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Quasiparticle excitations in a one-dimensional interacting topological insulator:
Application for dopant-based quantum simulation
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We study the effects of electron-electron interactions on the charge excitation spectrum of the spinful Su-
Schrieffer-Heeger (SSH) model, a prototype of a one-dimensional bulk obstructed topological insulator. In view
of recent progress in the fabrication of dopant-based quantum simulators we focus on experimentally detectable
signatures of interacting topology in finite lattices. To this end we use Lanczos-based exact diagonalization
to calculate the single-particle spectral function in real space which generalizes the local density of states to
interacting systems. Its spatial and spectral resolution allows for the direct investigation and identification of edge
states. By studying the noninteracting limit, we demonstrate that the topological in-gap states on the boundary are
robust against both finite-size effects as well as random bond and onsite disorder which suggests the feasibility
of simulating the SSH model in engineered dopant arrays in silicon. While edge excitations become zero-energy
spinlike for any finite interaction strength, our analysis of the spectral function shows that the single-particle
charge excitations are gapped out on the boundary. Despite the loss of topological protection, we find that these
edge excitations are quasiparticlelike as long as they remain within the bulk gap. Above a critical interaction
strength of Uc ≈ 5t these quasiparticles on the boundary lose their coherence which is explained by the merging
of edge and bulk states. This is in contrast to the many-body edge excitations which survive the limit of strong
coupling, as established in the literature. Our findings show that for moderate repulsive interactions the nontrivial
phase of the interacting SSH model can be detected through remnant signatures of topological single-particle
states using single-particle local measurement techniques such as scanning tunneling spectroscopy.
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I. INTRODUCTION

The research of topological phases of matter in condensed
matter physics has rapidly grown since the theoretical pre-
diction [1–4] and experimental discovery [5] of topological
insulators (TIs). A TI is characterized by an insulating bulk
with conducting zero-energy states at its boundary. These
boundary states are protected against local perturbations as
long as certain symmetries are preserved and the bulk gap
does not close. For noninteracting TIs, all possible topological
phases, distinguished by a Z or Z2 number called topological
invariant, are classified in dependence of the spatial dimension
and antiunitary symmetries of the single-particle Hamiltonian
[6,7]. This classification scheme does not apply to many-body
Hamiltonians and, except for fermions in one dimension (1D)
[8,9], the classification of interacting topological phases re-
mains an open problem. As demonstrated for many systems
[10,11] the effects of electron correlations can be versatile.
In 1D quartic interactions can modify the classification of
topological phases [12,13] while in the case of the proposed
topological Mott insulator, repulsive Hubbard interactions can
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generate nontrivial topological states [14]. The study of such
strongly correlated electron materials, typically framed in
terms of variants of the Fermi-Hubbard model, is notoriously
difficult as these systems are neither amenable to perturbative
methods nor to classical numerical simulations. The large
array of exotic phenomena originating from the presence of
strong electron electron interactions, ranging from high-Tc su-
perconductors and spin liquids to correlated TIs, have fueled
efforts to realize fermionic many-body physics in quantum
simulation platforms like ultracold atoms [15,16] and semi-
conductor nanostructures [17]. In particular, recent advances
in the engineering of dopant-based quantum dot arrays using
the atomic precision of scanning tunneling lithography have
brought the simulation of Fermi-Hubbard Hamiltonians in
solid-state systems within feasible reach [18–20]. A large
range of parameters can be accessed in dopant systems to ob-
serve the desired fermionic phases, including strong Hubbard
interactions and low effective temperatures [21].

One important advantage of these semiconductor archi-
tectures over other platforms is the combination of standard
nonlocal transport measurements [20] with single-site mea-
suring techniques like scanning tunneling spectroscopy (STS),
a local method which reveals real-space information (although
measured high-quality data can in principle also provide
information in momentum space via Fourier transformation
[22,23]). It allows to probe electronic energy spectra as well
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as local spin and charge transport [21,24] and has proven to
play a pivotal role for the study of topological band structures
[22,25–27]. STS measures the tunneling conductivity dI/dV
for an applied voltage V which is proportional to the local
density of states (LDOS) of the sample surface. Lately, STS
has repeatedly been applied to correlated systems [28–31] and
there are first attempts to understand dI/dV spectra in the
presence of strong electron interactions [32–36]; dI/dV can
be formalized in terms of the single-particle spectral function
(SPSF) in real space [35] which generalizes the LDOS to
interacting systems. The goal of this work is to demonstrate
the utility of the real-space SPSF as a tool to understand
STS spectra in the presence of electron correlations and in
particular to identify interacting topological phases.

To this end we calculate the SPSF of a correlated
topological insulator in 1D with an emphasis on quasi-
particle edge excitations. As a minimal model combining
both strong correlations and nontrivial topology we study
the Su-Schrieffer-Heeger-Hubbard (SSHH) model of spin-
1
2 fermions, sometimes also referred to as Peierls-Hubbard
model [37]. The noninteracting Su-Schrieffer-Heeger (SSH)
model [38] describes fermions on a chain with a gapped spec-
trum due to an alternating hopping amplitude. At the interface
of different dimerization patterns it features a bulk-gap clos-
ing and zero-energy states protected by chiral symmetry. As
such it constitutes a prototype of a 1D TI of the BDI class
[39–43], which has been realized in classical RLC circuits
[44]. In contrast to topological systems in d > 1 the non-
trivial phase admits an atomic limit which classifies it as a
bulk obstructed phase [45,46] (see section “Discussion” for
details). Different variants of the interacting SSH model were
studied in the literature [20,42,47–54]. While in the spinless
case strong nearest-neighbor interactions drive the system into
a trivial charge density wave [50], it was shown that for spinful
fermions the topological phase is robust towards repulsive
onsite interactions [47]. There the bulk-boundary correspon-
dence remains valid and the associated zero-energy states are
found to be collective excitations of two entangled edge spins
of opposite sign [47,48,51].

In this work, we employ Lanczos-based exact diagonaliza-
tion (ED) to obtain the many-body spectrum and states from
which the spectral functions are calculated. We find that the
quasiparticle charge edge states lose their topological nature
as a Mott gap opens up in both bulk and boundary [48]. Nev-
ertheless, we show that for a substantial range of interaction
strengths distinct quasiparticle excitations remain as remnant
signatures of the topological SSH edge states and serve as
indicators of the underlying bulk topology. Ultimately, for
strong couplings U/t � 5 (for 12-site chains) the quasiparticle
description on the boundary breaks down as edge and bulk
excitations start to substantially overlap. The rest of this paper
is structured as follows: In Sec. II we define the SPSF and
discuss the principle behind ED. The model Hamiltonians are
introduced in Sec. III. In Sec. IV we discuss the SPSF in
the noninteracting case and present a disorder analysis. The
interacting case is presented in Sec. V where we show energy
spectra, SPSF, and the spin-spin correlation function of the
SSHH model. In Sec. VI we address the topic of odd chains.
In the discussion in Sec. VII we outline the consequences
for future experiments and elaborate on bulk obstructed vs
topological phases. We also discuss the topological phase

diagram of the SSHH model and comment on its relation to
the Haldane phase of spin-1 chains. In Sec. VIII we briefly
summarize our main findings and their implications. The prin-
ciples of ED and the Lanczos algorithm are elaborated in
Appendix A. In Appendix B we provide more details on the
concept and calculation of the SPSF.

