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Resonance energy transfer near higher-order exceptional points of non-Hermitian Hamiltonians
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Exceptional points (EPs) of both eigenvalue and eigenvector degeneracy offer remarkable properties of the
non-Hermitian systems based on the Jordanian form of Hamiltonians at EPs. Here we propose the perturbation
theory able to underpin the physics in the vicinity of the higher-order EPs. The perturbation theory unveils lifting
of degeneracy and origin of the different phases merging at the EP. It allows us to analyze the photonic local
density of states and resonance energy transfer, determining their spectral behaviors in a general form. Resonant
energy transfer is investigated in analytical and numerical examples. We analytically find the resonance energy
transfer rate near the third-order EP occurring in the system of three coupled cavities and reveal singularities
caused by the interplay of the perturbation and frequency detuning from degenerate eigenfrequency. Numerical
simulation of the coupled-resonator system reveals the vital role of a mirror for switching to the EP of the doubled
order and corresponding enhancement of the resonance energy transfer rate. Our investigation sheds light on the
behavior of nanophotonic systems in non-Hermitian environments.
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I. INTRODUCTION

In modern physics, non-Hermiticity is everywhere. It
enriches our knowledge with new techniques and method-
ologies provoking researchers for searching groundbreaking
applications. From the historical viewpoint, non-Hermitian
Hamiltonians with real eigenvalues were proposed to com-
pete with Hermitian ones to describe the quantum mechanics
[1]. From this perspective, it has been recently shown that
non-Hermitian Hamiltonians and Hermitian Hamiltonians are
tightly related with a generalized vielbein formalism [2],
while a prospective way of designing non-Hermitian topo-
logical systems with real-valued spectra was proposed in
Ref. [3]. The most intriguing non-Hermitian Hamiltonian
obeys parity-time (PT) symmetry, i.e., it simultaneously
commutes with parity-inversion and time-reversal symmetry
operators [4]. It is inspiring that non-Hermitian Hamiltoni-
ans can be introduced beyond quantum mechanics, the most
fruitful theoretical and experimental results being obtained in
optics.

Optical Hamiltonians stem from similarity of the
Schrödinger equation and either Maxwell’s equations or
coupled-mode theory equations. To realize the PT symmetry
in a nonmagnetic system, the Maxwell equations establish
the necessary condition ε(r) = ε∗(−r), where the asterisk *
denotes a complex conjugate. The PT symmetry breaks at the
exceptional point (EP) that degenerates both the eigenvalues
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and eigenvectors of the Hamiltonian. The latter takes a Jorda-
nian form at the EP. Remarkable physics of the non-Hermitian
systems near EPs was celebrated by a number of review arti-
cles [5–9] and promising theoretical and application-oriented
results including enhancement of sensitivity [10–13], topolog-
ical effects under encircling EPs [14–17], and CPA (coherent
perfect absorption)-lasing [18–23] to mention just a few ex-
amples.

The benefits of non-Hermitian physics are still insuffi-
ciently exploited in nanophotonics that studies light-matter
interaction at the nanoscale. In a theoretical work [24], the
enhancement of the dipole’s spontaneous emission rate was
justified using the Green’s function near the second-order
EP. The theory was fully confirmed by measuring photolumi-
nescence from active perovskite colloidal nanocrystals at the
EP formed by coalescence of bright and dark modes of the
one-dimensional dielectric grating [25]. For efficient trapping
of atoms in Zeeman sublevels, the spontaneous relaxation
rate from the excited to the ground state should be decreased.
PT-symmetric cavities are able to significantly reduce
the relaxation rate, opening avenues for quantum-optics
applications [26]. The spontaneous emission can be perfectly
inhibited as demonstrated in an open system of PT-symmetric
rectangular waveguide [27]. Generally, the outstanding
behavior of non-Hermitian systems is caused by the peculiar
spectral response at the EP. In the case of the second-order EP,
the line shape is described by the squared Lorentzian being
dramatically different from the case of normal resonance [28].
Then, the spontaneous-emission decay strongly increases at
the EP of the open quantum system [29]. In the microring
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resonator with chiral EPs, both enhancement and suppression
of the spontaneous emission of a quantum emitter is
attainable, as shown in Ref. [30]. Interestingly, the modal
Purcell factor corresponding to the part of the spontaneous
emission coupled to guided modes was shown to be
insensitive to existence of the EP [31]. Explanation of
this fact was assumed to be related with the nonresonant
character of PT-symmetric waveguides.

Another well-known nanophotonic phenomenon is the
resonance energy transfer (RET), which represents the
quantum-electrodynamical process of energy release by the
donor molecule as a virtual photon and subsequent absorption
of this photon by the acceptor molecule [32]. The energy
transfer can be described in dipolar approximation, since the
dipole transitions are the most probable ones. In this case, the
mechanism was underpinned by Förster, who related the rate
of energy transfer with the overlap of emission and absorption
spectra and the distance between molecules [33,34]. In this
paper, the donor and acceptor molecules are assumed to be
dipoles with dipole moments dD = |dD|eD and dA = |dA|eA,
respectively. According to the Förster mechanism, the energy
transfer rate is expressed by means of the donor lumines-
cence spectrum σem(ω) and the acceptor absorption spectrum
σabs(ω) as [35,36]

γD−A =
∫ ∞

0
σem(ω)σabs(ω)T (ω)dω, (1)

where the two-point spectral density

T (ω) = 2π

h̄2

(
ω2

ε0c

)2

|dA · Ĝ(ω, rD, rA) · dD|2 (2)

depends on the intermolecular distance |rD − rA| and ac-
counts for the environment through the dyadic Green’s
function Ĝ(ω, rD, rA). Here ε0 is the vacuum permittivity, h̄
is the reduced Planck’s constant, and c is the speed of light
in vacuum. Note that the two-point spectral density function
T (ω) used to describe RET between different points in space
resembles more well-known local density of states (LDOS)
[37], which is applied at a single point. LDOS is widely used
in nanophotonics to explain and predict such effects as the
modification of spontaneous emission rate [38,39] and Raman
scattering [40,41] in the structured environment.

Correct treatment of the RET should be done within non-
relativistic quantum electrodynamics because the photons
mediating donor and acceptor are described nonclassically
using the second quantization technique. Although a semi-
classical description is valid in particular situations, only
quantum electrodynamics is able to cover both radiative (R−2

dependence, where R is the distance between molecules) and
nonradiative (R−6 dependence) RET. In Ref. [42], it is noted
that the RET behaves both quantum mechanically and classi-
cally if one considers a donor-acceptor couple of molecules
alone. However, in real life, this couple interacts with the
surroundings and quantum decoherence should be taken into
account. Nanophotonic environment plays an important part
for control of the energy transfer via, e.g., surface plasmons
[43–45] and hyperbolic metamaterials [36]. Influence of the
surroundings (decoherence) can be reduced due to the re-
striction of small volumes being described within the cavity

quantum electrodynamics. In this case, polaritons are able to
assist in enhancement of the cavity RET in the strong coupling
regime [46–48].

In this paper, we analyze the role of non-Hermitian envi-
ronments in control of the RET. To this end, we develop a
perturbation theory in the vicinity of an EP of the nth order
(EPn) and describe non-Hermitian phases therein. Knowing
the Green’s function near the EP, we demonstrate the spectral
behaviors of the LDOS and RET. Finally, we show examples
of the RET dependencies for the higher-order (n > 2) EPs.

