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Topological Anderson insulator via disorder-recovered average symmetry

Jie Zhang,1 Zhi-Qiang Zhang,1 Shu-guang Cheng ,2,* and Hua Jiang 1,3,†

1School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
2Department of Physics, Northwest University, Xi’an 710069, China

3Institute for Advanced Study, Soochow University, Suzhou 215006, China

(Received 8 July 2022; revised 6 October 2022; accepted 8 November 2022; published 17 November 2022)

We propose that the topological Anderson insulator (TAI) can be realized by introducing special disorder into a
graphene with a modified Kane-Mele model. The disorder recovers symmetry under statistical averaging, which
turns a trivial insulator into a topologically nontrivial insulator. When graphene is subjected to nonmagnetic
adatoms in one sublattice or global uniform magnetic adatoms, the sublattice or time-reversal (TR) symmetry is
broken, respectively, making the system topologically trivial. For the former one, randomly spatial distributed
adatoms result in gapless edge states and quantized transport characteristics. Such randomization preserves
the sublattice symmetry on average and the system becomes a TAI phase. For the latter one, the average
TR symmetry is recovered by randomizing magnetization directions and the topological phase is protected.
We demonstrate the existence of gapless edge states, but the differential conductance is no longer quantized.
Moreover, we construct our proposal in electric circuits and observe the disorder-induced edge state through the
circuit simulation. Our work provides a more simplified scheme to realize the TAI, and deepens the understanding
of the relationship between the TAI and average symmetries.
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I. INTRODUCTION

Disorder effects of electrons as one of the most important
research fields in condensed matter physics have attracted
significant interest [1–12]. The interplay between disorder
effects and topology leads to the discovery of topological
Anderson insulators (TAIs) [13–18], where a trivial insu-
lator gives rise to the topological features when disorder
is considered. Since the early studies in HgTe/CdTe quan-
tum wells [19,20], TAIs are reported to be realizable and
detectable in a variety of topological systems [21–40]. In
general, TAIs in different systems are characterized by dis-
tinct topological invariants and exhibit corresponding peculiar
transport properties. Due to these differences, TAIs are also
regarded to be restricted to distinct symmetries. For exam-
ple, the higher-order topological Anderson insulators could
demand the satisfaction of corresponding point group sym-
metry [22–24]. For the winding number protected TAI, its
realization strongly depends on the chiral or particle-hole
symmetries, among which the disorder is restricted to ensure
the symmetry [25–27]. Very recently, TAIs with different
symmetries are reported to be experimentally realized in cold
atoms [28], photonic crystals [29,30], LC circuits [23], pho-
tonic quantum walks [38], etc.

Nevertheless, previous TAI studies mainly concentrate
on both the global and local symmetry of the disordered
samples, where the disorder should enforce the symmetry
everywhere to preserve the nontrivial topological features,
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i.e., the existence of edge states or the quantized transport
properties [13,14]. More importantly, the realization of the
TAI for these studies is also restricted to the on-site or hopping
energy type of disorder [17,23,34–36], and the TAI is obtained
by tuning the strength of random energy [41].

Compared with clean samples, the disordered samples
could capture the additional symmetries under statistical
averaging. Disorder breaks the local symmetry, but the
global symmetry can still be maintained on statistical aver-
aging [40,42]. Significantly, the symmetry under statistical
averaging is more realistic and easier to be realized than the
previously studied enforced symmetries in not only disordered
classical wave systems but also condensed matter systems.
However, the influence of such a symmetry, named as average
symmetry, on the TAIs is rarely reported. Therefore, it is of
great value to study the interplay of the TAI and average
symmetries.

In this paper we present a feasible scheme to obtain the
TAI via the disorder-recovered average symmetry. The phys-
ical pictures are illustrated in Fig. 1. In a clean sample [see
Fig. 1(a)] the potentials represented by the peaks only dis-
tribute in the gray regions. Consequently, the gray and white
regions are unequal, and the symmetry of the system is de-
stroyed. It is a trivial insulator in which the electrons are
localized. In contrast, we randomize the position of distributed
peaks until the number of peaks in the gray and white regions
is balanced, as in the case shown in Fig. 1(b). It is such
randomization that leads to the introduction of disorder, which
can hold the symmetry of the system on average, although
the symmetry is still broken locally. The topological state can
be restored with electrons propagating along the boundaries.
We uncover that such pictures can be realized by studying
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FIG. 1. The schematic diagrams for two different potential con-
figurations, with peaks representing potentials. (a) The peaks are only
distributed in the gray regions, making the gray and white regions
different. The symmetry of the system is broken and the electrons
(red balls) are localized. (b) The distribution of peaks is random, and
they are equally distributed on the gray and white regions. These ran-
domly distributed peaks (disorder) make the gray and white regions
equivalent under statistical averaging, although locally unequal. The
symmetry of the system is restored on average with edge states along
the boundaries.

both nonmagnetic and magnetic atom adsorption effects in
a modified Kane-Mele model. From the numerical calcula-
tion results of differential conductance, local density of states
(LDOS) and local current distributions, the emergency of the
TAI phase induced by disorder-recovered average symmetry
is identified. Since there is no need for the manipulation of
disorder strength, finally we demonstrate that such TAI phase
is much easier to be realized in classic LC circuits.