II. METHODS

Owing to its ability to measure the electronic spectrum of
surface states with a high spatial resolution, STS shows great
utility for the investigation of topological boundary states. The
main observable in STS is the tunneling current I between
states of the tip and the sample’s surface in dependence of the
applied voltage V . Based on Bardeen’s transfer Hamiltonian
formalism [55] it can be expressed as

I = 2πe

h̄

∑
μ,ν

f (Eμ)[1 − f (Eν + eV )]

× |Mμν |2δ(Eμ − Eν ), (1)

where f (E ) is the Fermi function and Mμν is the tunneling
matrix element between the single-particle states of the tip ψμ

and the surface of the sample ψν .
Under the right circumstances [56], one can show that the

conductivity

∂I

∂V
∝ ρs(r0, EF − eV ) (2)

mainly probes variations in the LDOS of the sample’s surface
at the tip position r0. This interpretation of dI/dV spectra
is limited to noninteracting systems since the concept of an
LDOS is based on a single-particle picture. Assuming a cur-
rent small enough for the sample to return to its ground state
after each tunneling event, the LDOS [57] and thereby STS
tunneling [58] can be generalized to arbitrary interactions
via the SPSF in real space. Formally, the real-space spectral
function is defined via the imaginary part of the retarded
single-particle Green’s function [57], i.e.,

Ai(ω) = − 1

π
Im

[
Gr

i (ω)
]
. (3)

To evaluate the Green’s function we consider the numeri-
cally convenient Lehmann representation as well its continued
fraction expansion. Both approaches are explained in de-
tail in Appendix B. We apply ED to compute the SPSF, a
numerical method for solving the many-body Schrödinger
equation which involves no approximation and produces the
exact eigenenergies and eigenstates of the full interacting
Hamiltonian. As such, it allows to study static and dynamic
correlation functions of the ground state and, in principle,
for finite temperatures. It further serves to benchmark the
predictions of other methods. The drawback of this method
is that computational time and memory requirements are pro-
portional to the dimension of the Hilbert space which grows
exponentially. Here we restrict our analysis to sufficiently
short chains, what can be dealt with using ED. This is justified
by assuming that the first generation of experiments will also
be limited to short chains [20]. A detailed discussion of ED
can be found in Appendix A.
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(a)

(b)

FIG. 1. The two different chain configurations of the SSH model.
The sublattices A and B are colored as red and blue sites, respec-
tively. (a) The trivial insulating phase is characterized by a negative
dimerization δt < 0 such that the strong bonds (solid lines) connect
two sites of the same unit cell (orange shaded area). (b) For posi-
tive dimerization δt > 0 the chain becomes topological with weakly
bound (dashed lines) edge sites. The strong bonds are now between
sites of different unit cells.

III. MODEL

To investigate the interplay of topological band structure
and repulsive electron correlations in one dimension, we study
the low-energy physics of the SSHH model, a dimerized
variant of the Fermi-Hubbard model. The kinetic properties
are described by the tight-binding SSH Hamiltonian, which
allows for a topological phase transition while interactions are
taken into account by a local Hubbard term. Before introduc-
ing the SSHH model we begin with a brief presentation of the
basic properties of the noninteracting SSH model. Studying
the free-fermion case allows us to understand the effect of
repulsive interactions on the topological phase. Furthermore,
since the quadratic Hamiltonian of the SSH model is exactly
solvable we can verify that the relevant signatures of topolog-
ical edge states appearing in large chains remain present for
the limited system sizes accessible to a treatment with ED.

A. Su-Schrieffer-Heeger model

The SSH model describes noninteracting spin- 1
2 fermions

on a one-dimensional lattice subjected to a Peierls instability
which is manifested by spatially alternating hopping ampli-
tudes [38]. The corresponding single-particle Hamiltonian
reads as

ĤSSH =
∑

i,σ=↑,↓
(t + (−1)iδt )[ĉ†

i+1,σ ĉi,σ + H.c.], (4)

with hopping amplitude t modulated by the dimerization δt .
The operator ĉi,σ annihilates an electron with spin σ on site i.
For convenience, we choose t ≡ 1 which sets the energy scale
for all parameters appearing in the Hamiltonian. A stagger-
ing in the hopping amplitude leads to a doubling in size of
the unit cell, which is comprised of two atoms belonging to
different sublattices A and B depicted in Fig. 1. The bipartite
lattice structure implies that the Hamiltonian exhibits a chiral
symmetry defined as


̂Ĥ 
̂† = −Ĥ , (5)

where 
̂ = P̂A − P̂B is a unitary and Hermitian operator rep-
resenting a chiral transformation which is related to the

(a)

(b)

(c)

(d)

FIG. 2. Single-particle spectrum and edge-state wave functions
of the SSH model for chains of L = 400 [(a) and (c)] as well as
L = 12 [(b) and (d)] lattice sites. The wave functions are plotted for
δt/t = 0.5.

projection operators P̂A and P̂B onto the sublattices A and
B, respectively. From Eq. (5), it follows that each eigen-
state ψ = (ψA, ψB)T with energy E has a chiral symmetric
partner ψ ′ = 
̂ψ = (ψA,−ψB)T with energy −E [43]. At
half-filling, where the number of electrons equals the number
of lattice sites, the deviation from a regular chain with uniform
hoppings opens up an energy gap �E = 4|δt |, rendering the
system electronically insulating. The modulation pattern of
hopping amplitudes can be thought of as alternating weak and
strong bonds and the mapping δt → −δt effectively corre-
sponds to a global translation of the bond pattern by half a
unit cell which is not a symmetry of the SSH model (4). In the
case of a chain with open boundary conditions (OBC) where
translational invariance is broken, this amounts to changing
the nature of the edge bonds from strong to weak. The phys-
ical implications of this transformation on the edge states are
best illustrated in the fully dimerized limit |δt | = t where the
weak bonds (dashed lines in Fig. 1) completely vanish. For
δt < 0 the chain separates into strongly coupled dimers where
both dimer sites are part of the same unit cell [Fig. 1(a)].
In contrast, as shown in Fig. 1(b), for δt > 0 each dimer
site lies in a different unit cell which results in a chain with
isolated sites on both edges, each on a different sublattice.
Since hopping on these sites is completely suppressed (in the
fully dimerized limit) the corresponding single-particle edge
states are localized and have zero energy [Fig. 2(a)]. The
latter is a consequence of the chiral symmetry (5) and the
explicit representation of 
̂ in terms of sublattice operators
which implies that a state with support on a single sublattice
is its own chiral partner with E = 0. In the case of a partially
dimerized chain 0 < δt < 1, the edge sites are weakly coupled
to the bulk of the chain and the edge-wave functions hybridize
to form a chiral pair of symmetric and antisymmetric super-
positions [Fig. 2(d)], each with finite energies of opposite sign
[Fig. 2(b)]. The hybridization of the edge states is a finite-size
effect since their wave functions decay exponentially into the
bulk with the system size. Hence, the overlap between both
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edge states only vanishes in the thermodynamic limit where
their energies become exactly zero, exemplified in Fig. 2(c)
where for L = 400 sites and δt/t = 0.5 the thermodynamic
limit has effectively been reached. Nevertheless, even for fi-
nite systems the edge states remain highly localized since their
energies lie deep within the bulk gap close to zero energy, and
only have spectral weight on either sublattice. As such, these
states can be considered topological as they remain protected
by chiral symmetry.

B. Su-Schrieffer-Heeger-Hubbard model

To study the effect of electronic correlations on the
topological edge states of the SSH model, we complement
Eq. (4) with repulsive onsite interactions. The full many-body
Hamiltonian is given by

ĤSSHH = ĤSSH + ĤU , (6)

ĤU = U
∑

i

(n̂i,↑ − 1/2)(n̂i↓ − 1/2), (7)

where n̂i,σ = ĉ†
i,σ ĉi,σ is the fermionic number operator and

U > 0 is the amplitude of the onsite Hubbard interaction.
In the following we consider a chain of zero total magneti-
zation, i.e., N↑ = N↓. Further, we focus on half-filling N =
L, where the chemical potential is μ = 0 and the average
occupation per site is 〈n̂i〉 = 1. In this case, Eq. (7) pre-
serves particle-hole and time-reversal symmetry and it follows
that the SSHH Hamiltonian (6) inherits the chiral symmetry
of its noninteracting counterpart [47]. Note that Eq. (7) is
equivalent to U

∑
i n̂i,↑n̂i,↓ up to a shift of the chemical po-

tential μ → μ + U/2. Writing the interaction in the form of
Eq. (7) the relation between repulsive (U > 0) and attractive
(U < 0) interactions becomes explicit at half-filling. Under
the particle-hole transformation of a single spin species, say
σ =↓, given by ĉi,↓ → (−1)(i+1)ĉ†

i,↓ with (−1)(i+1) = ±1
for a site on sublattice A and B, respectively, the interac-
tion in Eq. (7) changes sign U → −U while the hopping
Hamiltonian ĤSSH remains unaffected [59]. Since the particle
number is mapped to the magnetization (up to a constant), i.e.,
(ni,↑ − ni,↓)/2 → 2(ni,↑ + ni,↓) − 1, spin ordering in the re-
pulsive case is related to charge ordering in the attractive case.
At half-filling, the energy of charge excitations, which appear
in the retarded Green’s function (B7), are invariant under a
sign change in U . Hence, our results for the SPSF carry over
to the attractive Hubbard model (as we have tested explicitly).
Similarly, the topological invariant, which can be calculated
from the Green’s function, remains unchanged [47].

