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Topology-insensitive axion mass in magnetic topological insulators
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We study the axion in three-dimensional topological insulators with magnetic impurities under finite tem-
perature. We find a stable antiferromagnetic ground state and ferromagnetic metastable state. In both magnetic
states, the mass of the axion is found to be up to eV scale and it approaches zero near the phase boundary of
the magnetic state. This result applies to both normal and topological insulator phases, i.e., the axion mass is
insensitive to the topological states and it will have a direct impact on the targeted mass range of particle axion
dark matter in future experiments.
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I. INTRODUCTION

The axion has drawn attention in interdisciplinary fields of
particle physics, cosmology, and condensed matter physics. In
condensed matter physics, a dynamical axion is predicted in
the magnetic topological insulators (TIs) [1]. It is a quasipar-
ticle that couples to the electromagnetic fields, which leads to
an instability of the electromagnetic fields. It is predicted that
the instability causes the total reflection of the incident light
[1] or the conversion of the external electric field to magnetic
field [2]. On top of that, it was proposed in Refs. [3–5] that the
axion in the magnetic TIs can be a possible excitation signal in
the detection of the particle axion, which is a good candidate
for dark matter of the universe. On the other hand, a static
axion or constant axion is known as the magnetoelectric effect
[6–11]. To understand the properties of both the dynamical
and static axions, magnetism plays a crucial role.

In Refs. [12–14], the dynamical axion in the antiferromag-
netic (AFM) TIs is described from the partition function given
by the path integral. As a result, the mass of the dynamical ax-
ion in the AFM TIs is estimated to be about a meV. This mass
range corresponds to the projected mass range of the particle
axion proposed by the authors of Ref. [3]. On the other hand,
the author of Ref. [15] revisited the axion mass in the Hubbard
model and reformulated the action of the axion field using
the Hubbard-Stratonovich transformation. In the formula, the
effective potential for the axion field is derived in the topolog-
ical and normal insulators under the AFM and paramagnetic
states. Consequently, both the dynamical and static axions are
described consistently and the axion mass is found to be less
than O(eV). Furthermore, it can be suppressed near the phase
boundary between the AFM and paramagnetic states. Since
the axion mass in materials directly corresponds to the mass
range of the particle axion in the proposal of any future axion
detection experiment [3], the evaluation of the axion mass in
materials is crucial.

In recent years, magnetically doped bismuth selenide or
bismuth telluride has caught lots of attention. For example,
both the AFM and ferromagnetic (FM) states are predicted in

MnBi2Te4 [16–20] or Mn2Bi2Te5 [21] by the first-principles
calculations. Regarding Mn2Bi2Te5, a rich magnetic topologi-
cal state in addition to the AFM/FM states are predicted [21].1

Since such materials are probable candidates for the detection
of the particle axion, it is important to find how to describe the
axion in a variety of magnetic states.

In this work, we formulate the axion in the TIs with mag-
netic dopants under finite temperature. For this purpose, we
consider the three-dimensional (3D) effective TIs model with
the interaction term of electrons with magnetic impurities.
In this study we do not specify the explicit material. The
grand potential is calculated from the path integral under
finite temperature, and consequently, the effective potential
for the order parameter of the AFM and FM are derived.
Around the stationary points of the effective potential, the
mass of the dynamical axion is formulated. We will see that
the typical mass scale of the axion in the magnetic insulators
is eV and it can be suppressed near the phase boundary,
depending on temperature. This feature is insensitive to the
topological states of insulators. As a check, we will also see
that the curvatures with respect to the order parameters of
the AMF and FM phases correspond to the Van Vleck-type
spin susceptibility, which is calculated in the linear pertur-
bation theory, for a band insulator. The result implies that
the mass range of the particle axion which is projected to
be probed [3] is around eV scale and it depends on the
magnetic state of the insulators. The temperature dependence
of the axion mass might be used to search for low-mass
regions.

This paper is organized as follows. In the next section,
we give the Hamiltonian of the model and define the observ-
ables including the order parameters. In Sec. III the effective
potential for the order parameters is derived from the grand
potential, which gives rise to the phase diagram of magnetism

1The dynamical axion was studied in Ref. [22], and recently the
authors of Ref. [23] reported that Mn2Bi2Te5 is synthesized and its
experimental aspects are studied.
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in Sec. IV. Finally, the axion mass is derived in Sec. V. The
conclusion is given in Sec. VI.

