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Density matrix of electrons coupled to Einstein phonons and the electron-phonon
entanglement content of excited states
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We derive the exact reduced density matrix for the electrons in an analytically solvable electron-phonon
model. Here, the electrons are described as a Luttinger liquid that is coupled to Einstein phonons. We further
derive analytical expressions for the electron-phonon entanglement, its spectrum, and mutual information at
finite and zero temperature as well as for excited states. The entanglement entropy is additive in momentum for
the quasiparticle excited states but not in the electron-phonon coupled eigenmodes of the system.
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I. INTRODUCTION

The electron-phonon coupling plays an essential role for
many phenomena in solid state physics, ranging all the way
from Bardeen-Cooper-Schrieffer(BCS)-type superconductiv-
ity [1–6] to the Peierls instability [7–9] and charge-density
waves [10–12]. Multidimensional electron-phonon systems
are in general not integrable, instead one needs to rely on, for
example, diagrammatic perturbation theory [13,14], Monte
Carlo simulations [15–17], or the tensor-network approach
[18]. In one dimension, the coupled system consisting of a
Luttinger liquid and phonons is however integrable [9,19–21];
a series of exact results [9,21–24] exist and, in addition, an
accurate variational ansatz [25–28].

In the present work, we derive the reduced density matrix
of the electron subsystem in a Luttinger model coupled to Ein-
stein phonons. Previous related work on the density matrix or
the entanglement entropy includes: the entanglement between
electrons at opposite momenta of the Luttinger liquid [24],
the entanglement entropy between a single spin and a bosonic
bath [29], and that between the electron and the protons in
an H+

2 ion [30]. For the Holstein model, the entanglement
entropy between the electrons and the phonons has been in-
vestigated using numerical exact diagonalization [31], and
the thus calculated entanglement spectrum has been used to
characterize nonanalyticities of the ground state [32]. Also
for the Su-Schrieffer-Heeger model [31,32] nonanalyticities
in the entanglement spectrum have been found. In contrast,
using the variational method a continuous crossover between
small and large entanglement in the case of large and small
polarons has been reported [33]. Further, bosonization has
been used to calculate the entanglement entropy, mutual in-
formation and entanglement negativity between electrons and
acoustic phonons in Ref. [22] and the entanglement entropy
of polaronic systems in Refs. [34,35].

*roosz.gergo@wigner.hu
†held@ifp.tuwien.ac.at

The entanglement entropy of excited states has become an
active area of research in the last years. Among others, in
critical spin chains the universal properties of the entangle-
ment entropy has been derived using conformal field theory
[36] and the entanglement content of the Heisenberg chain
has been investigated using the Bethe ansatz [37]. In Ref. [38],
quasiparticle excitations in one-dimensional fermionic system
were studied using exact diagonalization and tensor networks,
finding that the entanglement is proportional to the quasipar-
ticle number. The entanglement of free fermions in excited
states and its relationship to the Fermi surface has been in-
vestigated in Ref. [39] and that of two-particle excited states
in Ref. [40]. The latter shows that the entanglement entropy
is the sum of two terms corresponding to the two particles,
if the momentum of the two quasi particles is not too close.
Finally, in Ref. [41], the entanglement entropy of the excited
states of the XY and the Heisenberg XXZ spin chains has been
investigated between spatial blocks.

The above listed works demonstrates, for various special
examples with spatial bi-sectioning, that the entanglement
increase by quasiparticle excitations is additive if the mo-
mentum of the quasiparticles is not too close. A unifying
derivation in the case of free, homogeneous integrable models
of this observation has been performed in a series of works
[42–44]. Here, the entanglement S between two spatial re-
gions in a state which contains a finite number of quasiparticle
excitations with different momenta q1, . . . , qn generally is
conjectured to be of the form

S = SGS +
n∑

i=1

s(qn), (1)

where s(qn) is a model dependent function which describes
the entanglement content of the quasiparticle excitation at mo-
mentum qn, and SGS is the ground state entanglement entropy
in the same setting. Here, we instead investigate a nonspatial
bipartition, i.e., the bipartition between the electron and the
phonon subsystem and find a similar additivity in momentum
space.
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The present work is organized as follows. In Sec. II, we
introduce the model and determine its eigenmodes in Sec. III.
From these we derive the reduced density matrix in Sec. IV
and present results on the mutual information and the entan-
glement entropy at zero and finite temperature in Sec. V and
on excited states in Sec. VI. Finally, in Sec. VII, we make
some closing remarks.

