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We investigate the formation of charge and spin ordering by starting from a noninteracting state and studying
how it evolves in time under a Hamiltonian with finite electronic interactions. We consider the one-dimensional,
half-filled extended Hubbard model, which we solve within time-dependent density matrix renormalization
group. By employing linear finite-time quenches in on-site and nearest-neighbor interactions, we find the
existence of impulse, intermediate, and adiabatic regimes of time evolution. For the quenches we analyze, we
observe that the adiabatic regime is reached with distinct ramping timescales depending on whether the charge
density wave (CDW) or the spin density wave (SDW) is formed. The former needs to be slower than the latter to
prevent entangled excited states from being accessed during the quench. More interestingly, in the intermediate
regime, we observe an enhancement of the entanglement entropy with respect to its initial value, which precedes
the formation of the CDW ordering; a similar enhancement is not seen in the quench toward SDW. Our findings
also show that the breaking of the system integrability, by turning on the nearest-neighbor interactions, does not
give rise to significant changes in the nonequilibrium behavior within the adiabatic approximation.

DOI: 10.1103/PhysRevB.106.195405

I. INTRODUCTION

The dynamics of closed many-body systems following a
quantum quench has become an active topic of research.
In solid-state experimental setups, realizing a platform that
is, at the same time, sufficiently well isolated from the en-
vironment and accessible for the experimental probe is a
hampering factor to study the coherent evolution after a per-
turbation of the system. Ultracold atoms trapped in optical
lattices [1–6], on the other hand, provide an unprecedented
opportunity to explore nonequilibrium phenomena due to the
large set of available methods to isolate, manipulate, and
measure these systems [7]. In this experimental framework,
the system parameters can be tuned either abruptly (sudden
quench) [8] or by a finite-time protocol [9,10]. Furthermore,
ultracold atoms give access to novel observables and extreme
parameter regimes that go beyond the ones accessible in
solid-state systems. Alkali atoms (such as potassium 40K and
lithium 6Li) in optical lattices, for instance, can be used as
quantum simulators of the Fermi-Hubbard model with highly
controllable local interaction [11]. Recently, nearest-neighbor
interactions have also been realized using Rydberg dressing
of 6Li [12]. From the theoretical side, the investigation of
quantum quenches can be done via conformal field theories
[13–16] and tensor-network algorithms [17–20], however, the
investigations are hampered by the entanglement growth. The
analysis of the out-of-equilibrium dynamics of strongly corre-
lated fermionic systems is still a challenging problem.

The extended Hubbard chain is a prototypical model of
strongly correlated electron systems. Its equilibrium version
features a reach phase-diagram. In the absence of interac-

tions the system is metallic; as the repulsive interaction is
turned on, at half-filling, it has different electronic ordered
phases: a spin density wave (SDW), a charge density wave
(CDW), as well as a bond-order wave (BOW) insulating phase
[21]. The study of CDW and SDW phases attracts increas-
ing attention due to experimental evidences of their interplay
with the superconducting phases of cuprates [22] and iron
pnictides [23]. Moreover, recent ultrafast optical experiments
have addressed the nonequilibrium CDW phases presented
in different families of correlated transition-metal dichalco-
genides. For instance, the physics related to the nonthermal
melting of CDW ordering in TiSe2 [24] and VTe2 [25] has
triggered great interest and is still under debate, since a purely
electron-phonon mechanism can not account for the CDW
melt state. The extended Hubbard model (EHM) with an at-
tractive nearest-neighbor interaction is also of great interest.
Recently, it was used to describe the photoemission spectrum
of the one-dimensional cuprate Ba2−xSrxCuO3+δ [26]. Ac-
cording to Wang et al. [27], an attractive interaction appears
in this case due to a long-range electron-phonon coupling.

