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Topological characteristics of gap closing points in nonlinear Weyl semimetals
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In this work we explore the effects of nonlinearity on three-dimensional topological phases. Of particular
interest are the so-called Weyl semimetals, known for their Weyl nodes, i.e., pointlike topological charges which
always exist in pairs and demonstrate remarkable robustness against general perturbations. It is found that the
presence of onsite nonlinearity causes each of these Weyl nodes to break down into nodal lines and nodal
surfaces at two different energies while preserving its topological charge. Depending on the system considered,
additional nodal lines may further emerge at high nonlinearity strength. We propose two different ways to probe
the observed nodal structures. First, the use of an adiabatic pumping process allows the detection of the nodal
lines and surfaces arising from the original Weyl nodes. Second, an Aharonov-Bohm interference experiment is
particularly fruitful to capture additional nodal lines that emerge at high nonlinearity.
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I. INTRODUCTION

Topological phases have been the subject of extensive stud-
ies over the past few decades [1–21]. Among them, Weyl
semimetals are of particular interest [11,22–28]. They are
three-dimensional (3D) gapless topological phases of matter
analogous to graphene, in which electrons behave at low ener-
gies as relativistic massless fermions. In a Weyl semimetal,
the conduction and valence energy bands touch at a finite
number of nodes. These Weyl nodes always come by pair,
each carrying opposite chirality and having linear energy dis-
persion. These Weyl nodes are also robust against general
perturbations which only shift their position in quasimomen-
tum space [29], a different behavior from Dirac cones in
graphene where a general perturbation can open a gap. Ad-
ditionally, Weyl semimetals are an intensely researched topic
due to their exotic transport properties [30,31] such as the chi-
ral anomaly effect [32–37], a large intrinsic anomalous Hall
effect [38], and perhaps the even more intriguing presence of
open Fermi-arc surface states [10,22,27,39]. These properties
rely on the topological nature of the Weyl nodes, which act
as monopoles of the Berry curvature. Weyl semimetals were
experimentally realized and the Fermi arcs were observed first
in TaAs [11,27], but since then have been realized in many
other compounds [40–42], heterostructures using topological
insulator multilayers [24,43], or even more diverse metamate-
rials [44–46] and photonic crystals [47,48].

Interaction effect is ubiquitous in nature, and therefore it
is of utmost importance to explore its impact and interplay
with Weyl points [49–54]. However, treating interaction effect
is challenging due to the exponential increase in the Hilbert
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space dimension with the system size. Therefore, a mean-
field approximation is employed to turn a strongly interacting
Weyl semimetal into an effective single-particle but nonlinear
Weyl semimetal [55–58]. This kind of mean-field approach
is especially relevant to describe the behavior of cold-atom
systems such as Bose-Einstein condensates [59–65]. Apart
from being a mean-field approximation to a strongly interact-
ing system, such nonlinear treatment also naturally appears
in photonics setting with the optical Kerr effect, and has
received considerable attention [66–72]. However, a compre-
hensive study of nonlinear Weyl semimetals has remained
elusive [73,74].

In view of the above, we consider here a few variations of a
minimal Weyl semimetal lattice model with two Weyl nodes,
then investigate the effect of adding an onsite nonlinearity.
Such systems are inherently 3D, and Weyl semimetal phases
have been predicted [66] and experimentally observed [47]
using 3D photonic crystals based on double-gyroid structures.
However, the advent of synthetic dimensions [75–81] allows
the simulation of some quasimomenta with artificial periodic
parameters. As a result, a more convenient experimental setup
can in principle be realized in lower-dimensional photonic
waveguides [48], with Kerr nonlinearity arising for suffi-
ciently high optical power.

By investigating the systems in momentum space under
periodic boundary conditions (PBC), we find that nonlinearity
breaks down a Weyl point into nodal lines and nodal sur-
faces. By evaluating the Chern number of a two-dimensional
(2D) surface enclosing these nodal structures, we further con-
firm that the topological charge of the original Weyl point
is preserved. Interestingly, such a topological charge is now
uniformly distributed throughout the nodal structures rather
being concentrated on a point. Moreover, further increase of
the nonlinearity strength eventually causes nodal structures
originating from two different Weyl points to merge into a
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variety of exotic shapes that depend on the orientation of the
original Weyl points. For some Weyl points’ orientation, we
further find that additional nodal lines may emerge at high
nonlinear strength. These nonlinearity-induced nodal lines
have zero Chern number and are instead characterized by a
quantized Aharonov-Bohm (AB) phase. Such nodal lines can
thus be understood as a higher-dimensional variation of the
nonlinear Dirac cones discovered in Ref. [82] and will thus be
referred to as nonlinear Dirac lines.

To capture the topological properties of the obtained nodal
structures, we propose two complementary methods. First,
by adapting the theory of adiabatic pumping [1,2,83–88] to
the nonlinear setting, we show that the pumped charge is a
sum of a term proportional to the system’s Chern number
and another term that depends on the nonlinear strength. In
this case, adiabatic pumping can thus be utilized not only to
probe the topological charge of a given nodal structure, but
also to determine the strength of nonlinearity in the system,
which in turn informs the shape of the nodal structure based
on our energy band analysis. However, such a method is
not suitable to capture the presence of nonlinear Dirac lines,
which carry zero Chern number. Motivated by Ref. [82], we
thus propose to employ an AB interference experiment as
an alternative method to probe such nonlinear Dirac lines.
These two methods can respectively be implemented using
a 2D array of waveguide and an optical lattice of ultracold
atoms.

This paper is organized as follows. In Sec. II, we intro-
duce our nonlinear Weyl semimetals, and present our results
detailing the effect of nonlinearity on the systems’ band struc-
ture. Major results include the breaking down of Weyl points
into nodal lines and nodal surfaces, understanding how their
shapes develop as nonlinearity increases, as well as the robust-
ness of these nodal structures against general perturbation.
In some of the systems under study, we further reveal the
emergence of nonlinear Dirac lines, which are topologically
different from the nodal lines arising from the breaking down
of Weyl points. In Sec. III, we propose two complementary
experimental setups to probe the nodal structures in nonlinear
Weyl semimetals. Specifically, by evaluating the particle’s dis-
placement in an adiabatic pumping experiment and comparing
with the analytical expression derived below, the topological
charge and shape of a particular nodal structure that orig-
inates from a Weyl point can in principle be obtained. By
performing an AB interference experiment, nonlinear Dirac
lines can further be probed. In Sec. IV, we summarize the
main findings of this paper and discuss prospects for possible
future work.

II. NONLINEAR WEYL SEMIMETALS

A. Nonlinearity as a mean-field approximation to interaction

We consider a nonlinear version of a two-band Weyl
semimetal phase, where two sublattices serve as the pseu-
dospin. It can be described by the stationary Gross-Pitaevskii
(GP) equation [59,60], which writes in momentum space as