II. LUTTINGER LIQUID DESCRIPTION

In a preceding paper [22], we investigated the entangle-
ment between a Luttinger liquid and acoustic phonons that
are coupled to the Luttinger liquid. We considered several
physically interesting versions of the problem, however not
the model corresponding to the Luttinger liquid coupled to
Einstein phonons which is at the focus of the present paper. To
motivate our model, let us start with the Holstein Hamiltonian
in momentum space which reads

H =
∑

q

ε(q)c†
qcq + ω0

∑
q

a†
qaq

+ g√
2ω0M

1√
L

∑
q

c†
kck+q(a†

q + a−q ), (2)

where L is the linear size of the system, c†
k and ck are cre-

ation and annihilation operators for electrons, ε(k) is the
one-particle electron energy, a†

q and aq are the creation and
annihilation operators of the phonons, ω0 is the frequency of
the Einstein phonons, M is the oscillator mass, and g is the
strength of the electron-phonon coupling. After linearization
around the Fermi energy and introducing left (Lk , L†

k ) and
right movers (Rk , R†

k), the kinetic energy term becomes∑
k

c†
kckε(k) →

∑
k

v f k(R†
kRk − L†

k Lk ). (3)

Further after bosonization [45] with boson operators bq, b†
q

this can be rewritten as∑
q

v f |q|b†
qbq. (4)

Neglecting backward scattering one gets—now also including
the phonons:

HLL =
∞∑

q=−∞
v f |q|b†

qbq + ω0

∞∑
q=−∞

a†
qaq

+ g√
4πω0M

qcutoff∑
q=−cutoff

√
|q|(b†

−q + bq)(a†
q + a−q).

(5)

Here, there is a new parameter qcutoff since the Luttinger
description is only valid in the low energy sector, so the
high-momentum states are secluded from the electron-phonon
interaction [23]. In the following, we will investigate the
Hamiltonian defined in Eq. (5), the Holstein model (2) merely
serves as a motivation. The main differences are the (infinite)
linear electron dispersion of Hamiltonian (5), and the lack of
the backscattering term. In the following, we set ω0 = M =
vF = 1.

III. CANONICAL TRANSFORMATION

In this section, we diagonalize the model (5) using a
Bogoliubov transformation, calculate the pair correlation
functions and from this in turn reconstruct the density matrix
of the electrons in terms of the bosonized operators. In the
literature of entanglement measures of free bosonic systems,
canonical impulse and coordinate operators are used more
often than the creation and annihilation operators b†, b of the
bosons, mainly due to historical reasons. To fit to this major
part of the literature, we define cosine and sine (or even and
odd) canonical modes for the lattice. Specifically, the cosine
modes for the lattice read

Q̂C,q = 1

2
√

ω0
(a†

q + aq + a†
−q + a−q), (6)

P̂Cq = i
√

ω0

2
(a†

q − aq + a†
−q − a−q), (7)

and the sine modes

Q̂S,q = 1

2
√

ω0
(a†

q + aq − a†
−q − a−q), (8)

P̂Sq = i
√

ω0

2
(a†

q − aq − a†
−q + a−q). (9)

These represent cosine and sine real space movements, re-
spectively.

We also introduce cosine and sine modes in the electronic
subsystem, however we would like to mention that there is no
simple connection between these operators, and the electron
movements (only to a modulation of the electron density). For
the electrons, the cosine modes read

q̂C,q = 1

2
√

vF |q| (b†
q + bq + b†

−q + b−q), (10)

p̂Cq = i
√

vF |q|
2

(b†
q − bq + b†

−q − b−q), (11)

and the sine modes

q̂S,q = 1

2
√

vF |q| (b†
q + bq − b†

−q − b−q ), (12)

p̂Sq = i
√

vF |q|
2

(b†
q − bq − b†

−q + b−q ). (13)

The Hamiltonian (5) then takes the following form:

H = 1

2

∑
q>0

[ p̂C,q, P̂C,q]

[
1 0
0 1

][
p̂C,q

P̂C,q

]

+ [q̂C,q, Q̂C,q]

⎡
⎣(vF |q|)2 gq

√
2vF
πM

gq
√

2vF
πM ω2

0

⎤
⎦[ q̂C,q

Q̂C,q

]

+ [ p̂S,q, P̂S,q]

⎡
⎣ 1 g

ω0

√
2

πMvF

g
ω0

√
2

πMvF
1

⎤
⎦[p̂S,q

P̂S,q

]

+ [q̂S,q, Q̂S,q]

[
(vF |q|)2 0

0 ω2
0

][
q̂S,q

Q̂S,q

]
. (14)

The sine (cosine) mode of the lattice couples only to the sine
(cosine) mode of the electrons. Next, we introduce new canon-
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ical variables p̂1,q, p̂2,q, p̂3,q, p̂4,q, q̂1,q, q̂2,q, q̂3,q, and q̂4,q

to diagonalize the Hamiltonian[
p̂1,q

p̂2,q

]
=
[

Aq −Bq

Bq Aq

][
p̂c,q

P̂c,q

]
, (15)[

q̂1,q

q̂2,q

]
=
[

Aq −Bq

Bq Aq

][
q̂c,q

Q̂c,q

]
. (16)

Here, the Aq and Bq numbers [defined in Eqs. (23) and (22)
below] are the components of the eigenvectors of the mo-
mentum matrix of the Hamiltonian. The sine modes can be
diagonalized by a slightly modified unitary transformation:[

p̂3,k

p̂4,k

]
=
[

Ak
ω3,k

vF k −Bk
ω3,k

ω0

Bq
ω4,k

vF k Aq
ω4,k

ω0

][
p̂s,q

P̂s,q

]
, (17)[

q̂3,q

q̂4,q

]
=
[

Aq
vF q
ω3,k

−Bq
ω0
ω3,q

Bq
vF q
ω4,q

Aq
ω0
ω4,q

][
q̂s,q

Q̂s,q

]
. (18)