For vanishing dimerization δt = 0, i.e., the gapless tran-
sition point of the SSH model, Eq. (6) reduces to the
Fermi-Hubbard Hamiltonian. It is well known that at half-
filling and U > 0, this model describes a Mott insulator with
an energy gap in the charge sector, i.e., adding an electron to
the system inflicts an energy cost proportional to U/t . The in-
sulating behavior is caused by electron localization due to the
repulsive Hubbard interactions which tend to suppress double
occupation such that a configuration where each lattice site is
occupied by a single electron minimizes the total energy. For
strong couplings U/t � 1, second-order perturbation theory
shows that the dynamics of the Hubbard model are effec-

(b)

(a)

FIG. 3. Single-particle spectral function of the SSH model in the
topological phase (δt = 0.5) for (a) L = 400 and (b) L = 12 lattice
sites. The red curves depict the edge site (i = 1), the blue curves refer
to a bulk site (i = L/2). The zeros of the latter are slightly shifted
upwards for means of visibility. All results are calculated for η =
0.025.

tively described by a spin- 1
2 Heisenberg Hamiltonian, i.e., the

low-energy physics are essentially governed by gapless spin
excitations [60,61]. Hence, the closing of the bulk gap at the
critical dimerization of the SSH model δt = 0, a necessary
condition of a topological phase transition, remains in the
presence of repulsive interactions, although now in the spin
instead of the charge sector [47,48,53].

IV. FREE ELECTRONS

A. Finite-size analysis

For noninteracting systems the notion of a topological
phase transition is based on the closing of the bulk gap and
formally applies only to a system in the thermodynamic limit
(L → ∞) where the energy levels form dense bands. In con-
trast, for a finite number of lattice sites, the energy spectrum
becomes discrete which may yield a finite-energy gap for
all values of the dimerization. Furthermore, the dimerization
for which the bulk gap reaches its minimum is shifted from
zero to a positive value. Both the size of the energy gap at
its minimum as well as the shift in dimerization grow with
decreasing system size which can be seen in Fig. 2 where the
single-particle spectrum is shown for a chain of (a) L = 400
and (b) L = 12 sites. Despite the absence of a gap closing,
for sufficiently large and positive dimerization strengths two
eigenstates appear close to zero energy within the bulk gap
corresponding to the hybridized topological edge states. Their
real-space wave functions are shown in Figs. 2(c) and 2(d)
for both system sizes. While in the large-L limit each edge
state is localized on a single edge, at finite chain lengths the
overlap between both wave functions becomes sufficiently
large for them to hybridize into symmetric and antisymmetric
superpositions. The SPSF of an edge and bulk site in the
topological phase is shown in Fig. 3 for chains of (a) L = 400
and (b) L = 12 sites, respectively. The zero line of the bulk
SPSF is shifted slightly upwards to support visibility. As
expected for the insulating SSH model in the limit of large
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FIG. 4. SPSF of an edge site across the phase transition from
topological (δt > 0) to trivial (δt < 0) phase. The orange curves are
calculated for 12 sites while the blue ones refer to chains of 400 sites.
All curves are normalized with respect to their maximum.

chain lengths (L = 400), the bulk states in Fig. 3(a) form two
bands separated by an energy gap. For positive values of the
dimerization the SPSF of an edge site features two excitation
peaks within the bulk gap close to zero energy. Due to a
finite peak width and energy discretization, these peaks both
appear to lie at ω = 0. Formally, this would only be the case
either in the thermodynamic limit (L → ∞ with N/L = 1) or
fully dimerized limit (δt = t) where the overlap between the
wave functions of both edges vanishes and their respective
energies become exactly zero. In the limit of η → 0+, the
zero-energy peak splits into two delta functions located at
small but finite energies symmetrically around ω = 0. Since
experimental measurements are conducted at finite temper-
atures and limited to finite-energy resolutions, the observed
excitation spectra are always subject to peak broadening. To
account for this deviation from a delta-peaked spectrum we
chose a convergence factor of η = 0.025.

The origin of the edge peaks can be understood by consid-
ering the single-particle processes which are mapped out by
the SPSF. Since at half-filling only two of the four possible
edge states (spin up and down per edge) are filled, adding
an electron to the edge will lead to further occupation of a
zero-energy state corresponding to an peak at ω = 0. Simi-
larly, the removal of an electron from one of the zero-energy
edge states does not change the overall energy. Due to the
coinciding location of both excitations, the amplitude of the
resulting peak in Fig. 3 is twice as large as for the individual
transition processes. For comparison, in Fig. 3(b) we again
show the SPSF for an edge and a bulk site, this time for a
12-site chain. The increased level spacing of smaller systems
is clearly visible in the peak structure of the bulk states.
Further, the ratio of peak amplitudes between edge and bulk
states is strongly affected by the number of lattice sites. In
smaller systems the conserved spectral weight is distributed
over fewer excitations which is compensated by an increase in
the peak amplitudes. Nevertheless, as long as the dimerization
is large enough, the essential signatures for determining the
topological nature of the system, i.e., the bulk gap and edge
excitations close to zero energy, remain present even for small
chains. In Fig. 4 we show the SPSF of an edge site across
the topological phase transition for small (orange) and large
(blue) chains. In the thermodynamic limit the SPSF changes
drastically when crossing the critical value δt = 0. The zero-

energy peak persists for small but positive dimerization and
vanishes when the dimerization changes its sign where edge
excitations become gapped as expected for a trivial insulator.
At δt = 0 the bulk gap closes and the SSH model reduces
to the simple tight-binding chain with metallic energy spec-
trum. In contrast, for small chains both edge states overlap
and gap out close to the transition point δt = 0, as expected
from Fig. 2(a) and only for δt/t � 0.35 (with η = 0.025) the
edge states become (approximately) gapless and peaked at
zero energy. On the other hand, for δt � 0 the same SPSF
becomes bulklike which clearly indicates a trivial insulating
phase. In conclusion, the topologically protected edge states
of the SSH model remain present for the small system sizes
which are accessible to the numerical treatment with ED (and
small quantum dot arrays) as long as the dimerization is large
enough such that the system lies deep within the topological
phase. Furthermore, the relevant signatures to experimentally
identify a topological phase in STS experiments, namely, the
zero-energy excitations on the boundary, are observable in the
SPSF which in the limit of η → 0+ agrees with the LDOS for
noninteracting systems.

B. Disorder analysis

On the path towards scalable quantum simulation in semi-
conductor nanostructures, a crucial question is whether the ex-
perimental signatures are robust against lattice imperfections
and other sources of disorder encountered experimentally. In
this section we discuss two common types of random disorder,
namely, nonmagnetic bond and onsite disorder. The effect of
both types on the localization of edge states in the SSH model
has been studied previously in Refs. [62,63]. The former
refers to local variations in the hopping amplitudes which we
incorporated by adding a site-dependent hopping contribution
ti to Eq. (4), randomly sampled from an interval [−�t,�t].
The second disorder contribution we consider represents the
influence of stray electrostatic fields. To account for these
we include an onsite potential μi randomly drawn from an
interval [−�μ,�μ], which has the form of a local chemical
potential. The modified Hamiltonian is given by

Ĥdis
SSH =

∑
i,σ=↑,↓

(t + (−1)iδt + ti )[ĉ
†
i+1,σ ĉi,σ + H.c.]