II. MODEL

We consider a effective model for 3D topological insulators
(TIs). The basic Hamiltonian is [1,24]2

HTI =
∑

k

c†
kH

TI
k ck, (2.1)

HTI
k = (ε0 − μ)1 +

4∑
a=1

da�a, (2.2)

where c†
k and ck are the creation and annihilation operators of

electrons in the wave-number space and μ is the chemical po-
tential, k is the wave number, and �a are the Gamma matrices
defined in Eq. (A1) of Appendix A. ε0 is a constant and da is
parameterized as

(d1, d2, d3, d4) = (A2 sin kx�x, A2 sin ky�y, A1 sin kz�z, M),
(2.3)

where M = M0 − 2B1 − 4B2 + 2B1 cos kz�z + 2B2(cos kx�x

+ cos ky�y). M0 < 0 and M0 > 0 correspond to topological
and normal insulators, respectively. We consider a cubic
lattice in the later analysis, i.e., �x = �y = �z ≡ �, for sim-
plicity. The Hamiltonian has the time-reversal invariance,
which is one of the features of the TIs, and it describes
the Bi2Se3 family of materials, including Bi2Te3 and Sb2Te3

[25]. In the present study, we additionally assume magnetic
dopants, such as Fe, Cr, or Mn, in the material and intro-
duce the on-site interaction term between the impurity and
electron [26]

HJ =
Ns∑
I

[
JASA(xI )·sA

I + JBSB(xI )·sB
I

]
, (2.4)

where SA (sA
I ) and SB (sB

I ) are the local spins of the impurities
(spins of electron) at cite I of the sublattices A and B, respec-
tively. JA and JB are the exchange coupling constants and Ns

is the number of the impurities. In the following discussion,
we consider the magnetism in the z direction. Then the spins
of electron are written as

sA
zI = 1

2 c†
I (�12 + �5)cI , (2.5)

sB
zI = 1

2 c†
I (�12 − �5)cI , (2.6)

where cI is the wave function of the electron at cite I in
the lattice space and �12 and �5 are given in Appendix A.
The similar model, but only with a term proportional to
�12 is considered in Refs. [27–29] in a different context.
In Ref. [29], the same terms as both �12 and �5 are con-
sidered. In the literature, Cr and Mn are doped on the top
and the bottom halves of the TI films in superlattice and
the exchange couplings with Cr and Mn are taken to be
opposite each other. Then the mass of the dynamical axion
is estimated to be meV. We will get a different result in
Sec. V.

2We change the notation of Hamiltonian from one in Ref. [15].

We apply the mean-field approximation (MFA) to HJ . In
the MFA, HJ becomes

HJ ≈
Ns∑
I

[
JA
〈
SA

z

〉
sA

zI + JB
〈
SB

z

〉
sB

zI

+ JASA
z (xI )

〈
sA

z

〉+ JBSB
z (xI )

〈
sB

z

〉]
− Ns

(
JA
〈
SA

z

〉〈
sA

z

〉+ JB
〈
SB

z

〉〈
sB

z

〉)
. (2.7)

Introducing

MA = x
〈
SA

z

〉
, MB = x

〈
SB

z

〉
, (2.8)

mA = 〈
sA

z

〉
, mB = 〈

sB
z

〉
, (2.9)

where x = Ns/N and N is the number of cite, we get

HJ ≈
N∑
i

[
JAMAsA

zi + JBMBsB
zi

]

+
Ns∑
I

[
JAmASA

z (xI ) + JBmBSB
z (xI )

]
− N (JAMAmA + JBMBmB). (2.10)

As a result, the total Hamiltonian is linearized as3

HTI + HJ ≈ He + HS + HR, (2.11)

where He and HS are the Hamiltonians of the electrons and the
local spin defined by

He = HTI +
N∑
i

[
JAMAsA

zi + JBMBsB
zi

]
, (2.12)

HS =
Ns∑
I

[
JAmASA

z (xI ) + JBmBSB
z (xI )

]
, (2.13)

HR = −N (JAMAmA + JBMBmB). (2.14)

For later analysis, it is convenient to write down the Hamil-
tonian by using the following variables:

mt = mA + mB, (2.15)

mr = mA − mB, (2.16)

M f = 1
2 (JAMA + JBMB), (2.17)

M5 = 1
2 (JAMA − JBMB). (2.18)

M f and M5 plays the order parameters of the FM and AFM,
respectively. In terms of M f and M5 the Hamiltonian of the
electrons is given by

He =
∑

k

c†
kHekck, (2.19)

3Although MA, MB, mA, and mB themselves should be interpreted
as the mean-field values (or vacuum expectation values), we take
them as spurious fields to give the effective potential. See the later
discussion.
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where4

Hek = HTI
k + Hm

k , (2.20)

Hm
k = M f �

12 + M5�
5. (2.21)

We note that the two terms proportional to �12 and �5 appear
in the Hamiltonian for the electrons. Those terms describe
the magnetism of the materials and they are consistent with
the symmetry of the crystal structure of the materials, such
as Bi2Se3 and Bi2Te3 [25]. Diagonalizing Hek gives four en-
ergy bands. They are given by Ejk = ε0 − μ ± e jk ( j = 1, 2),
where

e1k =
√

d2
0 + M2

f + M2
5 + 2M f

√
d2

s + M2
5 , (2.22)

e2k =
√

d2
0 + M2

f + M2
5 − 2M f

√
d2

s + M2
5 , (2.23)

where d0 ≡
√∑4

a=1 dada and ds ≡
√

(d3)2 + (d4)2.
In the following discussion, we consider the half-filling

case since we are interested in the insulator in the bulk. In
addition we assume that the temperature is sufficiently smaller
than the energy scale of the electron. This is a good approxi-
mation since we consider temperature up to O(102 K). Then
the chemical potential should be chosen as μ � ε0, and the
relevant energy bands in the following discussion are going to
be −e1k and −e2k.