The thus diagonalized Hamiltonian takes the following simple
form of four uncoupled harmonic oscillators:

H =
∑
q>0

4∑
i=1

(
1

2
p̂2

i,q + 1

2
ω2

i,qq̂2
i,q

)
. (19)

Here, Aq, Bq, and ω1,q, . . . , ω4,q are

ω2
1,q = ω2

3,q = (vF q)2+ω2
0

2
+
√(

(vF q)2−ω2
0

)2
4

+ vF g2q2

πM
,

(20)

ω2
2,q = ω2

4,q = (vF q)2+ω2
0

2
−
√(

(vF q)2−ω2
0

)2
4

+ vF g2q2

πM
;

(21)

Bq = − gq√
Nq

√
vF

πM
, (22)

Aq = 1√
Nq

(
(vF |q|)2 − ω2

1

)
, (23)

Nq = q2 g2q2vF

πM
+ ((vF |q|)2 − ω2

1

)2
. (24)

We can further rewrite the diagonalized Hamiltonian (19)
again in terms of creation and annihilation operators

bi,q =
√

ωi,q

2

(
q̂i,q + i

ωi,q
p̂i,q

)
, (25)

b†
i,q =

√
ωi,q

2

(
q̂i,q − i

ωi,q
p̂i,q

)
. (26)

With these operators the Hamiltonian becomes

H =
∑
i,q>0

ωi,q(b†
i,qbi,q + 1/2) ; (27)

and the excited states can be simply labeled by the occupation
numbers ni,q for the bosonic degrees of freedom:

|{ni,q}〉 =
∏

q=0,...,π

i=1,...,4

(b†
i,q )ni,q |0〉. (28)

The stability criterion of the system in our notations is
πω2

0vF M > g2 [19,20,23].

IV. REDUCED DENSITY MATRIX

Next, we calculate the reduced density matrix S of the
electrons from the pair correlation functions. Our quadratic
Hamiltonian has been diagonalized by a canonical transfor-
mation. As a consequence, the Wick theorem holds in any
subsystem, and the expectation value of any operator string
can be calculated using the pair correlation functions. On the
other hand, this means that if we find a Gaussian operator
(exponential of a quadratic operator), which reproduces the
pair correlation functions when used as a density matrix,
this Gaussian operator must give the correct results for all
operators, so it is the real density matrix of the subsystem.
More details can be found in Ref. [46]. Hence the strategy is
to calculate all pair correlation functions (there are a lot of
zeros) and to find an appropriate Gaussian operator.

To obtain S, let us thus calculate every correlation func-
tion between the bosonized operators. The sine and cosine
modes of the electron system are coupled to the corresponding
phonon modes, but not to each other. Hence, the nonzero
correlation functions of the electron subsystem are only 〈q2

C,q〉,
〈p2

C,q〉, 〈pC,qqC,q〉 and 〈q2
S,q〉, 〈p2

S,q〉, 〈pS,qqS,q〉. The coordinate-
momentum correlation functions are constant 〈pC,qqC,q〉 =
〈pS,qqS,q〉 = i, which is a consequence of the commutator
relations.

These correlation functions relate to the correlation func-
tions of the eigenmodes i = 1, . . . , 4 as follows (any correla-
tion function between different eigenmodes is zero):

〈
q̂2

s,q

〉 = ω2
1,q

(vF q)2
A2

q

〈
q̂2

3,q

〉+ ω2
2,q

(vF q)2
B2

q

〈
q̂2

4,q

〉
, (29)

〈
p̂2

s,q

〉 = (vF q)2

ω2
1,q

A2
q

〈
p̂2

3,k

〉+ (vF q)2

ω2
2,q

B2
q

〈
p̂2

4,q

〉
, (30)

〈
q̂2

c,q

〉 = A2
q

〈
q̂2

1,q

〉+ B2
q

〈
q̂2

2,k

〉
, (31)〈

p̂2
c,q

〉 = A2
q

〈
p̂2

1,q

〉+ B2
q

〈
p̂2

2,q

〉
. (32)

These are in turn directly related to the expectation values
〈b†

i,qbi,q〉, the bosonic occupation numbers, via〈
q̂2

i,q

〉 = (2〈b†
i,kbi,q〉 + 1)/(2ωi,k ), (33)〈

p̂2
i,q

〉 = ωi,k (2〈b†
i,qbi,q〉 + 1)/2. (34)

For the ground state, excited states and thermal ensemble
these expectation values are

〈b†
i,qbi,q〉 =

⎧⎨
⎩

0 in the ground state
ni,q in excited state |{ni,q}〉

1
exp(βωi,q )−1 at temperature T = 1/β

.

