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A formidable perspective in understanding quantum criticality of a given many-body system is through its
entanglement contents. Until now, most progress are only limited to the disorder-free case. Here, we develop
an efficient scheme to compute the entanglement entropy of (2+1)-dimensional quantum critical points with
randomness, from a conceptual angle where the quenched disorder can be considered as dimensionally reducible
interactions. As a concrete example, we reveal novel entanglement signatures of (2+1)-dimensional Dirac
fermion exposed to a random magnetic field, which hosts a class of emergent disordered quantum critical points.
We demonstrate that the entanglement entropy satisfies the area-law scaling, and observe a modification of the
area-law coefficient that points to the emergent disordered quantum criticality. Moreover, we also obtain the
subleading correction to the entanglement entropy due to a finite correlation length. This subleading correction
is found to be a universal function of the correlation length and disorder strength. We discuss its connection to
the renormalization group flows of underlying theories.
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I. INTRODUCTION

Entanglement expresses nonlocal connotations inherent
to quantum mechanics, which has prompted remarkable
insights into various fields of modern physics, bridging mi-
croscopic laws in quantum matters [1,2] and macroscopic
structure of space-time [3–10]. Compared to the traditional
methods, the study of many-body wave function from the
perspective of quantum entanglement can unveil novel prop-
erties in a large variety of collective quantum phenomena,
ranging from the presence of topological order [11–14] to
the onset of quantum criticality [15–19]. Indeed, the over-
whelming majority of works done so far are in support of
entanglement-based analysis as a profitable tool to diagnose
strong correlations for both in and out-of equilibrium systems
[20–26].

A simple way to analyze the entanglement structure is to
separate a target system into subsystem A and its complement
A, then a measure of the entanglement between A and A is
given by the von Neumann entropy associated with reduced
density matrix ρA: S = −Tr[ρA ln ρA], which is also referred
as the entanglement entropy (EE). Intriguingly, the EE is typ-
ically not an extensive quantity for many-body ground states,
instead it usually satisfies an area law [3,4]. That is, the EE is
proportional to the area of surface separating two subsystems,
in sharp contrast with the thermal entropy that should obey
the volume law. The emergent area-law EE partially reflects
a decay of correlation associated with quantum many-body
states [27,28]. Especially, in (1+1) dimension, the area law
is a character of massive theories with exponentially decaying
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correlations [29–32], and the logarithmic correction on the EE
is expected for critical systems [15–17]. In higher dimensions,
the area law is believed to be generally hold in quantum field
theories (QFTs), as a consequence of the locality of physical
interactions [2,10,33]. Such strong restriction of the entangle-
ment alludes a deep connection with black hole physics [7,34–
36], and also offers crucial implications on the numerical
computations on lattice models [22,37–40], thus it is of vital
importance.

Moreover, in addition to the area-law contribution, the
EE may host a subleading correction that encodes universal
constraints of underlying theories free of ultraviolet cutoffs.
It gives a unique measure of the effective degrees of freedom
of the theory, which should monotonically decrease along the
renormalization group (RG) flows. This motivates an idea to
inspect irreversible renormalization group (RG) flows in gen-
eral dimensions from the viewpoint of quantum entanglement
[55–61]. To be specific, this is related to a proposal of the
irreversibility theorem under RG transformations in general
dimensions, dubbed by the F-theorem [56,57,62]. In this re-
gard, the exact form of the EE, including the area-law and
subleading terms, is quite informative for understanding the
quantum criticality of underlying theories.

Nevertheless, to rigidly compute the EE of QFTs is
challenging. The existing methods have various restrictions
(please see Table I and Sec. II A for a summary), most of them
are only limited to space-time (1+1) dimension [15,21,33].
For higher-dimensional theories, despite of the significant
progress on studying clean systems [17,45,47,49,63–72], the
entanglement properties of quantum critical points with the
quenched disorder are yet mostly unexplored [73–75]. To
date, it remains elusive if or not the (2+1)D disordered
quantum critical points [76–84] share the same entangle-
ment characteristics as the clean ones, or to what extent
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TABLE I. A summary of existing methods on calculating EE.