+
∑

i

μin̂i, (8)

with occupation number operator n̂i = n̂i,↑ + n̂i,↓. We focus
in our analysis on the impact both forms of disorder have
on the spectral properties of the edge modes as those are the
crucial topological signatures accessible in STS experiments.
Therefore, we calculated the energy spectrum of the disor-
dered Hamiltonian (8) averaged over 150 random disorder
configurations and in dependence of the disorder interval �t .
The results for a topological chain (δt/t = 0.5) are shown
in Fig. 5 with (orange) and without (blue) onsite disorder
present. We calculated spectra for 12 (a) and 50 (b) sites.
The dots depict the averaged single-particle energies while
the shaded areas correspond to the standard deviation due to
disorder averaging. For the edge states to be experimentally
detectable in STS, their respective energies have to lie within
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(a)

(b)

FIG. 5. Disordered energy spectra averaged over 150 random
disorder realizations of a dimerized chain (δt = 0.5) of 12 sites
(a) and 50 sites (b), respectively. The standard deviation of the
disorder averaging is depicted by bluish (�μ = 0) and yellowish
(�μ = 0.6) shaded areas. Edge states for �μ = 0 (�μ = 0) are
pinned to E = 0 (scattered away from E = 0).

the bulk gap. When only bond disorder is considered, the spec-
trum remains gapped even for strong disorder. Since the gap
size between the bulk bands is dependent on δt (�E = 4|δt |
in the thermodynamic limit) it is affected by a modulation
of the dimerization. Nevertheless, as long as the global bond
pattern is unchanged, the chiral symmetry remains intact and
the edge-state energies remain pinned at E = 0 as shown by
the blue dots in Fig. 5. Once random onsite potentials are
included, the chiral symmetry is broken and the edge states are
no longer symmetry protected. As long as the onsite potential,
which constitutes a constant shift in energy, remains smaller
than half of the gap size, the edge states remain energetically
separated from the bulk states. In Refs. [62,63] it was shown
that despite the loss of symmetry protection, the edge states
are localized even for strong onsite disorder due to Anderson
localization. Since the bulk gap shrinks with system size (cf.
Fig. 2), the effect of onsite disorder is more pronounced in
larger systems. In summary, our analysis suggests that for
small chains the spectral edge signatures of the SSH model are
detectable even in the presence of chiral-symmetry-breaking
onsite disorder. For large chains (L ≈ 50) the in-gap states re-
main robust as long as the combined bond and onsite disorders
do not significantly exceed half of the gap size �E ≈ 4δt .
We conclude that due to its large energy gap and robust edge
states, the SSH model represents a promising candidate for the
study of nontrivial topology in artificial dopant lattices.

V. INTERACTING ELECTRONS

The framework of topological band theory, which relies on
a single-particle picture, is no longer valid for the description
of the topological properties of correlated electrons. That is,
in the interacting case a topological phase transition does not
necessarily involve the closing of the single-particle (charge)

(b)

(a)

FIG. 6. Energy spectra of a chain of L = 12 sites calculated
for dimerization δt/t = 0.5 at zero total magnetization (Sz = 0).
(a) Addition energies Eadd(N ) = E0(N + 1) − E0(N ) of single-
particle excitations between fillings L − 1 → L and L → L + 1 for
PBC (blue and green) and OBC (yellow and red). Inset: For U/t <

Uc/t ≈ 5 the open chain exhibits in-gap excitations on the edges.
For U/t � Uc/t the open chain becomes bulklike indicated by the
alignment of the single-particle (charge) gap for PBC and OBC.
(b) The four lowest many-body eigenenergies of an open chain.
At U = 0, the ground state is fourfold degenerate up to a small
finite-size splitting (see text). For U > 0 the degeneracy is reduced
as two eigenstates with doubly occupied edges increase in energy.
Inset: Many-body (spin) gap �EMB = E1 − E0 in the bulk between
ground and first excited eigenstate at filling N = L.

gap [64], which for a many-body system at filling N is defined
as �ESP = [Eadd(N + 1) − Eadd(N )]/2 with addition energy
Eadd(N ) = E0(N ) − E0(N − 1). Instead, a change in topology
can be induced by the vanishing and reopening of the many-
body (spin) gap �EMB = E1 − E0 between ground and first
excited states in the eigenenergy spectrum [52,64]. For this
reason we inspect charge and spin sectors of the SSHH model
separately for signs of a topological phase transition and inter-
acting edge states by independently varying the dimerization
δt/t and Hubbard interaction U/t , respectively. In contrast to
a system in the thermodynamic limit, the energy levels of a
finite chain are discrete and instead of a gap closing, a phase
transition is signaled by a local minimum of the bulk gap at
periodic boundary conditions (PBC).

We begin by studying the effect of repulsive interactions
U > 0 on both addition and many-body spectrum of an SSH
chain in the topological phase at δt/t = 0.5. Both spectra are
shown in Fig. 6 for different boundary conditions. As for a
linear chain (δt = 0) the SSHH model features a charge gap
proportional to U/t , called the Mott gap, which is clearly
visible in the addition spectrum in Fig. 6(a) and explicitly
shown in the inset. Since the energetic cost of charge exci-
tations increases with U/t , the charge gap shows no local
minimum. In contrast to the regular Hubbard model which
exhibits gapless spin excitations in the bulk, the spin sector
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(b)

(a)

FIG. 7. Eigenenergies of a chain of L = 12 sites at zero mag-
netization (Sz = 0): (a) Many-body gap for PBC in dependence of
dimerization δt . The gap shows a minimum at δt = 0 independent of
U indicating a topological phase transition. (b) Energies of the first
three eigenstates for OBC in the strong-coupling limit U = 10. The
ground-state degeneracy changes upon variation of the dimerization.

of the dimerized chain is gapped in the presence of onsite
interactions. As shown in the inset of Fig. 6(b), the spin gap of
the SSHH model remains finite but decreases monotonically
as ∼4t/U 2. The absence of a local minimum in the bulk
gap of both charge and spin sectors indicates absence of an
interaction-driven topological phase transition in the SSHH
model.

The robustness of the topological SSH phase against re-
pulsive onsite interactions is further supported by the finite
ground-state degeneracy of the open chain due to zero-energy
edge states. In Fig. 6(b) we show the energies of the first four
eigenstates with zero magnetization for OBC and δt/t = 0.5.
In the limit of long chains the ground state of the SSH model
(U = 0) is fourfold degenerate corresponding to the four pos-
sibilities of distributing two spin 1

2 of opposite sign among
two edge sites. In finite systems this degeneracy is slightly
lifted once both edge states hybridize to form bonding and
antibonding states [see Fig. 2(d)]. Since this energy splitting
is a finite-size effect and is known to vanish in the thermo-
dynamic limit, we can treat these states as degenerate for the
purpose of identifying the presence of topological zero-energy
excitations. In fact, the long-chain behavior can be achieved
in finite systems by increasing the dimerization as to suffi-
ciently suppress hybridization and localize each edge states
on one end of the chain. Since two of these four states are
comprised of one empty and one doubly occupied edge, their
energy increases for U > 0, leaving two degenerate ground
states each with singly occupied edges, respectively. The finite
degeneracy indicates the existence of two zero-energy states,
which should be considered as spin excitations, signaling an
interacting topological phase at δt > 0. On the other hand,
upon variation of the dimerization instead of the interaction
the many-body gap with PBC in Fig. 7(a) shows a clear local

(a)

(e)

(d)

(c)

(b)

FIG. 8. SPSF of edge (blue, solid) and bulk (red, dashed) sites for
(a) U/t = 1, (b) U/t = 2, (c) U/t = 4, (d) U/t = 5, (e) U/t = 10.
The calculations are done for a chain of L = 12 sites in the topo-
logical phase (δt/t = 0.5). Only positive energies are shown since
particle-hole symmetry implies Ai(−ω) = Ai(ω). The gray dashed
lines indicate the addition energy Eadd(N + 1) corresponding to the
ground-state transition |N

0 〉 → |N+1
0 〉.

minimum at δt = 0 for all U/t � 10. Furthermore, a reduc-
tion of δt/t , analogous to the SSH model, lifts the ground-state
degeneracy and results in a unique ground state as expected
for a trivial insulator [cf. Fig. 7(b)]. We note that while the
standard Hubbard model (δt = 0) is gapless in the thermody-
namic limit, the gap-closing point is shifted for finite system
sizes and the degeneracy is already lifted for δt > 0. Both
findings strongly indicate a topological phase transition upon
varying δt between two gapped interacting phases.

As shown in Ref. [47], the nature of the interacting zero-
energy edge states is distinct from those of the SSH model.
While the latter hosts single-particle edge states, which are
evident from the zero-energy peaks of the spectral function in
Fig. 3, the interacting system features collective spin excita-
tions on its boundary.