(35)
This way we have listed all pair correlation functions. Since
there is no (nontrivial) correlation between the sine and the
cosine modes of the lattice, the density matrix has to be a
product of a sine-mode and cosine-mode part as well as a
product between different momenta q > 0, i.e.,

ρ = �
qcutoff
q>0 (1 − eβc,q )e−∑q βc,qB†

c,qBc,q

× �
qcutoff
q>0 (1 − eβs,q )e−∑q βs,qB†

s,qBs,q

× ρq>qcutoff . (36)

195404-3
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Here B†
s,q, Bs,q, B†

c,q, Bc,q are bosonic creation and annihilation
operators, which can be defined in the following way:

B†
s,q =

√
αs,q

2

(
q̂s,q + i

αs,q
p̂s,q

)
, (37)

Bs,q =
√

αs,q

2

(
qs,q − i

αs,q
p̂s,q

)
, (38)

B†
c,q =

√
αc,q

2

(
q̂c,q + i

αc,q
p̂c,q

)
, (39)

Bc,q =
√

αc,q

2

(
q̂c,q − i

αc,q
p̂c,q

)
, (40)

where αC,q, αS,q, βC,q, and βS,q are unknown parameters.
These coefficients are the only remaining “free” parameters
of the density matrix, because of the high symmetries (lots
of zero correlations). One has to choose these parameters
in such a way that the correct pair correlation functions as
calculated above are restored. Now we calculated all pair
correlation functions using the form Eq. (40) as the function
of the unknown parameters (not shown here explicitly).

We first find that the root of 〈p̂2
S/C,q〉/〈q̂2

S/C,q〉 is αC/S,q. Then
we realize, that the product of these (〈p̂2

S/C,q〉〈q̂2
C/S,q〉) is related

to the occupation numbers. With these findings all parameters
can be determined as follows:

αC/S,k =
√√√√〈p̂2

S/C,k

〉
〈
q̂2

S/C,k

〉 , (41)

βC/S,k = ln

⎛
⎝1 + 1√〈

p̂2
S/C,k

〉〈
q̂2

S/C,k

〉− 1/2

⎞
⎠. (42)

These equations together with similar ones for the reduced
density matrix of the phonons presented in Appendix B form
the main result of this paper.

Generally, we have αC,k �= αS,k , and βS,k �= βC,k , but at zero
temperature βS,k = βC,k . The bosonic Bs,q and Bc,q operators
are related to the original bosonized bq operators and the lad-
der operators of the harmonic oscillator through a Bogoliubov
transformation.

From Eq. (40) it further follows that βs,q, βc,q are the one-
particle eigenvalues of the entanglement Hamiltonian Hent =
− ln ρ, which is a bosonic free particle Hamiltonian. This one-
particle spectrum of the entanglement Hamiltonian for various
coupling strengths is shown in Fig. 1(a). Please note that the
full entanglement spectrum is not simply the set of the one-
particle eigenvalues of the entanglement Hamiltonian. Even
in our case of a free bosonic entanglement Hamiltonian, the
spectrum of Hent still includes all multiples of the one-particle
eigenvalues (and all combination of different multiples).

Although the one-particle eigenvalues (as a function of the
coupling strength) do not cross each other, there can hence
still be level crossings in the full entanglement spectrum. An
illustrative example is shown in Fig. 1(b). If one arranges the
entanglement eigenvalues by magnitude, the crossing simply
implies a break in the derivative of the nth entanglement
eigenvalue [but the eigenvalue itself remains a continuous
function of the coupling, see Fig. 1(b).]

 6
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 10

0 �/4 �/2 3�/4 �

� k

k

g=0.1
g=0.2
g=0.3
g=0.4

 10

 20

 30

 40

 0.5  1

(b)

(a)

�(
q,

 g
)

g

5�(q=�/2, g)
4�(q=�/32, g)

n th eigenvalue

FIG. 1. (a) One-particle spectrum βC,k = βS,k = βk of the en-
tanglement Hamiltonian for various coupling strengths g at zero
temperature. (b) Crossing of different eigenvalues of the entangle-
ment Hamiltonian. Here and in the following ω0 = M = vF = 1.

In Ref. [32], it has been found by exact diagonalization of a
Peierls-type Hamiltonian, that the entanglement spectrum is a
nonanalytical function of the coupling strength, the nth entan-
glement eigenvalue is a continuous function of the coupling
strength, but its derivative is not continuous. Our integrable
model gives a simple explanation at least for some similar
singularities. Due to the finite bandwidth of the Holstein
Hamiltonian, singularities of a different origin may appear.
Indeed not all singularities presented in Ref. [32] seems to be
consistent with level crossing. On the other hand, the results
of Ref. [32] have been obtained by exact diagonalization;
and despite the usage of state-of-art methods, only a very
small part of the entanglement spectrum can be explored with
exact diagonalization. Hence, we do think that the crossing
presented here exist also in finite bandwidth systems, but
additional singularities may originate from the band edge.

V. ENTANGLEMENT MEASURES AT ZERO AND FINITE
TEMPERATURE

In this section, we present results for the entanglement
entropy

S ≡ Se = −Trρ ln ρ (43)

for the ground and thermally excited state with the reduced
density operator ρ for the electronic subsystem given by
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FIG. 2. Upper panel: Entanglement entropy S for the electronic
subsystem (with a bipartition into electrons and phonons) as the
function of the coupling strength g for the ground state. Lower panel:
Mutual information I as the function of temperature at interaction
g = 0.1.