In the nonequilibrium scenario, it was observed that a
transition between correlated and uncorrelated states can be
driven by a quench in an external field added to the Hubbard
model [28]. Further, the effects of many-body interactions
on the statistics of energy fluctuations were investigated in
the inhomogeneous version of the model, in which the sys-
tem was submitted to an out-of-equilibrium transient current
along the chain [29]. In the case of the EHM, it was used
to investigate the possibility of light-induced superconducting
phase coherence [30]. For the same model, more recently,
the nonequilibrium states generated by radiation pulses were
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described by a generalized Gibbs ensemble [31]; the nonequi-
librium phase diagram of the system includes an η-paring
superconducting phase.

In this paper, we investigate the formation of SDW and
CDW ordering in the EHM submitted to interacting quenches.
The initial state is chosen to be a delocalized one, the ground
state (GS) of the noninteracting Hamiltonian, and we let it
evolve under an interacting Hamiltonian. The on-site and/or
nearest-neighbor repulsive interactions increase linearly in
time, such that the final Hamiltonian is within the correlated
SDW or CDW phase. At equilibrium, in the thermodynamic
limit, the system is metallic at the noninteracting point and is
an insulator for any finite interaction (within the CDW phase,
charge and spin excitations are gapped, while in the SDW
phase spin excitations are gapless [21]). Therefore, we start
the evolution from a model critical point and investigate the
formation of ordered phases during the quench.

We observe different regimes by varying the duration of the
quench—we go from sudden quenches to adiabatic ones. We
start by turning on either the on-site or the nearest-neighbor
interaction, aiming to reach the SDW and the CDW ordering,
respectively. For the latter, the intermediate regime, that pre-
cedes the adiabatic one, is characterized by an increase of the
entanglement entropy with respect to the initial state, indicat-
ing that the evolved state includes excited disordered ones.
As a consequence, we observe that the adiabatic regimes are
reached by distinct values of the ramping timescales, longer
for the CDW case than for the SDW one. Interestingly, the
inclusion of small on-site (nearest-neighbor) interactions—
meaning that both interactions are now turned on—hardly
changes the dynamics during the quench toward the CDW
(SDW) phase.

The organization of the paper is the following: In Sec. II,
we present the model and the quench protocol; details of the
numerical calculations are also mentioned. Our results are
presented in Sec. III. In Sec. III A, we discuss the results
obtained by turning on only one of the interactions, either
the on-site U or the nearest-neighbor V interaction. We ob-
serve the state time evolution during the quench in different
regimes: adiabatic, intermediate, and impulse ones. Later, in
Sec. III B, we discuss the effects of turning on both U and V
simultaneously. Our conclusions are summarized in Sec. IV.
The dependence of our main results on the chain size are
presented in the Appendix.

II. MODEL AND QUENCH PROTOCOL

We investigate the time-dependent EHM, given by the
Hamiltonian

Ĥ (t ) = −J
∑

j,σ

(a†
j,σ a j+1,σ + H.c.)

+ U (t )
∑

j

n̂ j↑n̂ j↓ + V (t )
∑

j

n̂ j n̂ j+1, (1)

which considers nearest-neighbor hopping of amplitude J
and time-dependent on-site and nearest-neighbor interactions,
given by U (t ) and V (t ), respectively. In the equation above,
a(†)

j,σ annihilates (creates) a fermion with spin σ =↑,↓ on

lattice site j, n̂ j,σ = a†
j,σ a j,σ , and n̂ j = n̂ j,↑ + n̂ j,↓.

