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Bichromatic four-wave mixing and quadrature-squeezing from biexcitons
in atomically thin semiconductor microcavities
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Nonlinear optical effects such as four-wave mixing and generation of squeezed light are ubiquitous in optical
devices and light sources. For new devices operating at low optical power, the resonant nonlinearity arising
from the two-photon sensitive bound biexciton in a semiconductor microcavity is an interesting prospective
platform. Due to the particularly strong Coulomb interaction in atomically thin semiconductors, these materials
have strongly bound biexcitons and operate in the visible frequency range of the electromagnetic spectrum.
To remove the strong pump laser from the generated light in optical devices or to simultaneously excite
nondegenerate polaritons, a bichromatic-pump configuration with two spectrally separated pump lasers is
desirable. In this paper, we theoretically investigate spontaneous four-wave mixing and quadrature-squeezing in
a bichromatically pumped atomically thin semiconductor microcavity. We explore two different configurations
that support degenerate and nondegenerate scattering from polaritons into bound biexcitons, respectively. We
find that these configurations lead to the generation of strongly single- and two-mode quadrature-squeezed light.
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I. INTRODUCTION

Strongly bound biexcitons in atomically thin semiconduc-
tor microcavities provide an avenue for low-power nonlinear
optical devices, because the resonant scattering of unbound
exciton-polaritons into a bound biexciton yields a powerful
enhancement of the nonlinear optical response [1–3]. Pre-
vious analyses of degenerate four-wave mixing have shown
that strong parametric gain from biexcitons [4,5] can provide
quadrature-squeezing with significantly lower power than
when using conventional third-order nonlinear materials [6].
Thereby, atomically thin semiconductors have a significant
potential as a platform for nonlinear optics. In the interest of
spectrally separating the pump photons from the generated
signal, it is highly convenient to use a bichromatic-pump
scheme, where two nondegenerate pumps create a degenerate
signal at the mean of the two pump photon energies [7–12]. In
addition, such a bichromatic-pump setup allows for excitation
of nondegenerate polaritons, which opens up a nondegenerate
nonlinear scattering channel [13].

Four-wave mixing in pump-probe experiments with semi-
conductors [14–20] and semiconductor microcavities [21,22]
is a heavily studied theoretical and experimental topic, and
it was early recognized that the bound biexciton plays a
paramount role in four-wave mixing. However, spontaneous
four-wave mixing, also known as parametric flourescence or
hyper-raman scattering, in semiconductors is far less studied
[23,24], despite being a central topic for quantum light sources
with conventional nonlinear materials [25–28]. Four-wave
mixing is a third-order nonlinear process that transforms two
pump photons with frequencies ω1, ω2 to a pair of signal and
idler photons with frequencies ω3, ω4. Stimulated four-wave
mixing is facilitated by applying an idler laser field with

frequency ω3, which will produce a signal at ω4 = ω1 + ω2 −
ω3 due to energy conservation. In contrast, in the absence of
a stimulating idler field, spontaneous four-wave mixing pro-
duces a broad and continuous spectrum of photon pairs. This
is the regime that is studied in this paper. Due to the pairwise
creation of photon pairs, the field properties of the generated
light can exhibit strong nonclassical correlation signatures in
the form of quadrature-squeezing, two-mode-squeezing, and
photon-number correlations. In semiconductors, particularly
in semiconductor microcavities with a strong light-matter
interaction, spontaneous four-wave mixing can be mediated
by the biexciton, which can break into a correlated pair of
polaritons [see Figs. 1(a) and 1(b)].

In this paper, we theoretically investigate spontaneous
four-wave mixing in bichromatically pumped semiconductor
microcavities with atomically thin semiconductors. We inves-
tigate the spectrum and quadrature-squeezing of the generated
light and discuss how the cavity resonance and pump frequen-
cies can be tuned in two configurations to facilitate efficient
light generation and squeezing. Specifically, we investigate
two configurations close to resonances, where four-wave
mixing and squeezing is efficient. In the first configuration
[Configuration A, cf. Fig. 1(c)], the cavity frequency is tuned
such that the lower polariton (LP) energy E−

0 matches half
the bound biexciton energy 1

2 Exx
b,−. Here, the pump lasers

should be nearly degenerate around the lower-polariton en-
ergy to efficiently excite LPs, which scatter via the Coulomb
interaction into bound biexcitons through a degenerate po-
laritonic Feshbach resonance [1,29]. A Feshbach resonance
occurs when the energy of an open scattering channel (in this
case a LP pair) matches the energy of a bound multiparticle
complex (here a bound biexciton) [30]. The biexciton decays
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FIG. 1. (a) Microcavity containing an atomically thin semicon-
ductor. The cavity is driven with bichromatic coherent laser light at
frequencies ω1 and ω2. Four-wave mixing due to nonlinearities in the
optical response of the semiconductor creates an output photon pair
with frequencies ω3 and ω4. (b) Diagrammatic illustration of biexci-
tonic four-wave mixing. The input photons (red and yellow wiggly
arrows) create a pair of uncorrelated exciton-polaritons (single black
lines). The two polaritons can scatter via the Coulomb interaction
W

−
b and create a bound biexciton (double line). The biexciton spon-

taneously breaks into a pair of polaritons via the Coulomb interaction
W −

b , which are outcoupled from the cavity as photons (blue and
green wiggly arrows). (c) Polariton energy bands (E±

q , black lines)
in Configuration A, where the cavity frequency is tuned to bring
the lower polariton branch into Feshbach resonance with the bound
biexciton (blue dotted line), 2E−

0 = E xx
b,−. The driving frequencies are

symmetrically centered around the lower polariton (orange and red
arrows). The uncoupled cavity and exciton energy bands are shown
with gray lines. (d) Similar to panel (c) for Configuration B, where
the cavity frequency is tuned such that an upper-lower polariton pair
matches the energy of a bound biexciton, E−

0 + E+
0 = E xx

b,−, forming
a nondegenerate Feshbach resonance. The driving frequencies are
symmetrically centered around 1

2 E xx
b,− with a resonance occurring

when ω1 = E+
0 , ω2 = E−

0 .

spontaneously into two degenerate LPs, which leads to single-
mode squeezed light emission. In the second configuration
[Configuration B, cf. Fig. 1(d)], the cavity frequency is tuned
such that the sum of the LP and upper polariton (UP) energies

E−
0 + E+

0 matches the bound biexciton energy Exx
b,−, thereby

giving rise to a nondegenerate polaritonic Feshbach reso-
nance, also known as a polaritonic cross Feshbach resonance
[13]. The driving field is resonant, when the two pump laser
energies match the two polariton energies. An uncorrelated
UP-LP pair can then resonantly scatter into a bound biexciton,
which decays into a nondegenerate UP-LP pair that leads
to the emission of two-mode squeezed light. In this context,
two-mode quadrature-squeezing refers to a reduction of the
quadrature noise in the cross-correlation between spectrally
distinct frequency bands [31].

For the investigation, we employ a rigorous perturba-
tive expansion of the electronic and photonic correlations
up to third order in the driving field through the dynamics-
controlled truncation (DCT) scheme [32,33]. To calculate not
only intracavity dynamics but also the properties of the out-
coupled and thus detectable field, we combine DCT with a
Heisenberg-Langevin approach [6,34]. Due to the presence of
two nondegenerate pumps, the steady state of the system is
not constant [35], but can be expressed as a discrete Fourier
series. This series expansion complicates the solution of the
Heisenberg-Langevin equations of motion in frequency space
compared to the case of a constant steady-state, which we
solve through a discrete Fourier-index formalism.

The paper is organized as follows: In Sec. II, we describe
the semiconductor model that is used for the electronic states
in the semiconductor, the photonic states in the cavity and the
external driving field. In Sec. III, the DCT and Heisenberg-
Langevin methods are applied to calculate the dynamics,
spontaneous four-wave mixing spectrum, and squeezing. In
Sec. IV, we present and discuss the results for Configurations
A and B. Finally, we conclude in Sec. V.

II. MODEL

Here, we describe the used two-band semiconductor model
for electrons and holes, as well as the coupling to cavity
photons and the external laser drive.

A. Hamiltonian

We consider an atomically thin semiconductor placed in
a planar cavity, which is driven with two coherent pump
beams with frequencies ω1 and ω2 at normal incidence.
The electromagnetic field in the cavity is quantized through
the bosonic annihilation and creation operators aσ,k and
a†

σ,k, which describe cavity photons with polarizaton σ and
in-plane momentum k. We assume the cavity to be rotation-
ally symmetric in the plane, such that the cavity mode is
polarization-degenerate.

The semiconductor is described by electronic states in
the conduction and valence bands with fermionic annihila-
tion and creation operators cζk, c†

ζk for the conduction band

and vζk, v
†
ζk for the valence band. The index ζ = (ξ, s) la-

bels valley (ξ ) and spin (s). We shall restrict our analysis
to the lowest-energy optical transitions in transition-metal
dichalcogenide monolayers, which are located at the valleys
ξ = K and ξ = K ′, respectively. Due to spin-orbit coupling,
the lowest-energy transitions allow photons with right-hand
(σ = R) or left-hand (σ = L) circular polarization to excite
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electron-hole pairs with spin-valley combinations ζ = (K,↑)
and ζ = (K ′,↓). Due to this unambiguous relation between
photon polarization and electron spin and valley, we can
absorb photon polarization into the index ζ and use the
shorthand notation ζ ∈ {K, K ′} to denote all three degrees of
freedom.

The total Hamiltonian H is divided into a noninteracting
term H0 and a Coulomb interaction term HC, such that H =
H0 + HC. The noninteracting Hamiltonian describing elec-
trons, photons, and their coupling is given by

H0 =
∑
ζk

[
E c

kc†
ζ ,kcζ ,k + Ev

kv
†
ζ ,kvζ ,k + Ep

k a†
ζ ,kaζ ,k

]

+
∑
ζkq

[
Aqc†

ζ ,k+qvζ ,kaζ ,q + A∗
qa†

ζ ,qv
†
ζ ,kcζ ,k+q

]
, (1)

where the first two terms account for the energy of electrons
in the conduction and valence band, E c

k = E c
0 + h̄2k2/(2me )

and Ev
k = Ev

0 − h̄2k2/(2mh), with E c
0 − Ev

0 the quasiparticle
bandgap and me, mh the effective electron and hole masses.
The third term accounts for the energy of cavity photons,
Ep

k = h̄[ω2
p,0 + (ck/n̄)2]1/2, where ωp,0 is the resonance fre-

quency at k = 0, c is the speed of light, and n̄ is the effective
refractive index of the cavity mode [36,37]. The last two terms
describe electron-hole-photon coupling with strength Aq =√

Ep
0 /Ep

q A0, which depends on the out-of-plane confinement
of the cavity mode and the Bloch momentum matrix element
of the semiconductor [38,39].

The Coulomb interaction is given by [40]

HC = 1

2

∑
k1k2q

∑
ζ1ζ2

Vq(c†
ζ1,k1+qc†

ζ2,k2−qcζ2,k2 cζ1,k1

+ v
†
ζ1,k1+qv

†
ζ2,k2−qvζ2,k2vζ1,k1

+ 2c†
ζ1,k1+qv

†
ζ2,k2−qvζ2,k2 cζ1,k1 ). (2)

Here, Vq = e2
0[2Sε0εqq]−1 is the screened 2D Coulomb poten-

tial, where e0 is the elementary charge, S is the quantization
surface area, ε0 is the vacuum permittivity, and εq is the
dielectric function for 2D semiconductors which is described
in Appendix E. The inter- and intra-valley Coulomb exchange
interaction has been neglected here, because in transition-
metal dichalcogenides it is significantly weaker [20,40] than
the direct interaction in Eq. (2). We note that the exchange
interaction leads to effects such as biexciton fine structure [41]
and a splitting of the exciton into branches with linear and
quadratic dispersion [42] that coincide at zero center-of-mass
momentum. While these effects are rich and interesting, we
consider here only the physics of the dominating nonlinear
response from the direct Coulomb interaction and leave the
additional inclusion of exchange effects to more detailed fu-
ture analyses.