The rest of this paper is organized as follows: In Sec. II
we introduce the modified Kane-Mele model with distributed
adatoms and present the numerical methods. In Sec. III we
concentrate on the realization of the TAI via average sublat-
tice symmetry. The average TR symmetry-protected TAI is
studied in Sec. IV. In Sec. V, a feasible scheme is presented
to realize the proposal in LC circuits. Finally, a brief summary
is given in Sec. VI.

II. MODELS AND NUMERICAL METHODS

We start from a modified Kane-Mele model in the presence
of distributed adatoms. Two different types of adatoms are
considered. We first study that graphene is adsorbed with
nonmagnetic atoms, which can generate a fixed on-site energy
on each influenced carbon atom [see Figs. 2(a) and 2(c)].
In the tight-binding representation, the effective Hamiltonian
is [43–46]

H1 = t1
∑
〈i j〉

c†
i c j + it2

∑
〈〈i j〉〉

νi jc
†
i szc j + U

∑
i∈κ

c†
i ci, (1)

where c†
i (ci) is the creation (annihilation) operator of an

electron at site i, and 〈i j〉 and 〈〈i j〉〉 mean the sum over all
the nearest-neighbor (NN) and next-nearest-neighbor (NNN)
hopping sites, respectively. The first term is the NN hopping
with an amplitude of t1, which acts as the energy unit. The
second term describes the intrinsic spin-orbit interaction with
strength t2, where s = (sx, sy, sz ) is the Pauli operator, and νi j

is defined as νi j = di×d j

|di×d j | = +1 (−1) when the NNN hopping

FIG. 2. (a) and (c) Schematic diagrams for the two-terminal de-
vices with η = 0 and η = 0.5, respectively. η is the probability of
distributed adatoms (green balls) on A sites, and the adatoms only
exist in the central region. (b) The band structure for the central
region of device (a). (d) The differential conductance G as a function
of Fermi energy EF for different η. The parameters are set to t1 = 1,
t2 = 0.06, and U = 1.3. The sample size is N = 40, Lx = 80.

is counterclockwise (clockwise) with respect to the positive
z axis. The third term represents the on-site energy U , which
apply on the influenced sites denoted by κ .

The other type is magnetic adatoms, where a planar magne-
tization is produced on each site [see Figs. 4(a) and 4(c)]. The
corresponding tight-binding Hamiltonian is written as [43]

H2 = t1
∑
〈i j〉

c†
i c j + it2

∑
〈〈i j〉〉

νi jc
†
i szc j + λ

∑
i

c†
i B · sci, (2)

where the last term is the exchange field with a strength of λ.
In order to investigate how disorder affects the topological

properties of the above systems, we calculate the differential
conductance based on the nonequilibrium Green’s function
method [47,48]. Considering a sample with two semi-infinite
leads [see Fig. 2(a)], the two-terminal differential conduc-
tance is calculated by G(E ) = e2

h Tr(�LGr�RGa), where �α =
i[�r

α − (�r
α )†] is the linewidth function of lead α (α = L/R).

�r
α is the self-energy caused by the coupling between the

central region and α lead. Gr (Ga) is the retarded (advanced)
Green’s function, which is calculated by Gr (E ) = (EI −
Hc − �r

L − �r
R)−1, and Hc is the Hamiltonian of the central

region. In addition, several methods including LDOS and the
spatial distribution of local currents are also effective ways to
clarify the influence of disorder, and they are also available by
the nonequilibrium Green’s function method. The LDOS at a
given site i is [49]

ρi(E ) = − 1

π
ImGr (i, i; E ). (3)

By applying a small external bias V = VL − VR between the
two terminals, the local current between the neighboring sites
i and j can be expressed as [14,50]

Ji→ j = 2e2V

h
Im[Hi j (G

r�LGa) ji]. (4)
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III. TOPOLOGICAL ANDERSON INSULATOR VIA
AVERAGE SUBLATTICE SYMMETRY

We first focus on the sample with spatially distributed
nonmagnetic adatoms. In Fig. 2(a), when the adatoms (green
balls) are absent, the system is a quantum spin Hall (QSH)
state with a pair of helical edge states inside the band gap [43].
Then we introduce the adatoms into the system and the on-site
energy of the influenced carbon atom is shifted to U . It is
worth noting that instead of choosing all the sites, we select
half of them. Considering the limiting case, the adatoms are
distributed on one sublattice of graphene. For example, they
are only distributed on the atoms from B sublattice in the
central region of Fig. 2(a). The corresponding energy spec-
trum of such a system is calculated with periodic and open
boundary conditions in x and y directions, respectively. Since
the adatoms only exist in one sublattice, the A/B sublattice
symmetry is broken, resembling the picture of Fig. 1(a). It
can be confirmed that the original edge modes are gapped out,
producing a trivial insulator shown in Fig. 2(b).