II. NON-HERMITIAN SYSTEMS: BASIC DEFINITIONS

A. Eigenvalue problem

Consider a system described by a non-Hermitian Hamil-
tonian Ĥ �= Ĥ†, where † stands for the Hermitian conjugate.
In this section, we formulate the general theory for the di-
mensionless Hamiltonian Ĥ , which can be transformed to
the physically justified Hamiltonian with multiplication by
a dimensional coefficient. Then, eigenvalues λ(m) and eigen-
vectors |v(m)〉 of Ĥ are dimensionless, too, and satisfy the
eigenvalue equation

Ĥ |v(m)〉 = λ(m)|v(m)〉, m = 0, . . . n − 1. (3)

If a Hamiltonian is PT-symmetric, i.e., it commutes with the
parity-time operator P̂T̂ , then its eigenvalues are real in a PT-
symmetric state.

We also define n left eigenvectors 〈u(m)| meeting equa-
tion 〈u(m)|Ĥ = λ(m)〈u(m)| as well as the orthogonality and
normalization conditions 〈u(k)|v(m)〉 = δkm, where δkm is the
Kronecker delta. It allows one to decompose the Hamiltonian
over projectors |v(m)〉〈u(m)| as

Ĥ =
n−1∑
m=0

λm|v(m)〉〈u(m)|. (4)

The inner product 〈u(k)|v(m)〉 may represent the product
of the row 〈u(k)| and column |v(m)〉 vectors or integral of
two functions in an abstract vector space, e.g., 〈u(k)|v(m)〉 =∫

u(k)(x)v(m)(x)dx. In the case of a Hermitian Hamiltonian
Ĥ = Ĥ†, the bra and ket vectors are related as 〈u(k)| =
(|v(k)〉)†.

B. Green’s function

The Green’s function G of the Hamiltonian is defined as a
solution |v〉 = G|J〉 of the inhomogeneous Schrödinger equa-
tion with a source term |J〉:

Ĥ |v〉 + |J〉 = λ|v〉. (5)

Expanding over the right eigenvectors |v〉 =∑n−1
j=0 Aj |v( j)〉, multiplying Eq. (5) by the left eigenvector

〈u(m)| and applying the orthonormality condition, we write the
Green’s function (resolvent) as the Mittag-Leffler expansion
[49]:

G =
n−1∑
m=0

1

λ − λ(m)

|v(m)〉〈u(m)|
〈u(m)|v(m)〉 . (6)

Being an abstract representation of the Green’s function,
Eq. (6) can take different specific forms. If we deal with a
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set of n coupled-mode equations for mode amplitudes aj with
corresponding mode electric fields e j , then the eigenvalue
is the dimensionless frequency, λ(m) = ωm, while the eigen-
vector |v(m)〉 = (a(m)

1 , . . . , a(m)
n )T (see Refs. [29,50]). Being

written in the basis of mode electric fields e j , the eigenvec-
tor recasts as |v(m)〉 → ∑

j a(m)
j e j (r) ≡ Em(r). By analogy,

the left eigenvector 〈u(m)| = (b(m)
1 , . . . , b(m)

n ) in the conju-
gate basis ẽ j = (e j )T takes the form 〈u(m)| → ∑

j b(m)
j ẽ j (r) ≡

Ẽm(r). Assuming normalization 〈u(m)|v(m)〉 → (Em · Ẽm) =
1, the dyadic Green’s function Eq. (6) reads

Ĝ(ω, r, r′) =
∑

m

Em(r) ⊗ Ẽm(r′)
ω − ωm

. (7)

If one deals with the archetypal Helmholtz equation ∇ ×
(∇ × E) = (ω/c)2ε(r)E as in Ref. [24], then the Hamiltonian
and eigenvalues are correspondingly Ĥ = c2ε−1∇ × (∇×)
and λ(m) = ω2

m. The dyadic Green’s function can then be writ-
ten as

Ĝ(r, r′) =
∑

m

Em(r) ⊗ Em(r′)
ω2 − ω2

m

. (8)

Here, Em(r) is the eigenvector meeting the equa-
tion ĤEm(r) = ω2

mEm(r). Notice that the eigenvalues λ(m) are
generally complex.

C. Hamiltonian at the EP

Assume that the non-Hermitian Hamiltonian Ĥ (p) and,
hence, the values λ(m)(p), |v(m)(p)〉, and 〈u(m)(p)| depend on a
parameter (parameters) p. If eigenvalues λ(m) and eigenvectors
|v(m)〉 (k = 0, . . . , n − 1) coalesce at a point p0, then p0 is
an EPn. The n-dimensional Hamiltonian at the EP takes a
particular Jordan form

Ĥ (p0) ≡ Ĥ0 = λ(0)In + N̂, (9)

where λ(0) = λ(0)(p0) = . . . = λ(n−1)(p0), In is the unit ma-
trix n × n, and N̂ is the nilpotent matrix [51]. The powers
of the nilpotent matrix N̂k are nonzero for k < n, while
N̂n = 0. Degeneracy of the eigenvectors does not allow one
to introduce a set of basis vectors. There are a single right
eigenvector |v(0)〉 and a single left eigenvector 〈u(0)| orthog-
onal to each other, 〈u(0)|v(0)〉 = 1. They satisfy the ordinary
eigenvalue equations, Ĥ0|v(0)〉 = λ(0)|v(0)〉 or N̂ |v(0)〉 = 0 and
〈u(0)|Ĥ0 = λ(0)〈u(0)| or 〈u(0)|N̂ = 0. The ordinary eigenvector
|v(0)〉 can be supplemented with a non-orthogonal set of the
so-called generalized eigenvectors defined according to the
chain equations (Ĥ0 − λ(0)In)|v(m)〉 = |v(m−1)〉 or N̂ |v(m)〉 =
|v(m−1)〉, where m = 1, . . . , n − 1. Thus, the nilpotent matrix
can be defined as

N =
n−2∑
j=0

|v( j)〉〈u(n−2− j)|, (10)

where 〈u(n−2− j)|v(k)〉 = δ j,k−1 or 〈u( j)|v(k)〉 = δn−2− j,k−1.
Chain equations 〈u( j)|N = 〈u( j−1)| ( j = 1, . . . , n − 1) for
generalized left eigenvectors are also consistent with Eq. (10).

The power k = 1, . . . .n − 1 of the nilpotent matrix N can
be readily calculated, so we arrive at

Nk =
n−1−k∑

j=0

|v( j)〉〈u(n−1−k− j)| (11)

or

Nn−k =
k−1∑
j=0

|v( j)〉〈u(k−1− j)|. (12)

From the latter equation, it follows that Nn−1 = |v(0)〉〈u(0)|
and Nn−2 = |v(0)〉〈u(1)| + |v(1)〉〈u(0)|.