In this paper, we study the time evolution of the system
described by the Hamiltonian of Eq. (1) during a finite-time
quench in the interaction strengths. We first address the case
in which only one of the interactions, either the on-site or
nearest-neighbor one, is turned on (Sec. III A); later, we turn
on both of them simultaneously (Sec. III B). We are partic-
ularly interested in the formation of spin- or charge-ordered
states and we thus start from a delocalized state, that is, the
GS of the Hamiltonian with no interactions (U0 = V0 = 0).
Then, over a finite time interval, we evolve the parameters
U (t ) and/or V (t ) from their initial values, U0 and V0, up to
their final values, Uf and Vf . To be precise, we change the
interactions linearly in time as follows:

U (t ) = U0 + sgn(Uf − U0)
t

τU
(2)

and/or

V (t ) = V0 + sgn(Vf − V0)
t

τV
, (3)

where t ∈ [0, t f ] and τU and τV are the ramping timescales.
We set t f such that at the end of quench, the values of the
interactions are U (t f ) = Uf and/or V (t f ) = Vf . If only one of
the interactions is turned on, for a final Hamiltonian within the
SDW phase, we have t f = |UF − U0|τU and Vf = V0 = 0; for
a final Hamiltonian in the CDW phase, we have t f = |VF −
V0|τV and Uf = U0 = 0. Finally, when both interactions are
turned on simultaneously, τU and τV are connected through
τV = τU |UF − U0|/|VF − V0|.

Throughout this paper, energies are given in units of J and,
accordingly, time is measured in units of 1/J . The system is
fixed at half filling, the total magnetization in the z direction
is conserved during the quench, and we use open boundary
conditions. Our results were obtained mainly for chains of
size L = 17, but we have confirmed our main findings by in-
creasing the system length, as discussed in the Appendix. The
nonequilibrium numerical simulations of our global quench
rapidly become computationally cumbersome with the num-
ber of sites. In finite systems as those we simulate, the gap
remains nonzero for all the Hamiltonian parameters. This
quantity is key in the adiabatic theorem [32]—it states that,
in driven transitions to states with nonzero gaps, it is always
possible to reach the adiabatic limit if the quench process is
slow enough. Based on this theorem and on the finite L of our
systems, we expect to be able to observe an adiabatic behavior,
as we indeed do (see the discussion of our results).

To obtain the system state at time t , we have per-
formed time-dependent density matrix renormalization group
(DMRG) calculations [18,20] with a first-order Suzuki-Trotter
decomposition, meaning that the error in the time evolution is
of O(dτ 2), where dτ is the time step. We consider dτ between
10−3 and 10−2, depending on the ramping timescale. Our
implementation was built using the ITensor library [33]. In
addition, for a better comparison with the evolved state during
the quench, we have performed DMRG calculations to obtain
the instantaneous equilibrium GS corresponding to constant
Ueq = U (t ) and Veq = V (t ) at each instant of time t . Our
calculations were performed until the GS energy convergence
was of the order of 10−8.
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FIG. 1. Equilibrium values for the (a) CDW and (d) SDW order parameters, as indicated by the color codes, as a function of Ueq and Veq.
The white straight lines correspond to U = 2V . The arrows indicate different quench directions to be explored along the paper. The red (black)
dot identifies the final states corresponding to quench No. 1 (No. 6). The local magnetization and charge density as a function of the lattice site
i corresponding to the final state of No. 1 quench are shown in (b) and (c), respectively, whereas the behavior of the final state of No. 6 quench
is depicted in (e) and (f). Besides showing results concerning the final state for quenches with different timescales (τV and τU ), we also present
the profiles corresponding to the equilibrium GS with Ueq = U0 = 0 and Veq = V0 = 0 and with Ueq = Uf and Veq = Vf .

In the following, we present our numerical results for the
system dynamics during the quenches toward different regions
of the phase diagram. As we will show, we find significant
differences in the relationship between the ramping timescale
and the adiabatic behavior, depending on which ordering
(CDW or SDW one) the final Hamiltonian corresponds to.