For convenience, a ratio η is defined as η = NA/N0, where
NA is the number of adatoms on A sites and N0 is the total
number of adsorbates. That is to say, η is the probability of
adatoms on A sites, and thus Figs. 2(a) and 2(b) correspond
to the case η = 0. Then we randomize the adsorption sites,
making η gradually increase. When the adatoms are equally
distributed on A/B sites, that is η = 0.5 [see Fig. 2(c)], the
sublattice symmetry has also been restored on average, resem-
bling the picture of Fig. 1(b).

We next study the transport properties of the system. The
differential conductance G is averaged over up to 1000 ran-
dom configurations. Figure 2(d) shows the G versus Fermi
energy EF for different η. In the clean sample (η = 0), a trivial
insulator with G = 0 is obtained (see the blue solid line),
which is consistent with the band structure in Fig. 2(b). With
the increase of η, it can be seen that the energy range with
G = 0 is shrinking, indicating the presence of states within
the original gap. When η = 0.5, as plotted in the purple solid
line, a quantized conductance plateau appears with the value
G = 2e2/h. The existence of a quantized plateau suggests that
the sample has turned into a topological insulator.

In order to further investigate the topological properties of
the system, we calculate the spatial distribution of the LDOS
for different η. Since the sample is connected to the metallic
leads, the states of the leads will permeate into the central
region. The LDOS of the regions in contact with the leads with
a width of 10 is not shown. The upper panels of Fig. 3 exhibit
the evolution of LDOS with η, manifesting the appearance of
the edge states. For example, in the clean limit, no state is seen
for energy inside the gap, where a trivial insulator is expected
in Fig. 3(a). In the case of η = 0.3, as seen in Fig. 3(b), the
subgap states appear in the whole region and there are more
states near the boundaries. In Fig. 3(c), for η = 0.5, the disor-
der distribution of adatoms is enhanced and all the states tend
to travel at the boundaries of the sample. Then we calculate the
corresponding local current distributions Jx(y) of the sample
along the y direction, as illustrated in Fig. 3(d). As expected,
when η = 0, there is no current. With the increase of η, the
local currents appear. The local currents at η = 0.5 are much
more localized to the sample boundaries than those at η = 0.3.

FIG. 3. The upper panels exhibit the LDOS of the system with
(a) η = 0, (b) η = 0.3, and (c) η = 0.5. (d) and (e) Local current
distributions Jx (y) and the summation of local current distributions
Jx (y) along the y direction under different η, respectively. (f) The
evolution of P with the increase of η. The red stars are local PL for
20 random pairs of adjacent A and B sites when η = 0.5. Here the
Fermi energy is EF = 0.65, and the other parameters are the same as
those in Fig. 2.

Besides, the summation of the local currents from the bottom
to site y, Jx(y) = ∑y

i=1 Jx(i), are also plotted in Fig. 3(e). One
can see that the summation is about 2e2V /h when η = 0.5,
which means a differential conductance of 2e2/h, indicating
that the quantized conductance is mostly contributed by the
topological edge states. This result strongly manifests that the
present disordered system belongs to the QSH phase.

In the above investigations we do not turn the strength
of disorder. From η = 0 to η = 0.5, the on-site energy U of
the adatoms is unchanged, only the adsorption positions have
been changed, which is different from the conventional TAIs.
Thus, the origin of the edge states is quite intriguing. At the
beginning, the adatoms only distribute on the B sublattice,
and the symmetry of the A/B sublattice is broken. Then with
the increase of η, the average A/B sublattice symmetry is
slowly restored. When η = 0.5, since the number of adatoms
distributed on the A/B sublattice is the same, A and B sub-
lattices are equivalent under statistical averaging. Meanwhile,
the system is also driven from a trivial insulator (η = 0) to a
QSH phase (η = 0.5). Therefore, we can attribute such a topo-
logical insulator phase to the bulk topology protected by the
average A/B sublattice symmetry which is preserved in the
presence of adsorption disorder. Based on the above analysis,
we can intuitively conclude that the obtained phase is a newly
TAI phase driven by the mechanism of disorder-recovered
average symmetry, as illustrated in Fig. 1.

In order to better describe the relationship between
disorder-recovered average symmetry mechanism and TAI
phase, we adopt a physical quantity P = 〈ρA〉−〈ρB〉

〈ρA〉+〈ρB〉 , where 〈ρA〉
is the average LDOS of all the A sites, and so is 〈ρB〉. The blue
solid line in Fig. 3(f) shows the evolution of P with η, and P
decreases gradually as η increases. When η = 0, the system
belongs to a trivial insulator. P reaches the maximum, suggest-
ing the strongly broken of sublattice symmetry. By increasing
η from 0 to 0.5, the system experiences a phase transition
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from a trivial phase to a TAI phase. In particular, P = 0 for
η = 0.5, that is 〈ρA〉 = 〈ρB〉, and A/B sublattice plays equal
roles on average. Nevertheless, by randomly selecting 20 pairs
of adjacent A and B sites in the central region, we find local
value PL = ρA−ρB

ρA+ρB
are not always equal to zero. In Fig. 3(f),

the PL values of these sites are marked by the red stars, and
ρA is not equal to ρB locally. These behaviors imply that
although the A/B sublattice symmetry is restored on average,
the local sublattice symmetry is still broken when η = 0.5.
Further increasing η, P continues to decrease, the system turns
into a trivial insulator. At this time, 〈ρA〉 < 〈ρB〉, suggesting
the broken of sublattice symmetry again. Therefore, it is the
random adsorption that recovers the A/B sublattice symme-
try on average and leads to the TAI phase in graphene. The
proposed TAI states are driven by the distribution of disorder
with an average symmetry and cannot be described by the
self-consistent Born approximation [13,15,28].