III. PERTURBATION THEORY NEAR EPn

Perhaps the most interesting properties of the non-
Hermitian systems are observed at or close to the EP. The
perturbation theory should be helpful in description of tiny
departures from the EP. If a small parameter |ε| � 1 charac-
terizes a deviation from the EPn, then the Hamiltonian can
be presented as Ĥ = Ĥ0 + εĤ1. Further, we assume that H0

is a Jordan matrix of dimension n up to a similarity trans-
formation that generates n eigenvalues with the leading term
ε1/n when perturbed by the εĤ1 operator [52]. By substituting
the perturbation series for eigenvalues λ = ∑∞

k=0 εk/nλk and
eigenvectors |v〉 = ∑∞

m=0 εm/n|wm〉 into the eigenvalue equa-
tion Ĥ |v〉 = λ|v〉, we have

(Ĥ0 + εĤ1)
∞∑

m=0

εm/n|wm〉 =
∞∑

k=0

εk/nλk

∞∑
m=0

εm/n|wm〉. (13)

In a similar manner, we can write the eigenvalue equa-
tion for the left eigenvectors represented by the expansion
〈u| = ∑∞

m=0 εm/n〈ym|.
Properly changing the summation indices, we arrive at the

same power of the perturbation parameter ε on both sides of
the above equation as

∞∑
m=0

εm/n(Ĥ0|wm〉 + Ĥ1|wm−n〉) =
∞∑

m=0

∞∑
k=0

εm/nλk|wm−k〉,
(14)

where we have supplemented the sum
∑∞

m=k on the right-hand
side with zeros due to |wm−k<0〉 = 0 to get the same sums∑∞

m=0 on both sides. By equating the terms having the same
power of perturbation parameter on the right and left sides, we
arrive at the infinite set of equations

(Ĥ0 − λ(0)In)|wm〉 + Ĥ1|wm−n〉 =
m∑

k=1

λk|wm−k〉. (15)

If m = 0, then we are left with (Ĥ0 − λ(0)In)|w0〉 = 0, that
is, |w0〉 = |v(0)〉.

For 0 < m < n, Eq. (15) reads

(Ĥ0 − λ(0)In)|wm〉 =
m∑

k=1

λk|wm−k〉. (16)

To determine the perturbation vectors |wm〉, we decom-
pose them over the nonorthogonal set of generalized
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eigenvectors as

|wm〉 =
n−1∑
α=0

cm,α|v(α)〉. (17)

Introducing this decomposition into Eq. (16), we derive the
coefficients cm,α as follows:

c0,0 = 1, cm,α>m = 0,

cm,α�m =
k1+...+kα=m∑

k1,...,kα=1

λk1 . . . λkα
. (18)

See Appendix A for details on the origin of these relation-
ships.

The correction terms λk of the eigenvalues stem from the
perturbation and can be found from Eq. (15) for m � n, when
the perturbation operator Ĥ1 is nonvanishing. The leading-
order correction λ1 splits the degenerate eigenvalue λ(0) into n
different eigenvalues as follows:

λ(k) = λ(0) + ε1/nλ
(k)
1 = λ(0) + ε1/n(〈u(0)|Ĥ1|v(0)〉)1/nei2πk/n,

(19)
where k = 0, . . . , n − 1. Appendix B shows how the leading-
order and higher-order corrections can be obtained.

The perturbation coefficients both for eigenvalues and
eigenvectors will be used further for finding the Green’s func-
tion in the leading order.

IV. NON-HERMITIAN PHASES

A departure from the EP at p0 may occur due to either ex-
ternal perturbation (nanoparticle, molecule, etc.) or variation
of system’s parameter p (gain, loss, coupling strength, etc.). In
the latter case, the perturbation Hamiltonian originates from
the Taylor series expansion as εĤ1 = ε(dĤ/d p)p=p0 , where
ε = p − p0. The EP separates two phases distinguished by
sign of the perturbation parameter ε = ±|ε|. Nonzero ε lifts
the degeneracy and the eigenvalues in the leading order of the
expansion are equal to

λ(k) = λ(0) + (±|ε|)1/nλ
(k)
1 , k = 0, . . . , n − 1. (20)

In the phase A of the non-Hermitian system, ε > 0 and the
eigenvalues are

λ
(k)
A = λ(0) + |ε|1/n(〈u(0)|Ĥ1|v(0)〉)1/nei2πk/n. (21)

In the phase B, ε < 0 and the eigenvalues can be presented
in the form

λ
(k)
B = λ(0) + |ε|1/n(〈u(0)|Ĥ1|v(0)〉)1/neiπ (2k+1)/n. (22)

Notice that the EP of the nth order (n > 2) does not corre-
spond to the situation usually observed with the PT-symmetric
Hamiltonian, because the eigenvalues in both A and B phases
are not real. On the other hand, for n = 2, the eigenvalues
k = 0, 1 in both phases equal

λ
(k)
A = λ(0) + |ε|1/2(〈u(0)|Ĥ1|v(0)〉)1/2eiπk,

λ
(k)
B = λ(0) + i|ε|1/2(〈u(0)|Ĥ1|v(0)〉)1/2eiπk, (23)

so one can clearly distinguish the nature of both phases. Their
properties generally depend on the symmetry of the pertur-
bation operator. If the real value 〈u(0)|Ĥ1|v(0)〉 > 0, then the
eigenvalues in phase A are real and this phase is PT symmetric
whereas phase B corresponds to the broken-PT-symmetric
phase. If, on the contrary, 〈u(0)|Ĥ1|v(0)〉 < 0, then phase B is
PT symmetric and phase A is broken-PT symmetric.

V. GREEN’s FUNCTION NEAR EPn

In this section, we derive the Green’s function up to the
leading order corresponding to the leading order of the eigen-
value

λ(k) = λ(0) + δλ(k), δλ(k) = ε1/nλ
(k)
1 = ε1/nηei2πk/n (24)

and eigenvectors

|v(k)〉 = |v(0)〉 + |δv(k)〉, 〈u(k)| = 〈u(0)| + 〈δu(k)|,

|δv(k)〉 =
∞∑

m=1

εm/n
∣∣w(k)

m

〉
, 〈δu(k)| =

∞∑
m=1

εm/n
〈
y(k)

m

∣∣, (25)

where k = 0, . . . , n − 1 and η = (〈u(0)|Ĥ1|v(0)〉)1/n. More
terms in vectors |δv〉 and 〈δu| are needed to keep the first
nonvanishing correction in further calculations.

In our notation, the Green’s function Eq. (6) reads

G =
n−1∑
k=0

1

λ − λ(0) − δλ(k)

|v(0)〉〈u(0)| + |δv(k)〉〈u(0)| + |v(0)〉〈δu(k)|
〈δu(k)|v(0)〉 + 〈u(0)|δv(k)〉 + 〈δu(k)|δv(k)〉 , (26)

where we use the orthogonality 〈u(0)|v(0)〉 = 0 in the denominator. The other inner products in the denominator are calculated
in Appendix C, resulting in the value ε

n−1
n λn−1

1 . In the nominator, the leading order of |δv(k)〉 is ε1/n|w(k)
1 〉 = ε1/nc(k)

1,1|v(1)〉 =
ε1/nλ

(k)
1 |v(1)〉 and similarly 〈δu(k)| = ε1/nλ

(k)
1 〈u(1)|. The Green’s function then can be represented as

G = S1|v(0)〉〈u(0)| + ε1/nηS2(|v(1)〉〈u(0)| + |v(0)〉〈u(1) )

nε(n−1)/nηn−1
,

S1 =
n−1∑
k=0

1

(λ − λ(0) ) exp(−i2πk/n) − ε1/nη
, S2 =

n−1∑
k=0

exp(i2πk/n)

(λ − λ(0) ) exp(−i2πk/n) − ε1/nη
. (27)
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The sums S1 and S2 calculated in Appendix D are equal to

S1 = nbn−1

(−1)n−1an + bn
, S2 = − nabn−2

(−1)n−1an + bn
, (28)

where a = λ − λ(0) and b = −ε1/nη. Substituting S1 and S2

into the Green’s function, we obtain

G = |v(0)〉〈u(0)| + (λ − λ(0) )(|v(1)〉〈u(0)| + |v(0)〉〈u(1)|)
(λ − λ(0) )n − ε〈u(0)|Ĥ1|v(0)〉 .