B. Driving field

The two pump laser drives are introduced via the input-
output formalism [43,44], which is based on the microscopic
interaction between the internal cavity mode with the quan-
tized continuum of external modes. By formally solving the
equation of motion of the external field operators, the external

input field is linked to the equation of motion for the cavity
field operator as

−ih̄∂t a
†
ζ ,0 = [H, a†

ζ ,0] + ih̄γ pa†
ζ ,0 + ih̄

√
2γ pain†

ζ , (3)

where the last two terms describe outcoupling from the cavity
mode and incoupling of the driving field, respectively. We take
the expectation value of the driving field to be in a coherent
state and to have the bichromatic form〈

ain
ζ (t )

〉 = 〈
ain

ζ

〉
1eiω1t + 〈

ain
ζ

〉
2eiω2t , (4)

where ω1 and ω2 are the frequencies of the two driving lasers
and 〈ain

ζ 〉1 and 〈ain
ζ 〉2 are the corresponding amplitudes. We

shall take the total power in each of the driving lasers to
be equal and denote by λin

i , i = 1, 2 the polarization vector
of the two drives in the circular basis. We then express the
input field components as polarization vectors as 〈ain〉i =
[〈ain

K 〉i, 〈ain
K ′ 〉i]T, where the superscript T denotes transposition.

The input-field vectors are related to the total driving power
Pin as [43] 〈ain〉i = [P/(2Ep

0 )]1/2λin
i .

III. METHODS

Here, we introduce the DCT scheme for time evolution
of the expectation values and the Heisenberg-Langevin equa-
tions for the fluctuation operators. The model and techniques
are a generalization of the work presented in Ref. [6] to
bichromatic driving fields.

A. Time evolution

To calculate the time evolution of the system, we apply
the DCT scheme [32,33] to perturbatively expand the equa-
tions of motion for the coherent expectation values to third
order in the driving field ain

ζ . The first step in this procedure is
the Heisenberg equation of motion for a general operator Q,
−ih̄∂t 〈Q〉 = 〈[H, Q]〉 (see Ref. [6] for the explicit derivation).

The Coulomb interaction and the fermionic commutation
relations generate expectation values with an unequal number
of conduction and valence band operators cζ ,k and vζ ,k, such
as 〈c†

ζ ,k+qc†
ζ ′,k′−qcζ ′,k′vζ ,k〉. Here, conduction-band electron

densities c†
ζ ′,k′−qcζ ′,k′ are expressed perturbatively in terms

of electron-hole pair operators using a unit-operator expan-
sion [40,45] c†

ζ ′,k′−qcζ ′,k′ = ∑
ζ1k1

c†
ζ ′,k′−qvζ1,k1v

†
ζ1,k1

cζ ′,k′ +
O[(ain )4], and similarly for valence-band hole densities. In
this expansion, the Hilbert space has been restricted to pairs
of conduction band electrons and valence band holes [40],
which means that the effects of unpaired electrons or holes
have not been accounted for. In this paper, this assumption is
valid, because the only source of carriers is optical excitation
through the driving field, which creates electrons and holes in
pairs. However, in the presence of unpaired electrons or holes
through, e.g., n- or p-doping, which we do not consider in this
paper, the pair expansion is no longer valid.

Within the DCT scheme, the third-order perturbative ex-
pansion corresponds to only keeping terms with up to three
normal-ordered electron-hole pair or cavity photon operators
[46], since the number of pair or photon operators corre-
sponds to the order in the driving field. Such a perturbative
expansion is possible because all correlations have their origin
in the action of the external driving field [32,33]. Further-
more, in the coherent-response limit, which is considered
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here, the third-order expectation values are systematically
factorized as 〈c†vc†vv†c〉 = 〈c†vc†v〉〈v†c〉 and 〈a†c†vv†c〉 =
〈a†c†v〉〈v†c〉. This third-order factorization is exact in the co-
herent regime [46], i.e., when the only source of electrons and
holes is excitation with coherent light near the resonances of
the system, and when incoherent scattering processes, e.g., via
phonons can be neglected. Phonon scattering is later included
phenomenologically through an exciton dephasing rate, which
is obtained from a separate self-consistent microscopic cal-
culation [47]. This means that the validity of our approach
is limited to the regime where cavity outcoupling (γ p) domi-
nates over exciton dephasing (γ x), such that polaritons will be
outcoupled before significant dephasing and scattering takes
place. In practice, this limits the theory to the low-temperature
limit, where phonon dephasing is slow. For the calculations
presented in this paper, the temperature is 30 K, which yields a
phonon-induced dephasing rate below 1 meV, while the cavity
outcoupling is 9 meV, consistent with fabricated dielectric mi-
crocavities with transition-metal dichalcogenide monolayers
[48]. Thus, there is a separation between these two timescales
by an order of magnitude.

The electron-hole are expanded on the complete set of ex-
citonic eigenstates as 〈c†

ζkvζk′ 〉 = ∑
i φ

i∗
βk+αk′ 〈Pi†

ζ ,k−k′ 〉, where
φi

k is the ith exciton wave function (solution to the Wannier
equation) in momentum space with zero-momentum energy
Ex

i,0 and Pi†
ζ ,q is the creation operator of the corresponding

exciton with center-of-mass momentum q, and α = me/(me +
mh ) and β = mh/(me + mh ). We restrict the analysis to the
lowest-energy (i = 1 s) exciton, which is energetically sepa-
rated from the next excitonic state by hundreds of meV for
atomically thin transition-metal dichalcogenides [49,50] and
we shall thus drop the index i from here onwards, meaning
that the electronic states are projected onto the lowest exciton
wave function. This is valid, when the excitation energy is far
away from any of the neighboring exciton states. In practice,
the projection of electronic states onto the lowest-energy ex-
citon wave function ensures an efficient numerical evaluation
of the dynamics and exciton-exciton scattering coefficients.

Two-photon expectation values are partitioned into factor-
ized parts and correlations, defined as Dζ ζ ′

q := 〈a†
ζ ,qa†

ζ ′,−q〉
− 〈a†

ζ ,q〉〈a†
ζ ′,−q〉. Three-particle photon-electron-hole

correlations are defined as 〈a†
ζ ,qc†

ζ ′,k−αqvζ ′,k+βq〉c =
〈a†

ζ ,qc†
ζ ′,k−αqvζ ′,k+βq〉 − 〈a†

ζ ,q〉〈c†
ζ ′,k−αqvζ ′,k+βq〉, i.e., with

the contribution that can be factorized in electron-
hole pairs and photons subtracted. These correlations

are projected onto the exciton wave function as

Cζ ζ ′
q := ∑

k φk〈a†
ζ ,qc†

ζ ′,k−αqvζ ′,k+βq〉c. The four-particle
correlations of two electron-hole pairs have a more
complicated structure due to the two possible electron-hole
pairings: 〈c†

ζk+qvζkc†
ζ ′k′−qvζ ′k′ 〉c := 〈c†

ζk+qvζkc†
ζ ′k′−qvζ ′k′ 〉 −

〈c†
ζk+qvζk〉〈c†

ζ ′k′−qvζ ′k′ 〉 + 〈c†
ζ ′k′−qvζk〉〈c†

ζk+qvζ ′k′ 〉. These
correlations are projected on the 1s exciton wave function in
terms of the biexcitonic correlations B̃ζ ζ ′

q,± in the triplet (+)
and singlet (−) linear combinations through the relation [51]
1
2 (〈c†

ζk+qvζkc†
ζk′−qvζ ′k′ 〉c ± 〈c†

ζ ′k+qvζkc†
ζk′−qvζ ′k′ 〉c)

=: φ∗
k+βqφ

∗
k′−βqB̃

ζ ζ ′
q,± ∓ φ∗

αk+β(k′−q)φ
∗
β(k+q)+αk′ B̃ζ ζ ′

k′−k−q,±.

Due to the Coulomb interaction, the equation of motion for
the biexcitonic correlation B̃ζ ζ ′

q,± is coupled to correlations

with different momenta, B̃ζ ζ ′
q′,±. To alleviate this momentum

off-diagonal coupling and thereby simplify the structure of the
equations of motion, the biexcitonic correlations are expanded
on the biexcitonic wave functions �±

μ,q, which are the solu-
tions to an effective two-exciton Schrödinger equation [20]
with corresponding energies Exx

μ,± (see Appendix A for de-
tails). Bound (μ = b, Exx

b,− < 2Ex
0 ) and unbound (Exx

μ,− >

2Ex
0 ) solutions exist in the singlet channel, where the effec-

tive exciton-exciton Coulomb interaction is attractive. The
triplet channel supports only unbound solutions [52], because
the effective interaction is repulsive. The unbound solutions
constitute a two-exciton scattering continuum. In this biex-
citonic eigenbasis, the correlations are expressed as B̃ζ ζ ′

q,± =∑
μ �±

μqB
ζ ζ ′
μ,±.

At the level of the equations of motion, we phenomeno-
logically include phonon-induced broadening of the exciton
and biexciton by introducing complex-valued energies in
the equations of motion: Ẽx

q = Ex
q + ih̄γ x, Ẽxx

μ,± = Exx
μ,± +

2ih̄γ x. The broadening γ x is calculated through a micro-
scopic, self-consistent approach for the phonon interaction as
in Refs. [47,53–56]. We approximate the biexcitonic broaden-
ing as twice the exciton broadening [57–59].

Similarly, photon outcoupling from the cavity is included
in the complex cavity frequency Ẽp

q = Ep
q + ih̄γ p.

The equations of motion of the photon and exciton am-
plitudes and the three types of correlations as described
above form a closed set within the third-order DCT scheme
[46]. In a rotating reference frame with respect to the mean
drive frequency ωr = (ω1 + ω2)/2 the equations of motion
are

−ih̄∂t 〈a†
ζ ,0〉 = (

Ẽp
0 − h̄ωr

)〈a†
ζ ,0〉 + 
0

〈
P†

ζ ,0

〉+ ih̄
√

2γ p
[〈

ain†
ζ

〉
1e−iω12t + 〈

ain†
ζ

〉
2e+iω12t

]
−ih̄∂t 〈P†

ζ ,0〉 = (
Ẽx

0 − h̄ωr
)〈P†

ζ ,0〉 + 
0〈a†
ζ ,0〉 −

∑
q


̃q
(
Cζ ζ ′

q + δq,0
〈
a†

ζ ,0

〉〈
P†

ζ ,0

〉)〈Pζ ,0〉 + W 0
∣∣〈P†

ζ ,0〉
∣∣2〈P†

ζ ,0〉 +
∑
μζ ′±

W ±
μ Bζ ζ ′

μ,±〈Pζ ′,0〉.

−ih̄∂tBζ ζ ′
μ,± = (

Ẽxx
μ,± − 2h̄ωr

)
Bζ ζ ′

μ,± + 1

2
(1 ± δζζ ′ )

{
W ±

μ 〈P†
ζ ,0〉〈P†

ζ ′,0〉 +
∑

q

[

±

μ,−qC
ζ ′ζ
−q + 
±

μ,qCζ ζ ′
q

]}

−ih̄∂tCζ ζ ′
q = (

Ẽp
q + Ẽx

q − 2h̄ωr
)
Cζ ζ ′

q + 
qDζ ζ ′
q − 1

2
δζζ ′
̃q〈P†

ζ ,0〉2 +
∑
μ±


±
μ,qB

ζ ζ ′
μ,±

−ih̄∂tDζ ζ ′
q = 2

(
Ẽp

q − h̄ωr
)
Dζ ζ ′

q + 
qCζ ′ζ
−q + 
−qCζ ζ ′

q . (5)
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The full details of the derivation can be found in Ref. [6], but
for completeness, all quantities are defined in Appendix A. In
each equation, the first term on the right-hand side describes
free evolution, and the remaining terms describe couplings or
driving. For the photon amplitude 〈a†

ζ ,0〉, the second term is
the linear vacuum-Rabi coupling to the exciton with coupling
strength 
0 (where 2
0 is the vacuum Rabi splitting). The last
term is input-field driving, where in the rotating frame, the
two pumps rotate with ±ω12, with the difference frequency
ω12 := (ω2 − ω1)/2.

For 〈P†
ζ ,0〉, the second term describes vacuum Rabi cou-

pling. The third term arises from the fermionic substructure
of excitons and generates nonlinear saturation of the light-
matter interaction due to Pauli blocking 
̃q. The last two
terms describe Coulomb exciton-exciton interactions at the
mean-field level (W 0) and Coulomb-induced interactions with
the biexcitonic correlations (W ±

μ ) beyond mean-field.