III. EFFECTIVE POTENTIAL FROM THE GRAND
POTENTIAL

While the mean-field values for each variable can be de-
rived from the Hamiltonian, the grand potential is useful to
derive the effective action for the order parameters M f and
M5. The grand potential is given by5

� = −β−1 ln Z, (3.1)

where β = 1/T is the inverse temperature and Z is the parti-
tion function given by

Z =
∫

Dc†DcDM e−SE . (3.2)

Here c is the wave function of the electrons, M represents SA
z

and SB
z , and SE is the action of the system in the Euclidean

space.6 The Hamiltonian of the electrons and local spins are
linearized under the MFA, as seen in the previous section.
Then the Euclidean action is given by SE = Se + SS + SR

where

Se =
∫ β

0
dτ

N∑
i

c†
i [∂τ + He]ci, (3.3)

4M5 corresponds to φ in Ref. [15].
5Since we consider the half-filling case, the grand potential corre-

sponds to the Helmholtz free energy.
6In the derivation of the kinetic term of the dynamical axion,

we promote M5 to a dynamical field. See the later discussion and
Appendix D.

SS =
∫ β

0
dτHS, (3.4)

SR =
∫ β

0
dτHR = βHR. (3.5)

Consequently, the grand potential is obtained as

� = �e + �S + HR, (3.6)

where �e is the grand potential for the electrons and �S is the
one for the local spins given by

�S = −β−1Ns

[
ln

sinh(S + 1/2)βJAmA

sinh βJAmA/2
+ (A → B)

]
.

(3.7)
Here S is the absolute value of the local spin. �e, on the other
hand, is computed as

�e = −β−1 ln e−Se , (3.8)

Se = − ln det[∂τ + He]. (3.9)

Here the determinant is obtained by

det[∂τ + He] =
∏

n

∏
j,k

(−iωn + Ejk), (3.10)

where ωn = (2n + 1)π/β is the Matsubara frequency for
fermions.

From the grand potential, the mean-field (MF) values for
mA, mB, MA, and MB are obtained as

mA
MF = 1

N

∂�e

∂JAMA
, (3.11)

mB
MF = 1

N

∂�e

∂JBMB
, (3.12)

MA
MF = 1

N

∂�S

∂JAmA
, (3.13)

MB
MF = 1

N

∂�S

∂JBmB
. (3.14)

They are also derived from ∂�
∂MA = ∂�

∂MB = ∂�
∂mA = ∂�

∂mB = 0. In
terms of mt , mr , M f , and M5, the MF values are given as

mt,MF = 1

N

∂�e

∂M f

= − 1

N

∑
k

⎡
⎣M f +

√
d2

s + M2
5

e1k
nF (E1k)

+
M f −

√
d2

s + M2
5

e2k
nF (E2k)

⎤
⎦, (3.15)

mr,MF = 1

N

∂�e

∂M5

= − 1

N

∑
k

M5

⎡
⎣1 + M f /

√
d2

s + M2
5

e1k
nF (E1k)

+
1 − M f /

√
d2

s + M2
5

e2k
nF (E2k)

⎤
⎦, (3.16)
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FIG. 1. Color map of the normalized effective potential Ṽeff = [Veff (Mf , M5) − Veff (0, 0)]�3 on (Mf , M5) plane. The parameters are JA =
JB = 0.25 eV, S = 5/2, x = 0.05, A2 = 2A1 = 0.4 eV, B2 = 2B1 = −0.4 eV, and M0 = −0.16 eV. The temperature is taken to be 0.1, 40, 60,
and 80 K. At each panel, the contours of the potential are shown in solid yellow lines.

M f ,MF = −1

2
xS[JABS (SβJAmA) + JBBS (SβJBmB)], (3.17)

M5,MF = −1

2
xS[JABS (SβJAmA) − JBBS (SβJBmB)], (3.18)

where nF (E ) = 1/(1 + eβE ) is the Fermi distribution function
and BS is the Brillouin function.