III. NUMERICAL RESULTS

We start by obtaining the equilibrium phase diagram of the
EHM within our implementation. To characterize both CDW
and SDW phases, respectively, we use the order parameters
defined as

mCDW = 1

L

∑

j

(−1) j (〈n̂ j〉 − 1) (4)

and

mSDW = 1

L

∑

j

(−1) j
〈
ŝz

j

〉
. (5)

As can be noticed in Figs. 1(a) and 1(d), for repulsive in-
teractions, the EHM features a CDW phase for U < 2V and a
Mott insulator phase with SDW for U > 2V . The color codes
correspond to the calculated values of |mCDW| [Fig. 1(a)] and

|mSDW| [Fig. 1(d)]. These results are well-known and in good
agreement with early calculations [21,34]. For small U and
V around the U = 2V line, an additional instability occurs
due to the competition between on-site and nearest-neighbor
Coulomb interactions, giving rise to a BOW [35], which is not
addressed in our paper.

A. Turning on either U or V

Now we study the finite-time quench produced by turning
on only one of the interactions: the on-site interaction, U , for
a final state in the SDW phase, or the nearest-neighbor one, V ,
for a final state in the CDW phase. As explained previously,
in both cases, we start from a metallic state [GS of Eq. (1)
with fixed U0 = V0 = 0] and analyze the system evolution as
the interactions increase linearly up to Uf = 0,Vf = 3 [No. 1
vertical line in Fig. 1(a)] or Uf = 6,Vf = 0 [No. 6 horizontal
line in Fig. 1(d)].

As will become clear from our results discussed below,
we can identify three regimes in the quench evolution: im-
pulse, intermediate, and adiabatic ones. Since our main goal
is the formation of the CDW or SDW ordering, we consider
a quench is adiabatic (rigorously quasiadiabatic) if (1) the
fidelity calculated between evolved and equilibrium states
[the precise definition of this quantity is given in Eq. (6)] at
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the end of the quench evolution is larger than 0.99 and (2)
the difference between quantities calculated from the evolved
state and the equilibrium GS is smaller than the uncertainties
of our numerical calculation. In this case, it is expected that
the system hardly evolves after the quench.

1. Spin and charge profiles

First, we look at the behavior of the local spin 〈ŝz
i 〉 and

charge 〈n̂i〉 mean values as a function of the chain site i,
calculated from the states at t = t f . These quantities are dis-
played for different ramping time scales on the middle and
right panels of Fig. 1, respectively. For comparison, we also
show the spin and charge profiles corresponding to the GS of
H (t = 0) and H (t = t f ).

We observe that for a short quench timescale (τU = 0.01
or τV = 0.01), the system goes through a sudden quench, a
regime that we identify as an impulse one. In this case, the
state is frozen at the starting one: the observables at t = t f are
equal to the ones at t = t0, as can be noticed in Figs. 1(b), 1(c)
1(e), and 1(f). In contrast, if the quench happens slowly (τV =
12.0 for the quench towards the CDW phase and τU = 2.5 for
the quench to SDW), an adiabatic process takes place. In this
case, we observe the formation of interchanging patterns in
the charge [Fig. 1(c)] and spin [Fig. 1(e)] mean values, which
closely follow the profile of the equilibrium GS with finite
Vf or finite Uf and are characteristic of the CDW and SDW
phases, respectively. Between these two extremes, we observe
an intermediate regime, also displayed in the figure for com-
parison.

For completeness, we also show in Fig. 1 the local mag-
netization for the quench toward the CDW phase [Fig. 1(b)]
and the charge density for the quench toward the SDW phase
[Fig. 1(f)]. For the latter, no charge fluctuations are expected
in the SDW phase and 〈n̂i〉 = 1 since we consider a half-filled
system. For the former, we find a residual, nonzero magneti-
zation, as it also occurs in the regime where the interactions
are turned off [first plot in Fig. 1(b)]. This is a result of
the conservation of total magnetization and the fact that we
study an odd length chain at half filling—there is always a net
magnetization equal to 1/2 spreading along the chain.