For the biexcitonic correlations Bζ ζ ′
μ,±, the second term

contains Coulomb-scattering of uncorrelated excitons (W ±
μ )

and coupling to exciton-photon correlations through the light-
matter interaction (
±

μ,q). For the exciton-photon correlations

Cζ ζ ′
q , the second term describes linear coupling to two-photon

correlations by exchanging an exciton with a photon (
0).
The third term describes a nonlinear scattering of two uncor-
related excitons (
̃q), and the last term describes coupling to
biexcitonic correlations via optical fields (
±

μ,q). The second
and third terms in the equation of motion for the two-photon
correlations Dζ ζ ′

q describe coupling to exciton-photon corre-
lations by exchanging a photon with an exciton through the
light-matter coupling 
0.

B. Steady-state discrete Fourier decomposition

As noted, the driving terms oscillate with the frequency
±ω12 in the rotating frame. In contrast to the single-pump
case [6] where the driving term is constant in the rotating
frame, this means that the steady state evolution of the ex-
pectation values is not constant, but contains terms oscillating
with integer multiples of ω12. This means that the steady-state
dynamical variables Y (t ), where Y is any of the expectation
values in Eq. (5), are periodic with period T = 2π/|ω12| and
can thus be represented as a discrete Fourier series

Y (t )
∣∣
t→∞ =

∞∑
m=−∞

Yme−inω12t ,

Ym = lim
t→∞

1

T

∫ t+T

t
dt ′Y (t ′)eimω12t ′

. (6)

To find the steady-state discrete Fourier series, Eq. (5) is
propagated numerically in time until the coefficients Ym have
converged sufficiently.

C. Polaritons

When photons and excitons are strongly coupled, as con-
sidered in this paper, the relevant linear-response eigenstates
are polaritonic states. These states emerge naturally out of
the equation of motion by diagonalization in the linear limit.
Taking the first two lines of Eq. (5), removing the nonlinear

terms and the driving, and casting them in the general nonzero
momentum form in the laboratory (i.e., nonrotating) reference
frame, we have

−ih̄∂t 〈a†
ζ ,q〉 = Ẽp

q 〈a†
ζ ,q〉 + 
q〈P†

ζ ,q〉,
−ih̄∂t 〈P†

ζ ,q〉 = Ẽx
q 〈P†

ζ ,q〉 + 
q〈a†
ζ ,q〉. (7)

In the limit where photon outcoupling and exciton dephasing
are neglected, these equations of motion can be diagonalized
through a unitary Hopfield transformation [60] by introducing
the polariton operators �

±†
ζ ,q = up±

q a†
ζ ,q + ux±

q P†
ζ ,q where the

expansion coefficients are given by

up±
q = Ep

q − Ex
q ± ηq√(

Ep
q − Ex

q ± ηq
)2 + 4
2

q

,

ux±
q = 2
q√(

Ep
q − Ex

q ± ηq
)2 + 4
2

q

,

(8)

with ηq =
√

(Ep
q − Ex

q )2 + 4
2
q. In this basis, the linear evo-

lution of Eq. (7) becomes

−ih̄∂t 〈�±†
ζ ,q〉 = E±

q 〈�±†
ζ ,q〉, (9)

with the polariton energies E±
q = 1

2 [Ex
q + Ep

q ± ηq]. The com-
mutation relations of the polariton operators are not bosonic,
because they have correction terms due to the fermionic sub-
structure of the exciton operator P†

ζ ,q [40]. In principle, the full
equations of motion Eq. (5) can be expressed in the polaritonic
basis. However, this is not necessary and will not change
the dynamics itself, only the basis that it is expressed in. In
this work, we only use the polaritonic energies to identify
the linear resonances of the system and to understand the
nonlinear scattering between zero-momentum polaritons and
the bound biexciton as depicted in Fig. 1.

D. Fluctuations

With the equations of motion of the single-time expectation
values as in Eq. (5), one can access the instantaneous quantum
statistics in the steady state or in the transient evolution. This
can in principle be used to calculate the intracavity-squeezing
or photon number. However, the relevant detectable quantity
is not the intracavity field, but the outcoupled field. Since
the cavity field at zero-momentum couples out of the cavity
into a continuum of external radiation modes with different
frequencies, outcoupled quantities are always described and
often measured by a spectrum rather than a single number, in
contrast to intracavity quantities, which can be expressed in
terms of a single mode [44,61].

To calculate the spontaneous four-wave mixing spectrum
and quadrature-squeezing of the generated light, we need
not only the single-time expectation values as in Sec. III A
but also multitime averages. To calculate these, we employ
a Heisenberg-Langevin approach for the time evolution
of the fluctuation operator of the cavity field, δa†

ζ ,0(t ) =
limt→∞[a†

ζ ,0(t ) − 〈a†
ζ ,0(t )〉] and similarly for the exciton

fluctuation operator δP†
ζ ,0. Importantly, the cavity in/out-

coupling and the phonon-induced dephasing give rise to
Langevin noise sources [62]. For the cavity field, the Langevin
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noise enters directly from microscopic theory through the
input-output formalism, as seen in Eq. (3), where δain†

ζ (t ) :=
limt→∞[ain†

ζ (t ) − 〈ain†
ζ (t )〉] is a Langevin noise term

with the properties [43,44] 〈δain†
ζ 〉 = 〈δain†

ζ (t )δain†
ζ ′ (t ′)〉 =

〈δain†
ζ (t )δain

ζ ′ (t ′)〉 = 0, 〈δain
ζ (t )δain†

ζ ′ (t ′)〉 = δζζ ′δ(t − t ′). For
the phenomenologically introduced phonon-broadening, we
introduce a similar Langevin noise term to accompany the
decay process,

−ih̄∂t P
†
ζ ,0 = [H, P†

ζ ,0] + ih̄γ xP†
ζ ,0 + ih̄

√
2γ xδPin†

ζ , (10)

where the noise correlation properties are derived from
the rules in Ref. [62]: 〈δPin†

ζ 〉 = 〈δPin†
ζ (t )δPin†

ζ ′ (t ′)〉 =
〈δPin†

ζ (t )δPin
ζ ′ (t ′)〉 = 0, 〈δPin

ζ (t )δPin†
ζ ′ (t ′)〉 = δζζ ′δ(t − t ′).

Calculating the commutator in Eq. (10) in a third-order
expansion in the input field, it is found that the nonlinear
terms couple δP†

ζ ,0 to exciton-photon pair fluctuation operators

δCζ ζ ′
q and biexcitonic fluctuations δBζ ζ ′

μ,± (see Ref. [6] for de-
tails). For sufficiently small fluctuations compared to the mean
values, the nonlinear terms involving products of fluctuations
of the forms δPδC, δPδB, δPin†δP†, δain†δa†, δPin†δa† and
δain†δP† can be neglected and a set of equations that are linear
in the fluctuation operators is obtained,

−ih̄∂tδa†
ζ ,0 = (

Ẽp
0 − h̄ωr

)
δa†

ζ ,0 + 
0δP†
ζ ,0 + ih̄

√
2γ pδain†

ζ ,

−ih̄∂tδP†
ζ ,0 = (

Ẽx
0 − h̄ωr

)
δP†

ζ ,0 + 
0δa†
ζ ,0 + ih̄

√
2γ xδPin†

ζ ,0 −
∑

q


̃q
[
δCζ ζ

q 〈P†
ζ ,0〉 + (

δq,0〈a†
ζ ,0〉〈P†

ζ ,0〉 + Cζ ζ
q

)
δPζ ,0

]

+ W 0〈P†
ζ ,0〉2δPζ ,0 +

∑
ζ ′μ±

W ±
μ

[
δBζ ζ ′

μ,±〈Pζ ′,0〉 + Bζ ζ ′
μ,±δPζ ′,0

]

−ih̄∂tδBζ ζ ′
μ,± = (

Ẽxx
μ,± − 2h̄ωr

)
δBζ ζ ′

μ,± + 1

2
(1 ± δζζ ′ )

[

±

μ,−qδC
ζ ′ζ
−q + 
±

μ,qδCζ ζ ′
q

]
+ ih̄

4

√
2γ x(1 ± δζζ ′ )�±

μ,0[〈P†
ζ ,0〉δPin†

ζ ′ + 〈P†
ζ ′,0〉δPin†

ζ ]

−ih̄∂tδCζ ζ ′
q = (

Ẽx
q + Ẽp

q − 2h̄ωr
)
δCζ ζ ′

q + 
qδDζ ζ ′
q +

∑
μ±


±
μ,qδB

ζ ζ ′
μ,± + ih̄δq,0

√
2γ x〈a†

ζ ,0〉δPin†
ζ ′

+ ih̄δq,0

√
2γ p

[〈
ain†

ζ

〉
δP†

ζ ′,0 + 〈P†
ζ ′,0〉δain†

ζ

]
−ih̄∂tδDζ ζ ′

q = 2(Ẽp − h̄ωr )δDζ ζ ′
q + 
qδCζ ′ζ

−q + 
−qδCζ ζ ′
q + ih̄

√
2γ pδq,0

[〈ain†
ζ 〉δa†

ζ ′,0 + 〈
ain†

ζ ′
〉
δa†

ζ ,0 + 〈a†
ζ ,0〉δain†

ζ ′ + 〈a†
ζ ′,0〉δain†

ζ

]
.

(11)

Being interested in the steady-state emission properties, we consider the limit of t → ∞ and write all expectation values
using their discrete Fourier series [see Eq. (6)]. We then transform the fluctuation equations to Fourier space as δQ(ω) =∫∞
−∞ dteiωtδQ(t ), where δQ is any of the fluctuation operators. Terms on the right-hand side of Eq. (11) of the form δQ(t )Y (t )

transform as
∑

m δQ(ω − nω12)Ym, where Y is a steady-state expectation value and Ym is its discrete Fourier decomposition from
Eq. (6). Thus, the fluctuation equations are not diagonal in frequency space, since δQ(ω) is coupled to δQ(ω + nω12) for n ∈ Z.

To handle this challenge, we partition the frequency axis into zones of size ω12 and define the frequency ν to be in the interval
[−ω12/2, ω12/2]. We then introduce the discrete Fourier-index notation δQm(ν) := δQ(ν − mω12) [see Figs. 2(a) and 2(b)]. Now
the Heisenberg-Langevin equations are diagonal in ν, i.e., δQm(ν) is not coupled to δQm′ (ν ′) with ν ′ 
= ν, but only to δQm′ (ν).
Instead, the frequency off-diagonal coupling in the fluctuation equations appears as a coupling between different Fourier indices
[see Fig. 2(c)]. At the same time, we suppress the momentum-index 0 on δP and δa and use only the Fourier index, such that
δP†

ζ ,m(ν) and δa†
ζ ,m(ν) implicitly refer to the zero-momentum exciton and cavity fluctuation operators.

By solving the frequency-space equations for δBζ ζ ′
μ,±, δCζ ζ ′

q and δCζ ζ ′
q formally (see Appendix B), they are eliminated and

replaced by a renormalization of the equation for δP†
ζ ,m(ω). For a compact notation, we introduce the combined fluctuation

vector

δψζ,m(ν) = [δa†
ζ ,m(ν), δP†

ζ ,m(ν), δaζ ,m(ν), δPζ ,m(ν)]T. (12)

The frequency-space Heisenberg-Langevin equation for δψ reads

∑
ζ ′m′

[G−1(ν)]mm′
ζ ζ ′ δψζ ′,m′ (ν) = T mm′

ζ ζ ′ (ν)δψ in
ζ ′,m′ (ν), (13)
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where the inverse Green’s function is given by

[G−1(ν)]mm′
ζ ζ ′ = δmm′δζζ ′I4ωr + δmm′δζζ ′

⎡
⎢⎢⎢⎣

−h̄νm − Ẽp
0 0 0 0

0 −h̄νm − Ẽx
0 0 0

0 0 h̄νm − Ẽp∗
0 0

0 0 0 h̄νm − Ẽx∗
0

⎤
⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎣

0 δmm′δζζ ′
0 0 0


̂mm′
ζ ζ ′,0(ν) �mm′

ζ ζ ′ (ν) 0 �m′−m
ζ ζ ′

0 0 
0δmm′δζζ ′

0 �m−m′∗
ζ ζ ′ 
̂−m,−m′

ζ ζ ′,0 (−ν) �−m,−m′
ζ ζ ′ (−ν)

⎤
⎥⎥⎥⎥⎦, (14)

where I4 is the 4 × 4 identity matrix, νm := ν − mω12,
�mm′

ζ ζ ′ (ν) is the exciton self-energy, and 
̂mm′
ζ ζ ′,0 is a renor-

malized exciton-photon coupling strength. The latter two
stem from renormalizations due to the formal elimination of
the multiparticle fluctuations and are given in Appendix B.
These renormalizations give small quantitative corrections to
the spontaneous four-wave mixing spectra. Most importantly,
�m

ζ ζ ′ is the parametric gain connecting different fourier com-
ponents m1 and m1 + m, which represents the core mechanism
behind spontaneous four-wave mixing. It is given by

�m
ζ ζ ′ =

∑
n

δζ ,ζ ′W 0〈P†
ζ ,0〉n〈P†

ζ ,0〉m−n +
∑
μ±

W ±
μ Bζ ζ ′

μ±,m

− δζ ,ζ ′
∑

q


̃q

[
Cζ ζ ′

q,m + δq,0

∑
n

〈a†
ζ ,0〉n〈P†

ζ ,0〉m−n

]
.