Since we are interested in the dynamics with respect to
M f and M5 around possible stationary points, we put the MF
values for the electron spins mt and mr and define the effective
action for M f and M5 as7

�|mt =mt,MF, mr=mr,MF ≡ −β−1 ln e−Seff . (3.19)

Consequently the effective potential for M f and M5 is given
by

Veff (M f , M5) = 1

βV
Seff = 1

V
�|mt =mt,MF, mr=mr,MF , (3.20)

where V is the volume of the system. Here we omit the
kinetic terms for the fluctuation around the stationary values
for M f and M5. The derivation of the kinetic term is given in
Appendix D. We will use the effective potential and the kinetic
term to calculate the axion mass in Sec. V.

IV. MAGNETIC STATES

Let us see possible magnetic states, which are determined
by the grand potential or equivalently the effective potential

7In Appendix B we give another aspect of the definition of the
effective action.

given in Eq. (3.20). Figure 1 shows the effective potential
on the (M f , M5) plane for various values of temperature. In
the calculation we take the model parameters as those pro-
posed by the first-principles calculation [1,24,27,30] and the
values are given in the figure caption. In the figure we plot
the effective potential normalized as Ṽeff ≡ [Veff (M f , M5) −
Veff (0, 0)]�3. For JA = JB > 0 we find that the global min-
imum of the potential corresponds to M f = 0 and nonzero
M5 = M50. Here M50 is the stationary value for M5. At
the zero-temperature limit, |M50| = xSJA is expected from
Eq. (3.18), which is consistent with the figure. It is also clear
that the minimum is stable. This is also checked analytically,
which is shown in Appendix C. At the minimum mA � −mB

is realized, which means that the magnetic order of the elec-
trons is the AFM. The same is true for MA and MB, i.e.,
MA � −MB. The AFM disappears for temperature above the
critical temperature T AFM

c , which is around 80 K in the figure.
In the region T > T AFM

c , the global minimum is at the origin.
Namely, all the MF values are zero and the insulator becomes
the paramagnetic state.

The same result is obtained for JA = −JB, except that
MA � MB is realized. In addition, we find that the effective
potential does not drastically change depending on the sign of
M0, i.e., the topological phase or not. On the other hand, M0

moderately affects the obserevables, such as critical temper-
ature and axion mass, which will be discussed below and in
Sec. V.

Meanwhile the global minimum is the AFM state, we
find that at low temperature there is a local minimum or a
metastable point at M5 = 0 and nonzero M f = M f 0, which
corresponds to the FM state. Here M f 0 is the stationary value
for M f at a given temperature. To show this explicitly, we
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FIG. 2. Normalized effective potential Ṽeff = [Veff (Mf , M5) −
Veff (0, 0)]�3 with Mf = Mf 0 as a function of M5 for various values
of temperature T = 0.1 to 100 K from top to bottom. The other
parameters are the same as Fig. 1.

compute the effective potential as a function of M5 by taking
M f = M f 0, which is given in Fig. 2. In the calculation the
other parameters are the same as Fig. 1. The local minimum
locates at M5 = 0 at a sufficiently low temperature and it dis-
appears for T � 10 K. When the temperature gets even higher,
the global minimum eventually reduces to (M f , M5) = (0, 0).
We note that the result that the AFM state is the ground state
while there is a metastable FM state is consistent with the
first-principles calculation for Mn2Bi2Te5 [21].

The result that the AFM state is lower than the FM one
can be confirmed analytically as follows. The total energy is
calculated from the free energy

E = ∂

∂β
β� + μNn = Ee + ES + ER, (4.1)

where Nn = −∂�/∂μ and

Ee =
∑

j,k

(Ejk + μ)nF (Ejk), (4.2)

ES = −NsS[JAmABS (SβJAmA) + JBmBBS (SβJBmB)]. (4.3)

Taking the MF values for MA and MB at the zero-temperature
limit, it is simply given by

E = Ee = −
∑

k

(e1k + e2k). (4.4)

From Eqs. (2.22) and (2.23), it is straightforward to check
that E |M f =0,M5=M̄ − E |M f =M̄,M5=0 < 0 for any values of M̄
and k. This is why the AFM is the lowest-energy state. See
also Appendix C for the discussion of the FM order for each
sublattice.

To get the whole picture, we plot the phase diagram regard-
ing the magnetic order on (M0, T ) plane in Fig. 3. The shaded

FIG. 3. Phase diagram of the magnetic state. The AFM state and
metastable FM state are indicated as “AFM” and “FM∗,” respec-
tively. Here JA, JB, S, x, Ai, and Bi (i = 1, 2) are taken as the same
as Fig. 1. T AFM

c is the critical temperature of the AFM state and the
region T < T AFM

c the AFM state becomes the global minimum. T FM∗
c

is the critical temperature between the metastable FM state and the
AFM state. As a reference, we indicate the topological and normal
phases of insulator as “TI” and “NI,” respectively, which is separated
by a vertical line M0 = 0 (green dashed).

region shows the AFM or FM states. In the low temperature
below O(102 K), the magnetic state is the AFM. On the other
hand, at sufficiently low temperature that is less than O(10 K),
the metastable FM state appears. Here we denote T FM∗

c as the
critical temperature. We note that the stable AFM state also
exists at the temperature, which indicates a possible phase
transition between the metastable FM state and the AFM state.
While the critical temperatures T AFM

c and T FM∗
c depend on the

value of M0, the sign of M0, i.e., the topological phase or not,
does not have a significant impact on them. In the next section,
we compute the mass of the dynamical axion for the AFM and
the FM states.