Eq. (36), and for the mutual information

I = Se + Sph − Stot, (44)

where Sph and Stot are in analogy to Eq. (43) the entanglement
entropies of the phonon (see Appendix B) and the total sys-
tem, respectively. The results for the present model are shown
in Fig. 2 (see Appendix A for calculational details). The entan-
glement entropy S grows with the electron-phonon coupling
strength g and diverges at the Wentzel-Bardeen singularity. At
zero temperature [panel (a)], the mutual information is I = 2S
since for our bipartition Se = Sph and Stot = 0. However, at
finite temperatures T > 0 [panel (b)], neither of the latter two
equations hold and there are deviations. Specifically, the mu-
tual information decreases with increasing temperature, and
after a local minimum around T ≈ 0.6 reaches a plateau value
for T → ∞.

VI. ENTANGLEMENT CONTENT OF EXCITED STATES

In this section, we investigate the electron-phonon entan-
glement content of excited states |{ni,k}〉. The entanglement
entropy can be written as (see Appendix A)

S =
∑
q>0

s
(〈

p̂2
C,q

〉〈
q̂2

C,q

〉)+ s
(〈

p̂2
S,q

〉〈
q̂2

S,q

〉)
(45)

with s(x) = (
√

x + 1/2) ln(
√

x + 1/2) − (
√

x −
1/2) ln(

√
x − 1/2). It is clear from Eq. (45), that the

entanglement content of the different momenta is additive
S =∑q Sq. This agrees with Ref. [42] and confirms Eq. (1),
and further shows that a generalization to nonspatial
bipartitions is possible. However, the entanglement content
of the excitations b†

i,q at the same momentum is not linearly
additive for i = 1, . . . , 4. If it were additive, the green and
blue lines in Fig. 3(c) would coincide. The entanglement is
also not proportional to the occupation number as observed
in Ref. [38]: clearly the red line in Fig. 3(c) is not linear. The
entanglement content of the first and third and the second and
fourth kind of excitations are equal, see panels (a) and (b) of
Fig. 3.

The entanglement negativity can be written as the follow-
ing sum over the momentum

E = −2
qcutoff∑

q=0,±
ln min(1,

√
	C,q,±) + ln min(1,

√
	S,q,±),

(46)
the derivation and the 	C/S,k,± values are given in Ap-
pendix C. In Fig. 4, the terms corresponding to a given
momentum k are shown for different occupation numbers n1.
Quite surprisingly, the contribution of a given mode to the
entanglement negativity varies in a nonmonotonic way with
the occupation number. For small occupations, the negativity
become smaller then the ground state negativity, before start-
ing to increase again for high occupation numbers. This is a
rather different behavior than the entanglement entropy. The
entanglement entropy always grows with excitations, one can
define a positive entanglement content for each one-particle
excitation. As we have seen, the negativity can decrease with
one-particle excitations. If one defines a “negativity content of
excitations,” this content could be positive or negative.

VII. CONCLUSION AND OUTLOOK

We have derived an analytical formula for the entangle-
ment entropy and the entanglement spectrum of a Luttinger
liquid coupled to an Einstein phonon. The entanglement
spectrum is

∑
q>0 βC,qnC,q +∑q>0 βS,knS,q, where nC,q =

0, 1, 2, . . . and nS,q = 0, 1, 2, . . . are the occupation num-
bers and βC/S,q from Eq. (42) the eigenvalues of the bosonic
modes of the entanglement Hamiltonian. The entanglement
spectrum and thus the entanglement entropy is additive in
momentum q > 0. For each q the Luttinger liquid coupled
to Einstein phonons has four bosonic eigenmodes βi,q, i =
1, . . . , 4, because q and −q couple into independent sine (S)
and cosine (C) linear combinations [24]. For each of these in
turn, electrons and phonons couple into two bosonic eigen-
modes. In terms of the occupation of these four eigenmodes
βi,q at fixed q, the entanglement entropy is not additive. In
other words, while the momentum additivity conjectured in
Eq. (1) holds in our model, there is no such additivity for
the quasiparticle excitations at each momentum. As in exact
diagonalization for a Peierls-type Hamiltonian [32], we find
that the entanglement spectrum is a nonanalytical function
of the coupling strength, caused by a level crossing of the
eigenvalues.
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FIG. 3. (a) Entanglement content of the mode with momentum q
in the ground state, and in the excited state with n1,q = 1 (n3,q = 1)
and all other occupation numbers zero. Here and for all subpanels
g = 0.1. (b) Entanglement content of the mode with momentum q in
the excited states where n2,q = 1(n4,q = 1) and all other occupation
numbers are zero. (c) Entanglement content of the excited state with
n1,π/4 �= 0 and all other occupation number zero as the function of
the occupation number n = n1,π/4 (purple line). The green line shows
the entanglement content of the excited state where n1,π/4 �= 0 and, in
addition, n3,π/4 = 1. The sum of the entanglement contents of the two
states with only one nonzero occupation number (blue line) differs
from the state where both are excited simultaneously (green line).