Method Advantages Limitations

Numerical determination
of ρA

Applicable to any theory with
discretization on a lattice

Exponential growth of
computational complexity in
nonintegrable systems

Real-time approach Correlation matrix technique
[41–43]

Polynomial computational
complexity in system size

Restricted to the Gaussian
states

Resolvent technique [44] Applicable to analytical
solution with multiregions

Restricted to (1+1)D free
massless fermions and chiral
bosons

Euclidean-time
approach (Replica
trick) [5,17,33]

Heat-kernel technique
[6,45–47]

Applicable to analytical
solution

Restricted to the quadratic
order in quantum fluctuations

Green’s function technique
[17,33]

Applicable to analytical
solution; Applicable to higher
dimensions

Capability and feasibility in
interacting theories are yet to
be explored

CFT approach [15,17,45,48,49] Applicable to universal
prediction of EE in (1+1)D
critical systems

Hard to be extended into
massive theories and higher
dimensions

Holographic approach [7,9,50] Reduced to a geometric
problem

Limited by poor knowledge
on the gravitational dual of
given QFTs

Extensive mutual information model [51,52] (a quasiparticle
picture of entangled pairs) [27,28]

Reduced to a geometric
problem (much simpler than
holography)

Does not correspond to an
actual CFT beyond (1+1)
dimensions

Summation of (1+1)D EE
with (effective) mass [53]

Quick evaluation of EE in
free theories

Assuming EE to be extensive

Dimensional reduction
Summation of (1+1)D
entropic-c function [54]

Quick evaluation of EE in
free theories

Assuming EE to be extensive

randomness affects the entanglement scaling law. These ques-
tions are important, since the disorder inevitably exists in
realistic physical systems and possibly changes the critical
scaling exponents [85]. However, the randomness and im-
perfection generally lower global symmetries, therefore many
well-established tools such as the celebrated conformal field
theory (CFT) and/or heat-kernel techniques cannot be applied
straightforwardly. To understand the entanglement in disor-
dered quantum critical points, it is highly desired to develop
an innovative approach that works efficiently in the space-time
dimension higher than (1+1) dimension.

In this paper, to fill this blank, we explore a dimensional re-
duction approach to analytically compute the EE for (2+1)D
theories, without resorting to global conformal symmetry.
This scheme allows an explicit evaluation of the EE for the-
ories exposed to static potentials. As a concrete example of
the disordered quantum critical point, we investigate the case
of a (2+1)D Dirac field exposed to a random static magnetic
field, which includes a nontrivial critical line as varying the
randomness strength [80,86–89]. In particular, we analytically
derive an area-law scaling of the EE, which signals the critical
behavior of the ground state. This analytical solution is in line
with the numerical simulation on the corresponding lattice
model. Last but not least, we demonstrate that by considering
a finite correlation length away from the criticality, there is a
universal subleading correction to the EE. Its connection with

the F -theorem is discussed. In short, our paper not only offers
a tool for faithfully calculating the EE of general quantum
theories, but also provides a systematic investigation of the
entanglement properties of (2+1)D disordered quantum criti-
cal points.

This paper is structured as follows. Sec. II A summarizes
the existing methods of calculating EE in QFTs. We then
discuss the general strategy of the dimensional reduction
scheme in Sec. II B, and show how our idea is developed.
As a benchmark, we apply our method to (2+1)D free scalar
field in Sec. III and free Dirac field in Sec. IV, which faith-
fully recover the previously known area-law behavior of the
EE. The calculation is further extended into (2+1)D Dirac
fermion exposed to a random magnetic field in Sec. V, with
an introduction to the background of investigating this model
presented in Sec. V A. The derivation of an analytical solution
of the EE in this disordered theory is addressed in Sec. V B,
which is validated by the corresponding lattice simulation in
Sec. V C. We then discuss a quasiparticle picture to under-
stand the observed area law in the point of view of correlations
in Sec. V D. At last, by connecting with the irreversibility
of RG flows, we point out the physical meaning of comput-
ing the universal subleading term of EE in Sec. VI. These
results are concluded in Sec. VII, with outlooks for some
open questions. Appendices contain technical details about
the current calculation and known results of the investigated
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model, with a short discussion on the effect of many-body
interactions.

II. TECHNICAL OVERVIEW

In this paper, we focus on the EE of a pure ground state. It
is expected that the EE of a (d + 1)D QFT (d > 1) satisfies
an area-law scaling [17,33]

S ∼ ccut−offA/εd−1 + γd , (1)

where A is the area of the codimension-one entangling sur-
face, and ε is a microscopic cut-off. Here, the leading term of
EE depends on the UV cut-off, and its coefficient ccut−off is
sensitive to the choice of regularization scheme. It reflects the
intrinsic nature of the system only when it becomes a function
of the coupling constants. The second subleading γ term is
expected to provide universal information of underlying the-
ories. In particular, when perturbing away from a quantum
critical point by a finite correlation length ξ , one expect the
γ term behaves as

γd ∼ rdA/ξ d−1, (2)

where we consider the theory lives in even spatial dimension
d , and a smooth boundary is assumed for the entanglement
cut. The coefficient rd is expected to be finite, and might
provide useful information for characterizing the universality
[10,47,59,63].