V. AXION MASS

As discussed in Ref. [15], the dynamical axion field is
defined as the quantum fluctuation around the minimum of
the potential in M5 direction. As shown in the previous sec-
tion there are two possible minima; the AFM and metastable
FM states. Expanding M5 as M5 ≡ M50 + ϕ around the min-
ima, the axion field a is defined as

Veff = Veff (M f 0, M50)

+ 1

2
g2 ∂2Veff

∂M2
5

∣∣∣∣
M f =M f 0,M5=M50

a2 + O(a4). (5.1)

Here g = d
dθ

|θ=θ0 where (θ ) = M5 is the inverse function of
θ defined by [1]

θ (M5) = 1

4π

∫
d3k

2|d| + d4

(|d| + d4)2|d|3 εi jkl di∂kx d
j∂ky d

k∂kz d
l .

(5.2)
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FIG. 4. Color map of the axion mass under the AFM state (left) and the metastable FM state (right). Here JA, JB, S, x, Ai, and Bi (i = 1, 2)
are taken as the same as Fig. 1. As in Fig. 3, topological and normal phases are indicated as “TI” and “NI,” respectively.

In the expression we define |d|2 as |d|2 ≡ ∑5
a=1 dada where

d5 = M5 and εi jkl is the Levi-Civita symbol with i, j, k, l
being 1, 2, 3, and 5. A parameter θ0 satisfies (θ0) = M50.
Then the mass ma of the dynamical axion is given by

Kam2
a = 1

2V

∂2Veff

∂M2
5

∣∣∣∣
M f =M f 0,M5=M50

, (5.3)

where Ka is the stiffness. For reference, see Appendix C for
the analytic expression of the second derivative of Veff in
the zero-temperature limit. In the Appendix we check that
Eqs. (C1) and (C2), which are the second derivatives with
respect to M f and M5, respectively, correspond to the spin
susceptibility calculated in the linear perturbation theory. The
stiffness is given by the perturbative expansion with respect to
ϕ. Details are given in Appendix D and the result is

Ka = 1

V

∑
k

d2
0

4
(
d2

0 + M2
50

)5/2 , (5.4)

for the AFM states and

Ka = 1

V

∑
k

(
d2

0 − d2
s + M2

f 0

)
(e2k− e1k)+ dsM f 0(e1k+ e2k)

8ds3M f 0e1ke2k
,

(5.5)

for the FM states. It is clear that the functions in the sum-
mation are positive, irrespective of the wave number. From
Eqs. (5.3), (5.4), and (5.5), we evaluate the axion mass.

As shown in the previous section, there are two possible
magnetic states, the AFM state and metastable FM state. Thus
we evaluate the axion mass for both states. Figure 4 shows the
axion mass on the (M0, T ) plane for the AFM state and the
metastable FM state. We find that the axion mass is O(eV)
for both states, except for the phase boundaries. This result
is consistent with Ref. [15] where only the AFM state is
considered at zero temperature in the Hubbard model. Here
we see a mild dependence of the mass on the sign of M0. At the
phase boundaries, the axion mass approaches zero from the
AFM state to the paramagnetic state or from the metastable
FM state to the AFM state. Therefore the axion mass can be, in
principle, various values by optimizing the temperature. This
result is quantitatively consistent with Ref. [29], meanwhile
the typical value of the axion mass is different. The typical

energy scale of the mass is eV, which is the same as one
estimated in the Hubbard model [15]. On the other hand, the
mass scale is not reduced by the value of the energy gap,
which is a different feature from the results in the Hubbard
model. The result has a direct impact on the projected mass
range of the particle axion in the proposal [3]. Namely, the
targeted mass range is typically eV, not meV. If the insulator
near the phase boundary is realized, a more suppressed mass
range could be probed. However, preparation of such a state
of insulators may not be trivial and there would be technical
challenges for the realistic observation.

It is worth noting that there are two types of axion for
the AFM and FM states. They could be utilized in future
particle axion search. For example, we speculate that in the
circumstance of the FM state, the particle axion induces an
excitation of the dynamical axion and it may cause the phase
transition to the AFM state, which can be a possible signal
of axion detection. As we mentioned, the axion mass is not
severely influenced by the topology of the insulators. This is
true for both the AFM and the metastable FM states. There-
fore, various insulators that are not in the topological phase
are also possible candidates of material for the search of the
particle axion and axion-like particles. We hope this remark
will inspire future studies for finding realistic materials for
particle axion detection experiments.