(29)

The Green’s function can be written separately in the phase
A (ε > 0), in the phase B (ε < 0), and at the EP (ε = 0). In
the latter case, the Green’s function GEP in the leading order
equals

GEP = |v(0)〉〈u(0)| + (λ − λ(0) )(|v(1)〉〈u(0)| + |v(0)〉〈u(1)|)
(λ − λ(0) )n

.

(30)

Since Nn−1 = |v(0)〉〈u(0)| and Nn−2 = |v(1)〉〈u(0)| +
|v(0)〉〈u(1)|, we conclude that the derived Green’s function is
compatible with that in Refs. [53,54]. This means that we
can generalize the Green’s function in the vicinity of the EP
including higher orders of the eigenvalue expansion:

G = (λ − λ(0) )n−1In + . . . + (λ − λ(0) )Nn−2 + Nn−1

(λ − λ(0) )n − ε〈u(0)|Ĥ1|v(0)〉 . (31)

Thus, the nominator is defined by the eigenvalues and gener-
alized eigenvectors at the EP, while the perturbation (probe)
resides in the denominator changing positions of the poles
(eigenmodes) [55]. When the deviation λ − λ(0) is small, the
lower orders of (λ − λ(0) )k in nominator should be kept and
we arrive at Eq. (29).

If the eigenvalue is the dimensionless frequency, λ = ω,
then the dyadic Green’s function near the EPn in the limit |ω −
ω0| � 1 reads

Ĝ(ω, r, r′) = 1

(ω − ω0)n − ε〈u(0)|Ĥ1|v(0)〉 [E0(r) ⊗ Ẽ0(r′)

+ (ω − ω0)(E1(r) ⊗ Ẽ0(r′) + E0(r) ⊗ Ẽ1(r′))],

(32)

where E0 and E1 introduced as in Eq. (7) are the normalized
electric fields corresponding to the eigenvalue and Jordan
generalized eigenvector, respectively.

VI. LOCAL DENSITY OF STATES NEAR EPn

In the Green’s function Eq. (32), ω is a real-valued fre-
quency. However, ω0 as a solution of the eigenvalue problem
is generally complex, therefore, ω0 = ω′

0 + iω′′
0 , where the

imaginary part ω′′ accounts for both radiative and nonra-
diative relaxation rates of the eigenmode. Further, we adopt
|ω′′

0 | � ω′
0.

The partial LDOS is defined as [35]

ρ(ω) = 6ω

πc2
Im[ed · Ĝ(ω, rd , rd ) · ed ], (33)

where ed is a unit vector of dipole’s orientation and rd is the
radius vector of dipole’s position. The LDOS in an environ-

FIG. 1. Normalized. LDOS ρ/ρvac at the exceptional point of the
third order versus perturbation parameter ε for different loss param-
eter ω′′

0 . Parameters: ω′
0 = 1, α = 1, β = 0, and 〈u0|Ĥ1|v0〉 = 1.

ment is usually scaled to the LDOS in vacuum defined as
ρvac = ω2/(π2c3).

Substituting the Green’s function Eq. (32) into the LDOS,
we arrive at

ρ(ω) = 6ω

πc2
Im

(
α + β(ω − ω0)

(ω − ω0)n − ε〈u(0)|Ĥ1|v(0)〉
)

, (34)

where

α = (ed · E0(rd ))(Ẽ0(rd ) · ed ),

β = (ed · E1(rd ))(Ẽ0(rd ) · ed ) + (ed · E0(rd ))(Ẽ1(rd ) · ed ).

The LDOS at the EP (at ε = 0) can be analyzed in the
closed form as given in Appendix E. To achieve the maximal
LDOS, the denominator of the Green’s function (ω − ω0)n −
ε〈u(0)|Ĥ1|v(0)〉 should be minimized. At the EP (ε = 0), the
minimum corresponds to the frequency ω = ω′

0. Perturbation
shifts this frequency off the value ω′

0, but it still stays near
ω′

0. The denominator of the LDOS depends on the loss ω′′
0

and perturbation ε parameters. If ω′′
0 is negligibly small, then

the LDOS strongly depends on ε. This case is realized for a
system of coupled high-Q cavities with low radiative losses
[26,29]. In Fig. 1, which shows the LDOS near the third-order
EP, the curve for ω′′

0 = −0.01 corresponds to strong enhance-
ment of LDOS. On the contrary, when ω′′

0 is relatively great,
the effect of the perturbation ε〈u0|Ĥ1|v0〉 is negligible and the
LDOS does not change noticeably. This situation corresponds
to open systems such as coupled waveguides [31]. In Fig. 1,
the curve for ω′′

0 = −0.1 is 10n = 103 times wider and 103

times lower than the curve for ω′′
0 = −0.01. That is why it

just looks like a horizontal line in the figure.
Parameters α and β exhibit the dependence on dipole’s

position rd . Dipole’s position defines the extra phase of the
electric field that can be accounted for by means of the
complex parameter α, if β = 0. We observe in Fig. 2 how
the complex number α influences symmetry of the LDOS
function. If the order of the EP is even, then ρ is even (odd)
function for imaginary (real) α in concordance with Eq. (E1)
in Appendix E. When purely imaginary α flips signs, the
LDOS function gets inverted. For the odd EP orders, the
LDOS function is odd (even) for real (imaginary) α.

As we see in Fig. 2, the LDOS may take both positive and
negative values. The negative LDOS is not physical and orig-
inates from the non-Hermitian nature of the Hamiltonian. In
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FIG. 2. Normalized LDOS ρ/ρvac at the EP of the fourth order
versus frequency shift for different α. Parameters: ω′

0 = 1, ω′′
0 =

−0.01, and β = 0.

this case, the classical definition of the LDOS is not applicable
and we need to add an extra term related to dissipation and
amplification given by the following formula [56]:


ρ(rd , ω)

= 6ωk2

πc2

∫
Im[ε(r′, ω)]|ed · Ĝ(ω, rd , r′) · ed |2d3r′, (35)

where k is the wave number. Within our generic approach, we
are not able to accurately take the non-Hermiticity into con-
sideration because knowledge of gain and loss distributions
and fields of the modes is needed. Albeit the LDOS in the
paper is not fully correct without the term 
ρ(rd , ω), it
well demonstrates the influence of non-Hermitian
environments [57].