H
(
k, |ψ (k)〉)|ψ (k)〉 = E (k)|ψ (k)〉, (1)

where k = (kx, ky, kz ) is the 3D quasimomentum and

H (k, |ψ (k)〉) = hx(k) σx + hy(k) σy + hz(k) σz

+ g

(|ψ1(k)|2 0
0 |ψ2(k)|2

)
, (2)

where σ ′s are the Pauli matrices in the standard representa-
tion, hx(k), hy(k) are the coupling coefficients between the
two sublattices, 2hz(k) is the potential difference between
sublattices, |ψ (k)〉 = (ψ1(k), ψ2(k))T is a Bloch state with
two pseudospinor components, and g is the nonlinear strength.
A possible physical realization of this Hamiltonian involves a
2D array of waveguides with the third direction (e.g., the y
axis) being the propagation direction of the light. The prop-
agation direction can be used to represent a quasimomentum
parameter, allowing the realization of a particular 2D snapshot
of the 3D Weyl semimetal system at a given parameter (e.g.,
the quasimomentum ky). In this case, the nonlinear term in
the above Hamiltonian represents the Kerr effect naturally
arising at high optical powers [67,68,89]. In an existing ex-
perimental study involving waveguide arrays [90], typical
coupling coefficients take values J ≈ 0.06 mm−1, while the
nonlinear strength g, assuming nonlinear power normalized to
1 [|ψ1(k)|2 + |ψ2(k)|2 = 1] take values in the range 0.2J <

g < 2.5J . In this work, all physical variables are assumed to
be scaled, and therefore are in dimensionless units. By defin-
ing �(k) = |ψ2(k)|2 − |ψ1(k)|2, we can rewrite the nonlinear
Hamiltonian in the more convenient form

H (k, |ψ (k)〉) = g

2
I2 + hx(k) σx + hy(k) σy

+
(

hz(k) − g

2
�(k)

)
σz. (3)

In the following, three distinct nonlinear Weyl semimetal
systems will be considered. In the first system, which will be
referred to as the perpendicular case, its Weyl points lie along
a line of hy = hz = 0. In the second system, which will be
referred to as the parallel case, its Weyl points lie along a
line of hx = hy = 0. Finally, the third system describes the
general case in which the Weyl points lie along a line of
hx, hy, hz �= 0. It is worth noting that, in the linear limit, the
three systems above are physically equivalent and are unitarily
related to one another. Remarkably, in the presence of onsite
nonlinearity, the three systems exhibit fundamentally different
band structure properties as further elaborated below.

B. Perpendicular case

This part focuses on a nonlinear Weyl semimetal whose
Hamiltonian in quasimomentum space is given by Eq. (3)
with hx(k) = (M + cos kx + cos ky + cos kz ), hy(k) = sin ky,
hz(k) = sin kz, and M = 2. The corresponding linear model
is a Weyl semimetal phase, exhibiting two Weyl points at A ≡
( π

2 , π, π ) and B ≡ (−π
2 , π, π ). Points A and B, respectively,

have negative and positive chirality, the Chern number around
them being −1 and +1.

Based on the known eigenstate solutions for two-level sys-
tems, a stationary state of this Hamiltonian is found to satisfy
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the self-consistency equation (see Appendix A)

(
g

2

)2

�4 − ghz�
3 +

[
h2

x + h2
y + h2

z −
(

g

2

)2]
�2

+ ghz� − h2
z = 0, (4)

showing that the nonlinear system can have up to four energy
bands.

In Fig. 1, we show the system’s band structure at three
representative nonlinear strengths. As soon as we add non-
linearity (g > 0), we notice the following two phenomena.
First, while the system can now support up to four energy
bands E1 � E2 � E3 � E4, the bands E2 and E3 do not span
across the whole the Brillouin zone: they exist only for a
small region near the original Weyl points [see green colored
bands in Fig. 1(a)]. As the nonlinear strength increases, these
intermediate bands progressively grow until they merge to-
gether as shown in Fig. 1(b). Upon further increase in the
nonlinear strength, the newly merged band structure grows
and eventually spans the entire Brillouin zone as shown in
Fig. 1(c).

Second, the proliferation of the number of bands in the
system from 2 to 4 also yields the splitting of each Weyl
point into two different nodal structures separated in energy.
The shape of these nodal structures is presented in Fig. 2 for
two representative nonlinear strengths. Specifically, we find
that the lower band-touching structure, i.e., E1 = E2, occurs
along a 1D line, whereas the upper band-touching structure,
i.e., E3 = E4, forms a 2D surface. As the nonlinear strength
increases, these nodal lines and nodal surfaces eventually
merge, as shown in Fig. 2(b). The analytical derivation of
these nodal structures is presented in Appendix A.

We will now discuss the properties of the above nodal
structures in more detail. In a conventional Weyl semimetal
such as the corresponding linear Hamiltonian to the one under
study, the energy band dispersion around a Weyl point is given
by

E± = E0 ±
√

κ2
x + κ2

y + κ2
z , (5)

where E0 is the energy at the Weyl point and (κx, κy, κz ) are
small displacements away from the Weyl points along the
three axes of the 3D Brillouin zone. Accordingly, the dy-
namics around such Weyl points is described by the effective
Hamiltonian

heff = κx σx + κy σy + κz σz, (6)

which is closely related to Weyl’s equation from particle
physics, effectively describing a massless fermion, dubbed
Weyl fermion.

A special property of Weyl points is their robustness
against general perturbation, unlike their 2D analogs, the
Dirac cones. A general Dirac cone Hamiltonian can be
described by the effective Hamiltonian HDirac = vx kx σx +
vz kz σz. where v, k are, respectively, the group velocities and
2D quasimomenta. Any perturbation proportional to the third
Pauli matrix σy will then open a gap and destroy the Dirac
cone. As the effective Hamiltonian presented in Eq. (6) con-
tains all three Pauli matrices, a general perturbation will open

FIG. 1. The system’s energy bands at different nonlinear
strengths in the perpendicular case. The third band E3, in yellow,
is not visible as it is a flat band, degenerate with E4 at every point in
the Brillouin zone where it exists. For all subfigures we fixed kz = π .
(a) g = 1. (b) g = 3. (c) g = 6.

no gap, and instead will merely shift the position of the Weyl
point in the 3D Brillouin zone.

Using perturbative expansion around the original Weyl
points, we are able to study the effect of nonlinearity on
the energy bands’ dispersion. Let us consider the band-
touching point ( π

2 , π, π ), where we can find degenerate
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FIG. 2. The shape of the nodal lines (blue) and nodal surfaces
(red) of the perpendicular case Hamiltonian in the 3D Brillouin zone
at (a) g = 1 and (b) g = 3. The nodal lines (nodal surfaces) corre-
spond to the band-touching points at E1 = E2 = g

2 (E3 = E4 = g).

energy solutions E1 = E2 = g
2 and E3 = E4 = g. As detailed

in Appendix B, at a point ( π
2 + κx, π + κy, π + κz ) near this

band-touching point, the two lowest and two highest energy
bands are, respectively, modified to become

E (l )
± = g

2
±

√
κ2

x + κ2
y ,

E (h)
± = g ± κz (7)

up to first order in κx, κy, and κz, where + and −, respectively,
designate the upper energy bands (E2 and E4) and the lowest
energy bands (E1 and E3). These energy solutions can be
regarded as eigenstates of the effective Hamiltonians

h(l )
eff,± = g

2
I2 − κx σx − κy σy ± 2κz

g

√
κ2

x + κ2
y σz,

h(h)
eff,± = g

2
I2 − κx σx − κy σy +

(
−κz ± g

2

)
σz. (8)

That each energy solution has its own effective Hamiltonian is
simply a consequence of the state dependence of the nonlinear
Hamiltonian. While not explicitly shown in this paper, we get
similar energy bands’ dispersion and effective Hamiltonian
around the other Weyl point at (−π

2 , π, π ).
It is particularly interesting to note that the nodal lines

only exhibit linear dispersion in the x and y directions,
whereas the nodal surfaces only exhibit linear dispersion
in the z direction. When viewed together, both nodal lines
and nodal surfaces carry the linear dispersion along all
three quasimomenta directions as expected from their par-
ent Weyl points. It is also worth noting that while these
nodal structures individually only exhibit partial linear disper-
sion, they inherit the robustness of the original Weyl points
by involving all three Pauli matrices. Indeed, a perturbation
proportional to any of the Pauli matrices will simply dis-
place the locations of the original Weyl points away from
(±π

2 , π, π ). The same analysis presented in Appendix B
can then be repeated in the vicinity of the displaced Weyl
points to yield exactly the same energy dispersion and ef-
fective Hamiltonians as Eqs. (7) and (8), respectively. This
robustness can also be attributed from the fact that each of
these nodal structures carries a topological charge, which
can be evaluated through the Chern number of a 2D surface
enclosing it.