VI. CONCLUSION

In this study we formulated the mass of the dynamical
axion in the magnetically doped topological insulators. To
this end, we considered the 3D effective model of TIs with
the interaction terms between the electrons and the impurities.
We found that the antiferromagnetic state is the ground state
at low temperature. Besides, the ferromagnetic state appears
as a metastable state under sufficiently low temperature. In
both magnetic states, the axion mass is found to be O(eV)
and it goes to zero as the temperature approaches the critical
temperature, i.e., the phase boundary. We checked the results
by computing the Van Vleck-type spin susceptibility for a
band in linear response theory. In addition, we found a strong
independence of the energy gap on the axion mass scale.
Therefore, the typical mass scale of the particle axion search
proposed in Ref. [3] should be eV.
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The fact that the axion mass can be controlled by temper-
ature may be suitable for the detection of the particle axion.
Specifically, the phase boundary has a potential to search the
particle axion with a suppressed mass. In addition, there can
be various magnetic states indicated in first-principles calcu-
lation, for example, in Mn2Bi2Te5 [21]. To describe such rich
magnetic states rather than the AFM or FM, we need a further
extension of the model, which would be another interesting
area of research to find out the mass of the dynamical axion
in a more complicated phase diagram. We leave it for future
work.
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APPENDIX A: GAMMA MATRICES

The Gamma matrices �a (a = 1, . . . , 4) in Eq. (2.2) are
defined as

�1 =
(

0 σ 1

σ 1 0

)
, �2 =

(
0 σ 2

σ 2 0

)
,

�3 =
(

0 −i
i 0

)
, �4 =

(
1 0
0 −1

)
. (A1)

�5 is defined by �5 = −�1�2�3�4. In addition, we define
�ab = [�a, �b]/(2i). To be explicit, they are given by

�5 =
(

0 σ 3

σ 3 0

)
, �12 =

(
σ 3 0
0 σ 3

)
. (A2)

In the sublattice basis, the Gamma matrices are given by

�1 ′ =
(

σ 1 0
0 −σ 1

)
, �2 ′ =

(
σ 2 0
0 −σ 2

)
,

�3 ′ =
(

0 −i
i 0

)
, �4 ′ =

(
0 −1

−1 0

)
, (A3)

�5 ′ =
(

σ 3 0
0 −σ 3

)
, �12 ′ =

(
σ 3 0
0 σ 3

)
. (A4)

APPENDIX B: EFFECTIVE ACTION

Since we consider the half-filling case, i.e., the number
of electrons is fixed, the grand potential �e(MA, MB) of
the electron part corresponds to the Helmholtz free energy
Fe(MA, MB). The Gibbs free energy Ge(mA, mB) is then given
by the Legendre transformation

Ge(mA, mB) = −
∑

I=A,B

∂Fe

∂MI
MI + Fe

= −N
∑

I=A,B

JI mI MI + Fe, (B1)

where mI ≡ (1/N )∂Fe/∂ (JI MI ) (I = A, B). This definition is
equivalent to the MF values for mA and mB given in Eqs. (3.11)

and (3.12). In addition, Ge(mA, mB) is equivalent to �e + HR

where mI are taken to be their the MF values. Since the Gibbs
free energy corresponds to the effective action in the quantum
field theory, Eq. (3.19) is considered as the effective action. In
our analysis we give Eq. (3.19) as a function of M f and M5,
i.e., mI = mI (MI ), instead of mI itself since we are interested
in the dynamical field around the minimum (M f 0, M50).

APPENDIX C: MASS AT ZERO TEMPERATURE AND SPIN
SUSCEPTIBILITY

At the zero temperature, �S + HR in � cancels. Then the
curvature around the minimum is computed easily. The results
are

1

2

∂2�

∂M2
f

∣∣∣∣∣
M f =M f 0,M5=M50

= 1

2

∂2�e

∂M2
f

∣∣∣∣∣
M f =M f 0,M5=M50

= 1

2

∑
k

(
d2

0 − d2
s

)[ 1

e3
1k

+ 1

e3
2k

]
M f =M f 0,M5=M50

, (C1)

1

2

∂2�

∂M2
5

∣∣∣∣
M f =M f 0,M5=M50

= 1

2

∂2�e

∂M2
5

∣∣∣∣
M f =M f 0,M5=M50

= 1

2

∑
k

⎡
⎢⎢⎢⎣−M2

5

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 + M f√

d2
s +M2

5

)2

e3
1k

+

(
1 − M f√

d2
s +M2

5

)2

e3
2k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
1 + M f d2

s

(d2
s +M2

5 )3/2

e1k
+

1 − M f d2
s

(d2
s +M2

5 )3/2

e2k

⎤
⎦

M f =M f 0,M5=M50

.

(C2)

It is clear that both quantities are positive and we checked that
∂2�/∂M f ∂M5 = 0 at the minimum. Therefore, the minimum
is stable.