(15)

FIG. 2. (a) Partitioning of the continuous frequency axis for the
fluctuation operators δQ(ω) into zones of width ω12. The continuous
frequency ν is defined to be in the interval ν ∈ [−ω12/2, ω12/2], and
the Fourier index m indicates the zone on the frequency axis, such
that δQm(ν ) := δQ(ω − mω12). (b) The frequency-axis partitioning
can be illustrated as a stacking of the frequency zones, such that
the continuous frequency ν is on the horizontal axis and the discrete
Fourier index m is on the vertical axis. (c) In this stacked represen-
tation, the dynamics of the Heisenberg-Langevin equation Eq. (11)
only couples fluctuations that are on the same vertical line, i.e., the
equations of motion are diagonal in ν. The couplings of Eq. (11) are
indicated with blue arrows.

The parametric gain describes a coherent pairwise driving of
the excitons, and is a purely a result of the nonlinearities
in the system, specifically the Coulomb interaction and the
Pauli-blocking from the fermionic substructure of excitons.
Moreover, without parametric gain, the generated field would
have the same spectral and coherence properties as the classi-
cal input field. The parametric gain contains terms from the
instantaneous Coulomb interaction between excitons (W 0),
biexcitonic correlations (W ±

μ ) from the bound biexciton (μ =
b) and two-exciton continuum (μ 
= b), and Pauli-blocking

̃q. All matrix elements and coefficients are given in Appen-
dices A and B.

The matrix T mm′
ζ ζ ′ (ν) describes the coupling to the input

field, δψ in
ζ ,m(ν) = [δain†

ζ ,m(ν), δPin†
ζ ,m(ν), δain

ζ ,m(ν), δPin
ζ ,m(ν)].

The contribution to T mm′
ζ ζ ′ (ν) in zeroth order of the

input field is given by T mm′
ζ ζ ′ (ν) = ih̄δmm′δζζ ′ diag[

√
2γ p,√

2γ x,−√
2γ p,−√

2γ p]. Due to elimination of the multipar-
ticle fluctuations, additional second-order contributions are
also present, which are given in Appendix B.

The formal solution of Eq. (13) is given by

δψm,ζ (ν) =
∑
m′ζ ′

Gmm′
ζ ζ ′ (ν)δψ in

ζ ′m′ (ν), (16)

where Gmm′
ζ ζ ′ (ν) = ∑

m′′ζ ′′ Gmm′′
ζ ζ ′′ (ν)T m′′m′

ζ ′′ζ ′ (ν). We note that in
practice, the renormalizations from formal elimination of the
multiparticle fluctuations δB, δC, and δD influence the nu-
merical calculations presented in this paper only with small
quantitative corrections. This means that in many cases, one
can neglect δB and δC in Eq. (11), leading to the simplifica-
tions

�mm′
ζ ζ ′ (ν) = 0,


̂mm′
ζ ζ ′0(ν) = 
0δζζ ′δmm′ ,

T mm′
ζ ζ ′ (ν) = ih̄δmm′δζζ ′ diag[

√
2γ p,

√
2γ x,−

√
2γ p,−

√
2γ p].

(17)

This is demonstrated explicitly in Appendix D, where we
compare the full calculation of fluctuation spectra with the
calculation under the simplifications in Eq. (17). All calcu-
lations presented in the main text have been performed using
the full contributions of Eq. (14). However, the negligible in-
fluence of multiparticle fluctuations supports the linearization
of the Heisenberg-Langevin equations, since products such as
δCδP can be expected to have an even smaller effect than the
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terms linear in δC. This fact does not mean that many-body
correlation effects are unimportant; indeed, the dominating
contribution to the parametric gain stems from the bound
biexciton, BKK ′

b,− .

E. Emission spectrum and squeezing

The detected field is the output from the cavity perpendic-
ular to the surface, i.e., at zero in-plane momentum k = 0.
We take the field to be polarization-filtered before detection
and denote the polarization-projected cavity operator by a =
λT

outa0 [44], where a0 = (aK,0, aK ′,0)T and λout is the polar-
ization of the detection channel in the circular basis. The
corresponding fluctuation operator is δa(t ) = limt→∞[a(t ) −
〈a(t )〉].

1. Spectral correlation functions

The emission properties of the generated field from the
cavity are characterized by two spectral correlation functions

〈δa†
m(ν)δam′ (ν ′)〉 =

∑
ζ ζ ′

∑
ζ1ζ2

∑
m1m2

∑
j1 j2

λ
ζ
outλ

ζ ′
out

[
Gmm1

ζ ζ1
(ν)
]

1, j1

× [
Gm′m2

ζ ′ζ2
(ν ′)

]
3, j2

〈
δψ

in, j1
ζ1m1

(ν)δψ in, j2
ζ2m2

(ν ′)
〉
,

(18)

〈δam(ν)δam′ (ν ′)〉 =
∑
ζ ζ ′

∑
ζ1ζ2

∑
m1m2

∑
j1 j2

λ
ζ
outλ

ζ ′
out

[
Gmm1

ζ ζ1
(ν)
]

3, j1

× [
Gm′m2

ζ ′ζ2
(ν ′)

]
3, j2

〈
δψ

in, j1
ζ1m1

(ν)δψ in, j2
ζ2m2

(ν ′)
〉
,

(19)

where j ∈ [1, 4] is the vector index of δψ as defined in
Eq. (12). As shown in Secs. III E 2 and III E 3, the emis-
sion spectrum is described through the correlation function in
Eq. (18), whereas the squeezing spectrum is described through
both correlation functions in Eqs. (18) and (19).

The spectral correlation of the input field is derived from
the temporal correlations from Sec. III D as〈

δψ
in, j
ζm (ν)δψ in, j′

ζ ′m′ (ν ′)
〉 = 2πδζζ ′δm,−m′η j j′δ(ν + ν ′), (20)

where η j j′ = δ j′,1δ j,3 + δ j′,2δ j,4. Although no correlations are
present between photon and exciton input fields, such correla-
tions will generally be nonzero in the internal field δψ . With
this, we obtain

〈δa†
−m(−ν)δam′ (ν ′)〉 = 2πSmm′

1 (ν)δ(ν − ν ′), (21)

〈δa−m(−ν)δam′ (ν ′)〉 = 2πSmm′
2 (ν)δ(ν − ν ′), (22)

where

Smm′
1 (ν) =

∑
ζ ζ ′

∑
ζ1m1

∑
j1 j2

λ
ζ
outλ

ζ ′
out

[
G−m,−m1

ζ ζ1
(−ν)

]
1, j1

× [
Gm′,m1

ζ ′ζ1
(ν)
]

3, j2
η j1 j2 ,

Smm′
2 (ν) =

∑
ζ ζ ′

∑
ζ1m1

∑
j1 j2

λ
ζ
outλ

ζ ′
out

[
G−m,−m1

ζ ζ1
(−ν)

]
3, j1

× [
Gm′,m1

ζ ′ζ1
(ν)
]

3, j2
η j1 j2 . (23)

FIG. 3. Homodyne detection. The source field Es is mixed with
a strong, coherent local oscillator field Elo on a 50/50 beamsplitter
(BS). The outgoing field modes E1 and E2 are detected on detectors 1
and 2, which produces the photocurrents I1 and I2. The homodyne
signal is the current difference I1 − I2.

For convenience, we shall use the shorthand notation

Si(ν − mω12) := Smm
i (ν) (24)

to label the fluctuation spectra on the continuous frequency
axis rather than in the Fourier-zone partitioning. This relation
can alternatively be cast as

Si(ω) :=
∑

m

∫
dνSmm

i (ν)δ[ω − (ν − mω12)].

2. Emission spectrum

The emission spectrum of the outcoupled field Stot (ω) =
Scoh(ω) + SFWM(ω) contains a coherent contribution Scoh =
Scoh,1δ(ω − ω1) + Scoh,2δ(ω − ω2), which shares the spec-
tral distribution and temporal coherence of the driving field
[43,44], and a spontaneously generated field SFWM, which is
created by spontaneous four-wave mixing. The former is of
minor interest in the present investigation, because it simply
shares the quantum statistics with the classical input field.
The primary emission spectrum of interest is the spontaneous
four-wave mixing spectrum, which is given by

SFWM(ω) = 2γ pS1(ω), (25)

where S1(ω) is defined in Eq. (24).

3. Homodyne noise spectrum and quadrature-squeezing

Quadrature-squeezing is described through homodyne de-
tection of the output field from the cavity (see Fig. 3). While
the quadrature-squeezing of the internal cavity mode can be
evaluated simply as the variance of the quadrature opera-
tor δX (θ ) := eiθ δa† + e−iθ δa with respect to the quadrature
phase θ , the outcoupled and thus measurable field quadrature
fluctuations are more complicated [44,63]. In homodyne de-
tection, the source field from the cavity Es(t ) = √

2γ pa(t ) is
mixed with a strong local oscillator Elo(t ) on a beamsplitter,
such that the fields leaving the beamsplitter E1 and E2 are
given by [

E1(t )

E2(t )

]
= 1√

2

[
1 i

i 1

][
Es(t )

Elo(t )

]
. (26)

The local oscillator has a frequency equal to the rotating
frame frequency 1

2 (ω1 + ω2). Thus, when working in the
rotating frame, the local oscillator expectation values are
time-independent: 〈Elo(t )〉 = eiϕ

√
Flo, where Flo and ϕ are the
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photon flux and reference phase of the local oscillator, respec-
tively, and the expectation value is evaluated in the rotating
frame. Taking the local oscillator to be in a coherent state, we
have 〈E†

lo(t )Elo(t )〉 = Flo. In the homodyne measurement pro-
cess, the two output fields E1 and E2 are measured on separate
photodetectors (which are labeled with corresponding indices
1 and 2) and the difference of these photocurrents are recorded
as the signal.

The statistical properties of this photocurrent difference are
derived using normal-ordered detection theory [63–67]. Here,
we extend the derivation of Ref. [63] to the case of balanced
homodyne detection and to bichromatic driving, where no
time-independent stationary source field exists. The detection
model is based on the assumption that a single photoelectric
detection event produces a current pulse of duration τd and
amplitude ge/τd, where e and g denote the electronic charge
and photodetector gain, respectively. The photocurrents of
detector μ = 1, 2 is then given by [63,65]

Iμ(t ) = ge

τd
nμ, (27)

where nμ is a classical stochastic variable representing the
number of overlapping pulses in the detection electronics of
detector μ, i.e., the number of pulses initiated in the time
interval t − τd to t . For practical purposes, we shall work
with a scaled current, Iμ(t ) := Iμ(t )/(ge), which has units
of inverse time and represents the flux of detected photons.