The absence of topological single-particle edge states is
clearly observable in the SPSF, which is shown in Fig. 8, for
a topological chain of 12 sites at various interaction strengths
and OBC. Due to the particle-hole symmetry at half-filling, it
is sufficient to show the SPSF for positive energies. The corre-
sponding emission spectrum is given by Ai(−ω) = Ai(ω). The
gray dashed line indicates the excitation energy corresponding
to the ground-state transition |N

0 〉 → |N+1
0 〉. Already for

weak interaction of U/t = 1 [Fig. 8(a)], the charge excitation
on the edge, depicted in blue, is shifted away from zero en-
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ergy. As the edge sites are on average singly occupied, the
addition of another electron leads to a U -dependent energy
cost which results in gapped boundary states and the loss of
their topological protection in the charge sector.

Furthermore, interaction-induced side peaks emerge at
larger energies, indicating transition processes into excited
eigenstates. Since the total spectral weight is conserved, the
emergence of new peaks goes along with a reduction in am-
plitude of the dominant in-gap excitation. Despite the transfer
of spectral weight, at weak to moderate interactions the
edge excitation is distinctly quasiparticlelike and its spectral
weight remains mostly localized at the excitation energy of
the ground-state transition [Figs. 8(a)–8(c)].

Since the energy shift due to the repulsive interactions is
experienced by both edge and bulk states (red dashed lines),
for sufficiently small values of U the edge states remain
within the bulk gap which strongly suppresses hybridization
between the edges and the rest of the chain. Interestingly, the
interaction-induced energy shift differs in size for edge and
bulk, being stronger at the boundary. While electron addition
at all sites inflicts double occupation, the kinetic energy is
maximized in the center of the chain which counteracts the
widening of the bulk gap.

At a critical interaction strength Uc/t ≈ 5 [Fig. 8(d)] the
energy of the ground-state transition (gray dashed line) suffi-
ciently overlaps with those of the bulk bands which lifts the
in-gap protection and opens a decay channel between edge
and bulk. Indeed, Fig. 6(a) shows that the addition energies
for OBC and PBC converge at Uc/t . At this state the domi-
nant edge excitation is no longer between the ground states,
and its energy exceeds those of the bulk. We note that the
specific value Uc/t is dependent on the chain length L. In
the strong-coupling limit [Fig. 8(e)] the spectral weight of
the edge excitations is spread over a range of eigenstates,
which indicates the eventual breakdown of the quasiparticle
description.

Another clear indication of this transition is given by in-
spection of the probability to find an added electron on site i,
given by �ni(N ) = 〈N+1

0 |n̂i|N+1
0 〉 − 〈N

0 |n̂i|N
0 〉 [51,65].

In Fig. 9(a) one can see that at U = 0 the added electron
mainly occupies the zero-energy edge states. Edge population
remains dominant in the previously identified quasiparticle
regime U < Uc ≈ 5t . Only at U � Uc, the occupation of bulk
sites becomes more likely. In the strong-coupling limit U/t =
10, the probability is maximized in the center of the chain.

The nature of the interacting zero-energy states on the
boundary is revealed by the spin-spin correlation function
〈Ŝz

1Ŝz
i 〉 where Ŝz

i = 1
2 (n̂i,↑ − n̂i,↓) is the local magnetization on

site i. It maps out the correlations between unpaired spins on
different lattice sites of the half-filled ground state. As shown
in Fig. 9(b) at U = 0 (blue curve) the correlation between an
edge and a bulk spin is strongly suppressed as expected for
localized boundary states. The magnitude of the correlation
function on the edge is on the order of 0.125 as two of the four
edge configurations involve doubly occupied sites and hence
do not contribute to 〈Ŝz

1Ŝz
i 〉. For finite interactions U > 0, the

reduced ground-state degeneracy leads to a strong increase in
the correlation between unpaired edge spins and its magnitude
approaches the maximum value of 0.25 in the strong-coupling
limit. Further, the negative sign of the correlation function

(a)

(b)

FIG. 9. Correlation functions calculated for a 12-site chain with
dimerization δt/t = 0.5. (a) Average probability �ni to find the
inserted electron on site i. (b) Absolute value of spin-spin correlation
between sites 1 and i. Inset: Spin-spin correlation between edge sites
in dependence of U/t .

〈Ŝz
1Ŝz

L〉 [inset of Fig. 9(b)] between both edges shows that the
topological edge states of the interacting phase are strongly
correlated pairs of opposite spins, each located on a different
edge site.

VI. ODD CHAINS

The edge physics of the SSH model changes considerably
when the number of lattice sites is odd instead of even. As
schematically shown in Fig. 10, for any finite dimerization
|δt | > 0 an odd chain features a single zero-energy edge state.
This is a consequence of a theorem first proven by Sutherland

(a)

(b)

FIG. 10. The two different configurations of the SSH model for
L being odd. The sublattices A and B are colored as red and blue
sites, respectively. For negative dimerization δt < 0 the zero-energy
state is located on the right end of the chain (a) and moves to the left
edge once δt changes its sign (b). For both configurations the edge
state has only support on a single sublattice.
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FIG. 11. Disordered energy spectra averaged over 150 random
disorder realizations of a dimerized chain (δt/t = 0.5) of 11 sites
(a) and 49 sites (b), respectively. The standard deviation of the
disorder averaging is depicted by bluish (�μ = 0) and yellowish
(�μ = 0.6) shaded areas. The edge state for �μ = 0 (�μ = 0) is
pinned to E = 0 (scattered away from E = 0).

[66] and Lieb [67] which states that for a bipartite lattice
with sublattices A and B of different sizes, i.e., NA = NB, the
number of zero-energy states is given by |NA − NB| and their
wave functions have vanishing components on the sublattice
with fewer sites. That is, in contrast to even chains, the edge
state is pinned to zero energy even for finite systems and
depending on the sign of the dimerization, either located on
the left (δt > 0) or on the right (δt < 0) edge of the chain.
As shown in Fig. 11, the sublattice polarization of its wave
function makes the edge state less susceptible to local disorder
as its energy is only affected by random onsite potentials
confined to a single sublattice while the hybridization in even
chains exposes the edge states to disorder on both sublattices.
This increased robustness makes odd SSHH chains auspicious
candidate systems for the experimental study of topological
edge physics on artificial dopant lattices. Furthermore, due
to the lack of hybridization, the edge state of the odd chain
is substantially less sensitive to the system size as shown by
the edge SPSF in Fig. 12 for different chain lengths. The
ground-state excitation peak barely varies with the number
of lattice sites as long as it carries the dominant part of the
spectral weight. This further emphasizes the utility of odd
chains as they feature clear topological edge excitations at
experimentally feasible chain lengths as small as L = 5. Only
once interaction-induced side peaks at higher eigenenergies
emerge the size-dependent level spacings become apparent
[Fig. 12(c)].

VII. DISCUSSION

A. Dopant-lattice experiments

Electrons bound to phosphorus dopant atoms in silicon
form an excellent candidate to emulate the Fermi-Hubbard
model. They can be placed with atomic precision using scan-

(a)

(c)

(b)

FIG. 12. Edge single-particle spectral function of for odd chains
of different system sizes at dimerization δt/t = 0.5.

ning tunneling lithography to form arrays of quantum dots
embedded in fully epitaxial silicon [68]. Each quantum dot
consists of a cluster of a few dopants and can represent a site
of the chain, and a wide range of ratios between the tunnel
coupling, charging energy (which is related to the Hubbard
interaction in our model), and temperature can be engineered
and explored. The distance between the sites mainly governs
the tunnel coupling t , and placing sites at a few nanome-
ters from each other results in very large tunnel couplings
above 10 meV [69], well above the thermal energy given that
dopants can easily be cooled below 100 mK (equivalent to 8.6
μeV). This situation is therefore very favorable to access the
regime of low effective temperatures to preserve correlations
and quantum fluctuations [21,70], which is challenging to
achieve in other quantum simulation platforms [16].

The ability to control the hopping amplitude through vari-
ation of the interdopant distance allows to tune both the
dimerization δt as well as the Hubbard interaction U through
the ratio t/U , making the SSHH Hamiltonian a promising
model for quantum simulation on artificial dopant lattices.
In addition, the number of dopants in each cluster can be
used to tune the charging energy from a few to hundreds of
meV [71,72]. As a result, dopants in silicon can achieve the
threshold Uc ∼ 5t mentioned above below which signatures
of coherent edge states are preserved for the system size con-
sidered in this work. Also, disorder in tunnel coupling can be
mitigated to avoid mixing between bulk and edge states (see
Fig. 5) using preferential crystallographic placement [24]. We
note that dopants in silicon also present a large inter-site
Coulomb repulsion energy V on the order of t [20]. Here,
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we have not taken this term into account following recent
work that has predicted a minimal influence on the half-filling
picture [73], and leave the detailed analysis for future work.