The EP order n strongly affects the height of the LDOS
peak as demonstrated in Fig. 3. To guarantee a symmetric
profile of the LDOS, we vary the values of parameter α. We
see from Fig. 3 that the LDOS scales approximately as An102n,
where An is a constant. Thus, the spectral range in the vicinity
of the EPn can be used to reach an enormous increase in
the LDOS and, therefore, the spontaneous decay rate defined
according to Fermi’s golden rule as γ = (2ω/3h̄ε0)|d|2ρ(ω).

FIG. 3. Normalized LDOS ρ/ρvac at the EP versus frequency
shift for different orders n of the EP. Parameters: ω′

0 = 1, ω′′
0 =

−0.01, β = 0, and α = i for n = 2, 4 and α = 1 for n = 3.

FIG. 4. The two-point spectral density T (ω) versus frequency
shift for different orders n of the EP. Parameters: ω′

0 = 1, ω′′
0 =

−0.01, and A = B = 1 + i.

VII. RET ENHANCEMENT NEAR EPn

Modification of the resonant energy transfer rate due to
the environment is described by the spectral density func-
tion T (ω) defined by Eq. (2) that depends on the two-point
Green’s function Ĝ(ω, rA, rD) connecting the donor and ac-
ceptor dipoles. Near the EP, we obtain

T (ω) = 2π

h̄2

(
ω2

ε0c

)2∣∣∣∣ A + B(ω − ω0)

(ω − ω0)n − ε〈u(0)|Ĥ1|v(0)〉

∣∣∣∣
2

, (36)

where

A = (dA · E0(rA)) (E0(rD) · dD),

B = (dA · E1(rA))(E0(rD) · dD) + (dA · E0(rA))(E1(rD) · dD).

Under the approximation ω′′
0 � ω′

0, the maximal spectral
density TEP at the EP (ε = 0) reads

TEP(ω′
0) = 2π

h̄2

(
ω′2

0

ε0c

)2 |A|2
(ω′′

0 )2n
. (37)

Far from ω′
0 (|ω − ω′

0| � |ω′′
0 |), the quantity ω′′

0 can be
eliminated from the spectral density, resulting in

TEP(ω) = 2π

h̄2

(
ω2

ε0c

)2 |A + B(ω − ω′
0)|2

(ω − ω′
0)2n

. (38)

As well as for the LDOS, the two-point spectral density
demonstrated in Fig. 4 significantly increases at the EP. The
enhancement of T is stronger than that of ρ, because the
Green’s function is squared in Eq. (36). However, in contrast
to the LDOS, the spectral density T (ω) is always positive, pro-
viding us physically meaningful quantities. Being expressed
by means of the Green’s function, the LDOS and spectral
density function cannot be simply related in the whole spectral
range, but we can readily notice a direct proportionality of the
maximal values of these quantities as T (ω′

0) ∼ ρ2
EP(ω′

0).
The peak gets narrower when the order n increases.

For finding the full width at half maximum 2
ω, we

can equate T (ω′
0 + 
ω) ≈ 2π

h̄2 ( (ω′
0 )2

ε0c )2 |A|2

ω2n and 1

2 T (ω′
0) =

1
2

2π

h̄2 ( (ω′
0 )2

ε0c )2 |A|2
(ω′′

0 )2n . It is clear that the peak width 2
ω

decreases for higher EP orders n according to 2
ω =
2(2n+1)/2nω′′

0 . The width reduction is related to the increase
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of the spectral function maximum T (ω′) when the order n
increases.

VIII. EP3 IN THE SYSTEM OF COUPLED RESONATORS

Consider three coupled resonators, each of them having the
same dimensionless eigenfrequency ω0. Coupling coefficients
are defined as follows: κ between resonators 1 and 2, iκ
between resonators 2 and 3, and α exp(iϕ) between 1 and 3.
Then, the dimensionless non-Hermitian Hamiltonian reads

Ĥ (α) =
⎛
⎝ ω0 κ αeiϕ

κ ω0 iκ
αeiϕ iκ ω0

⎞
⎠. (39)

The EP of the third order (EP3) arises at α = 0, when the
eigenvalues of the Hamiltonian (Jordan matrix)

Ĥ0 = Ĥ (0) =
⎛
⎝ω0 κ 0

κ ω0 iκ
0 iκ ω0

⎞
⎠ (40)

are triply degenerate and equal to ω0 (see Ref. [58]). The
right eigenvector |v(0)〉 = 2−1/2(1, 0, i)T follows from the
eigenvalue equation Ĥ0|v(0)〉 = ω0|v(0)〉. The left eigenvector
〈u(0)| = 2−1/2(1, 0, i) can be determined in a similar way,
from 〈u(0)|Ĥ0 = ω0〈u(0)|. The normalization coefficient 2−1/2

is found from the condition (|v(0)〉)†|v(0)〉 = (〈u(0)|(〈u(0)|)† =
1. As the eigenvalue theory of the Jordan matrices demands,
the orthogonality condition 〈u(0)|v(0)〉 = 0 is satisfied.

In the considered example, the perturbation parameter is
the coupling strength, i.e., ε = α, while the perturbation oper-
ator equals

Ĥ1 = dĤ (α)

dα

∣∣∣∣
α=0

=
⎛
⎝ 0 0 eiϕ

0 0 0
eiϕ 0 0

⎞
⎠. (41)

Calculating the matrix element

〈u(0)|Ĥ1|v(0)〉 = ieiϕ, (42)

we readily write the three eigenvalues in each of the non-
Hermitian phases A and B as

ω
(k)
A = ω0 + ε1/3eiϕ/3+iπ/6ei2πk/3,

ω
(k)
B = ω0 + ε1/3eiϕ/3+iπ/6eiπ (2k+1)/3, (43)

where k = 0, 1, 2.
The real and imaginary parts of the eigenvalues Eq. (43) are

depicted in Fig. 5. At EP3, ε = 0, the three eigenvalues coa-
lesce. Departure from the EP3 completely lifts the degeneracy,
bringing us either to phase A for ε > 0 or phase B for ε < 0.
We take ϕ = π/3 in the figure. In phase A, the eigenmode
k = 2 is lossy, whereas the other two modes k = 0, 1 are
amplifying. In phase B, the eigenmodes k = 1, 2 are lossy and
only the mode k = 0 is amplifying. Mode k = 0 (k = 2) is
amplifying (decaying) in both phases.

The two-point spectral density T [see Eq. (36)] responsible
for the RET rate enhancement in the non-Hermitian environ-
ment has the form

T (ω, ε, ϕ) = 2π

h̄2

(
ω2

ε0c

)2∣∣∣∣ A + B(ω − ω0)

(ω − ω0)3 − iε exp(iϕ)

∣∣∣∣
2

. (44)

FIG. 5. (a) Real and (b) imaginary parts of eigenvalues ω(k) ac-
cording to Eq. (43) versus deviation ε from the EP3 for ϕ = π/3.