The joint probability of detecting n1 photons in detector 1
and n2 in detector 2 within the time interval [t − τd, t] is given
by [63,65]

p(1)(n1, t − τd, t ; n2, t − τd, t )

=
〈

:
∏

μ=1,2

[Gμ(t − τd, t )]nμ

nμ!
e−Gμ(t−τd,t ) :

〉
, (28)

where the generator G of the distribution is given by

Gμ(t1, t2) = η

∫ t2

t1

dtE†
μ(t )Eμ(t ), (29)

and η is the detection efficiency. The symbol :: denotes
normal- and time-ordering at the level of the electric field
operators [E†

μ arranged to the left of Eμ and time arguments
increasing to the right (left) in products of E†

μ (Eμ)]. The prob-
ability distribution Eq. (28) is essentially Mandel’s counting
formula, as presented in, e.g., Ref. [44]. From p(1), the mean
photocurrent is derived as [63]

Iμ(t ) = 1

τd
〈Gμ(t − τd, t )〉

= η

τd

∫ t

t−τd

dt ′〈E†
μ(t ′)Eμ(t ′)〉, (30)

where we note that we use overlines to denote the mean value
of the classical stochastic variable Iμ and angular brackets to
denote quantum-mechanical expectation values.

Similarly, the two-time probability of detecting n counts
in detector μ in the time interval [t − τd, t] and m counts
in detector μ′ in the time interval [t + τ − τd, t + τ ]

is given by [63]

p(2)
μμ′ (n, t − τd, t ; m, t + τ − τd, t + τ )

=
〈

:
Gμ(t − τd, t )n

n!
e−Gμ(t−τd,t )

× Gμ′ (t + τ − τd, t + τ )m

m!
e−Gμ′ (t+τ−τd,t+τ ) :

〉
. (31)

From this probability, the detector current correlation function
is found to be (for τ > 0)

Iμ(t )Iμ′ (t + τ )

=
(

1

τd

)2

[〈: Gμ(t − τd, t )Gμ′ (t + τ − τd, t + τ ) :〉

+ δμμ′�(τd − τ )〈Gμ(t + τ − τd, t )〉], (32)

where � is the Heaviside function.
The measured spectral noise function N (ω) of the homo-

dyne signal I− := I1 − I2 is then the Fourier transformation
of the photocurrent fluctuation correlation function, averaged
over one period of the signal oscillation T = 2π/|ω12| =
4π/|ω2 − ω1|:

N (ω, θ ) = lim
t0→∞

1

T

∫ t0+T

t0

dt
∫ ∞

0
dτ cos(ωτ )

× [I−(t )I−(t + τ ) − I−(t ) I−(t + τ )]. (33)

From Eqs. (26), (30), and (32), the following expression
for the photocurrent fluctuation correlation function is derived
(see Appendix C)

I−(t )I−(t + τ ) − I−(t ) I−(t + τ )

= N0(τ ) + η2Flo

τ 2
d

∫ t

t−τd

dt ′
∫ t

t−τd

dt ′′〈: δXs(θ, t ′)δXs(θ, t ′′ + τ ) :〉,
(34)

where Xs(θ, t ) = eiθ E†
s (t ) + e−iθ Es(t ) is the source-field

quadrature operator with angle θ = ϕ + π/2 and its fluc-
tuation operator is δXs(θ, t ) := Xs(θ, t ) − 〈Xs(θ, t )〉. The
measured quadrature angle θ stems from the local oscillator
phase ϕ and a phase displacement π/2 from the beamsplitter
as seen in Eq. (26). The first term in Eq. (34) is the shot
noise correlation function, which in the limit where the local
oscillator is much stronger than the source field is given by

N0(τ ) = ηFlo

τ 2
d

(τd − τ )�(τd − τ ). (35)

To characterize the intrinsic noise properties of the source
field and to disentangle these properties from the detector
properties, we take the limit of infinite detection bandwidth
(τd → 0) and unity detection efficiency (η = 1). In this limit,
inserting Eq. (34) into Eq. (33) yields the noise spectrum
relative to the shot-noise level (see Appendix C)

N (ω)

N0(ω)
= 1 + �(ω, θ ), (36)
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where N0(ω) = ∫∞
0 dτ cos(ωτ )N0(τ ) is the shot noise spec-

trum and

�(ω, θ ) = Re[�1(ω) + e−2iθ�2(ω)], (37)

where �i(ω) = 4
∫∞

0 dτ cos(ωτ )Ci(τ ) and Ci(τ ) =
1

2π

∫∞
−∞ dωeiωτ 2γ pSi(ω). All details of the derivation are

given in Appendix C.
The optimal quadrature angle, where the noise is mini-

mized, is given by e−2iθ = −�2(ω)/|�2(ω)|. At this angle,
the spectrum of squeezing is

�(ω) = Re[�1(ω)] − |�2(ω)|, (38)

where the homodyne phase θ has been suppressed in �(ω, θ )
for notational brevity. In the analysis of squeezing, we shall
use the normalized optimal-angle spectrum 1 + �(ω) to char-
acterize the amount of squeezing in the generated light. This
spectrum is normalized such that a value of 1 + �(ω) = 1
corresponds to the shot noise level, i.e., no squeezing at all,
whereas a value of 1 + �(ω) = 0 corresponds to complete
elimination of the shot noise and thus perfect squeezing.

We note that the spontaneous four-wave mixing spec-
trum SFWM(ω) and the squeezing spectrum �(ω) are of
fundamentally different nature and are measured with very
different techniques. The spontaneous four-wave mixing spec-
trum SFWM(ω) can be detected by filtering out the bichromatic
pump from the generated light and sending the filtered signal
into an optical spectrum analyser. The frequency argument ω

is connected to the emitted photon energy on the order of
2 eV. In contrast, the squeezing spectrum �(ω) is measured
through homodyne detection, i.e., by beating the generated
signal with a local oscillator at frequency ωr := (ω1 + ω2)/2.
Here, the frequency argument ω is the beat frequency between
the signal and the local oscillator, and is thus much smaller, on
the order of a few meV.

IV. RESULTS

By numerically solving the equations of motion Eq. (5) ex-
plicitly to reach the periodic steady state (see Appendix E), the
corresponding Fourier components are calculated from the re-
sulting time series over a steady-state period from Eq. (6). The
steady-state Fourier components are then used to construct
the fluctuation Green’s function from Eq. (14), and calculate
the spontaneous four-wave mixing spectrum SFWM(ω) and
the squeezing spectrum �(ω) as described in Sec. III E. In
this section, we present these results for Configurations A
and B, respectively, as shown in Figs. 1(c) and 1(d). The
numerical calculations become increasingly challenging as
h̄ω12 := (ω2 − ω1)/2 approaches 0, because the oscillation
period becomes longer and longer. However, in the case where
h̄ω12 = 0, the spectra SFWM(ω) and �(ω) can be calculated
using the simpler calculation methods for a monochromatic
driving field described in Ref. [6]. For completeness, we
include the results for h̄ω12 = 0 in this way. The calcula-
tions are performed for atomically thin MoS2 encapsulated
by hexagonal BN on both sides. The coupling strength of the
cavity is taken to be 
0 = 20 meV and the cavity outcoupling
rate is taken to be h̄γ p = 9 meV, consistent with fabricated
devices [48,68]. The temperature is taken to be 30 K, leading

to a phonon-induced exciton dephasing of h̄γ x = 0.8 meV
(see Appendix E). The pump polarization is taken to be lin-
ear, with the two drives having the same linear polarization,
and the pump power is 5 mW with a pump spot size of 9
μm2. The detected polarization is taken to be co-linear with

the drive, and we note that very similar results are seen for
cross-polarized detection. Further details about the numerical
calculations and all parameters are given in Appendix E.

A. Configuration A

Configuration A is defined by setting the cavity frequency
such that the lower polariton energy E−

0 matches half the
bound biexciton energy 1

2 Exx
b,−, and setting the mean value

of the driving energies to 1
2 (h̄ω1 + h̄ω2) = E−

0 = 1
2 Exx

b,− [cf.
Fig. 1(c)]. When the drive energy difference h̄ω12 is zero,
the degenerate driving field resonantly creates lower po-
laritons, which resonantly scatter into bound biexcitons via
the Coulomb interaction. The latter process is also known
as a polaritonic Feshbach resonance [1,2,29] and gives a
strong enhancement of the nonlinear response, which in
this case leads to strong spontaneous four-wave mixing and
single-mode-squeezing. Since the in-scattering particles in
this configuration (lower polaritons) are identical, this is a
degenerate Feshbach resonance.

In Fig. 4(a), the spontaneous four-wave mixing spectrum is
shown for four values of the drive frequency difference h̄ω12.
The spectra feature multiple peaks, which we can identify by
considering the resonant four-wave mixing channels. Due to
energy conservation the energy of a generated photon pair
with frequencies ω3 and ω4 must match the sum of two pump
photon energies. With two different pump frequencies ω1 and
ω2, there are three possible combinations of pump photon
pairs, meaning that the output photon pair frequencies must
fulfill one of the following relations:

ω3 + ω4 = ω1 + ω2, (39a)

ω3 + ω4 = 2ω1, (39b)

ω3 + ω4 = 2ω2. (39c)

The resonant output channels appear where one of the output
photon energies equals a polariton energy. Thus, by setting
h̄ω3 = E±

0 , the resonance conditions Eq. (39) become

ω4 = ω1 + ω2 − E±
0 /h̄, (40a)

ω4 = 2ω1 − E±
0 /h̄, (40b)

ω4 = 2ω2 − E±
0 /h̄. (40c)

These four-wave mixing resonance conditions give rise to a
total of eight possible output photon frequencies (two values
of ω3 and three values of ω4 for each of these). In Fig. 4(a), the
resonances E±

0 and h̄ω1 + h̄ω2 − E±
0 are indicated with verti-

cal gray lines. These resonance frequencies are independent
of h̄ω12. The strongest (middle) resonance peak is the lower
polariton energy E−

0 , which in Configuration A matches the
mean drive energy, 1

2 (h̄ω1 + h̄ω2). The corresponding photon
pair partner from Eq. (40a) has the same energy. The upper
polariton resonance E+

0 and its partner h̄ω1 + h̄ω2 − E+
0 are

positioned symmetrically around the lower polariton. Since
the excitation of the upper polariton is much further from
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FIG. 4. Results for Configuration A. (a) Spontaneous four-wave mixing spectrum for four values of the drive frequency difference h̄ω12 :=
1
2 (ω2 − ω1). The vertical lines indicate four-wave mixing resonances as described in the main text. (b) Homodyne-squeezing spectra as 1 +
�(ω) with colours corresponding to the values of h̄ω12 in panel (a). The inset shows a zoom-in region at the upper section of the y axis.
(c) Zero-frequency-squeezing 1 + �(0) as a function of the drive frequency difference h̄ω12. The inset shows a zoom-in region around the
weak resonance at h̄ω12 = E+

0 − E−
0 (indicated with vertical line). (d) Fourier components m = 0 and m = 2 of parametric gain �m, shown as

the sum of the norms of spin-diagonal and spin off-diagonal matrix elements. The full lines shows the total parametric gain, and the dashed
lines show the contributions from the bound biexciton alone. The vertical line indicates the weak resonance at h̄ω12 = E+

0 − E−
0 .

resonance, these peaks appear with a much weaker amplitude
than the central lower polariton peak.

In addition, the resonance condition in Eq. (40c) for the
lower polariton, 2h̄ω2 − E−

0 is also shown with vertical dotted
lines. This resonance depends on h̄ω12 and becomes degener-
ate with E−

0 in the limit h̄ω12 = 0.
For the largest value of h̄ω12, the resonance in Eq. (40c)

is also shown for the upper polariton, i.e., 2h̄ω2 − E+
0 , with

a dashed vertical line. This resonance cannot be seen for
the other values of h̄ω12: when h̄ω12 is too small, the drive
energies h̄ω1 and h̄ω2 are close to resonance with E−

0 , but very
far away from the upper polariton E+

0 . When h̄ω12 matches the
polariton splitting E+

0 − E−
0 , as is approximately the case in

the panel with h̄ω12 = 35 meV, the emission line h̄ω2 − E+
0

is degenerate with the dominating lower polariton E−
0 . When

h̄ω12 is larger, the drives are far away from resonance with
the lower polariton, meaning that the dominating polaritonic
features (as indicated with vertical gray lines) are diminished,
thereby revealing the much weaker peak at h̄ω2 − E+

0 .
Figure 4(b) shows the homodyne-squeezing spectrum as

1 + �(ω). As discussed in Sec. III E 3, this spectrum is nor-
malized such that a value of 1 + �(ω) = 1 corresponds to
no squeezing at all, whereas a value of 1 + �(ω) = 0 cor-
responds perfect squeezing. Since the dominant emission
channel in Configuration A is degenerate photon pairs at
the lower polariton energy E−

0 , the output field is single-
mode squeezed, which is observed as a squeezing spectrum
that is minimal (providing the strongest squeezing) at zero
frequency. The squeezing bandwidth is several meV, which
stems from the typical scale of the resonance linewidths of
the cavity photons, excitons and biexcitons in the system [69].