C. Parallel case

We now turn to the second system, which is again de-
scribed by the Hamiltonian of the form (2), but with hx(k) =
− sin kz, hy(k) = sin ky, and hz(k) = (M + cos kx + cos ky +
cos kz ), and M = 2. Similarly to the perpendicular case stud-
ied in Sec. II B, at g = 0, the system exhibits two Weyl points
along the kx axis at ( π

2 , π, π ) and (−π
2 , π, π ), which respec-

tively have −1 and +1 chirality.
Using the self-consistency equation given in Eq. (4), we

find that as we increase nonlinear strength, the energy bands’
structure develops in a similar manner as the perpendicular
case, where the two full energy bands proliferate into four
bands, two of which initially only exist in the vicinity of the
Weyl points, splitting the latter into pairs of nodal lines and
nodal surfaces [see Fig. 3(a)] at E1 = E2 = g

2 and E3 = E4 =
g, respectively. As the nonlinearity increases, these nodal lines
and nodal surfaces grow and eventually merge together as
depicted in Fig. 3(b).

Despite the aforementioned similarities, two striking dif-
ferences between the present system and that of Sec. II B exist.
First, the nodal lines are aligned along a direction parallel
(perpendicular) to the separation between Weyl points in the
present system (the system of Sec. II B), thus explaining the
name “parallel case” (“perpendicular case”) when referring to
such a system. Mathematically, taking once again the example
of a Weyl point at ( π

2 , π, π ), for a point ( π
2 + κx, π + κy, π +

κz ) near this original Weyl point, the energies can be pertur-
batively expanded as

E (l )
± = g

2
±

√
κ2

y + κ2
z ,

E (h)
± = g ± κx (9)
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FIG. 3. The shape of the nodal lines (blue) and nodal surfaces
(red) of the parallel case Hamiltonian in the 3D Brillouin zone at (a)
g = 1 and (b) g = 3. The nodal lines (nodal surfaces) correspond to
the band-touching points at E1 = E2 = g

2 (E3 = E4 = g).

up to first order in κx, κy, and κz. This corresponds to the
effective Hamiltonians

h(l )
eff,± = g

2
I2 + κz σx − κy σy ± 2κx

g

√
κ2

y + κ2
z σz,

h(h)
eff,± = g

2
I2 + κz σx − κy σy +

(
−κx ± g

2

)
σz. (10)

Second, as shown in Fig. 3(b), the parallel case sports
additional nodal lines (nonlinear Dirac lines) at large enough
nonlinear strength, not connected to one of the original Weyl
points. A snapshot of the system’s band structure at a fixed
kx, as presented in Fig. 4, highlights the resemblance of such
nodal lines with the nonlinear Dirac cones discovered in
Ref. [82]. In Fig. 3(b), we show that these nonlinear Dirac
lines are located at (ky, kz ) = (0, π ) and (ky, kz ) = (π, 0). At
an even higher nonlinear strength, an additional nonlinear
Dirac line emerges at (ky, kz ) = (0, 0). The energy dispersion
around these nonlinear Dirac lines is the same as for the two
original nodal lines. For example, for a point (π + κx, κy, π +
κz ) near one of these nonlinear Dirac lines, the energy disper-

FIG. 4. Multiple loop energy bands due to the apparition of
nonlinear Dirac lines at high nonlinear strength in the parallel case.
Parameters are kx = π and g = 3.

sion is

E (NDL)
± = g

2
±

√
κ2

y + κ2
z , (11)

while the effective Hamiltonian is

h(NDL)
eff,± = g

2
I2 + κz σx + κy σy ∓ 2

g

√
κ2

y + κ2
z σz. (12)

While the nonlinear Dirac lines have the same orienta-
tion as the nodal lines that originate from Weyl points, they
are different in nature. This is confirmed by evaluating their
topological charge, via Chern number calculation through an
enclosing surface. In the case of the nodal lines corresponding
to a linear Weyl point, appearing as soon as g > 0 at (ky, kz ) =
(π, π ), the topological charge is the same as the original
Weyl point, −1 for the line going through point ( π

2 , π, π )
and +1 for the one going through point (−π

2 , π, π ). On the
other hand, repeating the same calculation with respect to a
nonlinear Dirac line yields a result of 0, showing that it holds
no topological charge. However, as their effective Hamilto-
nian still involves all Pauli matrices, nonlinear Dirac lines are
equally robust against perturbations. Moreover, as these addi-
tional nodal lines are the higher-dimensional generalization of
the nonlinear Dirac cones in Ref. [82], they can be expected
to be associated to another topological invariant in the form
of the AB phase associated with two adiabatic paths in the
reciprocal space enclosing them, as shown later in this work.

D. General case

It is possible to extend the two models presented above to a
more general one, by using Pauli transformation in the linear
model, before applying the onsite nonlinearity. Taking the
perpendicular case Hamiltonian as our starting point, and ap-
plying a rotation of angle θ on σx and σz to get σ ′

x = cos θ σx +
sin θ σz and σ ′

z = cos θ σz − sin θ σx. This again yields the
Hamiltonian of Eq. (3), but with

hx(k, θ ) = (M + cos kx + cos ky+ cos kz ) cos θ − sin kz sin θ,

hy(k) = sin ky,

hz(k, θ ) = sin kz cos θ + (M+ cos kx + cos ky+ cos kz ) sin θ,

(13)
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FIG. 5. Nodal structures of the general nonlinear Weyl
semimetal in the 3D Brillouin zones. In (a)–(d), the 1D nodal curves
in blue correspond to the band-touching points between the lowest
full band and the lower loop band at E1 = E2 = g

2 , and the 2D
nodal surfaces, in red, represent the band-touching surfaces between
the higher loop band and the highest full band at E3 = E4 = g. In
(a) and (b), we take g = 1, and in (c) and (d) we take g = 2.5, a
nonlinear strength high enough for the nodal structures to merge.
(a), (c) θ = π

6 . (b), (d) θ = π

3 . (e) A schematic representation of the
nodal lines’ direction around both original Weyl points A and B.

and M = 2. It is immediate to verify that for θ = 0 and π
2 , we

respectively recover the perpendicular case and the parallel
case presented earlier.

While such a Pauli rotation does not change the physics
of the linear system, it leads to the change in orientation of
both the nodal lines and nodal surfaces in the presence of
nonlinearity, as shown in Figs. 5(a) and 5(b). Figure 5(e) more
explicitly highlights the orientation of the nodal lines in the
x-z plane in terms of the angle θ /∈ {0, π

2 }. Up to first order in
κx, κy, and κz, the energy dispersions around the two points
A ≡ ( π

2 , π, π ) and B ≡ (−π
2 , π, π ) are

E (l )
A,± = g

2
±

√
(−κx cos θ + κz sin θ )2 + κ2

y ,

E (l )
B,± = g

2
±

√
(κx cos θ + κz sin θ )2 + κ2

y , (14)

which means that the nodal lines are aligned along

for A: kA =
⎛
⎝sin θ

0
cos θ

⎞
⎠, for B: kB =

⎛
⎝− sin θ

0
cos θ

⎞
⎠. (15)

The corresponding effective Hamiltonians are

h(l )
eff,A,± = g

2
I2 + (−κx cos θ + κz sin θ )σx − κy σy

± 2(κz cos θ + κx sin θ )

g

×
√

(−κx cos θ + κz sin θ )2 + κ2
y σz,

h(l )
eff,B,± = g

2
I2 + (κx cos θ + κz sin θ )σx − κy σy

± 2(κz cos θ − κx sin θ )

g

×
√

(κx cos θ + κz sin θ )2 + κ2
y σz. (16)

Nonlinearity thus provides a means to generate exotic nodal
lines along any arbitrary direction in the Brillouin zone.