In Fig. 1, we have plotted observables as a function of the
chain site corresponding to the final state after the quench.
Let us now look at observables defined for the whole system
(that involve a sum over the sites, for example) and their evo-
lution during the quench. In Figs. 2(a) and 2(b), we show the
calculated order parameters as a function of the interactions,
V (t ) or U (t ), for distinct ramping timescales, τV or τU . In
these figures, the green dashed lines represent the GS order
parameters corresponding to the instantaneous equilibrium
Hamiltonian at time t , that is, the Hamiltonian of Eq. (1) with
constant Ueq = U (t ) or Veq = V (t ).

We observe that both mCDW and mSDW increase as the
respective interaction increases. For our finite system, the for-
mer approaches the maximum value (mCDW ≈ 1) for Vf = 3.
mSDW, on the other hand, saturates at ≈0.11 for Uf = 6. We
recall that, in the limit of large U and V = 0, the half-filled
system is equivalent to a Heisenberg chain [36,37] with an
exchange constant ∼4J2/U . Even in this limit, we cannot
observe a perfect Néel state because it is not an eigenstate

FIG. 2. (a) CDW and (b) SDW order parameters and (c), (d) the
EE , all displayed along the quenches, that is, as a function of V (t ) for
the quenches toward the CDW phase [Uf = 0,Vf = 3, correspond-
ing to quench No. 1 in Fig. 1(a)] and as a function of U (t ) for the
quenches aiming the SDW phase [Uf = 6,Vf = 0, i.e., quench No.
6 in Fig. 1(d)].

of antiferromagnetic Heisenberg model [38]. For this reason,
in our problem, mSDW never reaches the maximum possible
value (of 0.5) allowed by the definition in Eq. (5).

By comparing the different curves in Fig. 2(a), we conclude
that mCDW calculated from the evolved state corresponding
to τV = 12.0 approaches the equilibrium GS curve, reveal-
ing that τV � 12.0 is necessary for our system to reach the
adiabatic regime (we will come back to this point when dis-
cussing the fidelity in the next subsection). In contrast, for
τV = 0.01 the quench is sudden and the state does not evolve
at all. The quenches with 0.01 < τV < 12.0 correspond to an
intermediate regime; the order parameter increases but does
not follow the GS value, indicating that the evolved state
includes excited ones. This is clear in the case of τV = 5.0
(pink curve), for example, where we still observe some de-
viations between the results obtained from the evolved state
and those of the equilibrium case. Interestingly, the evolution
of mCDW at the intermediate regime starts to exhibit some
oscillatory behavior and is thus nonmonotonic. The overall
time evolution of mSDW [Fig. 2(b)] is similar to the one of
mCDW, however, a smaller ramping timescale, τU = 2.5, is
already enough to ensure the adiabatic regime in this case.
We can partially explain these different timescales looking
at the interactions associated with the ordering of charges
and spins along our quantum quenches. The rearrangement
of charges toward the CDW ordering is dominated by the
nearest-neighbor interaction V , while the rearrangement of
spins toward SDW is governed approximately by 4J2/U (see
Fig. 1). As a consequence, the quenches toward the CDW
ordering need to be longer than those toward SDW, in such
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FIG. 3. In (a) and (b), we present the fidelity f (t ) as a function
of V (t ) and U (t ), respectively. In (c) and (d), we plot the fidelity at
the end of the quench evolution f (t f ) as a function of τV and τU ,
respectively. The insets show a zoom of the data in (a) and (b). The
results are for the same quenches considered in Fig. 2.

a way that the excitations produced by the charge rearrange-
ments are suppressed.

2. Fidelity between evolved and equilibrium states

To better characterize the observed regimes, we calculate
the fidelity f (t ) between the evolved state at time t and the GS
corresponding to Ueq = U (t ) or Veq = V (t ). f (t ) is defined as

f (t ) = |〈�(t )|�GS〉|2, (6)

where |�(t )〉 is the evolved state and |�GS〉 the instantaneous
GS. We consider that when the fidelity at the end of the
quench evolution remains larger than a threshold value close
to unity (e.g., 0.99, with a tolerance of 0.01), the process can
be viewed as adiabatic. This assures us that the system will
follow the GS behavior in a free evolution after the quench
since no additional excitations were created by it. Otherwise,
the evolved state includes excited ones and the postquench
evolution is nontrivial.