Recently, transport in dimerized chains of 10 dopant-based
quantum dots in silicon tuned at quarter-filling was experi-
mentally achieved to evidence a pattern of conductance peaks
consistent with the presence of edge states [20]. This break-
through experiment demonstrates the relevance of dopants
in silicon to emulate Fermi-Hubbard problems, with future
experiments to focus on exploring different filling factors, spin
physics in finite magnetic fields, dynamics, and scaling up be-
yond classical computational capabilities. Scanning tunneling
microscopy is another experimental avenue to probe atomic
systems in the solid state, enabling a direct visualization of
edge states [74–76], a capability that is missing in transport
experiment. Spatially resolved spectroscopy of single [77,78]
and coupled dopants [21,24] in silicon has been achieved
in the single-electron transport regime, with the ability to
pinpoint the dopant’s exact lattice site position [79]. Recent
progress takes the direction of integrating this quantum state
imaging technique within a device architecture including local
gate electrodes [80]. The ability to engineer and locally probe
dopant-based arrays in silicon motivates our study focusing
on identifying the signatures of an SSH chain that can be
expected in this experimental framework in the presence of
finite interactions.

At half-filling, a typical local dI/dV measurement for an
edge site will reveal the edge states as gapped double peaks,
when the system is topologically nontrivial (δt > 0). The
distance between the peaks is roughly U/t . This is in stark
contrast to the trivial regime where the spectral properties of
an edge site are essentially indistinguishable from bulk sites.
Two characteristic examples, one for the topological and one
for the trivial regime, are shown in Fig. 13 with parame-
ters L = 12, U/t = 1, δt/t = 0.5, η = 0.05 (a) and L = 12,
U/t = 1, δt/t = −0.3, η = 0.01 (b). The split edge peaks
for finite U may become comparable to the peaks stemming
from the bulk in the trivial case; in the topological case other
bulk peaks are, however, strongly suppressed [Fig. 13(a)] in
contrast to the trivial case [see Fig. 13(b)]. As long as U/t < 5
scanning tunneling measurements should be able to distin-
guish trivial and topological regimes for the considered chain
length. Chains with an odd number of sites benefit from the
absence of hybridization effects irrespective of chain length.
Nonetheless, the edge peak will split for any finite U/t .

Higher-order topological phases [81] provide another av-
enue for dopant lattices to realize exotic states of matter,
essentially as two-dimensional extensions of the SSH or
SSHH models. Corner states will be observable on appropri-
ately chosen lattice geometries [82].

B. Bulk obstructed phase

Originally introduced to describe solitons in polyacety-
lene, the SSH model was later found to be a prototype for
a 1D TI [39–43]. Recently, it was argued that the term bulk
obstructed topological insulator might be more appropriate
[45,46]. While for a traditional TI the nontrivial phase can be
identified by the absence of an atomic limit, electronic phases
in one spatial dimension (d = 1) can always be represented in

(a)

(b)

FIG. 13. Example of what could be observed in a scanning tun-
neling experiment for a dopant lattice, measured at the end site of the
chain. (a) Topological regime for δt/t = 0.5, L = 12, and U = 1.
(b) Trivial regime for δt/t = −0.3, L = 12, and U = 1.

terms of localized Wannier states. Hence, in the SSH model
the topological distinction between both phases is more subtle
and can be found in the relative position between Wannier
centers and the average ion location. Inversion symmetry
forces the Wannier orbitals, which in the SSH model reside on
the strong bonds, to be localized at one of two inversion cen-
ters which is either in the center or at the edge of the unit cell.
The occupation of the latter characterizes the nontrivial phase
and constitutes an obstructed atomic limit which cannot be
connected to the trivial limit without either a bulk-gap closing
at δt = 0 or the explicit breaking of inversion symmetry. Note
that the identification of the nontrivial phase is only unique
up to the choice of unit cell. Since a change in the sign of
the dimerization amounts to a global shift of the strong bonds
by half a lattice vector, moving the origin of the unit cell
by the same amount exchanges the atomic positions of the
trivial and obstructed atomic limits and therefore the role of
the trivial and topological phase. Nevertheless, independent
of the reference frame both phases are separated by a true
topological phase transition at the gap-closing point which is
characterized by a quantized topological invariant, the wind-
ing number of the Bloch Hamiltonian in the Brillouin zone,
and the emergence of symmetry-protected zero-energy states
on the system boundary. Since the existence of both edge
states and bulk-gap closing are not affected by the presence
of an (obstructed) atomic limit, it seems well justified in the
present context to consider the SSH model a TI. Clearly,
the above discussion is mostly of relevance to experts in
the field of topological states of matter; it does not repre-
sent a roadblock for the attempt to experimentally realize the
SSHH model as a prototype of an interacting, topological
model.
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C. Correlated topological insulators

As just explained, 1D TIs such as the SSH model are
bulk obstructed models. Ignoring this for a moment, we can
turn to the question how the SSHH model compares to other
correlated or interacting TI systems. Most importantly, 1D
fermionic phases have been fully characterized. The Z clas-
sification of the BDI class changes to Z4 in the presence
of interactions (note that we exclude superconductivity here,
otherwise it was Z8) [12]. Such rigorous results are not
available in higher dimension d > 1. Nevertheless, for many
paradigmatic models interacting phase diagrams were derived
by means of analytical and numerical methods [83,84]. Finite-
size effects in correlated TI’s were investigated as well [85].
Conventional ordering tendencies are ubiquitous in d = 2, 3.
For instance, TI models on bipartite lattices tend to order
antiferromagnetically in the presence of non-negligible in-
teractions. Correlated TI models which break the U(1) spin
symmetry are likely to also induce more exotic magnetic
orders such as spin spirals. Last but not least, the interplay
of nontrivial band-topology and electron-electron interactions
was claimed to stabilize topologically ordered, spin-liquid-
type phases [10].

D. Topological phase diagram and Haldane phase

In the literature, several works [42,47–49,51–53,86] com-
ment on the phase diagram of the SSHH model or even
sketch it explicitly [42,47,49]. Moreover, there are several
works where additional Heisenberg terms were included to the
SSHH Hamiltonian, in order to demonstrate the connection to
well-known spin chain results. Nevertheless, we feel that the
reader may benefit from a summary of all these results and
from a discussion how they fit together. The main conclusion
will be that the topological phase (δt > 0) of the SSHH model
is adiabatically connected to the Haldane phase of spin-1
chains [87].

As we have seen in Sec. V, single-particle edge states of
the SSH model (i.e., SSHH model at U = 0) change immedi-
ately when finite interaction U > 0 is included and split from
E = 0 into two peaks at some finite ±E . Also, single-particle
edge states at E = 0 become collective E = 0 edge states,
reminiscent of spin excitations. This change coincides with
a change of the degeneracy of the entanglement spectrum
[48,49]: At U = 0 the degeneracy for PBCs is 16-fold, and
only 4-fold at any nonzero U (here all magnetization sectors
were considered). A similar result is found by computing
the von Neumann entanglement entropy [42]. In contrast, the
winding number N1 of Ref. [47] does not change its finite
value when tuning from U = 0 to U > 0.

Next, let us consider the limit of strong coupling. A two-
site Hubbard model

∑
σ ±t (ĉ†

1σ ĉ2σ + H.c.) + U (n̂1 + n̂2) in
the limit U � t corresponds in second-order perturbation the-
ory to the Heisenberg term J �S1 · �S2 with J = 4(±t )2/U . Thus,
the SSHH model in this limit corresponds to the dimerized
Heisenberg model [86,88]

H =
L/2∑
i=1

[J �S2i−1 · �S2i + J ′ �S2i · �S2i+1] (9)

with

J (′ ) = 4(t ∓ δt )2

U
. (10)

For the limit of decoupled dimers in the trivial phase, δt = −t ,
also the spin model (9) describes decoupled singlet bonds
J = 0 and J ′ = 0. In contrast, for the decoupled-dimer limit in
the topologically nontrivial regime δt = t , the spin model (9)
features again a ground state consisting of decoupled singlet
bonds; however, due to J = 0 and J ′ = 0 the spin 1

2 ’s at the
chain ends are not coupled into singlets and remain as dan-
gling spins, a situation well known from the spin-1 Heisenberg
or Affleck-Kennedy-Lieb-Tassaki (AKLT) [89,90] chains.