In the vicinity of the original Weyl points, the nodal sur-
faces also undergo the same rotation, remaining orthogonal to
their corresponding nodal line, with the energy dispersions

E (h)
A,± = g ± (−κz cos θ − κx sin θ ),

E (h)
B,± = g ± (−κz cos θ + κx sin θ ), (17)

corresponding to the effective Hamiltonians

h(h)
eff,A,± = g

2
I2 + (−κx cos θ + κz sin θ )σx − κy σy

+
(
−κz cos θ − κx sin θ ± g

2

)
σz,

h(h)
eff,B,± = g

2
I2 + (κx cos θ + κz sin θ )σx − κy σy

+
(
−κz cos θ + κx sin θ ± g

2

)
σz. (18)

As shown in Figs. 5(c) and 5(d), the nodal structure eventually
ends up merging as nonlinear strength increases, however, the
process can wildly differ depending on the choice of angle θ .
Although in some cases like θ = π

3 it leads to the apparition of
nonlinear Dirac lines just like in the parallel case, as shown in
Fig. 5(d), in others such as θ = π

6 we witness the creation of
additional nodal surfaces not connected to one of the original
Weyl points as shown in Fig. 5(c). Just like the nonlinear
Dirac lines, these additional nodal surfaces do not hold any
topological charge.

E. Conservation of Fermi arcs

One of the most peculiar properties of Weyl semimetals is
the presence of Fermi-arc surface states connecting the Weyl
points. It is then natural to investigate the profiles of such
Fermi arcs in our nonlinear Weyl semimetal model, especially
how they change with nonlinearity strength. For this purpose
we consider the system in the general case, i.e., θ ∈ [0, π/2],
but this time we take an infinite slab, infinite along the x
and y directions, and finite along the z direction. Using Bloch
theorem with the good quantum numbers kx, ky, we can then
study the model as a 1D lattice in real space, along the z di-
rection, whose equations of motion are given in Appendix C.
In the linear case, regardless of θ , the Fermi arcs consist of
degenerate zero-energy states along the x axis connecting the
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FIG. 6. Energy spectrum of the 1D chain along the z axis in
real space, assuming PBC and Bloch wave solutions along the
x and y axes. Each row corresponds to a different value of the
nonlinear strength g, while the left and right columns correspond,
respectively, to OBC and PBC along the z axis. The black dots
correspond to delocalized bulk states, while the red dots corre-
spond to strongly localized edge states. The blue dots correspond
to strongly localized states located in the bulk, emerging due to
the self-focusing nonlinearity. Parameters are θ = 0 (which cor-
responds to the perpendicular case) and ky = π , taking N = 20
unit cells along the z axis. Similar results are observed for other
values of θ .

two Weyl points. Using an iterative method also described in
Appendix C, we are able to obtain the energy spectrum of the
1D chain in the nonlinear case. We did so under two types
of boundary conditions along the z direction, open boundary
condition (OBC) and periodic boundary condition (PBC).

The energy spectra for increasing nonlinear strength and
both types of boundary conditions are shown in Fig. 6. The
one striking result we observe is the persistence of degenerate
edge states, which are, however, no longer pinned at zero
energy, for π

2 � kx � 3π
2 . The fact that these edge states can

be observed under OBC but not under PBC shows that they
are topological in nature, and is further proof that the Weyl
points indeed retain their topological features in the presence
of nonlinearity.

III. EXPERIMENTAL CHARACTERIZATION OF
NODAL STRUCTURES

A. Thouless pumping for detection of nonlinear Weyl points

Weyl nodes in Weyl semimetals can already be interpreted
as magnetic monopoles for the Berry curvature, and their
topological charge can be evaluated by integrating the flux
of said Berry curvature through a closed surface enclosing
a Weyl node. There is, however, another way to understand
this 2D closed surface of integration; it can be interpreted as
describing a band insulator in two dimensions. Indeed, the two
parameters needed to describe the enclosing surface can be
considered as quasimomenta for the Hamiltonian of a 2D in-
sulator. The corresponding system will be gapped everywhere
since the surface is taken to avoid Weyl points. The topology
of such 2D insulator can then be characterized by the Chern
number, which will be exactly the flux of the Berry curvature
through the surface.

Here, we extend this idea to the 2D surfaces enclosing
the nodal structures in Weyl semimetals. For small enough
nonlinear strength, it is still possible to define a closed surface
around one of the original Weyl points that encloses the full
nodal structures, whether they are 1D (nodal lines) or 2D
(nodal surfaces).

As an example, let us consider the perpendicular case of
Sec. II B, around point B( 3π

2 , π, π ). As shown on Fig. 2(a),
a straightforward choice for the enclosing surface would be
a cylinder centered on point B ≡ (−π

2 , π, π ), with axis of
revolution along the kz direction, and a radius ρ taken large
enough to enclose the entire nodal structures. Points on such
a cylinder can be described with two parameters (φ, z) as
kx = 3π

2 + ρ cos φ, ky = π + ρ sin φ, kz = z. Due to the pe-
riodicity of quasimomenta, this cylinder is actually a torus,
and the two parameters (φ, z) can be immediately taken as the
two quasimomenta in a 2D Brillouin zone. This gives us the
following Hamiltonian for a 2D Chern insulator:

H2D(kx, ky, |ψ (kx, ky)〉) = g

2
I2 + hx(kx, ky) σx + hy(kx ) σy

+
(

hz(ky) − g

2
�(kx, ky)

)
σz, (19)

where

hx(kx, ky) = M + sin (ρ cos kx ) − cos (ρ sin kx ) + cos ky,

hy(kx ) = − sin (ρ sin kx ),

hz(ky) = sin ky,

(20)
and M = 2.

One convenient way to realize such a system is to actu-
ally substitute one of the spatial dimensions for a slow time
modulation, realizing a Chern insulator in 1 + 1 dimensions.
This can be done in a 2D array of waveguides by only exciting
a 1D subset of the waveguides, namely, a localized Wannier
state [91] whose expression in quasimomentum space char-
acterizes the one spatial dimension of the enclosing surface.
The propagation direction, playing the role of time dimension
[90], is then designed so that the excitation we introduced
simulates the correct enclosing 2D surface. In the following,
we take ky as the physical quasimomentum and kx = ωt as
the time-periodic parameter. The resulting system is known
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as an adiabatic charge pump, and was originally proposed by
Thouless [1,2].

In the linear setting, it is known that the average displace-
ment of a particle during one adiabatic cycle in time is equal
to the Chern number of the associated 2D Chern insulator
[1,2,92–94]. However, nonlinearity is known to nontrivially
modify the adiabatic evolution of a system [95]. In another
recent work, we have indeed shown that such modification
leads to a nonlinear correction term that generally no longer
quantizes the adiabatic pumping result [96]. Considering the
average displacement of a particle as

�〈x〉 =
∫

dt〈v̄〉 (21)

with

〈v̄〉 = 1

2π

∫ π

−π

dk〈v〉

= 1

2π

∫ π

−π

dk

〈
∂H

∂k

〉
,

(22)

where 〈. . . 〉 represents the average over the state at a given
(k, t ) (we set h̄ = 1 throughout this paper), we show in
Ref. [96] that due to nonlinear dynamics, we have

�〈x〉 = 1

2π

∫
dt

∫ π

−π

dk[B(k, t ) + D(k, t )], (23)

where B(k, t ) is the Berry curvature and

D(k, t ) = g sin3 θ

2E − g sin2 θ

∂φ

∂t

∂

∂k

(
θ

2

)
(24)

is a correction to the Berry curvature for the general 2D state
 = (cos θ (k,t )

2 , sin θ (k,t )
2 eiφ(k,t ) )T . This correction causes the

average displacement to drift away from the integral of the
conventional Berry curvature.