In Figs. 3(a) and 3(b), we display the calculated fidelity
for the different regimes observed for quenches toward the
CDW and SDW phases, respectively. In the impulse regime
(τV = 0.01 and τU = 0.01), we observe that the fidelity van-
ishes in the CDW phase “earlier” [around V (t ) = 2] than
when the quench is toward the SDW phase, where f (t ) decays
more slowly. It happens because the equilibrium GS of the
instantaneous Hamiltonian in the SDW portion of the phase
diagram keeps a certain overlap with the initial state, at which
|�(t )〉 is frozen.

For intermediate τU or τV , the fidelity initially decreases
and then stabilizes (with small oscillations) at a finite value,
indicating that the evolved state is not orthogonal to the equi-
librium GS. As the ramping timescale increases even further,

we observe f ≈ 1, characteristic of an adiabatic evolution.
The behavior of the fidelity at the end of the quench evolution,
f (t f ), as a function of τV and τU is plotted in Figs. 3(c) and
3(d). For the quench toward SDW ordering [see Figs. 3(b) and
3(d)], the process with τU = 2.0 is nearly adiabatic, while the
one with τU = 2.5 is already in the adiabatic regime [ f (t f ) =
0.992]. For the quench toward the CDW ordering [Figs. 3(a)
and 3(c)], on the other hand, we obtain f (t f ) = 0.903 for
τV = 5.0, which is still in the intermediate regime. The adi-
abatic evolution is reached only with a larger ramping time,
τV = 12.0 [ f (t f ) = 0.996], as already pointed out when we
discussed the order parameter in the previous subsection.

We note that, for τV = 12.0, at the beginning of the quench,
the fidelity is slightly smaller than our adiabatic criterium
( f > 0.99), with minor excitations created close to the critical
point, however, the system equilibrates during the finite-time
quench. Such a behavior is also obtained for τU = 2.5 in the
quench toward the SDW phase, as can be seen in the insets
of Fig. 3, which depict a zoom in the region of f ≈ 1 of the
data in Figs. 3(a) and 3(b). For larger τ (see τV = 20 and
τU = 5.0), the fidelity remains above 0.99 during the whole
quench. The differences between the evolution driven by the
on-site or the nearest-neighbor interaction will be further ex-
plored below.

3. Entanglement entropy

To quantify how nonlocal correlations between parts of
our system evolve along the applied quenches, we eval-
uate the bipartite entanglement entropy, defined as EE =
−∑

i λilog2λi, where the set {λi} is the so-called entangle-
ment spectrum of eigenvalues of the reduce density matrix
ρ̂A/B = TrB/A|�〉〈�|. Here, we consider that subsystem A
contains the (L − 1)/2 leftmost sites and B the (L + 1)/2
rightmost one. We checked that the behavior of EE observed
by us does not qualitatively change if we take other subsystem
sizes.

The evolution of the EE throughout the quenches we
consider is shown in Figs. 2(c) and 2(d). For comparison,
we also display the EE corresponding to the instantaneous
equilibrium GS (green lines). For the smallest values of the
quench time (τU = 0.01 and τV = 0.01), that is, in the im-
pulse regime, the entropy does not evolve from the respective
initial values, those that correspond to U0 = 0 or V0 = 0.
More interestingly, in quenches to the CDW phase, we ob-
serve an enhancement of the EE for τV = 0.33, τV = 2.0,
τV = 3.5, and τV = 5.0 [cyan, red, orange, and magenta lines
in Fig. 2(c)]. For τV = 0.33, the EE increases monotonically
during the quench. For τV = 2.0, it increases up to ≈1.8
and roughly saturates—in this case the CDW is not well
formed, as indicated by the small values of |mCDW| observed
in Fig. 2(a). In the case of τV = 3.5 and τV = 5.0, we observe
a smaller enhancement of the EE , which is followed by a
sudden suppression toward the GS behavior. These results
indicate that during a quench in the intermediate time regime,
before approximating the CDW ordering, the system accesses
more entanglement excited states. On the other hand, we do
not find any considerable enhancement of the EE along the
formation of the SDW phase, as can be noticed in Fig. 2(d).
These observations suggest that the formation of the CDW
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ordering along a linear quench requires a larger rearrangement
of our system than the formation of the SDW one. An increase
of EE close to a critical point was also observed in the
dynamics of the Ising model with a time-dependent transverse
field [39].