In Fig. 6(a), we can see that the enhancement of the RET is not
maximal at EP3 (ε = 0). Deviation of the peak from the EP is
caused by compensation of the perturbation ε and deviation
from the eigenfrequency that minimizes the denominator in
Eq. (44). To achieve a singularity of the spectral density,
both the real and imaginary parts of the denominator should
simultaneously vanish. This yields two equations,

ε sin ϕ = −|ω − ω0|3 cos(3ψ ),

ε cos ϕ = |ω − ω0|3 sin(3ψ ), (45)

where ψ = arctan[ω′′
0/(ω′

0 − ω)]. These equations are suf-
ficient for writing coordinates of singular points in the
parametric space (ε, ϕ) as follows:

ε = ±|ω − ω0|3, ϕ = π

2
− 3 arctan

(
ω′′

0

ω′
0 − ω

)
+ πm,

(46)
where m is integer. If ω = ω′

0 as in Fig. 6, then the singular-
ities emerge at ε = ω′′3

0 , ϕ = π , and ε = −ω′′3
0 , ϕ = 0. Thus,

despite the RET enhancement at the EP being finite, there are
singular points of T in the neighborhood of the EP.

In Fig. 6(b), we observe different behaviors of the function
T in the phase A (upper half-space) and B (lower half-space).
In the phase A, we have a single singular point with the
spectral peak corresponding to ω = ω′

0. When moving to the
phase B, the single peak splits into two peaks with symmet-
rically located singularities. Positions of the singularities can
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FIG. 6. The two-point spectral density T (ω, ε, ϕ) for EP3 as a function of (a) the coupling parameter described by ε and ϕ at ω = 1 and
(b) ε and the frequency shift at ϕ = π . Parameters: ω′

0 = 1, ω′′
0 = −0.01, and A = B = 1 + i.

be determined using Eqs. (45). In the case shown in Fig. 6(b),
ϕ = π and, hence,

ε = −|ω − ω0|3 sin(3ψ ), cos(3ψ ) = 0. (47)

The solution of the latter equation is 3ψ = π/2 + πm, where
m is an integer number. Then, the frequency shift

ω − ω′
0

−ω′′
0

= cot
(π

6
+ πm

3

)
(48)

can be written for the three singularities as

ω − ω′
0

−ω′′
0

=
⎧⎨
⎩

cot(π/6) = √
3, m = 0

cot(π/2) = 0, m = 1
− cot(π/6) = −√

3, m = 2.

(49)

Taking the frequencies from this equation and substituting
them into the first Eqs. (47), we get the perturbation param-
eters of the singular points as

ε =
⎧⎨
⎩

−8|ω′′|3, m = 0
|ω′′|3, m = 1
−8|ω′′|3, m = 2.

(50)

These coordinates of the singular points obviously agree with
those calculated in Fig. 6(b).

IX. RET IN THE SYSTEM OF NON-HERMITIAN
MICRODISC RESONATORS

In a further example, we numerically study a system of two
coupled microdisc resonators with attached waveguides as
schematically shown in Fig. 7. The disks have the same radius
equal to 5μm, but their material parameters are different.
The loss and gain microdiscs are characterized by the com-
plex refractive indices nloss = nr + ini and ngain = nr − ini,
respectively, with nr = 2 and ni = 2.539 × 10−4. The waveg-
uides coupled to the resonators are lossless and have the
same refractive index nr . The whole system is embedded
into the background medium with the refractive index n0 = 1.
Distances between the discs and nearby waveguides 0.6μm

are fixed, while the distance between the discs themselves is
variable. Donor D and acceptor A molecules are modeled as
electric dipoles. We place them in the gap between the discs.

In the non-Hermitian system described above, the eigen-
modes of free-standing resonators are associated with
complex eigenfrequencies ωl = ω′

0 − iγ and ωg = ω′
0 + iγ .

When the coupling coefficient κ between the resonators is
equal to the loss-gain coefficient γ of the eigenmodes, a
second-order EP emerges. If one attaches a mirror to one end
of waveguide 1 (see Fig. 7), the system generally has a chiral
exceptional hypersurface of order 2 for any value of coupling,
except κ = γ , where it features an EP4 (see Ref. [59] for
details). Thus, one may reach an EP4 in the system just using
a mirror.

Without a mirror, each single resonator has two degenerate
modes caused by the symmetry between clockwise (CW) and
counter-clockwise (CCW) propagation directions. The mirror
attached to waveguide 1 breaks this symmetry in the lossy
microdisc, so only the CCW mode survives, as discussed in
Ref. [60]. Interaction between these modes results in four su-
permodes (k = 0, 1, 2, 3) in the coupled system. Frequencies
of supermodes are shown in Fig. 8 as a function of the distance
between the discs dgap. Figure 8(a) exhibits existence of EP2 in

FIG. 7. A non-Hermitian system of coupled microdisc resonators
to realize EP2 and EP4. Loss and gain resonators have respectively
eigenfrequencies ωl and ωg. Coupling coefficient between discs
equals κ .
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FIG. 8. (a), (b) Four complex eigenvalues of the system of coupled microdiscs (a) without and (b) with a mirror as a function of the distance
between the disks dgap. Bright and dim curves correspond to the real and imaginary parts, respectively, in the same scale. (c), (d) Modal field
profiles Re[ f z

k (r)] for supermodes of the system of coupled resonators (c) without a mirror (EP2) and (d) with a mirror (EP4). In (a)–(d),
eigenfrequency ω0 = (1266.7 − 9 × 10−3i) THz; in (c), (d) the distance between the disks is dgap = 0.5μm [it corresponds to a vertical line
in (a) and (b)].

the system without the mirror near dgap = d0 = 500 nm. Two
couples of almost degenerate eigenvalues can also be observed
in Fig. 8(b) for the design with the mirror. The structure of the
eigenvectors in both cases, however, is different. In Fig. 8(a),
the pairs of degenerate modes are linearly independent apart
from dgap = d0, thus forming two-dimensional subspaces. As
seen in Fig. 8(c), the real parts of supermodes reside in differ-
ent microdiscs while in Fig. 8(b) the modes coalesce, forming
two exceptional hypersurfaces of the second order intersecting
at d0 to form EP4. In this case, fields of the supermodes in
Fig. 8(d) are distributed over the entire system and differ in
phase.

To calculate the spectral density function T (ω), we utilize
the coupled mode theory developed in Ref. [50] and find the
quasinormal modes supported by the system. We expand the
Green’s function in terms of the single resonator modes |fi〉 as

G =
∑

ik

Bik|fi〉〈fk|. (51)

The matrix of expansion coefficients Bik stems from solving a
matrix equation, which elements are defined by the overlap in-
tegrals. The Green’s function has a diagonal form in the basis
of supermodes as in Eq. (8), where ωm and Em are, respec-
tively, complex eigenfrequencies and fields of the supermodes
of the coupled microdisks. Expansion of the supermodes over
the basis of single resonator modes is determined by means of
diagonalization of the matrix Bik .

Although the diagonalization of Bik is needed for calcula-
tion of resonance frequencies in the coupled system, it is not
necessary for calculating T (ω), as pointed out in Ref. [50].
Moreover, calculation in the basis of modes of bare resonators
is advantageous owing to the fact that norms in this basis
do not turn to zero at EPs, in contrast to those of the super-
modes, which allows one to avoid Jordan expansion around
the EP [50].

We calculate the Ez-polarized supermodes for the two-
dimensional system of coupled resonators exploiting the
procedure described in Ref, [50]. The quasinormal modes of
single resonators are simulated using JCMsuite finite-element
solver [61].