The relationship to the spin-1 chain becomes even more
obvious when we allow J to become negative [47] (which is
obviously not the strong-coupling limit of the SSHH model
anymore) while J ′ > 0. In the limit J → −∞, neighboring
spin 1

2 ’s combine symmetrically and form spin-1 degrees of
freedom. That is, a dimerized spin- 1

2 Heisenberg chain with L
sites becomes an isotropic spin-1 Heisenberg chain with L/2
sites. The spin-1 Heisenberg chain features the “Haldane gap”
[87] and constitutes the prototype of a symmetry-protected
topological (SPT) phase [8]. In Ref. [47], Manmana et al.
showed that there is no phase transition when tuning from
J ∼ −∞ to J = 0 to 0 < J < J ′, i.e., the many-body gap
remains finite. At 0 < J = J ′ one reaches the isotropic spin- 1

2
Heisenberg chain, where the many-body (spin) gap closes due
to gapless spinon excitations.

The relation between the dimerized Heisenberg chain with
J < 0 and with J > 0 and its connection with the Haldane
phase was already shown by Hida in his 1992 paper [86], long
before the notion of SPT phases was born. He demonstrated
that the string-order parameter characteristic for the Haldane
phase is finite for positive and negative J as long as J ′ > 0
and J < J ′, regardless of the sign of J . He further computed
the energy gap which remained finite for −∞ < J < J ′. Most
convincingly, for J ′ → −∞ the literature values of both string
order parameter and many-body gap of the isotropic spin-1
Heisenberg chain were reached.

In summary, the trivial phases of the SSH and SSHH
models are connected to the trivial phase of the dimer-
ized Heisenberg chain. In the topological regime, both the
noninteracting SSH and the interacting SSHH models are
topologically nontrivial; however, the U = 0 line is different
from the U > 0 phase as signaled by different degeneracies in
the entanglement spectrum and the nature of the zero-energy
edge states. The topological phase of the SSHH model is
adiabatically connected to the spin-1 chain and constitutes,
hence, another example of a Haldane-gap model.

VIII. CONCLUSION

In this work we studied the effect of repulsive onsite
interactions on the topological edge states of the spinful
SSH model by means of ED. Motivated by recent progress
in the fabrication of dopant-based quantum simulators we
focused on topological signatures which are experimentally
detectable. To this end, we present the real-space resolved
SPSF as a tool to reveal nontrivial topology in correlated
systems. As the generalization of the LDOS to interacting
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systems the SPSF is directly accessible to local measurement
techniques like scanning tunneling methods. By comparison
with large chains in the free-fermion limit we confirmed the
persistence of topological edge excitations observed within
the SPSFs of the system sizes accessible to ED. Further, we
showed the robustness of these edge states in the presence
of random bond and onsite disorder. Our analysis of the in-
teracting model showed that repulsive Hubbard interactions
gap out the charge sector and the single-particle edge states
are no longer pinned to zero energy. Instead, the topological
states involve two correlated edge spins of opposite direction.
Nevertheless, we identify a range of interactions for which
quasiparticle excitations at the boundary, remnants of the
topological SSH states, are protected by a bulk gap and as
such serve as clear indicators for the topological nature of
the underlying ground state. We emphasize the relevance of
this result for the detection of interacting topological phases
in single-particle based measurements like STS. Beyond the
interaction threshold of Uc/t ≈ 5, where edge and bulk ex-
citation energies align for the here considered chain lengths,
we observe the decay of the edge states due to increased
spectral weight transfer and a breakdown of the quasiparticle
description. We discussed the topological phase diagram of
the SSHH model and its connection to the Haldane phase of
spin-1 chains.
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APPENDIX A: EXACT DIAGONALIZATION

Strongly correlated materials are among the most intrigu-
ing systems in condensed matter physics, displaying exotic
phases ranging from high-Tc SC to Mott insulators and
quantum magnetism. The theoretical investigation of these
many-body phenomena usually starts with a variant of the
Fermi-Hubbard model of correlated electrons on a lattice.
Notwithstanding the great interest in these models, analytical
solutions and controlled numerical methods are rare and often
limited to specific cases.

ED, a numerical method for solving the many-body
Schrödinger equation which involves no approximation and
produces the exact eigenenergies and eigenstates of the full
interacting Hamiltonian, constitutes an exemption. As such it
allows to study static and dynamic correlation functions of
the ground state and, in principle, for finite temperatures. It
further serves to benchmark the predictions of other methods.
The drawback of this approach is that computational time and
memory requirements are proportional to the dimension of the
Hilbert space d . For an interacting many-body system it grows
exponentially with the system size, i.e., d = dL

l where dl is
the dimension of the local Hilbert space at a given site and L
is the total number of lattice sites. In the case of the spin- 1

2
Hubbard model, there are four possible states per lattice site

given by |∅〉, | ↑〉, | ↓〉, and | ↑↓〉 leading to a total dimension
of d = 4L.

One way to reduce the size of the Hilbert space is to exploit
unitary symmetries of the system for which the Hamiltonian
matrix is block diagonal with each block being labeled by the
associated conserved quantum number. For example, in the
case of U(1) charge symmetry, the total particle number N is
conserved and the Hamiltonian decomposes into independent
particle sectors, each of which can be diagonalized separately.
To do so, the first step is to express the relevant block of the
Hamiltonian matrix in a basis of Slater determinants |�I〉. By
use of the occupation number representation, i.e.,

|�I〉 = |nL, nL−1, . . . , n1〉I =
L∏

i=1

(ĉ†
i )ni |0〉, (A1)

with site occupations ni ∈ {0, 1}, each basis state can be
uniquely associated with the binary representation of an in-
teger number I [91]. The action of a creation (annihilation)
operator ĉ†

i (ĉi) on a basis states then simply translates to
a flip of the (i − 1)th bit from 0 to 1 (1 to 0) times a
potential minus sign stemming from fermionic anticommu-
tation relations. Using a procedure first outlined by Lin [92],
the above-mentioned basis representation can be extended to
spinful electrons in a straightforward manner [93]. By ap-
plication of the Hamiltonian to each basis state, all matrix
elements HII ′ = 〈�I |Ĥ |�I ′ 〉 are successively generated. Once
the matrix is complete, a diagonalization routine is applied to
obtain the eigenvalues and eigenvectors.

To this end we employ the Lanczos algorithm [94] which
is an efficient method to obtain the few lowest (or largest)
eigenvalues of a sparse Hermitian matrix. The main idea is
to transform the d-dimensional Hamiltonian matrix H into a
tridiagonal matrix

T =

⎛
⎜⎜⎜⎜⎜⎝

a1 b2 0 . . . 0

b2 a2
. . .

...

0 . . .
. . .

. . .
...

. . .
. . . bdT

0 . . . bdT adT

⎞
⎟⎟⎟⎟⎟⎠

(A2)

of dimension dT � d , the eigenvalues of which approximate
the ones of the full matrix to arbitrary precision. This is
done by expressing the Hamiltonian in the so-called Krylov
space KdT (|̃〉) = span(|̃〉, Ĥ |̃〉, Ĥ2|̃〉, . . . , ĤdT |̃〉) of
some arbitrary (normalized) trial vector |̃〉. For a half-filled
Hubbard chain of L = 12 sites, the lowest eigenvalue of T
converges to the exact ground-state energy after only dT <

100 iterations [95]. The computationally most expensive part
of the Lanczos routine is the sparse matrix-vector multipli-
cation used to create the Krylov subspace. For a matrix of
nnz nonzero matrix elements, it scales with ∼O(nnz ∗ d ) lead-
ing to an overall complexity of O(nnz ∗ dT ∗ d ) [compared to
O(d3) for the full diagonalization of dense matrices]. Since
we are interested in the SPSF, we have to diagonalize the
three Hamiltonian sectors of N − 1, N , and N + 1 particles,
respectively. Fortunately, for the half-filled sector, which con-
stitutes the largest block, only the ground state and its energy
are needed [see Eq. (B7)] which reduces the number of needed
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iterations even further as extremal eigenvalues converge most
rapidly [91].