The above results can be confirmed by the spin suscep-
tibility of electron computed in linear response theory. In
the magnetic TIs, the local spins have an effective inter-
action via electrons. In the present case it corresponds to
−J̃eff

f M f M f and −J̃eff
5 M5M5, where the normalized effec-

tive exchange couplings are given by J̃eff
f = χ e

f /2 and J̃eff
5 =

χ e
5/2 [31].8 Here χ e

f and χ e
5 are the Van Vleck-type spin

susceptibility for a band insulator. Namely, χ e
f and χ e

5 cor-
respond to the squared mass parameters. By taking Hm

k as
the perturbation in liner response theory they are calculated

8A factor of 2 is different compared to the expression given in
Ref. [31]. We start with the Hamiltonian 1/(2χ e

f )m2
t + 1/(2χ e

5 )m2
r −

(Mf mt + M5mr ) to obtain −(1/2)χ e
f Mf Mf − (1/2)χ e

5 M5M5.
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as

χ e
f =

∑
k,m,n

[nF (Enk) − nF (Emk)]
〈unk|�12|umk〉〈umk|�12|unk〉

Emk − Enk
,

(C3)

χ e
5 =

∑
k,m,n

[nF (Enk) − nF (Emk)]
〈unk|�5|umk〉〈umk|�5|unk〉

Emk − Enk
,

(C4)

where Enk and |unk〉 are the energy eigenvalues and eigenstates
of the electron, respectively, which is obtained by diagonaliz-
ing HTI

k .
To compare the spin susceptibilities given in Eqs. (C3)

and (C4), it is appropriate to start with the free energy �′ ≡
�e − N (M f mt + M5mr ), where the free energy for the local
spin is omitted. This is because the spin susceptibilities given
above are obtained in the linear response theory by taking the
−(M f mt + M5mr ) term as the perturbation while He is the
zeroth-order Hamiltonian. Then it is straightforward to get

1

2

∂2�′

∂M2
f

∣∣∣∣∣
M f =M f 0,M5=M50

= − 1

2

∂2�e

∂M2
f

∣∣∣∣∣
M f =M f 0,M5=M50

, (C5)

1

2

∂2�′

∂M2
5

∣∣∣∣
M f =M f 0,M5=M50

= − 1

2

∂2�e

∂M2
5

∣∣∣∣
M f =M f 0,M5=M50

. (C6)

In fact, we confirmed that

1

2

∂2�e

∂M2
f

∣∣∣∣∣
M f =0,M5=0

= 1

2
χ e

f =
∑

k

1 − d2
s /d2

0

d0
, (C7)

1

2

∂2�e

∂M2
5

∣∣∣∣
M f =0,M5=0

= 1

2
χ e

5 =
∑

k

1

d0
. (C8)

Moreover, since Eqs. (C3) and (C4) from the linear respose
theory can be applied for a generic form of the Hamiltonian,
it would be possible to take Hek|M f =M f 0,M5=M50 and δM f �

12 +
δM5�

5 as the primary Hamiltonian and perturbation, respec-
tively. See also Appendix D for such an expansion. In that
case, Enk and |unk〉 correspond to the energy eigenvalues and
eigenstates of the Hamiltonian Hek where M f = M f 0 and
M5 = M50. By computing χ e

f and χ e
5 numerically, we checked

the correspondence between the mass squared and the Van
Vleck-type spin susceptibility

1

2

∂2�e

∂M2
f

∣∣∣∣∣
M f =M f 0,M5=M50

= 1

2
χ e

f , (C9)

1

2

∂2�e

∂M2
5

∣∣∣∣
M f =M f 0,M5=M50

= 1

2
χ e

5 , (C10)

for any value of M f 0 and M50.
Additionally, we checked that the spin susceptibilities for

the sublattice A and B, which are defined by

χ e
A =

∑
k,m,n

[nF (Enk) − nF (Emk)]
〈unk|(�12 + �5)/2|umk〉〈umk|(�12 + �5)/2|unk〉

Emk − Enk
, (C11)

χ e
B =

∑
k,m,n

[nF (Enk) − nF (Emk)]
〈unk|(�12 − �5)/2|umk〉〈umk|(�12 − �5)/2|unk〉

Emk − Enk
, (C12)

are both positive. This result is also expected since the order
of each sublattice is the FM.

APPENDIX D: PROPAGATOR AND THE STIFFNESS

The stiffness is given by the coefficient of the axion kinetic
term.9 To give the kinetic term we consider a fluctuation of M5

around the stationary point by promoting M5 as a dynamical
degree of freedom. To make the discussion generic, we take
M5 = M50 + ϕ. The kinetic term is obtained by expanding Se

with respect to ϕ. To this end, we write He = H + δH. In the
wave-number space, they are defined as

Hk = HTI
k + M f 0�

12 + M50�
5, (D1)

δHk = ϕ�5. (D2)

9The authors of Ref. [32] gave a similar calculation using the
Hubbard-Stratonovich transformation, but to discuss topological
superconductors and superfluids. See also Ref. [33] for the renor-
malization group approach.