The spectral density T (ω) is calculated using Eq. (2) for the
Green’s function (51). T (ω) is demonstrated in Figs. 9 and 10
in the case of symmetric position of the donor and acceptor
dipoles with respect to the microdiscs (see Fig. 7). As seen in
Fig. 9, the presence of the mirror, making possible the EP4,
noticeably enhances the RET. Both mirror and mirror-free
systems have a peak of the spectral density at the EP2 charac-
terized by ω ≈ ω′

0 and dgap ≈ 500 nm. The effect of the mirror
is well demonstrated in Fig. 10. One notices sharpening of the
resonance with an increase of the spectral density T when the
mirror is present. Although the increase is not so pronounced
as in the analytical dependencies in Fig. 4 since the numerical
simulation is not fully optimized, one can notice narrowing
of the resonance line shape as predicted by theory. One ob-
serves two types of curves in Fig. 10. At dgap = 495 nm,
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FIG. 9. Spectral density function T (ω) for two configurations,
(a) without mirror and (b) with mirror, as a function of frequency and
distance between the discs. Degenerate eigenfrequency equals ω0 =
1266.7 − 9 × 10−3i THz. Tvac is the spectral density for the donor-
acceptor pair in the free space [50].

there are two peaks at the frequencies on the left and on the
right from ω = ω′

0. These peaks correspond to two couples of
supermodes in the PT -symmetric phase. When increasing the
interdisc distance dgap, the peaks come closer and merge. On
the other side from the EP, at dgap = 505 nm, the single peak
is associated with the broken PT -symmetric phase.

X. CONCLUSION

In this paper, we have developed a perturbation theory to
determine the eigenvalues and eigenvectors near EPs of the
nth order. Assuming that the leading order of the eigenvalue
expansion is ε1/n, we have proposed the algorithm for finding
coefficients of the eigenvalue and eigenvector series. More
intricate cases of the perturbation theory near EPs can be
found in the literature [52,62,63]. The eigenvalues as a per-
turbation series have allowed distinguishing two phases in the
non-Hermitian system corresponding to positive and negative
values of the perturbation parameter. Using the perturbation
theory, we have defined the Green’s function near the EP of
arbitrary order. This Green’s function can be exploited for
finding the LDOS and RET in non-Hermitian environments.

FIG. 10. Spectral density function T (ω) for several values of the
parameter dgap. Solid and dashed lines correspond to the resonators
without and with the mirror, respectively.

The LDOS is shown to be either maximized or unaltered
at the EP, if the losses of eigenmodes are small (for high-
Q systems) or great (for low-Q systems), respectively. The
similar behaviors can be found for RET. We have revealed
the spectral dependencies of the LDOS and RET and demon-
strated their features in several examples. In particular, we
have considered a system of three coupled cavities possess-
ing a third-order EP and determined the RET spectrum with
singular points in each non-Hermitian phase. For a system of
coupled microdiscs with attached waveguides, we consider a
chiral non-Hermiticity induced by the mirror at the end of one
of the waveguides. The mirror facilitate appearance of the EP
of fourth order and, therefore, enhancement of the RET. We
envisage benefits of our results in taking a deeper insight into
nano-optics of non-Hermitian systems.
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APPENDIX A: COEFFICIENTS cm,α

Equation (16) can be rewritten using the substitution
|wm〉 = ∑m

α=0 cm,α|v(α)〉 as

n−2∑
α=0

cm,α+1|v(α)〉 =
m∑

k=1

n−1∑
α=0

cm−k,αλk|v(α)〉, (A1)

where we use the chain equation (Ĥ − λ(0)In)|v(α)〉 = |v(α−1)〉
and change the summation index. Multiplying this equation by
the left eigenvector 〈u(β )| and applying the orthonormal-
ization conditions 〈u(β )|v(α)〉 = δn−2−β,α−1, we obtain the
equation relating coefficients cm,α to λk as

cm,α+1 =
m∑

k=1

cm−k,αλk . (A2)

Since |w0〉 = |v(0)〉 and simultaneously |w0〉 =∑n−1
α=0 c0,α|v(α)〉, we can write a kind of boundary condition

for the coefficients cm,α as follows: c0,0 = 1 and c0,α>0 = 0.
Using Eq. (A2), we readily get c1,α+1 = c0,αλ1 = 0 for α > 0,
which is equivalent to c1,α>1 = 0. It is clear that, in general,

cm,α>m = 0. (A3)

This means that we have a set of orthogonality relations
〈u(k)|wm〉 = cm,n−1−k = 0, if m < n − 1 − k.

In a particular case of equal indices, the coefficients can
be presented as cm,m = ∑m

k=1 cm−k,m−1λk . Since cm−k,m−1 =
0 for k > 1, there is a single nonzero term in the sum and
cm,m = cm−1,m−1λ1. Therefore,

cm,m = c0,0λ
m
1 = λm

1 . (A4)

Right eigenvector |v(0)〉 can be excluded from the de-
composition of vectors |wm>0〉, because it has been already
accounted for as a perturbation-free solution. This means that
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the coefficients cm,0 = δm,0, while

cm,1 =
m∑

k=1

cm−k,0λk =
m∑

k=1

δm,kλk = λm (A5)

and

cm,2 =
m∑

k=1

cm−k,1λk =
m∑

k=1

λm−kλk . (A6)

In general, coefficients cm,α are expressed in terms of λk as

cm,α�m =
k1+...+kα=m∑

k1,...,kα=1

λk1 . . . λkα
. (A7)

Thus, the perturbation vectors yield

|wm〉 =
m∑

α=0

cm,α ({λk})|v(α)〉. (A8)

Here m spans values from 0 to n − 1 and {λk} is the set of
eigenvalue decomposition coefficients.

APPENDIX B: PERTURBATIVE CORRECTIONS
λm TO EIGENVALUES

To determine λm, Eq. (15) at m � n is multiplied by the left
eigenvector 〈u(0)|. Remembering that 〈u(0)|(Ĥ − λ(0)In) = 0,
we obtain

〈u(0)|Ĥ1|wm−n〉 =
m∑

k=1

λk〈u(0)|wm−k〉. (B1)

Using the inner product 〈u(k)|wm〉 = cm,n−1−k introduced
in Appendix A, the right-hand side becomes

∑m
k=1 λkcm−k,n−1

coinciding with the right-hand side of Eq. (A2). Thus, we
write

cm,n�m =
m∑

α=0

cm−n,α〈u(0)|Ĥ1|v(α)〉. (B2)

For m = n, we know that cn,n = λn
1 and c0,α = δ0,α . Then

the degeneracy is removed and the leading-order correction
for eigenvalues k = 0, . . . , n − 1 reads

λ
(k)
1 = (〈u(0)|Ĥ1|v(0)〉)1/nei2πk/n. (B3)

Up to the end of this Appendix, the superscript (k) will be
dropped, but we keep in mind that the expressions we derive
correspond to a certain eigenvalue. The following perturbation
term λ2 can be found from

cn+1,n =
n+1∑
α=0

c1,α〈u(0)|Ĥ1|v(α)〉. (B4)

On the right-hand side of this equation, there is a single non-
vanishing coefficient c1,1 = λ1, while on the left-hand side,
we have the sum of products of λn−1

1 and λ2 according to the
relationship Eq. (A7):

nλn−1
1 λ2 = λ1〈u(0)|Ĥ1|v(1)〉. (B5)

Thus, we get

λ2 = 1

n
λ2−n

1 〈u(0)|Ĥ1|v(1)〉. (B6)

Perturbation term λp+1 can be taken from

k1+...+kn=n+p∑
k1,...,kn=1

λk1 . . . λkn =
p∑

α=0

cp,α〈u(0)|Ĥ1|v(α)〉. (B7)

On the left-hand side of this equation, we can always distin-
guish the highest-order perturbation term λp+1 (the remainder
of this sum depending on λ1, . . . , λp is denoted �′), then

C1
n λn−1

1 λp+1 + �′ =
p∑

α=0

cp,α〈u(0)|Ĥ1|v(α)〉 (B8)

and correction equals

λp+1 = 1

n
λ1−n

1

[
p∑

α=0

cp,α〈u(0)|Ĥ1|v(α)〉 − �′
]
. (B9)

The remainder �′ is the known quantity, because it depends
on the lower-order corrections that can be found in a similar
way.