Figure 4(c) shows the dependence of the squeezing at zero
homodyne frequency as a function of the drive frequency

difference h̄ω12. As expected for Configuration A, the squeez-
ing is strongest in the degenerate limit h̄ω12 = 0, where both
drives are resonant with the lower polariton. In addition, there
is a weak resonance appearing at h̄ω12 = E+

0 − E−
0 , where

the drive frequency ω2 is resonant with the upper polariton.
The resonance is weak, because the energy of two upper po-
laritons overshoot the bound biexciton energy, 2E+

0 � Exx
b,−.

We note that the bichromatic-pump scheme can be utilized
to generate strong single-mode-squeezing. Since the width
of the squeezing dip around h̄ω12 = 0 in Fig. 4(c) is several
meV, one can choose a pump frequency difference of, e.g.,
h̄ω12 = 100 μeV, which allows us to filter out the pump lasers
spectrally and still have strong single-mode-squeezing over a
bandwidth that exceeds the resolution of any standard pho-
todetector.

In Fig. 4(d), the leading Fourier components m = 0 and
m = 2 of the parametric gain �m is shown as the sum of
the absolute values of the spin-diagonal and spin off-diagonal
components. The m = −2 component is simply the complex
conjugate of m = 2, and the remaining components are negli-
gible in comparison to the ones shown. The reason behind this
is twofold: first, the contributions to the parametric gain are
products of 〈a†〉 and 〈P†〉 or quantities that are driven by such
products, and therefore only contain even Fourier orders. The
Fourier components with m larger than 2 are only driven by
higher-order processes and are therefore strongly suppressed
in comparison with the leading components. This observation
corroborates the validity of the DCT perturbative expansion
up to third order in the pump field. However, we can not be
entirely certain that the contributions to next (5th) order are of
a different nature and can introduce new effects. In addition to
the total parameric gain, the contribution from the bound biex-
citon alone is also shown with dashed lines. As can be seen,
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FIG. 5. Results for Configuration B. (a) Spontaneous four-wave mixing spectrum for four values of the drive frequency difference h̄ω12. The
vertical lines indicate four-wave mixing resonances as described in the main text. (b) Homodyne-squeezing spectra as 1 + �(ω) with colours
corresponding to the values of h̄ω12 in panel (a). The vertical line indicates the sideband frequency h̄ω = 1

2 (E+
0 − E−

0 ), where two-mode-
squeezing is observed. (c) Zero-frequency-squeezing 1 + �(0) (solid line) and squeezing at the optimal homodyne frequency 1 + �(ωopt )
(dotted line) as a function of the drive frequency difference h̄ω12. The vertical line indicates h̄ω12 = 1

2 (E+
0 − E−

0 ). (d) Fourier components
m = 0 and m = 2 of parametric gain �m, shown as the sum of the norms of spin-diagonal and spin off-diagonal matrix elements. The full
lines shows the total parametric gain, and the dashed lines show the contributions from the bound biexciton alone. The vertical line indicates
h̄ω12 = 1

2 (E+
0 − E−

0 ).

this constitutes the dominating contribution to the parametric
gain, and thus the other contributions in Eq. (15) from Pauli
blocking and from the two-exciton scattering continuum are
small corrections.

B. Configuration B

Configuration B is defined by setting the cavity frequency
such that E+

0 + E−
0 = Exx

b,− (corresponding to Ep
0 = Exx

b,− −
Ex

0 ) and the mean driving frequency such that h̄ω1 + h̄ω2 =
E+

0 + E−
0 = Exx

b,− [see Fig. 1(d)]. Thus, we expect the driving
to be resonant, when the drive frequency difference h̄ω12 =
1
2 (E+

0 − E−
0 ), such that h̄ω1 = E−

0 and h̄ω2 = E+
0 . In this

case, the drive resonantly excites upper and lower polari-
tons, which scatter resonantly into bound biexcitons via the
Coulomb interaction. The latter process is a nondegener-
ate polaritonic Feshbach resonance, because the in-scattering
particles (upper and lower polaritons) are different with non-
degenerate energies.

Figure 5(a) shows the spontaneous four-wave mixing
spectra for Configuration B at different drive-frequency dif-
ferences h̄ω12. In contrast to Configuration A, the emission
spectrum features two equally bright peaks from the upper and
lower polariton, respectively. In terms of the four-wave mixing
resonances introduced in Sec. IV A, these peaks correspond
to Eq. (40a) with h̄ω3 = E+

0 and thus h̄ω4 = h̄ω1 + h̄ω2 −
E+

0 = E−
0 . These two main emission energies are indicated

with gray vertical lines in Fig. 5(a). In addition, the weaker
four-wave mixing resonance from Eq. (40c) 2h̄ω2 − E−

0 is
indicated with vertical dotted lines. When the drive energy
difference becomes larger, the power of the main emission
peaks is weakened, whereby the additional four-wave mixing
resonances 2h̄ω2 − E+

0 and 2h̄ω1 − E+
0 become visible as

well (indicated with vertical dashed and dash-dotted lines,
respectively).

In Fig. 5(b), the homodyne-squeezing spectrum is shown.
Here, the most remarkable difference from Configuration A
is the appearance of maximal squeezing at the sideband fre-
quency 1

2 (E+
0 − E−

0 ) rather than at zero homodyne frequency.
This is because the nondegenerate Feshbach resonance cre-
ates two-mode-squeezing, i.e., squeezing from the strong
correlations between two different frequency bands. This is
strongly related to the two equally strong peaks in the sponta-
neous four-wave mixing spectrum from Fig. 5(a) in contrast
to Fig. 4(a), which features a single strong central peak.
Although the detection of such high-frequency two-mode-
squeezing is challenging in standard homodyne detection due
to finite detection bandwidth, successful detection can be
carried out with bichromatic heterodyne detection, where the
high-frequency sideband-squeezing is mixed down to a low-
frequency beat signal [70,71].

Figure 5(c) shows the squeezing at zero homodyne fre-
quency (solid line) and at the optimal homodyne sideband
frequency (dotted line) as a function of the drive energy
difference h̄ω12. The optimal sideband frequency is close to
1
2 (E+

0 − E−
0 ), but due to small nonlinear shifts, we have taken

the numerically optimal homodyne frequency. The behavior
shows a resonance around h̄ω12 = 1

2 (E+
0 − E−

0 ) (indicated
with vertical line), where h̄ω1 = E−

0 and h̄ω2 = E+
0 and

polaritons are efficiently excited by the drive fields. This res-
onance is also seen in Fig. 5(d), where the parametric gain
is shown as a function of the drive energy difference h̄ω12.
Here, it is seen that the parametric gain is strongest around
h̄ω12 = 1

2 (E+
0 − E−

0 ). Furthermore, as is the case for Config-
uration A, the bound biexciton (dashed lines) dominates the
parametric gain in this configuration.

195307-12



BICHROMATIC FOUR-WAVE MIXING AND … PHYSICAL REVIEW B 106, 195307 (2022)

V. CONCLUSION

In conclusion, we have presented a theoretical investi-
gation of spontaneous four-wave mixing and squeezing in
bichromatically pumped atomically thin semiconductor cav-
ity polaritonic systems, in particular focusing on the strong
nonlinear response from the bound biexciton. By applying a
rigorous truncation scheme of the many-body state, we have
derived a tractable set of equations of motions for exciton and
photon fields, as well as the correlated multiparticle fields.
In addition, we have employed a Heisenberg-Langevin ap-
proach to calculate the fluctuation spectra in the presence
of two nondegenerate pump laser fields. The combination
of these two methods gives access to the spontaneous four-
wave mixing spectra and the squeezing properties of the
outcoupled field from the cavity in the presence of strong
Coulomb-generated correlations. We have focused on two
resonant configurations, corresponding to a degenerate and
nondegenerate polaritonic Feshbach resonance, respectively.
In the degenerate configuration, a pair of lower polaritons is
resonant with the bound biexciton, thereby giving rise to a
single dominating peak in the spontaneous four-wave mixing
spectrum and strong single-mode-squeezing. In the nonde-
generate configuration, an upper and lower polariton pair is
resonant with the bound biexciton, thereby giving rise to two
balanced peaks in the spontaneous four-wave mixing spec-
trum and strong two-mode-squeezing. We believe that these
results will open new opportunities in the cross-field between
semiconductor physics and nonlinear optics.

Although the numerical calculations in this paper have
been performed for an atomically thin semiconductor, the
overall features of the presented phenomena can be expected
to be seen in other semiconductor materials with spectrally
resolved biexcitons as well. We note that a previous ex-
perimental investigation [4] measured parametric gain from
biexcitons in a bulk CuCl microcavity in the near-UV spectral
range, although no homodyne detection was performed in the
experiment. Furthermore, ZnO quantum wells with biexciton
binding energies around 15 meV [72] are another interesting
platform to potentially observe the predicted squeezing mech-
anism in the near-UV spectrum. Polariton Feshbach resonance
has been observed in pump-probe experiments with InGaAs
quantum wells [13,29,73].
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APPENDIX A: MATRIX ELEMENTS

The equation of motion Eq. (5) is derived as in Ref. [6], the
only difference being the bichromatic input field as described
in Sec. II B. Here, we shall simply state the results from

Ref. [6]. The matrix elements in Eq. (5) are given by


̃q =
∑

k1

Aq
(
φ∗

k1
φk1+αqφk1+q + φ∗

k1+qφk1+αqφk1

)
,

W 0 =
∑
k1k2

Vk2−k1φk1φk1

(
φ∗

k1
− φ∗

k2

)(
φ∗

k1
− φ∗

k2

)
,

W ±
μ =

∑
q

�±
μ,qW̃ ±∗

q,0 ,

W ±
μ =

∑
qq′

�±
μ,q(S±)−1

q,q′W̃ ±
q′,0,


±
μ,q =

∑
q′

�±
μ,−q′ Ã±

q′,q,


±
μ,q =

∑
q′q′′

�±
μ,q′ (S±)−1

q′,q′′ Ã±∗
q′′,q,

(A1)

with

W̃ ±
q,q′ =

∑
k1k2

Vq′−qφk1φk2

[
φ∗

k1−β(q−q′ ) − φ∗
ν1,k1+α(q−q′ )

]
× [

φ∗
k2+β(q−q′ ) − φ∗

k2−α(q−q′ )
]

±
∑
k1k2

Vk1−k2+(α−β )q+q′φk1φk2

[
φ∗

k1−β(q−q′ )

− φ∗
k2−α(q+q′ )

][
φ∗

k1+α(q+q′ ) − φ∗
k2+β(q−q′ )

]
Ã±

q′,q = 
̃qδqq′ ∓ Aq

∑
k

φk+αqφ
∗
k+q−βq′φ

∗
k−αq′

S±
q,q′ = δqq′ ∓

∑
k

φk−αqφk+q′−βqφ
∗
k−q+βq′φ

∗
k+αq′ . (A2)

The biexcitonic wave functions �±
μ,q are the solutions to the

eigenvalue equation(
2Ex

0 + h̄2q2

M

)
�±

μ,q +
∑
q′q′′

(S±)−1
q,q′W̃ ±

q′,q′′�
±
μ,q′′ = Exx

μ,±�±
μ,q,

(A3)

where M = me + mh is the total exciton mass. The numerical
details of the solution of this eigenvalue equation is presented
in Appendix E.