In the intermediate regime, we also observe oscillations in
the EE throughout the quench evolution—look at the results
for τV = 3.5 and τU = 1.0 (orange lines). These oscillations
decrease in amplitude as we approach the adiabatic regime.
In this case, the EE follows closely the results for the equi-
librium GS state (green lines), as expected—both of them
decrease linearly when the system goes from the metallic to
the (ordered) insulating state. Oscillations in the EE as well
as in the expectation values of operators that do not com-
mute with the Hamiltonian were observed in spin chains after
sweeping the Hamiltonian through a critical point [39,40].
These features can be viewed as consequences of the fact that
the time-evolved state includes excited states of the equilib-
rium Hamiltonian.

4. Deviations with respect to equilibrium ground state

To summarize the main differences between the quenches
toward the CDW and SDW phases, we define the deviation of
a given quantity 	 as


	 =
∑ |	t − 	GS|∑ |	GS| , (7)

where 	t and 	GS refer to the values of 	 evaluated with
the evolved state and the equilibrium GS, respectively, and
the sum is over the instant of times between t = 0 and t =
t f , that is, over the quench time evolution. In Fig. 4(a), we
present our results for the deviations of mCDW and mSDW as
a function of the respective quench ramping times, τV for the
quenches toward the CDW phase and τU for quenches aiming
the SDW phase. Here, we focus on the curves at which only
one of the interactions, either U or V , are turned on (solid
lines); the other results will be discussed in the next section.

On one hand, in both quench directions we observe that
the order parameter deviations decrease monotonically as the
ramping time increases. However, they vanish at a smaller τ

when the quench is toward the SDW phase (black curves) than
when it is toward the CDW phase (red curves), emphasizing
that the adiabatic regime can be reached for smaller quench
timescales in the former. On the other hand, the EE deviations
shown in Fig. 4(b) feature a nonmonotonic behavior for the
quench toward the CDW ordering, with enhanced deviations
in the intermediate regime, compatible with the EE behav-
ior observed in Fig. 2(c). In the case of the quench toward
the SDW ordering, practically no enhancement is observed
in the EE, in agreement with Fig. 2(d). A comparison between
the red (CDW) and black (SDW) curves emphasizes the fact
that in the former excited states are accessed in the intermedi-
ate regime and thus the adiabatic case is reached with a larger
ramping time.

B. Turning on U and V simultaneously

We now investigate the effects of turning on both interac-
tions, U and V , simultaneously. At equilibrium, the Hubbard
model [Eq. (1) with U (t ) = Ueq 	= 0 and V (t ) = Veq = 0] can

FIG. 4. Deviations as defined in the text calculated for (a) the
CDW and SDW order parameters and (b) the EE as a function of the
ramping times, τV for the quench toward the CDW phase (curves in
red), and τU for the quench toward the SDW phase (curves in black).

be exactly solved by the Bethe ansatz method [41]. Its ex-
tended version (Veq 	= 0), on the other hand, is nonintegrable
for general values of the model parameters [42]. It was shown
that integrable many-body quantum systems in one dimension
could undergo relaxation to an equilibrium state described
by the generalized Gibbs ensemble [43] after a quench. The
same does not apply to nonintegrable models [44,45]. Such a
difference has motivated us to address the effects of small V
values on the quench toward the SDW phase and small U on
the quench toward the CDW phase.