In earlier theoretical works, it is reported by the first-
principle calculations that for certain noble-metal adatoms
(i.e., Cu, Ag, Au) with strong SOC, the top site adsorption
in graphene is favored [51,52]. From the experimental aspect,
if the random configuration of adsorption for A and B sublat-
tice is achieved and adatom cluster is avoided [53–55], the
random adsorption can be fixed by encapsulating graphene
by silicon carbide or hexagonal boron nitride. Therefore, this
theoretically predicted topological state in graphene may be
accessible in experiment. Furthermore, in a conventional TAI,
one has to adjust the disorder strength. Alternatively, for the
model in this section, one does not have to tune the disor-
der strength. Thus it also brings advantages for realizing the
TAI phase in classic wave systems. For example, in the LC
circuit, the adatoms with fixed on-site energy are introduced
by grounding capacitors with fixed values. The detailed study
will be shown in Sec. V.

IV. TOPOLOGICAL ANDERSON INSULATOR VIA
AVERAGE TIME-REVERSAL SYMMETRY

In this section we investigate the topological state of
graphene with magnetic adatoms. As described by Eq. (2), the
adatoms introduce the planar magnetization with an exchange
field strength λ, and the direction B = (Bx, By, 0) can be tuned
by an external magnetic field B. The special case of planar
magnetization is considered because the z direction of magne-
tization will not couple the two spin components and will not
open an energy gap. Here we concentrate on two cases. One is
an ordered sample with uniform magnetization in the central
region, for example, taking B along the x direction, shown
in Fig. 4(a). The planar magnetization distinguishes the x
direction from other directions, which breaks the time-reversal
(TR) symmetry of the system, resembling Fig. 1(a). In such a
case, the original gapless helical edge modes are gapped as
shown by the energy band structure in Fig. 4(b). Therefore,
the sample becomes a trivial insulator.

Another case is a disordered sample with magnetization
arbitrarily oriented in the x-y plane, e.g., B = (cos θ, sin θ, 0)
with θ uniformly distributed in [0, 2π ), as shown in Fig. 4(c).
In experiment, such a case is easy to be realized. Compared
with the former case, we remove the magnetic field and raise
the temperature above the critical point. Due to thermal dy-

FIG. 4. (a) and (c) Schematic diagrams for the two-terminal
devices under oriented and random exchange fields, respectively.
(b) The band structure for the central region of device (a). (d) Dif-
ferential conductance G versus Fermi energy EF in two such cases.
Here we set t1 = 1, t2 = 0.08, λ = 0.05. The sample size is N = 50,
Lx = 150 for blue and red curves, Lx = 100 for the yellow curve.

namics, the magnetization is randomized in all directions. If
adatoms have random local magnetization, then no direction
has specificity. On average, it seems that there is no net
exchange field and no destruction of TR symmetry. Similar
to the mechanism in Fig. 1(b), it is doubtful whether it can
still restore some topological properties that host without the
exchange field.

To confirm such a speculation, we next pay attention to the
transport properties of the clean sample (oriented exchange
field) and disordered sample (random exchange field), respec-
tively. Figure 4(d) plots the differential conductance G as a
function of Fermi energy EF . For the clean sample (blue solid
line), G is zero for energies inside the gap and there is no
state here, which is in agreement with the band spectrum
of Fig. 4(b). However, for the disordered sample (red solid
line), G is nonzero in this energy range, manifesting that there
are gapless states inside the band gap [56]. The system may
capture a TAI phase.

To get a better insight into the topological properties of the
system, we present the LDOS of two such different samples.
Similar to the previous case, only the LDOS of the middle
layers of the central region are plotted. For the clean sample,
the state vanishes in Fig. 5(a), which exhibits its insulating
nature. After randomizing the local magnetization and re-
calculating the LDOS, as shown in Fig. 5(b), several states
localized on both boundaries appear. Then the local current
distributions Jx(y) are shown in Fig. 5(c). Obviously the local
current is zero for a clean sample (gray solid line), manifesting
the absence of state. However, for a disordered sample (green
solid line), the currents flow along both the upper and lower
boundaries. From the calculation results of LDOS and local
current distributions, the existence of topological nontrivial
edge states is identified and the differential conductance is
also caused by the edge states. Furthermore, the red solid
line gives the summation of the local currents in the random
exchange field. Contrary to the nonmagnetic atom adsorption
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FIG. 5. The left column is the LDOS of the samples under (a) ori-
ented and (b) random exchange fields, respectively. (c) The spatial
distributions Jx (y) and the summation of local currents Jx (y) for two
devices. (d) Evolution of ρi,sx with Fermi energy EF . The plots above
and below correspond respectively to the samples in Figs. 4(a) and
4(c). The red dots are the ρi,sx for each disordered site and the blue
solid line is the average. The sample size is N = 50, Lx = 150. Here
the Fermi energy is EF = 0 for (a) to (c), and the other parameters
are the same as those in Fig. 4.

case, the summation Jx(y) is not equal to 2e2V /h, indicating
that a certain degree of backscattering exists in edge states.
Through the above analysis, one can demonstrate that when
the direction of planar magnetization becomes disordered, the
system will be transformed from a trivial insulator to a TAI
phase accompanied by gapless edge states.

