
real frequency. As shown in Fig. 3(c), the distribution of the
poles depends on the number of PhC layers. The poles become
dilute and closer to the real axis with reducing N . There is a
trade-off between the rates and channels of the amplification.
That is, the large amplification is obtained for smaller N as the
pole becomes closer to the real axis. However, the chance of
the amplification is limited in a given interval of frequency as
the poles become dilute.

The above trend also suggests that there is an optimal gain.
If we reduce the gain, the eigenmodes become closer to the
real axis. Thus, we have many chances of the lasing. However,
smaller gains limit the rate of the amplification.

Figure 5 shows the amplification spectrum under the plane-
wave incidence. Here, the incident light is coming from the
bottom (of Fig. 1) with a real frequency. The PWE coefficients
of the incident light are a+

0g = δg0 and a−
Ng = 0. The rate of the

amplification AN is defined by the minus absorption, namely,

AN = −1 +
∑

g∈open

�g

�0
(|a+

Ng|2 + |a−
0g|2). (42)

It must vanish by energy conservation if there is no gain and
loss. The amplification is strongly enhanced at N = 2 around
ωa/2πc = 0.614 and at N = 8 around ωa/2πc = 0.649. A
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FIG. 6. The field profiles |Hz|2 of (a) the absorbing open-boundary mode of N = 2 at ωa/2πc � 0.614 + 0.4×10−4i, (b) the near-lasing
configuration of N = 2 at ωa/2πc = 0.614 under the plane-wave incidence, (c) the absorbing open-boundary mode of N = 8 at ωa/2πc �
0.649 + 0.12×10−2i, and (d) the near-lasing configuration of N = 8 at ωa/2πc = 0.649 under the plane-wave incidence. In (a) and (c), the
fields are normalized such that

∑
g |a+

N/2 g|2 = 1. In (b) and (d), the incident light H0
z from the left has the unit amplitude H0

z = exp[i(kxx +
�0y)]. The arrows in (b) and (d) represent the wave vectors of the incident plane waves.

sequence of peaks is also found at N = 8 and 16. However,
no marked peaks are found at N = 32 and 64, showing the
saturation of the amplification spectra with increasing N .

The shift of the peak frequencies as a function of N can be
understood as follows. At a particular N , we have a sequence
of the poles of SN . As we change N , the number of poles and
their positions change. Among the poles, the closest one to the
real axis of frequency strongly affects the amplification rate.
As a result, the peak position changes with N . Also, Im[ω]
of the poles increases and converges to the non-Bloch-band
dispersion with increasing N , so that the saturation of the
amplification occurs.

In addition, the imaginary part in the eigenfrequency gen-
erally increases with increasing gain, so that the amplification
tends to saturate with increasing gain.

We also note that when we scan a wider frequency range,
a general trend of enhanced amplification near the band
edges [39] is observed.

Figure 6 shows the field profiles of the absorbing open-
boundary modes nearest and next-nearest to the real frequency
axis, and of the (almost) lasing configurations under the inci-
dent plane-wave light at the corresponding peak frequencies
of Fig. 5. The field patterns in Figs. 6(a) and 6(b) [or Figs. 6(c)
and 6(d)] resemble each other very closely, except for the

intensity due to the normalization scheme. This resemblance
indicates that the amplification is caused by the corresponding
absorbing open-boundary mode. As the mode is localized near
the top (right) boundary in Fig. 6(c), the amplification of the
incident light is forward oriented in Fig. 6(d).

Similarly, we can show that the Fabri-Perot-like fringes of
the amplification spectrum of N = 16 in Fig. 5 are caused by
the corresponding absorbing open-boundary modes.

VI. CONCLUSION

In summary, we have explored the absorbing open-
boundary modes in a non-Hermitian photonic crystal. They
have continuum spectra of the non-Bloch-band dispersion in
the infinite-system-size limit, but exhibit a substantial devi-
ation from the limiting curve at finite system sizes. They
show the NHSE as the conventional fixed-end open-boundary
modes, if the point-(pseudo)gap topology is available. If the
absorbing open-boundary modes emerge in the vicinity of the
real frequency axis, they work as lasing modes.
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