In concluding this Appendix we want to emphasize that,
despite its limitation to comparably small system sizes, ED
proves to be a valuable method for the study of interacting
topological phases. For example, Varney et al. found [64] that
for correlated Chern insulators the notion of a topological
phase transition, signaled by the closing of the many-body
gap, is well defined even for small clusters accessible to
ED. It was further shown that lattices of a few sites in 1D
[53,65] and 2D [36] can exhibit interacting topological edge
states and current-current correlations [96] associated with
a nonzero bulk invariant. ED was also employed to study
the many-body instabilities of a 3D TI surface state along
with the possible appearance of Majorana modes [97]. These
findings demonstrate the relevance of ED calculations for the
theoretical understanding of both correlated TIs as well as
their experimental realization in dopant lattices, where small
system sizes are common.

APPENDIX B: SINGLE-PARTICLE SPECTRAL FUNCTION

Here we introduce the main properties of the SPSF in
real space and discuss its relevance for the description of
measurements in STS experiments. To establish the relation-
ship between the conductivity and the SPSF we consider the
general expression for the tunneling current between single-
particle states in the tip ψμ and the sample surface ψν at a
voltage difference V [55]:

I = 2πe

h̄

∑
μ,ν

f (Eμ)[1 − f (Eν + eV )]

× |Mμν |2δ(Eμ − Eν ), (B1)

with Fermi function f (E ) and the tunneling matrix element
Mμν between the tip and surface states. In their seminal works
on the theoretical description of the STM [98,99], Tersoff
and Hamann showed that for a spherically symmetric tip the
matrix elements are proportional to the surface states at the
position of the tip Mμν ∝ ψν (r0). At low temperatures, f (E )
approaches a step function and mainly counts states which
lie between the Fermi energies of tip and sample and hence
contribute to the tunneling. The expression for the current at
finite voltages is then given by the convolution of the tip DOS
ρt (E ) and the LDOS of the sample at the tip position ρs(r0, E )
[57]:

I ∝
∫ eV

0
dω ρs(r0, EF − eV + ω)ρt (EF + ω)T (ω,V ),

(B2)

where the transmission coefficient T (ω,V ) describes the
energy-dependent part of the matrix elements. For a metallic
tip and sufficiently small voltages, the energy dependence of
ρt and T is considered to be weak [56] such that the profile of
the measured conductivity is dominated by the LDOS of the
sample’s surface, i.e.,

∂I

∂V
∝ ρs(r0, EF − eV ). (B3)

To preserve this relation in the context of strong electron cor-
relations one has to generalize the LDOS for the many-body
case, which is done by SPSF in real space, which provides a
direct link between theory and experiment as it represents the
excitation spectrum associated with the addition and removal
of a single electron. In other words, given a system in its
N-particle ground state, the spectral function Aα (ω) assigns
the probability for the system’s energy to decrease (increase)
by ω after annihilation (creation) of an electron in the single-
particle state |α〉. For the purpose of studying excitations in
real space, we choose the site basis of the lattice |α〉 ≡ |i〉.
As a probability measure, the spectral weight of the spectral
function is conserved which is expressed by the normalization
condition ∫ ∞

−∞
dωAi(ω) = 1. (B4)

As mentioned in Sec. II the SPSF is proprtional to the imagi-
nary part of the retarded Green’s function [57]

Ai(ω) = − 1

π
Im

[
Gr

i (ω)
]

(B5)

which in its spectral representation is given by

Gr
i (ω)= 1

Z

∑
mn

|〈m|ĉi|n〉|2 e−β(Em−μNm ) + e−β(En−μNn )

ω + μ − (En − Em) + iη
,

(B6)

where Z = ∑
m e−β(Em−μNm ) is the quantum statistical parti-

tion function, μ is the chemical potential, β = 1/T is the
inverse temperature. The convergence factor η > 0 depicts an
infinitesimal shift away from the real axis to avoid the singu-
larities of the Green’s function, which occur at the excitation
energies ω = En − Em − μ. The corresponding transition am-
plitudes are nonzero only between states which differ in filling
by a single electron, i.e., Nn − Nm = ±1. At zero temperature
(β → ∞) the Boltzmann factor e−β(Em−μNm ) vanishes for all
m except for the ground state at m = 0 where, by appropriate
choice of the chemical potential μ = μ∗, it becomes unity. For
the half-filled Hubbard model one has μ∗ = 0 and the double
sum in Eq. (B6) reduces to

Gr
i (ω) =

∑
n,σ

∣∣〈N−1
n

∣∣ĉi,σ

∣∣N
0

〉∣∣2

ω + μ∗ − (
EN

0 − EN−1
n

) + iη

+
∣∣〈N+1

n

∣∣ĉ†
i,σ

∣∣N
0

〉∣∣2

ω + μ∗ − (
EN+1

n − EN
0

) + iη
, (B7)

where the first (second) term corresponds to the single-particle
transition into the nth eigenstate with N − 1 (N + 1) particles
upon removal (addition) of an electron. The Green’s function
is peaked at the corresponding excitation energy and weighted
by the associated transition probability. The restriction to three
particle sectors renders the numerical evaluation of Eq. (B7)
by means of ED a feasible endeavor. Further, since the max-
imum energy of a single-particle excitation is on the order of
the interaction strength, i.e., EN+1

n − EN
0 ≈ U , it is sufficient

to evaluate the low-energy end of the full spectrum without
loss of relevant information. This allows for the utilization of
the Lanczos routine, described in Appendix A, and amounts
to a substantial reduction in computational effort.
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Alternatively to calculating the Lehmann representation
(B7) by determining the eigenspectrum of the three particle
sectors, the Lanczos method can be used to calculate correla-
tion functions like the SPSF directly [93,100]. The basic idea
of this approach is to run the Lanczos routine twice. In the first
run the ground state |0〉 and its energy E0 are calculated for
the half-filled sector. Consecutively, the ground state is then
used to span the Krylov space in the second run by choosing
the initial basis vector as |̃〉 = â|0〉/

√
〈0|â†â|0〉 with

â = ĉi or â = ĉ†
i , depending on whether excitations involving

the removal or addition of an electron are considered. The
entries an and bn of the generated tridiagonal matrix (A2) can
then be used to calculate the SPSF in a continued fraction via

Ai(ω) =

− 1

π
Im

⎛
⎜⎜⎝ 〈0|ĉ†

i ĉi|0〉
z− + a1 − b2

2

z−+a2− b2
3

. . .

+ 〈0|ĉiĉ
†
i |0〉

z+ − a1 − b2
2

z+−a2− b2
3

. . .

⎞
⎟⎟⎠

(B8)

with z± = w + μ ± E0 + iη. Due to specific choice of the
initial vector, the algorithm quickly converges to the first dT

lowest excitations and therefore allows to include a larger
number of poles in the calculation of the SPSF. As such, the
evaluation of Eq. (B8) provides an advantage in the strongly
interacting regime, where excitations of higher energies be-
come relevant.

In the absence of interactions the eigenenergies, i.e., the
band structure, are independent of the filling fraction and
the system remains in an eigenstate after removal or ad-
dition of an electron [101]. Therefore, in the limit η →
0+ and by means of the Dirac identity for δ distributions
Im[limη→0+ (x + iη)−1] = −πδ(x), the noninteracting SPSF
in real space reduces to the LDOS [57], i.e.,

Ai(ω) =
∑

α

|ψα,i|2δ(ω − Eα ), (B9)

where Eα corresponds to the energy of the single-particle
orbital ψα,i located at site i.

The onset of interactions will, in general, alter the SPSF in
two ways. First, a change in charge density through insertion
or removal of an electron causes excitations in the electronic
environment which change the energy of the electron and
lead to a shift of the peak positions in the SPSF. The second
effect of interactions is the emergence of satellite peaks and
side bands. In a correlated system, the spectral weight of a
single-particle excitation is no longer concentrated on a single
eigenstate but is spread over a range of eigenstates around
the shifted energy [101]. In the thermodynamic limit (and in
practice for larger system or gap sizes) this distribution can
become a dense continuum, effectively broadening the initial
single-particle peak. The latter is associated with a decrease
in the excitation’s lifetime. In other words, the SPSF carries
information about the degree to which quasiparticle physics
are present in the excitation spectrum of a correlated system,
thereby indicating its amenability to single-electron measure-
ment techniques like STS.
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