In Fig. 7, we show the average displacement of a par-
ticle through numerical simulation of a Thouless pumping
in the nonlinear adiabatic pump presented in Eq. (19), both
with and without taking the additional nonlinear drift into
account. When simply integrating the Berry curvature without
the nonlinear drift, we expectedly retain a quantized result,
equal to the Chern number of the corresponding 2D Chern
insulator and the topological charge of the original linear Weyl
point. However, this quantization is immediately broken by
the addition of the additional drift due to nonlinear dynamics,
making it a dead giveaway of the nonlinear nature of the
system. Note also that such a nonlinear drift could serve as
a probe to determine g experimentally. To this end, one may
carry out the pumping experiment using the specific cylindri-
cal parametrization of Eq. (19), then note the corresponding
nonlinear drift, and finally compare it with the numerically
obtained value of Fig. 7.

FIG. 7. Average displacement of a particle over one adiabatic
cycle in the nonlinear Thouless pumping setup. The average dis-
placement without accounting for the additional nonlinear drift is
represented by the full blue line, while the red dotted line corre-
sponds to the displacement while accounting for it. Parameters are
ρ = π

2 and ω = 10−2.

There are still obstacles to the realization of such a nonlin-
ear Thouless pump, the main one being that the average over
quasimomenta k in Eq. (22) is usually obtained in linear sys-
tems by taking the initial state to be a Wannier state involving
a superposition of Bloch states with all different possible k.
The superposition principle being lost in the case of nonlinear
systems, we are forced to look into other ways to realize
this average. One possibility worthy of further investigation
is the use of Bloch oscillations to realize this average over all
quasimomenta [88]. On the other hand, more recent studies
highlight that the motion of solitons in a nonlinear Thouless
pump is tied to the motion of Wannier states [97,98], com-
pletely bypassing the need for preparing the latter. However,
we warn the reader that the soliton pumping and k-averaged
pumping generally yield different results. Nonetheless, we
show in Ref. [96] that both exhibit similar behavior with
increase in nonlinearity.

B. AB-effect experiment for detection of nonlinear Dirac lines

We showed in the previous section that nonlinear structures
connected to original Weyl points of the corresponding linear
Weyl semimetal can be detected through an adiabatic pumping
setup, the displacement being equal to the sum of the topolog-
ical charge of the original Weyl point and an additional drift
giving away the presence of nonlinear effects. However, given
that the nonlinear Dirac lines identified in Sec. II C do not
carry a topological charge, an alternative detection method
is deemed necessary. Motivated by the similarity between
nonlinear Dirac lines and nonlinear Dirac cones of Ref. [82],
we propose a means for their detection via an interference
setup akin to an AB-effect experiment [99].

For this purpose, we study the phase difference between
two states adiabatically evolved along two different paths in
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FIG. 8. Interfering paths traced adiabatically around a nodal line
during the interference experiment. The blue line represents a nodal
line, that can be connected to an original Weyl point or not. The green
and red arrows, respectively, represent paths A and B, which describe
to semicircles with opposite senses of rotation, in a plan of fixed kx .
The radius of the semicircles ρ is taken to be very small.

quasimomentum space. The two interfering paths are shown
on Fig. 8, taken to be two semicircles sharing the same starting
point, and going around a nonlinear nodal line in a symmetric
manner, with one clockwise and the other one counterclock-
wise. These paths are designed in the quasimomentum space,
in a plane of fixed kx. During this adiabatic evolution, each
state will pick up a geometric phase corresponding to the
integral over the path of the Berry connection. The difference
of geometric phases amounts to the Berry phase [100], that is
alone nonquantized. However, the state along each interfering
path will also pick up a dynamical phase, constituted of a
linear contribution and a nonlinear contribution. Due to the
rotational symmetry of the system, the linear contributions
remain the same along both paths and cancel out when the
phase difference is taken. Meanwhile, the nonlinear contri-
butions to the dynamical phase are of opposite values due
to the opposite senses of rotation and thus lead to nonzero
difference. Interestingly, as shown in Ref. [82], this nonzero
dynamical phase contribution precisely cancels out the non-
linear correction to the Berry phase. As a result, the total
phase difference, taking into account both the Berry phase and
dynamical phase contributions, yields a quantized value. This
result is expected to hold along a contour of constant energy
and m(kx, ky) for a general nonlinear system, whose effective
Hamiltonian in the vicinity of some nodal structures is of the
form Heff = ckxσx + ckyσy + m(kx, ky)c2σz.

The results of such an interference setup around a nodal
line with zero topological charge are shown on Fig. 9. Due to
the mutual cancellation of the additional nonlinear contribu-
tions to the geometric phase, the results obtained are quantized
to a multiple of π . By fixing the interfering path at a specific kx

value, the AB phase is zero at sufficiently small nonlinearity
due to the absence of nonlinear Dirac lines. As the nonlinear

FIG. 9. Adiabatic AB phases associated with two interfering
paths going around a nonlinear Dirac line with zero topological
charge, located at different planes of fixed kx . The system is made
to move adiabatically along each path at a frequency ω = 10−5, and
each interfering path is a semicircle of radius ρ = 10−3. The system
is taken here in the parallel case, the nodal line considered here being
the one at (ky, kz ) = (0, π ), but the nodal line at (ky, kz ) = (π, 0)
yields the same results.

strength increases, the nonlinear Dirac line eventually appears
and grows in size until it first goes through the ring at kx = π ,
then at kx = 2π

3 , and later at kx = π
2 , thus explaining the jump

in the AB phase from 0 to π in Fig. 9.
One might then wonder what this AB phase would be if

the two interfering paths would be instead located around
one of the two nodal lines that arise from the breaking down
of a linear Weyl point as shown in Fig. 3(a), whose topo-
logical charge is nonzero. As shown in Fig. 10, a similar
conclusion is obtained; it shows zero AB phase when the
ring does not go around a nodal line, and an AB phase
of π as soon as a nodal line goes through it. Note that
the nonquantized data points observed at the jumps between
quantized values in Figs. 9 and 10 are the sign of a topological
phase transition, where the AB phase becomes ill defined at
a critical value of nonlinearity strength. That the AB phase
measurement does not make a distinction between nonlinear
Dirac lines and nodal lines that originate from a linear Weyl
point implies the necessity of using both AB phase mea-
surement and adiabatic pumping as complementary detection
schemes.

The AB phase interferometer experiment can, in principle,
be realized in a 2D optical lattice of interacting cold atoms
[99], realizing a 2D snapshot of the Weyl semimetal at the
desired quasimomentum kx. Here, the nonlinearity arises from
the mean-field description of interaction effect [55–58]. Using
microwave pulse, a Bose-Einstein condensate is realized in a
coherent superposition of spins up and down. Using a spin-
dependent force generated by an adiabatically varied magnetic
field, it is then possible to trace the two interfering paths in
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FIG. 10. Adiabatic AB phases associated with two interfering
paths going around a nonlinear Dirac line with nonzero topological
charge, located at different planes of fixed kx . The system, taken in
the parallel case, is made to move adiabatically along each path at
a frequency ω = 10−5, and each interfering path is a semicircle of
radius ρ = 10−3.

quasimomentum space. In typical Bose-Einstein condensates,
the quotient of the nonlinear interaction term over the typical
coupling strength g

J [55] can go from g
J ≈ 0.5 with 7Li [101]

up to g
J ≈ 10 with rubidium atoms [102].