APPENDIX B: FORMAL SOLUTIONS OF
MULTIPARTICLE FLUCTUATIONS

The first thing to notice is that the coupling coefficients
between the correlated fluctuations δB, δC, and δD are linear
and do not involve any steady-state expectation values. This
means that the formal solution of these fluctuations follows
the procedure in Ref. [6] without any changes to the many-
body quantities � and K . The only difference is the source
terms involving δP†, δa†, δain†, δPin†, which occur together
with time-varying amplitudes. To incorporate this into the
derivation, we first consider a general equation of motion
involving two arbitrary fluctuation operators δQ and δR as

−ih̄∂tδQ(t ) = A(t )δR(t ), (B1)

where A(t ) is periodic with the period T = 2π
ω12

. We can
then express A(t ) in terms of its discrete Fourier series
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as A(t ) = ∑
n Ane−inω12t and write δQ(t ) = 1

2π

∫∞
−∞ dωe−iωtδQ(ω) and similarly for δR, such that

−ih̄∂t
1

2π

∫ ∞

−∞
dω′e−iω′tδQ(ω′) =

∑
n

Ane−inω12t
∫ ∞

−∞
dω′e−iω′tδR(ω′). (B2)

Multiplying by eiωt and integrating over t , we find

−h̄ωδQ(ω) =
∑

n

AnδR(ω − nω12). (B3)

Similarly, if we have a product of two amplitudes occurring on the right-hand side, then we can use the properties of the Fourier
series of a product,

C(t ) = A(t )B(t ) ⇒ Cm =
∑

n

AnBm−n. (B4)

Thus, a time-domain equation of motion of the form −ih̄∂tδQ(t ) = A(t )B(t )δR(t ), transforms to −h̄ωδQ(ω) =∑
m

∑
n AnBm−nδR(ω − mω12).

With this, we can recycle the results from Ref. [6], where the formal solution of the equation of motion for δC (Eq. (S36) in
the Supplemental Material of Ref. [6]) becomes

δCζ ζ ′
q (ω) = ih̄

√
2γ p

∑
ζ1ζ

′
1

Kζ ζ ′q
ζ1ζ

′
10(ω)

∑
n

〈
ain†

ζ1

〉
nδP†

ζ ′
1,0

(ω − nω12) − ih̄
√

2γ p
∑
ζ1ζ

′
1

Kζ ζ ′q
ζ1ζ

′
10(ω)


0

h̄ω + 2(Ẽp
0 − h̄ωd )

×
∑

n

[〈
ain†

ζ1

〉
nδa†

ζ ′
1,0

(ω − nω12) + 〈
ain†

ζ ′
1

〉
nδa†

ζ1,0
(ω − nω12) + 〈a†

ζ1,0
〉nδain†

ζ ′
1

(ω − nω12) + 〈a†
ζ ′

1,0
〉nδain†

ζ1
(ω − nω12)

]

+ ih̄
√

2γ x
∑

ζ1ζ
′
1q1

Kζ ζ ′q
ζ1ζ

′
1q1

(ω)
∑

n

{
δq1,0〈a†

ζ1,0
〉nδPin†

ζ ′
1,0

(ω − nω12) −
∑
μ±

1
4 (1 ± δζ1ζ

′
1
)�±

μ,0

±
μ,q1

h̄ω + Ẽxx
μ,± − 2h̄ωd

[〈P†
ζ1,0

〉nδPin†
ζ ′

1,0
(ω − nω12)

+ 〈P†
ζ ′

1,0
〉nδPin†

ζ1,0
(ω − nω12)

]}
, (B5)

where

K (ω) = −[δq,q1δζζ1δζ ′,ζ ′
1

(
h̄ω + Ẽx

q + Ẽp
q − 2h̄ωd

)+ �
ζζ ′q
ζ1ζ

′
1q1

(ω)
]−1

(B6)

is the Green’s function for δC(ω) with self-energy

�
ζζ ′q
ζ1ζ

′
1q1

(ω) = − 
q
−q1

h̄ω + 2
(
Ẽp

q − h̄ωd
) [δζ ′,ζ1δζ ,ζ ′

1
δ−q,q1 + δζ ,ζ1δζ ′,ζ ′

1
δq,q1

]−
∑
μ±

1
2 (1 ± δζζ ′ )
±

μ,q

±
μ,q1

h̄ω + Ẽxx
μ,± − 2h̄ωd

[
δζ ′ζ1δζ ,ζ ′

1
+ δζζ1δζ ′ζ ′

1

]
. (B7)

The Fourier-transformation of the equation of motion for δP†, Eq. (11), becomes

−h̄ωδP†
ζ ,0(ω) = Ẽx

0 δP†
ζ ,0(ω) + 
0δa†

ζ ,0(ω) +
∑
ζ ′

∑
n

�n
ζ ζ ′δPζ ′,0(ω − nω12) + ih̄

√
2γ xδPin†

ζ ,0 (ω),

+
∑

ζ ′ζ1ζ2q

∑
n

〈Pζ ′,0〉nQζ ζ ′
ζ1ζ2q(ω − nω12)δCζ1ζ2

q (ω − nω12) − ih̄
√

2γ x
1

2

∑
ζ ′μ±

∑
nn′

〈Pζ ′,0〉n

1
2 (1 ± δζζ ′ )W ±

μ �±
μ,0

h̄(ω − nω12) + Ẽxx
μ,± − 2h̄ωd

× [〈P†
ζ ,0〉n′δPin†

ζ ′,0(ω − [n + n′]ω12) + 〈P†
ζ ′,0〉n′δPin†

ζ ,0 (ω − [n + n′]ω12)
]
, (B8)

where �m
ζ ζ ′ is defined in Eq. (15), and where the Q matrix is defined slightly different than in Ref. [6],

Qζ ζ ′
ζ1ζ2q(ω) = −δζζ ′δζ1ζ δζ2ζ 
̃q −

∑
μ±

1
2 (1 ± δζ1ζ2 )W ±

μ 
±
μ,q(δζ2ζ δζ1ζ ′ + δζ1ζ δζ2ζ ′ )

h̄ω + Ẽxx
μ,± − 2h̄ωd

. (B9)

Inserting the formal solution for δC into Eq. (B8) and writing all frequency-dependent quantities using the Fourier-index
form, we find

−
∑
ζ ′m′

{
[h̄(ν − mω12) + Ẽx

0 ]δζζ ′δmm′ + �mm′
ζ ζ ′ (ν)

}
δP†

ζ ′m′ (ν)

=
∑
ζ ′m′


mm′
ζ ζ ′,0(ν)δa†

ζ ′,m′ (ν) +
∑
ζ ′m′

�m′−m
ζ ζ ′ δPζ ′,m′ (ν) +

∑
ζ ′m′

T x,mm′
ζ ζ ′ (ν)δPin†

ζ ′m′ (ν) +
∑
ζ ′m′

T p,mm′
ζ ζ ′ (ν)δain†

ζ ′m′ (ν), (B10)
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where the self-energy and renormalized coupling matrices are given by

�mm′
ζ ζ ′ (ν) = ih̄

√
2γ p

∑
nn′

∑
ζ1ζ2q

∑
ζ ′

1ζ
′
2

〈Pζ ′
2,0〉nQ

ζ ζ ′
2

ζ1ζ2q,m+n(ν)Kζ1ζ2q
ζ ′

1ζ
′0,m+n(ν)〈ain†

ζ ′
1
〉n′δm′,m+n+n′


̂mm′
ζ ζ ′0(ν) = 
0δmm′δζζ ′ − ih̄

√
2γ p

∑
nn′

∑
ζ1ζ2ζ3q

∑
ζ ′

1ζ
′
2

〈Pζ3,0〉n


0Qζ ζ3
ζ1ζ2q,m+n(ν)Kζ1ζ2q

ζ ′
1ζ

′
20,m+n(ν)

h̄(ν − [m + n]ω12) + 2
(
Ẽp

0 − h̄ωd
)

× [〈
ain†

ζ ′
1

〉
n′δζ ′ζ ′

2
+ 〈

ain†
ζ ′

2

〉
n′δζ ′ζ ′

1

]
δm′,m+n+n′ , (B11)

and the renormalized incoupling matrices are given by

T p,mm′
ζ ζ ′ (ν) = ih̄

√
2γ p

∑
nn′

∑
ζ1ζ2ζ3q

∑
ζ ′

1ζ
′
2

〈Pζ3,0〉nQζ ζ3
ζ1ζ2q,m+n(ν)Kζ1ζ2q

ζ ′
1ζ

′
20,m+n(ν)

{
〈P†

ζ ′
2,0

〉n′δζ ′ζ ′
1
−


0[〈a†
ζ ′

1,0
〉n′δζ ′ζ ′

2
+〈a†

ζ ′
2,0

〉n′δζ ′ζ ′
1
]

h̄(ν−[m + n]ω12)+2(Ẽp
0 − h̄ωd )

}
δm′,m+n+n′

T x,mm′
ζ ζ ′ (ν) = ih̄

√
2γ x

{
δζζ ′δmm′ − 1

2

∑
ζ1μ±

∑
nn′

〈Pζ ′,0〉n

1
2 (1 ± δζζ1 )W ±

μ �±
μ,0

h̄(ν − [m + n]ω12) + Ẽxx
μ,± − 2h̄ωd

[〈P†
ζ ,0〉n′δζ ′ζ1 + 〈P†

ζ1,0
〉n′δζ ′ζ ]δm′,m+n+n′

}

+ ih̄
√

2γ x
∑
nn′

∑
ζ1ζ2ζ3q

∑
ζ ′

1ζ
′
2

〈Pζ3,0〉nQζ ζ3
ζ1ζ2q,m+n(ν)Kζ1ζ2q

ζ ′
1ζ

′
2q1,m+n(ν)

{
δq1,0〈a†

ζ ′
1,0

〉n′δζ ′ζ ′
2
−
∑
μ±

1
4 (1 ± δζ ′

1ζ
′
2
)�±

μ,0

±
μ,q1

h̄(ν−[m+n]ω12)+Ẽxx
μ,±−2h̄ωd

× [〈
P†

ζ ′
1,0

〉
n′δζ ′ζ ′

2
+ 〈

P†
ζ ′

2,0

〉
n′δζ ′ζ ′

1

]}
δm′,m+n+n′ , (B12)

with Kζ1ζ2q
ζ ′

1ζ
′0,m(ν) := Kζ1ζ2q

ζ ′
1ζ

′0 (ν − mω12) and similarly for Q
ζ ζ ′

2
ζ1ζ2q,m(ν).

APPENDIX C: HOMODYNE NOISE SPECTRUM

In this Appendix, we provide additional details of the derivation of the homodyne noise spectrum.
In terms of the fields Elo and Es given in Eq. (26), the mean photocurrent difference from Eq. (30) takes the form

I−(t ) := I1(t ) − I2(t ) = i
η

τd

∫ t

t−τd

dt ′[〈Elo(t ′)〉〈E†
s (t ′)〉 − 〈E†

lo(t ′)〉〈Es(t
′)〉] = η

√
Flo

τd

∫ t

t−τd

dt ′〈Xs(θ, t ′)〉, (C1)

where Xs(θ, t ) = eiθ E†
s (t ) + e−iθ Es(t ) is the source-field quadrature operator with angle θ = ϕ + π/2. The two terms in θ stem

from the local oscillator phase ϕ and a phase displacement π/2 from the beamsplitter.
Similarly, the correlation function of the photocurrent difference from Eq. (32) becomes

I−(t )I−(t + τ ) = I1(t )I1(t + τ ) + I2(t )I2(t + τ ) − I1(t )I2(t + τ ) − I2(t )I1(t + τ )

= 1

τ 2
d

{
η2
∫ t

t−τd

dt ′
∫ t+τ

t+τ−τd

dt ′′[〈E†
lo(t ′)Elo(t ′′)〉〈E†

s (t ′′)Es(t
′)〉 + 〈E†

lo(t ′′)Elo(t ′)〉〈E†
s (t ′)Es(t

′′)〉

− 〈: E†
lo(t ′)E†

lo(t ′′) :〉〈: Es(t
′)Es(t

′′) :〉 − 〈: Elo(t ′)Elo(t ′′) :〉〈: E†
s (t ′)E†

s (t ′′) :〉]

+ η�(τd − τ )
∫ t

t+τ−τd

dt ′〈E†
s (t ′)Es(t

′)〉 + 〈E†
lo(t ′)Elo(t ′)〉

}
. (C2)

The last term is the shot noise correlation function, N0(t, τ ) = (η/τ 2
d )�(τd − τ )

∫ t
t+τ−τd

dt ′[〈E†
s (t ′)Es(t ′)〉 + 〈E†

lo(t ′)Elo(t ′)〉]. In
typical homodyne detection setups, the local oscillator is significantly stronger than the signal, which means that the shot noise
will be dominated by the local oscillator. In this limit, we can neglect the signal contribution to N0(t, τ ) which then becomes

N0(t, τ ) � N0(τ ) = ηFlo

τ 2
d

(τd − τ )�(τd − τ ). (C3)