In both cases we introduce the exchange field on the lattice,
the only difference being the orientation of planar magne-
tization. When the orientation is fixed, the TR symmetry
of the system is destroyed and a band gap appears, which
is topologically trivial. However, the random exchange field
holds the average TR symmetry, making it possible to exhibit
topological phase as demonstrated above. Hence, we can pre-
liminarily attribute that such a topological state is protected by
the mechanism of disorder-recovered average TR symmetry,
as illustrated in Fig. 1.

To further understand the relationship between average TR
symmetry and the TAI phase, we define Si,x as the expectation
value of spin operator sx in the x direction:

Si,x =
〈
(C†

i,↑,C†
i,↓)

(
0 1
1 0

)(
Ci,↑
Ci,↓

)〉
. (5)

After utilizing the Keldysh equations [57] and Green’s func-
tion [58], the expression of the local spin density of states for
Si,x at energy E is obtained:

ρi,sx (E ) = 1

π
Im[Gr

↑,↓(i, i; E ) + Gr
↓,↑(i, i; E )]. (6)

For convenience, we only consider the atoms on the top and
bottom edges. The red dots in Fig. 5(d) represent ρi,sx of each
site and the blue solid line is the average. The upper plot

shows ρi,sx of the clean sample versus EF . We notice that,
except for an energy window from −0.048 to 0.048, the ρi,sx

are not equal to zero for both the red dots and blue solid
line, suggesting that both global and local TR symmetries are
broken. Since ρi,sx is zero in the range about [−0.048, 0.048],
there is no state, representing a trivial insulator. The lower
panel of Fig. 5(d) plots ρi,sx for the disordered sample. The
present sample has entered into a TAI phase according to
previous analysis [see Figs. 4 and 5]. The ρi,sx of each site
has a positive or negative value, and the overall average value
is zero, suggesting that although the TR symmetry is un-
broken on average, the TR symmetry is still broken locally.
Although the average TR symmetry recovers the helical edge
states for the TAI phase, the loss of local TR symmetry can
still cause the backscattering between the counterpropagating
helical edge states. This result explains why the differential
conductance in the disordered sample [see red solid line in
Fig. 4(d)] is not quantized.

The above conclusion also reminds us that for several
symmetry-protected topological states, the symmetries re-
quired for the existence of the corresponding edge states and
exotic transport property are quite different. For example,
the gapless surface states (hinge states) are protected by the
average space group symmetry (average chiral symmetry) in
topological crystalline insulators (higher-order topological in-
sulators), while the quantized transport in this system needs
to satisfy both the local and global symmetries. Note that
the real topological sample is often the case of the former,
which may be an important reason why the surface states can
be observed but the quantized transport cannot be measured
experimentally. In short, in the disordered sample, the gapless
helical edge states reappear and this TAI phase is protected by
the average TR symmetry.

The realization of this model in condensed matter sys-
tems is supported by the first-principles calculation studies.
It demonstrates that some 5d transitional metal adatoms
(e.g., Hf, Ta, Re, or Os) in graphene can form planar
magnetization [59]. In another theoretical work, the planar
magnetization could be achieved in a modified Kane-Mele
model type material Bi2NF [60]. The adatoms endow mag-
netic moments to the surrounding carbon atoms, either an
oriented magnetization from an external magnetic field or a
random one when above the critical temperature. Thus no mat-
ter which adsorption site (top, hollow, or bridge) is preferred,
little difference is made: compared to the top adsorption site,
adsorption in the bridge or hollow sites is even better because
the possible on-site energy shift associated with top adsorp-
tion is avoided.

V. REALIZATION OF THE TAI IN AN ELECTRIC CIRCUIT

Only through experimental verification can the theoreti-
cal proposal be more complete and convincing. Up to now,
the TAI has been experimentally confirmed in only several
classical wave systems [28–30]. The reason may be that the
control of disorder strength is difficult to achieve in condensed
matter systems and is not easy to implement in classical
wave systems. Since it is much easier to control the adatom
spatial positions, our theoretical proposal can provide an eas-
ier solution from the experimental perspective. Simulating
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FIG. 6. Setup of the electric circuit. (a) Top-left chart is the
schematic diagram of the Kane-Mele model. The black solid (green
dashed) lines represent NN (NNN) hoppings. Each lattice site is
composed of a pair of inductors with inductance L. The schematic
diagrams for the construction of NN and NNN hoppings in an electric
circuit are shown in the top-right and bottom-left charts, respec-
tively. The capacitor with capacitance C3 is the grounding capacitor.
(b) Band structure of the circuit lattice when η = 1, for a strip that
is infinite along x and 20 unit cells width along y direction. The
circuit parameters are L = 3.3 mH, C1 = 330 pF, C2 = 19.8 pF, and
C3 = 429 pF.