In our calculations, we did not include the electron spin.
If included, there will be spin modes and charge modes, and
only the charge modes couple to the phonon system. An-
other simple way of generalization is to include the Coulomb

 10

 15

 20

�/2 �

E
q

q

n1=0
n1=1

n1=10
n1=20

FIG. 4. Logarithmic entanglement negativity content of modes
with a given wave number at coupling g = 0.1; vF = M = ω0 = 1.

interaction between the electrons, and to consider acoustic
phonons. In this case, the form of the electron density matrix
remains unchanged, only its coefficients change, as discussed
in Appendix D.

Our results are predominately of fundamental, theoret-
ical interest. However, for prospective applications let us
mention that similar one-dimensional electron-phonon mod-
els describe the low energy behavior of carbon nanotubes
[47–50] and the surface states of thin topological insulator
wires [51,52]. There are also three-dimensional systems such
as Li0.9Mo6O17 [53] where the electron system is quasi-one-
dimensional, and can be modeled as several parallel chain,
each described by the Luttinger theory. For these systems, our
results provide a first, general point of understanding, which
need to be further detailed to actually describe these materi-
als. Another nontrivial generalization for higher dimension is
the inclusion the phonons to the coupled-wire description of
topological systems [54].
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APPENDIX A: CALCULATION OF THE ENTANGLEMENT
ENTROPY AND THE MUTUAL INFORMATION

The von Neumann entropy of the reduced density matrix
is the entanglement entropy in the case of pure states (e.g., at
zero temperature). It is also used in the definition of the mutual
information in the case of general (for example, thermal)
states. The calculation of this quantity has been published in
Refs. [22,46,55,56], but to be self-contained we summarize it
here in a nutshell.

The investigated subsystem contains N bosonic modes
with q̂1, . . . , q̂N and p̂1, . . . , p̂N canonical conjugated
position-momentum operators with [qi, p j] = iδi, j . To cal-
culate the entropy one first evaluates all pair-correlation
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functions Qi j = 〈q̂iq̂ j〉 and Pi, j = 〈p̂i p̂ j〉 and Re〈q̂1 p̂l〉. Next,
one forms the following correlation matrix of the correlation
functions:

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

〈q̂1q̂1〉 . . . 〈q̂1q̂l 〉 Re〈q̂1 p̂1〉 . . . Re〈q̂1 p̂l 〉
...

...
...

...
〈q̂l q̂1〉 . . . 〈q̂l q̂l 〉 Re〈q̂l p̂1〉 . . . Re〈q̂l p̂l 〉

Re〈p̂1q̂1〉 . . . Re〈p̂1q̂l 〉 〈p̂1 p̂1〉 . . . 〈p̂1 p̂l 〉
...

...
...

...
Re〈p̂l q̂1〉 . . . Re〈p̂l q̂l 〉 〈p̂l p̂1〉 . . . 〈p̂l p̂l 〉

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(A1)

Now one has to diagonalize the matrix using symplectic trans-
formations and in this way obtain the symplectic spectrum
	1, . . . , 	N . Every eigenvalue of the M matrix is twice de-
generated, so N numbers gives the symplectic spectrum of
this 2N × 2N matrix. Having the eigenvalues of the matrix
at hand, one gets the entanglement entropy of the reduced
density matrix as

S=
N∑

j=1

(	 j + 1/2) ln(	 j + 1/2)−(	 j − 1/2) ln(	 j − 1/2).

(A2)
In our model, every coordinate-impulse correlation function
is zero Re〈q̂1 p̂l〉 = 0. In this case, it can be shown that the
square of the symplectic eigenvalues are the eigenvalues of
the PQ matrix, where P is matrix containing all momentum-
momentum functions (all of 〈p̂S,k p̂S,q〉 and 〈p̂C,k p̂C,q〉), and Q
is a matrix built up from the coordinate correlation functions
in a similar manner.

When we consider the sine-cosine modes defined in
Eqs. (11) and (13), the QP matrix further become diagonal,
and in the diagonal there are the 〈p̂2

S,k〉 and the 〈p̂2
C,k〉 values.

This leads to the simple integral formula of Eq. (45).

APPENDIX B: DENSITY MATRIX OF THE PHONONS

With a similar reasoning as we used in the main text to
derive the density matrix of the electrons, one can obtain the
reduced density matrix of the phonons:

ρ = �
qcutoff
q>0

(
1 − eβPhonon

c,q
)
e−∑q βPhonon

c,q D†
c,qDc,q

× �
qcutoff
q>0

(
1 − eβPhonon

s,q
)
e−∑q βPhonon

s,q D†
s,qDs,q

× ρπ
q>qcutoff

. (B1)

Here D†
s,q, Ds,q, D†

c,q, Dc,q are bosonic creation and annihila-
tion operators, defined in the following way:

D†
S,q =

√
γS,q

2

(
Q̂S,q + i

γS,q
P̂S,q

)
, (B2)

DS,q =
√

γS,q

2

(
QS,q − i

γS,q
P̂S,q

)
, (B3)