Using ln det[∂τ + He] = Tr ln[∂τ + He] and

Tr ln(∂τ + H + δH) = Tr ln(−G−1) −
∞∑

n=1

Tr(GδH)n,

(D3)

where G−1 = −∂τ − H, the kinetic term is obtained from the
quadratic term in the second term of Eq. (D3):

Tr(GδH)2 = V 2

N2

∫ β

0
dτi

∫ β

0
dτ j

×
∑
xi,x j

Tr[G(xi − x j )δH(x j )G(x j − xi )δH(xi )].

(D4)

Here the arguments of G and δH represent xi = (τi, xi ). The
propagator and the field δH are expanded as

G(xi − x j ) = 1

βV

∑
iωn

∑
k

G̃(k)e−iωn (τ1−τ2 )+ik·(xi−x j ), (D5)

δH(xi ) = 1

βV

∑
iωn

∑
k

˜δH(k)e−iωnτ+ik·xi , (D6)
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where G̃−1(k) = iωn − Hk. Similarly to xi, we take the argu-
ment ki of G̃ and ˜δH as ki = (iωni, ki ). Then

Tr(GδH)2

= 1

β2V 2

∑
iωn1

∑
iωn2

∑
k1,k2

Tr[G̃(k1) ˜δH(k2)G̃(k1− k2) ˜δH(−k2)].

(D7)

We find the propagator G̃ in the momentum space is given
by

G̃(iωn, q) = 1

F

[
(iωn − ε)g0 +

5∑
a=1

ga
1�

a +
4∑

a=1

ga
2�

a�5

+
∑

ab

gab�ab

]
, (D8)

where ε = ε0 − μ and

g0 = (iωn − ε)2 − d2
0 − M2

50 − M2
f 0, (D9)

ga
1 = −da

{− (iωn − ε)2 + d2
0 + M2

50 + M2
f 0

}
(a = 1, 2),

(D10)

ga
1 = −da

{− (iωn − ε)2 + d2
0 + M2

50 − M2
f 0

}
(a = 3, 4, 5),

(D11)

g1
2 = 2id2M50M f 0, (D12)

g2
2 = −2id1M50M f 0, (D13)

g3
2 = 2i(iωn − ε)d4M f 0, (D14)

g4
2 = −2i(iωn − ε)d3M f 0, (D15)

g12 = {
(iωn − ε)2 − (d1)2 − (d2)2 + (d3)2 + (d4)2

+ M2
50 − M2

f 0

}
M f 0, (D16)

g34 = 2(iωn − ε)M50M f 0, (D17)

g23 = 2d1d3M f 0, (D18)

g13 = −2d2d3M f 0, (D19)

g14 = −2d2d4M f 0, (D20)

g24 = 2d1d4M f 0, (D21)

F = {(iωn − ε)2 − |d0|2 − (M f 0 − M50)2}{(iωn − ε)2

− |d0|2 − (M f 0 + M50)2} − 4d2
s M2

f 0. (D22)

Using the propagator, the stiffness is given by

Ka = − 1

2βV

∂2

∂ (iωnk )2

×
∑

iωnq,q

Tr[G̃(iωnq, q)�5G̃(iωnq + iωnk, q)�5]

∣∣∣∣∣∣
iωnk=0

.

(D23)

Here we redefined k1 and k2 as k1 = q and k2 = −k and taken
k = 0 in G̃(q + k). This expression can be checked by taking
M f 0 = 0 to get

Ka = 1

V

∑
q

d2
0

4
(|d0|2 + M2

50

)5/2 , (D24)

in the zero temperature limit, which agrees with the one given
in Ref. [15]. This is the expression of the stiffness for the AFM
state. The FM state corresponds to nonzero M f 0 and M50 = 0.
In that case, we find in the zero-temperature limit

Ka = 1

V

∑
q

(
d2

0 − d2
s + M2

f 0

)
(e2q− e1q)+ dsM f 0(e1q + e2q)

8ds3M f 0e1qe2q
,

(D25)

where M5 = 0 is taken in e1q and e2q. We note that the zero-
temperature limit is a good approximation since we discuss
the system at up to O(102) K, which is smaller than the typical
energy scale of the electron energy.

The formalism given in the discrete space can be written in
the continuum case by the following replacements:

1

N

∑
i

→ 1

V

∫
d3x,

1

V

∑
k

→
∫

d3k

(2π )3
, (D26)

√
Nci →

√
V ψ (x), Nni → V n(x). (D27)

Here ψ is the wave function of the electrons in the continuum
space, n = ψ†ψ , and ni = c†

i ci.
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