In Fig. 4, we present the deviations of the different quan-
tities when considering the quenches paths numbered 2–5 in
Figs. 1(a) and 1(d). We compare them with the results for the
vertical and horizontal quenches (paths 1 and 6) described
in the previous section. We observe that the deviations of
the order parameter and of the EE decrease as Uf increases
for fixed Vf = 3 (quenches toward the CDW phase) or Vf

increases for fixed Uf = 6 (quenches toward the SDW phase).
More importantly, the three distinct regimes—sudden quench,
intermediate, and adiabatic—are still clearly observed as a
function of τ for the quenches with nonzero Uf and Vf . In
fact, we find very similar results to the ones discussed in
the previous section, when only one interaction is turned on,
indicating that the behavior of the evolved state during the
finite-time quench does not depend on the integrability of our
model.
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FIG. 5. Deviations of (a) the order parameters and (b) the EE
as a function of the quench ramping time τV or τU , depending on
whether the quench is toward the CDW (red curves, for which Uf =
1,Vf = 3) or the SDW (black curves, for which Uf = 6,Vf = 1)
phase. Results for different chain lengths L are shown, including the
one, L = 17, considered in the other plots.

IV. CONCLUSIONS

In this paper, we have performed time-dependent DMRG
calculations to study the formation of CDW and SDW phases
within the EHM. To this aim, we have considered that our
system is subjected to an interaction quench, that is, it is
prepared in an initial noninteracting state and the interactions
then change over a finite interval of time until their final values
are reached.

For the quenches we have analyzed, three different quench
regimes—impulse, intermediate, and adiabatic—are observed
depending on the ramping quench time τ . For small τ , we
have an impulse regime in which the system remains frozen
in the initial state. In the intermediate regime, for the quench
toward the CDW phase, we observe an increase of the entan-

glement entropy with respect to the initial value, not seen for
the quench toward the SDW phase. This suggests that, during
the time evolution toward the electronic CDW phase, more
entanglement excited states of the equilibrium Hamiltonian
are accessed, which does not happen during the formation of
the SDW phase. As a consequence, we observe that the third
regime, the adiabatic one, is reached with smaller ramping
timescale if a SDW ordered state is formed as compared to the
formation of a CDW state—the latter has to happen slowly to
prevent entangled excited states from being accessed during
the quench.

Finally, our findings show that the breaking of the system
integrability, produced by turning on the nearest-neighbor
interaction V , does not induce significant changes in the
nonequilibrium behavior during our quench. We believe, how-
ever, that the nonintegrability can affect the free evolution
after the quench, especially for states generated in the interme-
diate regime, since the system is excited at t = t f . This effect
can be investigated in future work.
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APPENDIX: DEPENDENCE OF THE RESULTS
ON THE SYSTEM SIZE

To analyze how our results depend on the number of chain
sites, we have selected the quench with Uf = 1,Vf = 3 [path
No. 2 in Fig. 1(a)] as representative of the formation of the
CDW ordering and that with Uf = 6,Vf = 1 [path No. 5 in
Fig. 1(d)] for the case of the SDW ordering. In Fig. 5, we
show the deviations of the order parameters and of the EE
as a function of the quench time for different chain length L.
As can be noticed in the figure, the increase in the number of
sites does not qualitatively affect our findings. Moreover, be-
fore achieving the adiabatic behavior, we observe that chains
with more sites present larger deviations of both quantities
analyzed. According to the adiabatic theorem, small energy
gaps between the ground and first excited states lead to more
excitations when the system crosses a critical point, which
in our case occurs when the interactions are turned on (the
system initial state coincides with the critical point). For sys-
tems with a finite number of sites, the gap decreases as the
chain size increases [40], which leads to more excitations at
the beginning of the quench evolution and thus to an increase
in the deviations of quantities along the quench, as observed
in our results.
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