D†
C,q =

√
γC,q

2

(
Q̂C,q + i

γC,q
P̂c,q

)
, (B4)

DC,q =
√

γC,q

2

(
Q̂C,q − i

γC,q
P̂C,q

)
, (B5)

where the parameters γC,q, γS,q, βC,q, βS,q are obtained in
a similar way as in the case of the density matrix of the
electrons, yielding

γC/S,q =
√√√√ 〈

P̂2
S/C,q

〉
〈
Q̂2

S/C,q

〉 , (B6)

βPhonon
C/S,q = ln

⎛
⎝1 + 1√〈

P̂2
S/C,q

〉〈
Q̂2

S/C,q

〉− 1/2

⎞
⎠. (B7)

Here the expectation values of the squares of the bosonic
operators are the following:

〈
Q̂2

C,q

〉 = A2
k

〈
q̂2

2,q

〉+ B2
k

〈
q̂2

1,q

〉
, (B8)〈

P̂2
C,q

〉 = A2
k

〈
p̂2

2,q

〉+ B2
k

〈
p̂2

1,q

〉
, (B9)

〈
Q̂2

S,q

〉 = A2
k

ω2
4,q

ω2
0

〈
q̂2

4,q

〉+ B2
k

ω2
3,q

ω2
0

〈
q̂2

3,q

〉
, (B10)

〈
P̂2

S,q

〉 = A2
k

ω2
0

ω2
4,q

〈
p̂2

4,q

〉+ B2
k

ω2
0

ω2
3,q

〈
p̂2

3,q

〉
. (B11)

APPENDIX C: CALCULATION OF THE ENTANGLEMENT
NEGATIVITY

To calculate the entanglement negativity between the elec-
trons and the phonons, one can consider the correlation matrix
of the whole system, which is similar to M in Eq. (A1) but
now contains all variables of the phonons and the bosonized
fermions. Then one multiples all phonon momenta with −1.
The thus transformed correlation matrix is the correlation
matrix of the partial transpose of the density matrix.

One has to calculate the symplectic eigenvalues of the
transformed matrix, let us denote these eigenvalues as λ.
Then, the logarithmic negativity is calculated as

E = −
∑

λ

ln min(1, λ). (C1)

In our problem the correlation matrix is block-diagonal, so
one can find the symplectic eigenvalues block-by-block, and
write the negativity as a sum over momentum, i.e.,

E = −2
qcutoff∑

q=0,±
ln min(1,

√
	C,q,±) + ln min(1,

√
	S,q,±),

(C2)
where

	C/S,q,± = 1
2

[
aC/S,q ±

√
a2

C/S,q + 4bC/S,q − 4cC/S,q
]

(C3)

with

aC/S,q = 〈Q̂C/S,qQ̂C/S,q〉〈P̂C/S,qP̂C/S,q〉 + 〈q̂C/S,qq̂C/S,q〉〈p̂C/S,q p̂C/S,q〉 + 2〈P̂C/S,q p̂C/S,q〉〈Q̂C/S,qq̂C/S,q〉, (C4)

bC/S,q = (〈Q̂C/S,qq̂C/S,q〉〈P̂C/S,qP̂C/S,q〉 − 〈q̂C/S,qq̂C/S,q〉〈P̂C/S,q p̂C/S,q〉
)

×(〈Q̂C/S,qq̂C/S,q〉〈p̂C/S,q p̂C/S,q〉 − 〈P̂C/S,q p̂C/S,q〉〈Q̂C/S,qQ̂C/S,q〉
)
, (C5)

195404-7
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cC/S,q = (〈Q̂C/S,qQ̂C/S,q〉〈P̂C/S,qP̂C/S,q〉 − 〈P̂C/S,q p̂C/S,q〉〈Q̂C/S,qq̂C/S,q〉
)

×(〈q̂C/S,qq̂C/S,q〉〈p̂C/S,q p̂C/S,q〉 − 〈P̂C/S,q p̂C/S,q〉〈Q̂C/S,qq̂C/S,q〉
)
. (C6)

APPENDIX D: ACOUSTIC PHONONS

While the present work focuses on Einstein phonons, one
can formulate the density matrix of the electrons coupled to
acoustic phonons in a very similar way. From a technical side,
changing the Einstein phonons to acoustic phonons is simple.
However, physically, the acoustic phonon system with a local
electron phonon coupling is unstable to lattice deformations.
In the Luttinger description this is reflected by Hamiltonians
with a spectrum unbounded from below.

However, if the coupling has a momentum dependence
(i.e., is not exactly local) there are models with well-defined
Hamiltonian and experimental relevance.

We consider here two types of acoustic phonon cou-
pled to a plus Luttinger liquid. These two differ only in
parameters, the first introduced by Bardeen [20] has lin-
ear electron-phonon coupling, the second has

√
k electron

phonon-coupling and is motivated by carbon nanotubes. The
linear coupling has been introduced by an early analytical
study [57], but it is only correct in a few materials [58], and it
is even sensitive to magnetic field [59] and pressure [60].