Combining Eqs. (C1) and (C2), we find

I−(t )I−(t + τ ) − I−(t ) I−(t + τ ) = N0(τ ) + η2Flo

τ 2
d

∫ t

t−τd

dt ′
∫ t+τ

t+τ−τd

dt ′′〈: δXs(θ, t ′)δXs(θ, t ′′) :〉, (C4)
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where δXs(θ, t ) := Xs(θ, t ) − 〈Xs(θ, t )〉. In the second integral, we make the substitution t ′′′ = t ′′ − τ to make the integration
limits equal. Thereby, we obtain after relabelling t ′′′ to t ′′

I−(t )I−(t + τ ) − I−(t ) I−(t + τ ) = N0(τ ) + η2Flo

τ 2
d

∫ t

t−τd

dt ′
∫ t

t−τd

dt ′′〈: δXs(θ, t ′)δXs(θ, t ′′ + τ ) :〉. (C5)

Inserting this expression into Eq. (33), we obtain the noise spectrum

N (ω) = N0(ω) + η2Flo

τ 2
d

lim
t0→∞

1

T

∫ t0+T

t0

dt
∫ ∞

0
dτ cos(ωτ )

∫ t

t−τd

dt ′
∫ t

t−τd

dt ′′{〈δE†
s (t ′)δEs(t

′′ + τ )〉 + 〈δE†
s (t ′′ + τ )δEs(t

′)〉

+ e−2iθ [�(t ′ − t ′′ − τ )〈δEs(t
′)δEs(t

′′ + τ )〉 + �(t ′′ + τ − t ′)〈δEs(t
′′ + τ )δEs(t

′)〉]
+ e2iθ [�(t ′′ + τ − t ′)〈δE†

s (t ′)δE†
s (t ′′ + τ )〉 + �(t ′ − t ′′ − τ )〈δE†

s (t ′′ + τ )δE†
s (t ′)〉]}, (C6)

where N0(ω) = limt0→∞ 1
T

∫ t0+T
t0

dt
∫∞

0 dτ cos(ωτ )N0(τ ) = 1
2ηFlo

sin2(ωτd/2)
(ωτd/2)2 is the contribution from shot noise to the homodyne

noise spectrum. The quantity sin2(ωτd/2)/(ωτd/2)2 is a filter factor that arises from the τ -integral and describes the bandwidth
of the detector as the inverse response time τ−1

d .
The first term in Eq. (C6) can be rewritten using the spectral correlation function Smm′

1 (ν) from Eq. (23) as

N1 := lim
t0→∞

1

T

∫ t0+T

t0

dt
∫ t

t−τd

dt ′
∫ t

t−τd

dt ′′〈δE†
s (t ′)δEs(t

′′ + τ )〉

= 1

T

∫ t0+T

t0

dt
∫ t

t−τd

dt ′
∫ t

t−τd

dt ′′ 1

(2π )2

∫ ∞

−∞
dω′

∫ ∞

−∞
dω′′eiω′t ′

e−iω′′(t ′′+τ )〈δE†
s (−ω′)δEs(ω

′′)〉

= 1

T

∫ t0+T

t0

dt
∫ t

t−τd

dt ′
∫ t

t−τd

dt ′′ 1

2π

∫ ω12/2

−ω12/2
dν ′

∫ ω12/2

−ω12/2
dν ′′ ∑

m′m′′
ei(ν ′−m′ω12 )t ′

e−i(ν ′′−m′′ω12 )(t ′′+τ )δ(ν ′ − ν ′′)2γ pSm′,m′′
1 (ν ′), (C7)

where we used the identity
∫∞
−∞ dω = ∑

m

∫ ω12/2
−ω12/2 dν. By shifting the t ′ and t ′′ integration variables to t ′ − t and t ′′ − t , the

integration over t can be carried out, which gives the Kronecker δ 1
T

∫ t0+T
t0

dtei(m′′−m′ )ω12t = δm′m′′ . Upon resolving this Kronecker
δ as well as the δ function δ(ν ′ − ν ′′) and subsequently rewriting the summation over ν ′ and m′ to an integral over ω′, we can
resolve the integrals over t ′ and t ′′, leading to

N1 = 1

2π

∫ ∞

−∞
dω′ sin2(ω′τd/2)

(ω′/2)2
e−iω′τ 2γ pS1(ω′). (C8)

The second term in Eq. (C6), where the time arguments are reversed, yields the complex conjugate N ∗
1 .

For the term in Eq. (C6) proportional to e−2iθ , the situation is slightly more complicated because of the Heaviside functions.
Similarly to Eq. (C7), we can express the temporal correlation function in terms of Smm′

2 (ν) and resolve the integral over t , such
that

N2 = lim
t0→∞

1

T

∫ t0+T

t0

dt
∫ t

t−τd

dt ′
∫ t

t−τd

dt ′′[�(t ′ − t ′′ − τ )〈δEs(t
′)δEs(t

′′ + τ )〉 + �(t ′′ + τ − t ′)〈δEs(t
′′ + τ )δEs(t

′)〉]

=
∫ 0

−τd

dt ′
∫ 0

−τd

dt ′′ 1

2π

∫ ∞

−∞
dω′[�(t ′ − t ′′ − τ )eiω′t ′

e−iω′′(t ′′+τ ) + �(t ′′ + τ − t ′)e−iω′′t ′
eiω′(t ′′+τ )]2γ pS2(ω′). (C9)

To resolve the integrals over t ′ and t ′′, we now make the
assumption that the detector response time τd is much faster
than any timescale in the dynamics of the source field. This
corresponds to taking the limit of infinite detection bandwidth.
Naturally, the detection bandwidth will restrict the observable
homodyne spectrum, but in the interest of characterizing the
intrinsic properties of the source field, τd → 0 is the correct
limit to consider. Since the integral over τ in Eq. (C6) only
runs over positive values, this means that only the second
Heaviside function in Eq. (C9) can be nonzero. Thus, we end
up with (for τ > 0)

N2 = 1

2π

∫ ∞

−∞
dω′ sin2(ω′τd/2)

(ω′/2)2
eiω′τ 2γ pS2(ω′). (C10)

The term in Eq. (C6) proportional to e2iθ can be connected to
S∗

2 (ω) by following an analogous derivation. The final expres-
sion for the quadrature noise spectrum becomes

N (ω) = 1

2
ηFlo

sin2(ωτd/2)

(ωτd/2)2
{1 + η�[�1(ω) + e−2iθ�2(ω)]},

(C11)

where the functions �i(ω) are defined below Eq. (37) in the
main text. To characterize the intrinsic noise properties of
the source field, we set the detection efficiency η to unity.
Thereby, when normalizing the quadrature noise spectrum to
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FIG. 6. (a), (b) Comparison of spontaneous four-wave mixing
spectrum SFWM and squeezing spectrum 1 + �(ω) from the full the-
oretical calculations (solid lines) to the simplifications from Eq. (17)
(dots) for Configuration A and with the same parameter settings as
for Fig. 4. (c), (d) Absolute relative deviation between the full and
simplified calculations. (e), (f) Same as panels (a), (b) for Configu-
ration B, and with parameter settings as in Fig. 5. (g), (h) Same as
panels (c), (d) for Configuration B.

the shot-noise level, we obtain

N (ω)

N0(ω)
= 1 + �[�1(ω) + e−2iθ�2(ω)]. (C12)

APPENDIX D: EFFECT OF MULTIPARTICLE
FLUCTUATION RENORMALIZATION

As mentioned in the main text, the multiparticle renor-
malizations of the Heisenberg-Langevin equations of motion
only give small quantitative corrections to the spontaneous
four-wave mixing and squeezing spectra. This is explicitly
demonstrated in Fig. 6, which compares the full and sim-
plified calculations for the same parameters as in Figs. 4
and 5. Specifically, Figs. 6(a) and 6(b) show the sponta-
neous four-wave mixing spectrum and squeezing spectrum
calculated from the full theory (solid lines) and using the
simplifications in Eq. (17) (dots). In Figs. 6(c) and 6(d), the
relative deviation between the two calculations are shown.
This relative deviation δx is calculated as δx(ω) = |xfull (ω) −

TABLE I. Parameters used for numerical calculations.

Quantity Value

Exciton-photon coupling 
0 20 meV
Cavity effective ref. index (hBN) n̄ 2.1
Cavity outcoupling rate γ p 9 meV
Exciton dephasing rate γ x (30 K) 0.8 meV
Pump spot area 9 μm2

Pump power 5 mW
Effective electron mass me 0.43 m0 [77]
Effective hole mass mh 0.54 m0 [77]
In-plane dielectric constant ε⊥ 12.8 [78]
Single-particle bandgap E c

0 − E v
0 2.48 eV [79]

Monolayer thickness d2D 0.626 nm [79]
Interlayer air gap hint 0.3 nm
Dielectric constant of encapsulating 4.5
material (hBN) εe

Val.-cond. band momentum matrix element γ 0.222 eV nm [77]

xsimplified(ω)|/xfull(ω), where x(ω) is either SFWM(ω) or 1 +
�(ω). Evidently, the relative deviation is below 1% for the
spontaneous four-wave mixing spectrum, and below 10−5 for
the squeezing spectrum.

APPENDIX E: NUMERICAL CALCULATIONS

The numerical calculations in the paper have been per-
formed for atomically thin MoS2 encapsulated with hexagonal
BN on both sides, which is often used in experiments (see,
e.g., [74]).

We use the screened Coulomb potential obtained from
solving Poison’s equation for the van der Waals het-
erostructure: dielectric environment/air gap/atomically thin
semiconductor/air gap/dielectric environment [41,75]. The
small interlayer air gaps hint take account of naturally oc-
curring air gaps between the atomically thin semiconductor
and its dielectric environment [76] described by the dielectric
constant εe.

The parameters used for the calculations in this paper are
summarized in Table I.

The phonon-induced dephasing rate γ x is calculated
according to the methods given in Ref. [47], without self-
consistent inclusion of radiative broadening, because this is
contained in the interaction with the quantized electromag-
netic field.

In the numerical representation of the equations of motion,
the dynamical variables such as 〈a†〉 and 〈P†〉 are expressed
in surface-density units 〈a†〉/√S and 〈P†〉/√S. This en-
sures that all coupling coefficients and scattering matrices
in the equations of motion are independent of the quan-
tization surface area S. Only the input-field driving term
contains explicit reference to S, when converting the driv-
ing power Pin to surface-density units Pin → Pin/S. For the
numerical calculations, S is taken as the laser spot area (see
Table I).

In the numerical representation of matrix elements and
dynamical variables that depend on wave vectors, we exploit
the rotational symmetry and express these quantities in their
angle-averaged form as described in detail in Ref. [52]. The
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complete set of exciton wave functions is calculated as the
solutions to the angle-averaged Wannier equation (see Ref. [6]
for details), which is solved in momentum space using a polar
coordinate system with 4000 points in the radial direction
and 4000 points in the angular direction. As discussed in
Sec. III A, only the lowest-energy exciton state is kept, and the
higher-lying wave functions are discarded. To construct the
matrix elements for the biexcitonic eigenvalue equation [the
left-hand side of of Eq. (A3)] the 2D wave vector-summations
in Eq. (A2) must be evaluated for two 2D wave vectors,
which presents a significant numerical challenge. Therefore
integration in polar coordinates with Gaussian quadratures is
used and the matrix elements are calculated for an adjusted,
nonequidistant grid of 2D wave vectors, such that the point
density is higher for smaller k values and lower for larger
k-values which are required for convergence. This leads to a
matrix with a resolution of 100 k-points. Finally, a bicubic

spline interpolation is applied to the resulting matrix to form
a regular k grid with 100 × 100 k space points and the eigen-
values and eigenvectors are calculated.

In the evaluation of some of the matrix elements in
Eq. (A1), GPU-based parallelization is used to accelerate the
momentum summations using the pytorch library in Python.
This makes the evaluation several orders of magnitude faster
than a corresponding single-CPU evaluation.

The equations of motion Eq. (5) are solved using the
DOP853 adaptive 8th order Runge-Kutta algorithm as im-
plemented in the scipy.integrate library in Python.
The matrix inversion required to solve the frequency-space
Heisenberg-Langevin equation Eq. (13) is carried out using
the Python library numpy.linalg. Specifically, the inversion
of Eq. (14) is carried out simultaneously over the dimensions
ζ , m and the four vector dimensions of the fluctuation vector
in Eq. (12).
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