topological states with circuits has gained great attention in
recent years [21,23,61–78] due to its ease of fabrication and
measurement compared with other classical platforms. The
first model in Sec. III can be implemented by a LC circuit
in which the role of the nonmagnetic adatom is played by
capacitors. The randomization of adatoms position, i.e., the
disorder we proposed, in a circuit can be simulated by ad-
justing the position of the grounding capacitors. Alternatively,
in the second model in Sec. IV, since the magnetic moment
breaks the time-reversal symmetry, the corresponding LC cir-
cuit should also bear such a characteristic. In a recent work
the operational amplifiers are used in the LC circuit system to
break the time-reversal symmetry [79].

In the following we present a feasible scheme to realize
the TAI phase in the nonmagnetic adatom adsorption model
by utilizing a LC circuit system. The schematic diagram of
the Kane-Mele model with NN (black solid lines) and NNN
(green dashed lines) hoppings is shown in the top-left chart of
Fig. 6(a). The NNN hoppings have π/2 phase shifts (spin-up
component) in the direction indicated by the arrows and the
NN hoppings experience zero phase shift. The key to mapping
the model into the circuit network is how to construct such two
hoppings and introduce the on-site energy. As shown in the
black dashed rectangular box of Fig. 6(a), each lattice site is
composed of two inductors X and Y with inductance L, and
the inductor contains two nodes (black dots). The voltages
of these four nodes are marked by Vi,X+, Vi,X−, Vi,Y +, Vi,Y −.
The voltages across the inductors are UX = Vi,X+ − Vi,X−,
UY = Vi,Y + − Vi,Y −, respectively. The top-right chart shows

the realization of NN hopping, four capacitors with capaci-
tance C1 are used to directly link the two sties labeled by i and
j, with Vi,α connecting to Vj,α (α = X+, X−,Y +,Y −). To
simulate the NNN hopping, [Vi,X+,Vi,X−,Vi,Y +,Vi,Y −] is cross
connected to [Vk,Y −,Vk,Y +,Vk,X+,Vk,X−] via capacitors with
capacitance C2, as presented in the bottom-left chart. The on-
site energy can be introduced by connecting four grounding
capacitors with capacitance C3 to the nodes of the lattice site.

To present the validity of the designed circuit, according to
Kirchhoff’s laws, we write the circuit equations when η = 1.
Defining U↑,↓ = UX ± iUY , the eigenequations of spin-up and
spin-down states are obtained (the detailed derivation can be
found in Appendix A), and they are related by the TR symme-
try [62–65]

E

(
U A

k,↑
U B

k,↑

)
=

(
Pk(φ) − U Tk

T ∗
k Pk(−φ)

)(
U A

k,↑
U B

k,↑

)
,

E

(
U A

k,↓
U B

k,↓

)
=

(
Pk(−φ) − U Tk

T ∗
k Pk(φ)

)(
U A

k,↓
U B

k,↓

)
, (7)

where E = 3t1 + 6t2 − 2ω2
0/ω

2, ω0 = 1/
√

LC. C is a refer-
ence capacitance such that C1 = t1C, C2 = t2C, C3 = UC. The
elements in Eq. (7) are Tk = t1(eik·e1 + eik·e2 + eik·e3 ), Pk =
2t2[cos(k · ν1 + φ) + cos(k · ν2 + φ) + cos(k · ν3 + φ)], and
φ = π/2. ei(i = 1, 2, 3) and ν j ( j = 1, 2, 3) are NN and NNN
bond vectors, respectively. The right side of Eq. (7) is in-
deed the Hamiltonian of the modified Kane-Mele model
with −U representing the on-site energy on sublattice A.
Equations (7) and (1) share the same noninteracting Hamil-
tonian and nearly all physical quantities defined based on the
Hamiltonian should be the same. Supposing the above Hamil-
tonian has eigenvalues E = ε(k), the frequency fk and energy