The expressions for the correlation functions, Eq. (32),
change for the acoustic phonons, but all later formulas for the
reduced density matrix remain unchanged.

The original model investigated in Ref. [20] reads

HLLB =
∞∑

q=−∞
v f |q|b†

qbq +
∞∑

q=−∞
ωqa†

qaq

+ 1√
4πvSM

qcutoff∑
q=−cutoff

gq(b†
−q + bq)(a†

q + a−q)

(D1)

ωq = vSq. (D2)

The second model considers reads

HLL-NT =
∞∑

q=−∞
v f |q|b†

qbq +
∞∑

q=−∞
ωqa†

qaq

+ 1√
4πvSM

qcutoff∑
q=−cutoff

g
√

q(b†
−q + bq)(a†

q + a−q )

(D3)

+
∑

q

qhqb†
qbq + q fq(bqb−q + b†

qb†
−q) (D4)

In this later Hamiltonian, the bosonized interaction term cor-
responds to the following real-space interaction:

4

L

∫ L

0

∫ L

0
dx dy (n̂L(x), n̂R(y))

×
(

h(x − y) 1
2 f (x − y)

1
2 f (x − y) h(x − y)

)(
n̂L(x)
n̂R(y)

)
, (D5)

where n̂R(x) and n̂L(x) are the physical density of the right/left
movers, the h(x − y) ( f (x − y)) functions describe nonlocal
interactions between particles moving in the same (opposite)
direction. The hq and fq coefficients in Eq. (D4) are the
Fourier components of these functions.

The interaction term in the sine-cosine variables becomes

fq

2

(
vF q2q̂2

C,q + vF q2q̂2
S,q + 1

vF
p̂2

C,q − 1

vF
p̂2

S,q

)

+ hq

2

(
vF q2q̂2

C,q + vF q2q̂2
S,q + 1

vF
p̂2

C,q − 1

vF
p̂2

S,q

)
(D6)

so in the form Eq. (14) of the Hamiltonian only the diagonals
of the matrices are changed, and the phonon frequency get a
momentum dependence.

This Hamiltonian is diagonalized by a simple canonical
transformation, and the expectation values needed to calculate
the density matrix are

〈
q2

C,k

〉 = 1

1 + ( fq + hq)/vF

(
Cq
〈
q2

1,k

〉+ Dq
)〈

q2
2,k

〉
, (D7)

〈
p2

C,k

〉 = (1 + ( fq + hq)/vF )
(
Cq
〈
p2

1,k

〉+ Dq
)〈

p2
2,k

〉
, (D8)

〈
q2

S,k

〉 = 1

vF q2 + vF q2( fq + hq)/2

(
Eq
〈
q2

3,k

〉+ Fq
〈
q2

4,k

〉)
,

(D9)〈
p2

S,k

〉 = (vF q2 + vF q2( fq + hq)/2)
(
Eq
〈
p2

3,k

〉+ Fq
〈
p2

4,k

〉)
.

(D10)

The frequencies are

ω2
1,q = 1

2

(
vF q2 1 + ( fq + hq)/2

1 + ( fq + hq)/vF
+ ω2

q +
√(

vF q2vF q2( fq + hq)/2 + ω2
q

)2 + 8
g2

kq2vF /π/M

1 + ( fq + hq)/2

)
, (D11)

ω2
2,q = 1

2

(
vF q2 1 + ( fq + hq)/2

1 + ( fq + hq)/vF
+ ω2

q +
√(

vF q2vF q2( fq + hq )/2 + ω2
q

)2 + 8
g2

kq2vF /π/M

1 + ( fq + hq)/2

)
, (D12)

ω3,q = 1

2
(vF q2(1 + ( fq + hq/2))(1 + ( fq − hq)/2) + ω2

q (D13)
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+
√[

vF q2(1 + ( fq + hq/2))(1 + ( fq − hq)/2) + ω2
q

]2 + 8
g2

k (vF |q| + vF q2( fq + hq)/2)

πMvF

⎞
⎠, (D14)

ω4,q = 1

2
(vF q2(1 + ( fq + hq/2))(1 + ( fq − hq)/2) + ω2

q (D15)

−
√[

vF q2(1 + ( fq + hq/2))(1 + ( fq − hq)/2) + ω2
q

]2 + 8
g2

k (vF |q| + vF q2( fq + hq)/2)

πMvF

⎞
⎠, (D16)

Cq = (ω2
q − ω1,q

)
/Ñq, (D17)

Dq = − 1

Ñq

gkq
√

2vF
πM√

1 + ( fq + hq)/v f
, (D18)

Ñq = (ω2
q − ω1,q

)2 + g2
kq2 2vF

πM

1 + ( fq + hq)/v f
, (D19)

Eq = − gk

ωk

2√
πMvF

√
vF |q| + vF q2( fq + hq)/2/N ′, (D20)

Fq = (ω2
q − ω1,q

)
/N ′

q, (D21)

N ′
q = (ω2

q − ω1,q
)2 + g2

k

ω2
k

4

πMvF
(vF |q| + vF q2( fq + hq )/2). (D22)

As already discussed, the further procedure is identical to that for Einstein phonons.
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