IV. CONCLUDING REMARKS

We have earlier elucidated how nonlinearity breaks down
a Weyl point into a pair of nodal line and nodal surface,
both of which carry the topological charge (Chern number)
of the original Weyl point. This then raises a natural question
regarding the distribution of this topological charge over the
nodal structures. Since nodal lines and nodal surfaces typ-
ically hold zero Chern number in linear systems, one may
naïvely think that this topological charge is still localized at
the point where the original Weyl point is located. However,
our careful analysis below shows otherwise

Specifically, to verify if the Berry curvature was indeed
still emitted by a pointlike monopole at the original Weyl
point’s location, we numerically integrated its flux through
a “pierced sphere,” centered on the original Weyl point B,
and with diminishing radius. This sphere is pierced at two
points along the kx axis, where the nodal lines go through,
to avoid the band-touching point where the Berry curvature is
ill defined, as shown in Fig. 11.

The numerically integrated flux is shown in Fig. 12. As
expected, for ρ � π

6 , where the entire nodal line is con-
tained in the pierced sphere, the integrated flux is equal to
the Chern number with very good precision (up to 10−5).
However, as soon as the pierced sphere does not contain the
entire nodal line, i.e., for ρ < π

6 , the integrated flux starts
to linearly decrease, all the way to 0 as the radius goes to

FIG. 11. Pierced sphere enclosing a nonlinear Dirac line used for
integration of the flux of the Berry curvature. For readability, the
holes are larger in the figure than in numerical calculations where
their solid angle is � = 1.57 × 10−4 sr.

0. This demonstrates that, contrary to the naïve expectation
above, the topological charge is in fact uniformly distributed
throughout the nodal line. Such a feature is unique to non-
linear systems and has no counterpart in linear nodal-line
semimetals.

To conclude, in this work, we have studied in detail the
effects of an onsite nonlinearity on the band structure and
gap closing points in some Weyl semimetal lattice models
exhibiting a single pair of Weyl nodes. One main find-
ing of our work is the breaking down of Weyl nodes into

FIG. 12. Flux of the Berry curvature through a pierced sphere
of radius ρ centered on the original Weyl point B( 3π

2 , π, π ). The
sphere is pierced in two points along the line ky = kz = π to avoid
the ill-defined gap closing points. Nonlinear strength is g = 1, and
the solid angle of each hole is � = 1.57 × 10−4 sr.
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pairs of nodal lines and nodal surfaces, the orientation of
which depends on the underlying linear Hamiltonian. At
large nonlinearity, additional nodal lines (termed nonlinear
Dirac lines) which hold zero topological charge may emerge.
We completed this investigation by identifying a proposal
for a nonlinear adiabatic pump that allows to access the
topological charge of a corresponding nonlinear Weyl point,
showing in the process that the additional contribution to the
pumping number over an adiabatic cycle due to nonlinear
dynamics can be used as an effective probe for the strength
of nonlinearity and the shape of the accompanying nodal
structure. Finally, we successfully adapted an AB interfer-
ence setup [82,99] to detect the presence of nonlinear Dirac
lines.

As a possible future direction, the additional two-
dimensional nodal surfaces appearing at high nonlinear
strength in the general case are yet to be studied and remain
elusive, as neither the integration of the flux of the Berry
curvature nor AB interference experiment is able to detect
them. As its interpretation from a mean-field theoretic point
of view is different from the one-dimensional nodal structures
[73], we expect to witness new exciting features. In addition,
our observation that nonlinearity deforms the shape of the
system’s Fermi arcs is also expected to further motivate the
study of the interplay between nonlinearity and Fermi arcs in
Weyl semimetals.

Finally, the study of nonlinear effects on other sys-
tems is still in its infancy and surely much remains to
be discovered. Such systems include higher-order topolog-
ical systems [103–110], Floquet systems [111–117], and
non-Hermitian systems [118–134]. Even among topologi-
cal semimetals, many different phases could be investigated,
such as nodal-line semimetals [135], type-II Weyl semimetals
[136–138], multi-Weyl semimetals [139,140], and triple-
fermion semimetals [141].
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APPENDIX A: ANALYTICAL CALCULATION OF
BAND-TOUCHING STRUCTURES IN NONLINEAR WEYL

SEMIMETAL

We consider a general nonlinear Weyl semimetal whose
Hamiltonian in 3D quasimomentum space is given by

H (k, �) = g

2
I2 + hx(k) σx + hy(k) σy +

(
hz(k) − g

2
�

)
σz,

(A1)
where � = |2|2 − |1|2. Based on the known eigenstate
solutions for two-level systems, a stationary state |〉 =
(

cos θ
2

sin θ
2 eiφ ) of H (k, �) can be found which satisfies the self-

consistency equation

cos θ = hz − g
2�√

h2
x + h2

y + (hz − g
2�)2

,

−� = hz − g
2�√

h2
x + h2

y + (hz − g
2�)2

,

0 =
[
h2

x + h2
y +

(
hz − g

2
�

)2]
�2 −

(
hz − g

2
�

)2
. (A2)

Hence, we get a self-consistency equation for � in the form
of a quartic polynomial, where the self-consistent solutions
are the real roots verifying |�| � 1:

( g

2

)2
�4 − ghz�

3 +
[
h2

x + h2
y + h2

z −
( g

2

)2]
�2

+ ghz� − h2
z = 0. (A3)

This quartic polynomial can be easily factorized in different
particular cases. First, if we impose the condition h2

x + h2
y =

0, which in all our models describes a 1D contour, the self-
consistency equation can be factorized as

(� − 1)(� + 1)

(
� − 2hz

g

)2

= 0, (A4)

which always has the two simple roots � = 1 and −1, with
respective energies E = g − hz and g + hz. In addition, if
− g

2 � hz � g
2 , we also have a double root � = 2hz

g , with en-
ergy E = g

2 , which corresponds to the 1D nodal lines E1 = E2

in our models.
Second, if we impose the condition hz = 0, which in our

models describes a 2D surface, the self-consistency equa-
tion can be factorized as

�2

(
�2 − g2 − 4(h2

x + h2
y )

g2

)
= 0, (A5)

which always has a double root � = 0 with energies E = g
2 ±√

h2
x + h2

y . However, if the nonlinearity is strong enough such

that 2
√

h2
x + h2

y � |g| there are two additional solutions, � =
±

√
g2−4(h2

x+h2
y )

g2 , both with energy E = g. This corresponds to
the 2D nodal surfaces E3 = E4 in our models.