ε(k) satisfy fk = ω
2π

= 1
2π

1√
LC

√
2

3t1+6t2−ε(k) . Therefore, it is

straightforward to infer that our designed circuit can imple-
ment the topological state. For the sake of convenience, we
only focus on the spin-up component. One obtains t1 = 1,
t2 = 0.06, U = 1.3 (the same model parameters in Sec. III)
by choosing appropriate circuit parameters to be C = 330 pF,
C1 = 330 pF, C2 = 19.8 pF, and C3 = 429 pF. Figure 6(b)
shows the calculated one-dimensional band spectrum of the
circuit lattice when η = 1, with the vertical axis being fre-
quency fk . It is in agreement with Fig. 2(b), the system is
a trivial insulator with a frequency gap. Now we turn to a
finite circuit structure with 4 × 8 sites to clarify the realization
of the TAI via average sublattice symmetry in a LC circuit
by performing steady state simulation. We randomize the
grounding C3 positions on the honeycomb lattice to simulate
the randomization of the adatoms position, which tunes η.
In this paper we use LTspice software to perform all circuit
simulations [80]. To obtain the mode response of the circuit,
we excite the upper-leftmost corner site (marked by a red star)
by placing the sources where SX = cos(ωt ) and SY = sin(ωt )
on the X and Y inductors, respectively. Voltages with 90◦
relative phase shift is to solely excite the spin-up state [65].
The voltage amplitudes on the Y inductors at different sites
are measured. Figures 7(a) and 7(b) display the measured volt-
age amplitude distributions for the clean sample (η = 1) and
disordered sample (η = 0.5) at 109 kHz, respectively. When
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FIG. 7. Propagation characteristic of the edge state in a finite lattice. (a) and (b) The steady state voltage amplitude distributions at 109 kHz
when η = 1 and η = 0.5, respectively. Voltage sources with 90◦ phase difference are placed on the inductors X and Y at the upper-leftmost
corner site (marked by a red star) so as to excite the spin-up edge state. (c) Time-domain circuit simulations for η = 0.5, in which a time-
dependent Gaussian input signal excites an edge state that propagates rightward along the upper edge. Voltage amplitude distributions at
different times show the propagation of an edge state. The directions of propagation are represented by red arrows. All other parameters are
the same as those in Fig. 6.

η = 1, the voltage amplitudes are vanishingly small except
for a few lattice sites near the driving source. In contrast,
when η = 0.5, it is apparent that dominant voltage signals
exist at both edge sites and no bulk penetration, manifesting
the realization of the edge state. This result agrees well with
theoretical prediction.

To further characterize the edge state, we perform time-
domain simulations of the designed open circuit. Using a
Gaussian input signal with time delay t0 = 50 μs, width
dt = 50 μs, and frequency f = 109 kHz, in which voltages

SX = e− (t−t0 )2

dt2 cos(ωt ) and SY = e− (t−t0 )2

dt2 sin(ωt ) are placed
on the X and Y inductors at the upper-leftmost corner
site, respectively, in order to generate a spin-up source

S↑ = e− (t−t0 )2

dt2 eiωt [64]. Figure 7(c) shows the voltage ampli-
tude distributions at different times when η = 0.5. In this
configuration, the driving source will excite the edge state that
moves rightward along the upper boundary. At about 150 μs,
it reaches the right boundary. At around 350 μs, the edge state
at the bottom boundary is excited and continues to move left-
ward. We also perform a time-domain simulation for the clean
sample, as expected, the state cannot be transmitted. More
details are given in Appendix B. In a word, through circuit
simulation and voltage measurement, the disorder-induced
edge state is identified, suggesting the emergence of the TAI
phase which is protected by disorder recovery of an average
A/B sublattice symmetry.

VI. SUMMARY

In this paper we propose the realization of TAIs via
average symmetries and reveal their nontrivial topological
properties in a modified Kane-Mele model with two types of
adatoms. For the nonmagnetic adatom case, randomly spatial

distributed adatoms recover an average A/B sublattice and
lead to the TAI phase. For the magnetic adatom case, the
average TR symmetry-protected TAI is caused by the random-
ization in the direction of local planar magnetization.

We also provide a scheme to realize the proposed TAI
phase in LC circuits. Through direct circuit simulation, the
experimental feasibility for such a topological state is verified.
Our work depends on the understanding of the relationship
between the TAI and symmetries under statistical averaging,
and broadens the way toward using circuit materials for future
studies of topological states.

FIG. 8. Voltage amplitude distributions at different times. The
construction of the circuit and the location of sources are the same as
those in Fig. 7(c) of the main text except for η = 1.
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APPENDIX A: DERIVATION OF AN ELECTRIC CIRCUIT MODEL

We turn to the correspondence between the nonmagnetic atom adsorption model and the designed circuit network. In our
model, each lattice site contains a pair of inductors with four nodes. Each site is connected to others through three NN and
six NNN hoppings, as shown in Fig. 6(a) of the main text. Additionally, all A sites are grounded by C3 when η = 1. Based on
Kirchhoff’s laws, the circuit equation of node X +/X − of inductor X at site (m, n, A) can be written as(

V A
m,n,X + − V A

m,n,X −
)
/iωL + iωt1C

[(
V A

m,n,X + − V B
m,n,X +

) + (
V A

m,n,X + − V B
m+1,n−1,X +

) + (
V A

m,n,X + − V B
m,n−1,X +

)]
+ iωt2C

[(
V A

m,n,X + − V A
m+1,n,Y +

) + (
V A

m,n,X + − V A
m,n+1,Y −

) + (
V A

m,n,X + − V A
m−1,n+1,Y +

) + (
V A

m,n,X + − V A
m−1,n,Y −

)
+(

V A
m,n,X + − V A

m,n−1,Y +
) + (

V A
m,n,X + − V A

m+1,n−1,Y −
)] + iωUCV A

m,n,X + = 0, (A1)(
V A

m,n,X − − V A
m,n,X +

)
/iωL + iωt1C

[(
V A

m,n,X − − V B
m,n,X −

) + (
V A

m,n,X − − V B
m+1,n−1,X −

) + (
V A

m,n,X − − V B
m,n−1,X −

)]
+ iωt2C

[(
V A

m,n,X − − V A
m+1,n,Y −

) + (
V A

m,n,X − − V A
m,n+1,Y +

) + (
V A

m,n,X − − V A
m−1,n+1,Y −

) + (
V A

m,n,X − − V A
m−1,n,Y +

)
+(

V A
m,n,X − − V A

m,n−1,Y −
) + (

V A
m,n,X − − V A

m+1,n−1,Y +
)] + iωUCV A

m,n,X − = 0. (A2)