APPENDIX C: DENOMINATOR OF THE GREEN’S
FUNCTION Eq. (26)

Owing to the similarity of the perturbation theory for left
〈u| and right |v〉 eigenvectors, the inner products 〈δu(k)|v(0)〉
and 〈u(0)|δv(k)〉 coincide, being equal to

〈δu(k)|v(0)〉 = 〈u(0)|δv(k)〉 =
∞∑

m=1

ε
m
n
〈
u(0)

∣∣w(k)
m

〉

=
∞∑

m=1

ε
m
n cm,n−1 ≈ ε

n−1
n cn−1,n−1 = ε

n−1
n λn−1

1 (C1)

in the leading order, where we use the expansion for |w(k)
m 〉

and equality cm,α>m = 0. One more term in the denominator
of the Green’s function Eq. (26) can be written as

〈δu(k)|δv(k)〉 =
∞∑

m=1

∞∑
m′=1

ε
m+m′

n
〈
y(k)

m

∣∣w(k)
m′

〉
. (C2)

In the decomposition 〈ym| = ∑n−1
α=0 dm,α〈u(α)|, similar to that

for |wm〉, the coefficients dm,α meet the same relationships as
cm,α . The inner product can be presented as

〈ym|wm′ 〉 =
∑
α,α′

dm,αcm′,α′ 〈u(α)|v(α′ )〉 =
n−1∑
α=0

dm,αcm′,n−1−α,

(C3)
where we account for the orthonormalization condition
〈u(α)|v(α′ )〉 = δn−2−α,α′−1. As we have discussed earlier,
nonzero coefficients d and c are realized for, respectively,
α � m and n − 1 − α � m′, that is, for m + m′ � n − 1. In
the leading order, m + m′ should be minimal and, hence,
takes the value n − 1. Then the single term corresponding to
m′ = n − 1 − m is left in the sum over m′:

〈δu(k)|δv(k)〉 =
n−2∑
m=1

ε
n−1

n
〈
y(k)

m

∣∣w(k)
n−1−m

〉
. (C4)

A couple of inequalities α � m and n − 1 − α � m′ in the
case m′ = n − 1 − m recasts as α � m and α � m, bringing
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us also to the single value α = m. Then the inner product is
reduced to

〈ym|wn−1−m〉 = cn−1−m,n−1−mdm,m = λn−1−m
1 λm

1 = λn−1
1 .

(C5)
It does not depend on m, therefore, we rewrite Eq. (C4) as

〈δu(k)|δv(k)〉 = ε
n−1

n (n − 2)λn−1
1 . (C6)

The denominator of the Green’s function Eq. (26) in the lead-
ing order, thus, equals ε

n−1
n λn−1

1 .

APPENDIX D: CALCULATION OF SUMS S1 AND S2

Closed-form expressions for the sums over eigenmodes can
be determined using the auxiliary function F (a, b) defined as
a common denominator of S1 and S2:

F (a, b) =
n−1∏
k=0

[a exp(−i2πk/n) + b], (D1)

where a = λ − λ(0) and b = −ε1/nη. The function F can be
straightforwardly calculated; it equals

F (a, b) = (−1)n−1an + bn. (D2)

At the same time, the sums can be written in terms of the
derivatives and indefinite integral as follows:

S1 = 1

F

∂F

∂b
, S2 = ∂

∂b

∫
S1da. (D3)

After some algebra, we arrive at Eqs. (28).

APPENDIX E: LDOS AT THE EP

Here we study the LDOS given by Eq. (34) at ε = 0. In
general, the field parameters α = α′ + iα′′ and β = β ′ + iβ ′′
are complex. Then the LDOS takes the form

ρEP(ω) = 6ω[nα̃′ω′′
0 + α̃′′
ω + (n − 1)β̃ ′ω′′

0
ω + β̃ ′′
ω2]

πc2
ωn+1
,

(E1)
where 
ω = ((ω − ω′

0)2 + ω′′2
0 )1/2, α̃′ = α′[sgn(ω −

ω′
0)]n−1, α̃′′ = α′′[sgn(ω − ω′

0)]n, β̃ ′ = β ′[sgn(ω − ω′
0)]n−2,

and β̃ ′′ = β ′′[sgn(ω − ω′
0)]n−1.

Assume first that real and imaginary parts of α and β are
nonzero and much greater than ω′′

0 . The LDOS is maximized
at the frequency ω = ω′

0 corresponding to the minimal de-
nominator. In this case, 
ω = ω′′

0 and the LDOS at the EP
is great, but finite:

ρEP(ω′
0) = 6ω′

0[nα̃′ + α̃′′]
πc2(ω′′

0 )n
. (E2)

Here we have neglected the terms proportional to ω′′
0 in the

nominator.

FIG. 11. Determinant of the eigenvector matrix V .

In the limit |ω − ω′
0| � |ω′′

0 |, the terms containing ω′′
0 can

be neglected, resulting in

ρEP(ω) = 6ω[α′′ + β ′′(ω − ω′
0)]

πc2(ω − ω′
0)n

. (E3)

If dipole’s polarization is orthogonal to mode’s polariza-
tion, so either (ed · E0(r)) = 0 or (Ẽ0(r) · ed ) = 0, then α = 0
and we get

ρEP(ω) = 6ω[(n − 1)β̃ ′ω′′
0 + β̃ ′′
ω]

πc2
ωn
. (E4)

Then, at ω = ω′
0, the peak is less pronounced, being

ρEP(ω′
0) = 6ω′

0[(n − 1)β̃ ′ + β̃ ′′]
πc2(ω′′

0 )n−1
. (E5)

APPENDIX F: MODES OF NON-HERMITIAN
COUPLED MICRODISKS

Hybrid quasinormal modes of the coupled system are ex-
panded over basis modes as

|f̃k〉 =
∑

i

Vik|fi〉, (F1)

where Vik is a 4 × 4 matrix of expansion coefficients, each
column of which is a vector of a hybrid mode in the basis |fi〉.
These columns are also the eigenvectors of the Hamiltonian
matrix. At an EP, two or more eigenvectors coincide, so the
rank of the matrix V is less than its dimensionality and deter-
minant of the matrix V at EP must be zero. Figure 11 shows
that numerically calculated hybrid quasinormal modes indeed
possess this property.

Note that for the configuration with the mirror, det V is
suppressed for the whole range of the values dgap, indicating
existence of an exceptional hypersurface [30].
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