APPENDIX B: ENERGY BANDS AND EFFECTIVE
HAMILTONIAN AROUND ORIGINAL BAND-TOUCHING

POINTS

Let us consider a general nonlinear Weyl semimetal de-
scribed in Eq. (2). In general, a stationary state of this system
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verifies

|1|2 = 1
2 + hz

2(E − g)
,

|2|2 = 1
2 − hz

2(E − g)
,

0 = E4 − 3gE3 +
[

13

4
g2 − (h2

x + h2
y + h2

z )

]
E2

+ g

[
− 3g2

2
+ h2

z + 4(h2
x + h2

y )

]
E

+ g2(g2 − h2
z )

4
− g2(h2

x + h2
y ). (B1)

For any nonlinear strength, the original Weyl points of our
models are always part of the newly formed nodal structures,
both for the two lowest bands at E1 = E2 = g

2 and for the two
highest bands at E3 = E4 = g. When considering a small dis-
placement (κx, κy, κz ) away from one of these original Weyl
points, an energy solution can be obtained perturbatively as

E = E (0) + E (1) + · · · , (B2)

where E (0) is an energy solution at an original Weyl point, and
E (n) is a component of E that is of the order of κn

x , κn
y , or κn

z .
By expanding the third line of Eq. (B1) up to the first order in
κx, κy and κz, we obtain[

4(E (0) )3 − 9g(E (0) )2 + 13g2

2
E (0) − 3g3

2

]
E (1) = 0. (B3)

As we are looking into the energy dispersion near the 1D
nodal lines E1 = E2 = g

2 , we take E (0) = g
2 . We can then ver-

ify that in all our models, the term inside the square brackets in
Eq. (B3) is equal to 0, which means that E (1) is not necessarily
0. To find it, we expand the third line of Eq. (B1) up to the
second order in κx, κy, and κz, which gives

(E (1) )2 = h2
x + h2

y ,

E (1) = ±
√

h2
x + h2

y (B4)

giving the energy dispersions for E (l ) in Eqs. (7) and (9).
Substituting this energy dispersion in the first and second lines
of Eq. (B1), we get

|1|2 ≈ 1

2
− hz

g

⎛
⎝1 ±

2
√

h2
x + h2

y

g

⎞
⎠,

|2|2 ≈ 1

2
+ hz

g

⎛
⎝1 ±

2
√

h2
x + h2

y

g

⎞
⎠. (B5)

Injecting these expressions into Eq. (2) allows us to rewrite
Eq. (1) as⎛
⎝∓ 2hz

√
h2

x+h2
y

g hx − ihy

hx + ihy ± 2hz

√
h2

x+h2
y

g

⎞
⎠(

1

2

)
= ±

√
h2

x + h2
y

(
1

2

)
,

(B6)
which gives us the first effective Hamiltonian h(l )

eff,± given in
Eq. (8).

Finally, we investigate the energy dispersion near the 2D
nodal line E3 = E4 = g. Taking E (0) = g and plugging it back
in Eq. (B3) once again yields 0 for the term inside the
square brackets, showing that E (1) is not necessarily 0. The
same expansion to second order in κx, κy, and κz gives this
time

(E (1) )2 = h2
z ,

E (1) = ±hz (B7)

giving the energy dispersion E (h) in Eqs. (7) and (9). The
substitution in the two first lines of Eq. (B1) gives

|1|2 ≈ 1
2 ± 1

2 ,

|2|2 ≈ 1
2 ∓ 1

2 , (B8)

which once injected in Eq. (2) allows us to rewrite Eq. (1) as
(

hz ± g
2 hx − ihy

hx + ihy −hz ∓ g
2

)(
1

2

)
=

( g

2
± hz

)(
1

2

)
, (B9)

giving the effective Hamiltonian h(h)
eff,± in Eq. (8) of the main

text.

APPENDIX C: REAL-SPACE MODEL AND ITERATIVE
METHOD FOR NONLINEAR FERMI ARCS

In the general case, the equations of motion are given by

i
dψA

dt
= (hx − ihy)ψB + hzψA + g|ψA|2ψA,

i
dψB

dt
= (hx − ihy)ψA − hzψB + g|ψB|2ψB, (C1)

where

hx(k, θ ) = (M + cos kx + cos ky + cos kz ) cos θ − sin kz sin θ,

hy(k) = sin ky,

hz(k, θ ) = sin kz cos θ+ (M + cos kx + cos ky + cos kz ) sin θ,

(C2)

and we changed the indices 1,2 by A, B to better represent the
ideas of two sites per unit cell in real space. We consider now
a slab, infinite along the x, y directions and finite along the z
directions, so that kx and ky remain good quantum numbers.
By using the Bloch ansatz

ψα = e−ikzzφα,z (C3)

for α = A, B, the equations of motion become

i
dφA,z

dt
= (M + cos kx + cos ky) cos θ φA,z

+ [(M + cos kx + cos ky) cos θ − i sin ky]φB,z

− ieiθ

2
φA,z+1 + ie−iθ

2
φA,z−1 + eiθ

2
φB,z+1

+ e−iθ

2
φB,z−1 + g|φA,z|2φA,z,

195411-12



TOPOLOGICAL CHARACTERISTICS OF GAP CLOSING … PHYSICAL REVIEW B 106, 195411 (2022)

i
dφB,z

dt
= −(M + cos kx + cos ky) cos θ φB,z

+ [(M + cos kx + cos ky) cos θ + i sin ky]φA,z

+ ieiθ

2
φB,z+1 − ie−iθ

2
φB,z−1 + eiθ

2
φA,z+1

+ e−iθ

2
φA,z−1 + g|φB,z|2φB,z, (C4)

describing a 1D lattice with two sites per unit cell along the
z axis. In order to find stationary states of such a nonlinear
lattice, we use an iterative method, whose iteration process
from a state |φn〉 to state |φn+1〉 for a given nonlinear, state-
dependent Hamiltonian H is as follows:

(i) We first compute Hn = H (|φn〉), the nonlinear state-
dependent Hamiltonian evaluated at the state |φn〉.

(ii) We then solve Hn for its eigenstates |ψi〉 with i =
1, . . . , 2N .

(iii) We finally choose the new state |φn+1〉 as the one
eigenstate |ψi〉 closest in distance to the previous
|φn〉. More specifically, we take |φn+1〉 = |ψi0〉 where
‖|φn〉 − |ψi0〉‖ � ‖|φn〉 − |ψi〉‖ for all i. The norm is
here defined as ‖|ψ〉‖ = 〈ψ |ψ〉.

We apply the above-described method until the distance
between old and new states is less than an arbitrary ε, i.e.,
‖|φn〉 − |φn+1〉‖ < ε. Throughout this work, we take ε =
10−10. We used this iterative method to find the energy spec-
trum of both Hamiltonians HOBC and HPBC, corresponding to
considering both OBC and PBC in the z direction. For both
Hamiltonians, we chose the same trial states as the eigenstates
of the linear Hamiltonian (g = 0) under OBC. This is to make
sure that when applying the iterative method for HPBC, taking
an edge state of the linear model under OBC as a trial state
indeed returns a delocalized stationary state, showing that
edge states do not exist under PBC even in the nonlinear
case.
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[75] D. Jukić and H. Buljan, Phys. Rev. A 87, 013814 (2013).
[76] X.-W. Luo, X. Zhou, C.-F. Li, J.-S. Xu, G.-C. Guo, and Z.-W.

Zhou, Nat. Commun. 6, 7704 (2015).
[77] L. Yuan, Y. Shi, and S. Fan, Opt. Lett. 41, 741 (2016).
[78] T. Ozawa, H. M. Price, N. Goldman, O. Zilberberg, and I.

Carusotto, Phys. Rev. A 93, 043827 (2016).
[79] L. Yuan, Q. Lin, M. Xiao, and S. Fan, Optica 5, 1396 (2018).
[80] E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres,

A. Szameit, and M. Segev, Nature (London) 567, 356 (2019).
[81] A. Dutt, M. Minkov, I. A. D. Williamson, and S. Fan, Light:

Sci. Appl. 9, 131 (2020).
[82] R. W. Bomantara, W. Zhao, L. Zhou, and J. Gong, Phys. Rev.

B 96, 121406(R) (2017).
[83] Y. Ke, X. Qin, F. Mei, H. Zhong, Y. S. Kivshar, and C. Lee,

Laser Photonics Rev. 10, 995 (2016).
[84] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger, and

I. Bloch, Nat. Phys. 12, 350 (2016).
[85] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa,

L. Wang, M. Troyer, and Y. Takahashi, Nat. Phys. 12, 296
(2016).

[86] J. Tangpanitanon, V. M. Bastidas, S. Al-Assam, P. Roushan,
D. Jaksch, and D. G. Angelakis, Phys. Rev. Lett. 117, 213603
(2016).