The difference between Eqs. (A1) and (A2) yields

U A
m,n,X = − ω2

2ω2
0

[−(3t1 + 6t2 + U )U A
m,n,X + t1

(
U B

m,n,X + U B
m+1,n−1,X + U B

m,n−1,X

)
+ t2

( − U A
m,n+1,Y + U A

m,n−1,Y + U A
m+1,n,Y − U A

m−1,n,Y + U A
m−1,n+1,Y − U A

m+1,n−1,Y

)]
, (A3)

where ω0 = 1√
LC

. C acts as a reference capacitance so C1 = t1C, C2 = t2C, C3 = UC. We can also derive the equations for
inductor Y at site A, as well as for site B following the same route:

U A
m,n,Y = − ω2

2ω2
0

[−(3t1 + 6t2 + U )U A
m,n,Y + t1

(
U B

m,n,Y + U B
m+1,n−1,Y + U B

m,n−1,Y

)
+ t2

(
U A

m,n+1,X − U A
m,n−1,X − U A

m+1,n,X + U A
m−1,n,X − U A

m−1,n+1,X + U A
m+1,n−1,X

)]
, (A4)

U B
m,n,X = − ω2

2ω2
0

[−(3t1 + 6t2)U B
m,n,X + t1

(
U A

m,n,X + U A
m,n+1,X + U A

m−1,n+1,X

)
+ t2

(
U B

m,n+1,Y − U B
m,n−1,Y − U B

m+1,n,Y + U B
m−1,n,Y − U B

m−1,n+1,Y + U B
m+1,n−1,Y

)]
, (A5)

U B
m,n,Y = − ω2

2ω2
0

[−(3t1 + 6t2)U B
m,n,Y + t1

(
U A

m,n,Y + U A
m,n+1,Y + U A

m−1,n+1,Y

)
+ t2

( − U B
m,n+1,X + U B

m,n−1,X + U B
m+1,n,X − U B

m−1,n,X + U B
m−1,n+1,X − U B

m+1,n−1,X

)]
. (A6)

Defining U↑,↓ = UX ± iUY , the above equations reduce to(
3t1 + 6t2 − 2

ω2
0

ω2

)
U A

m,n,↑ = −UU A
m,n,↑ + t1

(
U B

m,n,↑ + U B
m+1,n−1,↑ + U B

m,n−1,↑
)

+ t2
(
eiφU A

m,n+1,↑ + e−iφU A
m,n−1,↑ + e−iφU A

m+1,n,↑ + eiφU A
m−1,n,↑ + e−iφU A

m−1,n+1,↑ + eiφU A
m+1,n−1,↑

)
,

(A7)(
3t1 + 6t2 − 2

ω2
0

ω2

)
U B

m,n,↑ = t1
(
U A

m,n,↑ + U A
m,n+1,↑ + U A

m−1,n+1,↑
)

+ t2
(
e−iφU B

m,n+1,↑ + eiφU B
m,n−1,↑ + eiφU B

m+1,n,↑ + e−iφU B
m−1,n,↑ + eiφU B

m−1,n+1,↑ + e−iφU B
m+1,n−1,↑

)
,

(A8)

where φ = π
2 . For simplicity, the Ui,↓ component of the model is not shown here.
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By applying a spatial Fourier transform, we obtain the
eigenequations for spin-up and spin-down states

E

(
U A

k,↑
U B

k,↑

)
=

(
Pk(φ) − U Tk

T ∗
k Pk(−φ)

)(
U A

k,↑
U B

k,↑

)
,

E

(
U A

k,↓
U B

k,↓

)
=

(
Pk(−φ) − U Tk

T ∗
k Pk(φ)

)(
U A

k,↓
U B

k,↓

)
, (A9)

where E = 3t1 + 6t2 − 2ω2
0/ω

2, Tk = t1(eik·e1 + eik·e2 +
eik·e3 ), Pk = 2t2[cos(k · ν1 + φ) + cos(k · ν2 + φ) + cos(k ·

ν3 + φ)]. Consequently, it is straightforward to infer that
our designed electric circuit can be used to characterize the
topological properties of the nonmagnetic atom adsorption
model.

APPENDIX B: TIME-DOMAIN CIRCUIT SIMULATION

Figure 8 shows the time-domain simulations when η = 1.
One can see that a spin-up state is excited at the upper-leftmost
corner site. However, due to the broken of A/B sublattice
symmetry, it is obvious that the state cannot be transmitted.
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