[87] A. Hayward, C. Schweizer, M. Lohse, M. Aidelsburger, and F.
Heidrich-Meisner, Phys. Rev. B 98, 245148 (2018).

[88] Y. Ke, S. Hu, B. Zhu, J. Gong, Y. Kivshar, and C. Lee, Phys.
Rev. Res. 2, 033143 (2020).

[89] D. Leykam and Y. D. Chong, Phys. Rev. Lett. 117, 143901
(2016).

[90] M. Jürgensen, S. Mukherjee, and M. C. Rechtsman, Nature
(London) 596, 63 (2021).

[91] G. H. Wannier, Phys. Rev. 52, 191 (1937).
[92] B. Simon, Phys. Rev. Lett. 51, 2167 (1983).

195411-14

https://doi.org/10.1038/nmat4987
https://doi.org/10.1126/science.1256742
https://doi.org/10.1126/sciadv.1501092
https://doi.org/10.1038/ncomms11006
https://doi.org/10.1038/nphys3437
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.117.057401
https://doi.org/10.1038/s41467-017-00134-1
https://doi.org/10.7567/1347-4065/ab088b
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1038/nphys4072
https://doi.org/10.1088/1751-8113/47/46/465003
https://doi.org/10.7566/JPSJ.83.094710
https://doi.org/10.1103/PhysRevLett.109.066401
https://doi.org/10.1103/PhysRevB.95.201102
https://doi.org/10.1103/PhysRevB.93.195104
https://doi.org/10.1103/PhysRevB.88.045108
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1007/BF02731494
https://doi.org/10.1103/PhysRevLett.83.5198
https://doi.org/10.1126/science.287.5450.97
https://doi.org/10.1088/1367-2630/5/1/104
https://doi.org/10.1103/PhysRevB.93.085438
https://doi.org/10.3390/e18040118
https://doi.org/10.1038/nphoton.2013.42
https://doi.org/10.1103/PhysRevLett.111.243905
https://doi.org/10.1038/nmat3783
https://doi.org/10.1126/sciadv.1501524
https://doi.org/10.1088/1367-2630/aa7cb5
https://doi.org/10.1038/s41928-018-0042-z
https://doi.org/10.1063/1.5142397
https://doi.org/10.1016/j.physleta.2010.12.030
https://doi.org/10.1103/PhysRevA.87.013814
https://doi.org/10.1038/ncomms8704
https://doi.org/10.1364/OL.41.000741
https://doi.org/10.1103/PhysRevA.93.043827
https://doi.org/10.1364/OPTICA.5.001396
https://doi.org/10.1038/s41586-019-0943-7
https://doi.org/10.1038/s41377-020-0334-8
https://doi.org/10.1103/PhysRevB.96.121406
https://doi.org/10.1002/lpor.201600119
https://doi.org/10.1038/nphys3584
https://doi.org/10.1038/nphys3622
https://doi.org/10.1103/PhysRevLett.117.213603
https://doi.org/10.1103/PhysRevB.98.245148
https://doi.org/10.1103/PhysRevResearch.2.033143
https://doi.org/10.1103/PhysRevLett.117.143901
https://doi.org/10.1038/s41586-021-03688-9
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1103/PhysRevLett.51.2167


TOPOLOGICAL CHARACTERISTICS OF GAP CLOSING … PHYSICAL REVIEW B 106, 195411 (2022)

[93] Q. Niu and D. J. Thouless, J. Phys. A: Math. Gen. 17, 2453
(1984).

[94] J. K. Jnos K. Asbth, L. Oroszlny, and A. Plyi, A Short Course
on Topological Insulators (Springer, Cham, 2016).

[95] T. Tuloup, R. W. Bomantara, C. H. Lee, and J. Gong, Phys.
Rev. B 102, 115411 (2020).

[96] T. Tuloup, R. W. Bomantara, and J. Gong, arXiv:2205.10978.
[97] M. Jürgensen and M. C. Rechtsman, Phys. Rev. Lett. 128,

113901 (2022).
[98] N. Mostaan, F. Grusdt, and N. Goldman, arXiv:2110.13075.
[99] L. Duca, T. Li, M. Reitter, I. Bloch, M. Schleier-Smith, and U.

Schneider, Science 347, 288 (2015).
[100] M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).
[101] C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett.

78, 985 (1997).
[102] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman,

and E. A. Cornell, Science 269, 198 (1995).
[103] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Science

357, 61 (2017).
[104] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Phys.

Rev. B 96, 245115 (2017).
[105] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W.

Brouwer, Phys. Rev. Lett. 119, 246401 (2017).
[106] F. Liu and K. Wakabayashi, Phys. Rev. Lett. 118, 076803

(2017).
[107] Z. Song, Z. Fang, and C. Fang, Phys. Rev. Lett. 119, 246402

(2017).
[108] E. Khalaf, Phys. Rev. B 97, 205136 (2018).
[109] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P.

Parkin, B. A. Bernevig, and T. Neupert, Sci. Adv. 4, eaat0346
(2018).

[110] C. H. Lee, L. Li, and J. Gong, Phys. Rev. Lett. 123, 016805
(2019).

[111] J. Cayssol, B. Dóra, F. Simon, and R. Moessner, Phys. Status
Solidi RRL 7, 101 (2013).

[112] A. Gómez-León and G. Platero, Phys. Rev. Lett. 110, 200403
(2013).

[113] J. K. Asbóth, B. Tarasinski, and P. Delplace, Phys. Rev. B 90,
125143 (2014).

[114] A. G. Grushin, A. Gómez-León, and T. Neupert, Phys. Rev.
Lett. 112, 156801 (2014).

[115] L. Zhou, H. Wang, D. Y. Ho, and J. Gong, Eur. Phys. J. B 87,
204 (2014).

[116] R. W. Bomantara, G. N. Raghava, L. Zhou, and J. Gong, Phys.
Rev. E 93, 022209 (2016).

[117] L. Li, C. H. Lee, and J. Gong, Phys. Rev. Lett. 121, 036401
(2018).

[118] S. Longhi, Europhys. Lett. 120, 64001 (2017).
[119] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S.

Higashikawa, and M. Ueda, Phys. Rev. X 8, 031079 (2018).

[120] V. M. Martinez Alvarez, J. E. Barrios Vargas, M. Berdakin,
and L. E. F. Foa Torres, Eur. Phys. J.: Spec. Top. 227, 1295
(2018).

[121] H. Shen, B. Zhen, and L. Fu, Phys. Rev. Lett. 120, 146402
(2018).

[122] S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018).
[123] S. Yao, F. Song, and Z. Wang, Phys. Rev. Lett. 121, 136802

(2018).
[124] A. Ghatak and T. Das, J. Phys.: Condens. Matter 31, 263001

(2019).
[125] K. Kawabata, S. Higashikawa, Z. Gong, Y. Ashida, and M.

Ueda, Nat. Commun. 10, 297 (2019).
[126] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Phys. Rev.

X 9, 041015 (2019).
[127] C. H. Lee and R. Thomale, Phys. Rev. B 99, 201103(R) (2019).
[128] L. Li, C. H. Lee, and J. Gong, Phys. Rev. B 100, 075403

(2019).
[129] C.-H. Liu and S. Chen, Phys. Rev. B 100, 144106 (2019).
[130] H. Zhou and J. Y. Lee, Phys. Rev. B 99, 235112 (2019).
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