As mentioned in the introductory part, it is generally hard
to determinate the form of Eq. (1) for a general theory with
quenched disorder by using the currently existing methods.
This motivates us to develop a novel scheme for calculating
it. Here we present a brief review of existing methods on
calculating EE in QFTs (see Table. I). Based on this, we will
show how the previous investigations inspire us to propose an
exact dimensional reduction method. The connection to and
distinction from the existing studies will be also addressed in
detail.

A. Existing methods of calculating EE

1. Real-time approach

By definition, the calculation of EE requires the spec-
trum information of the reduced density matrix ρA. The most
straightforward way is to diagonalize it directly in Minkowski
spacetime, which is so-called real-time approach. In princi-
ple, numerical methods (e.g., exact diagonalization technique)
can determine the spectrum of ρA for any discretized system
(lattice model). However, due to the exponentially growing
Hilbert space, the computationally accessible size (typically
about 10–20 qubits) is extremely small comparing with the
realistic systems.

For free theories, the full information of their ground state
is encoded in two-point correlators Ci j = 〈�|c†

i c j |�〉. This
fact leads to the implementation of correlation matrix method
[41–43] for calculating EE,

S = −Tr[CA ln CA + (1 − CA) ln(1 − CA)], (3)

where CA is the correlation matrix for subsystem A. It only
requires diagonalization of a N × N matrix and N is number
of lattice sites. This method has been widely used in numerical
simulations.

Notably, for certain cases, the correlation matrix method
can give an analytical solution of EE and entire spectrum of
the reduced density matrix [44]. By taking Eq. (3) as an in-
tegral operator with kernel CA inside certain intervals, the EE
can be written in terms of a contour integral of its resolvent.
This technique is valuable to determine multi-interval EE of
(1+1)D free massless fermions and chiral bosons, however it
is restricted to these cases due to the mathematical difficulty
on calculating the exact resolvent.

2. Euclidean approach: Replica trick

Direct calculation of the EE in Minkowski spacetime is
mainly limited to finite-size numerical simulation for discrete
lattices instead of continuous spacetime. This leads to the dif-
ficulty on determining the scaling behavior of EE. By contrast,
the Euclidean approach via replica trick [5,17,33] is powerful
for solving EE analytically. The replica trick is introduced to
avoid the difficulty of taking logarithm to the reduced density
operator ρA. With introducing a replica index of n, the EE can
be rewritten as

S = − ∂

∂n
ln Tr

(
ρn

A

)∣∣
n→1. (4)

The physical meaning of the index n is to make n decoupled
identical copies of the theory. Analytic continuation of n is
then assumed before taking the replica limit n → 1.

Since we are interested in the case of ground state, the
trace of ρn

A has a natural Euclidean path integral representation
[10,17,21]

Tr
(
ρn

A

) = Z (n)

[Z (1)]n , (5)

where Z (n) represents the partition function defined on the
n-fold replica spacetime manifold with the entanglement cut
along A. The calculation of EE is then reduced to the prob-
lem of solving the partition function Z (n) on a certain n-fold
nonsmooth manifold as

S = − ∂

∂n
[ln Z (n) − n ln Z (1)]

∣∣
n→1. (6)

Geometrically, the manifold is equivalent to an Euclidean
spacetime with conical singularities at coincident points that
is described by the metric [6,10,17]

ds2 = dρ2 + n2ρ2dθ2 +
dM∑
i=3

dx2
i , (7)

where n is the replica index that characterizes this metric, dM
is the spacetime dimension, and the (x1, x2) plane is written in
terms of the polar coordinates (ρ, θ ). In this paper, we focus
on the case of an infinite cone, i.e., ρ ∈ [0,∞), θ ∈ [0, 2π )
and {xi} in the whole space. For solving the functional inte-
gral and differential equations, this metric can be described
by changing boundary condition from the ordinary period of
θ ∼ θ + 2π to θ ∼ θ + 2πn.

For free theories, the partition function is one-loop diver-
gent, so that the heat-kernel technique is quite standard for
calculating it [90]. Several models, including free scalar, Dirac
and Maxwell fields with/without curvature coupling, were
investigated in previous papers [5,6,46,47,64,91]. However,
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the heat-kernel technique meets difficulty when dealing with
generic interacting theories on a manifold with conical singu-
larities, since it captures only the quadratic order of quantum
fluctuations (effective action at one-loop level) and there is
no closed analytical expression for higher-order heat-kernel
coefficients on replica manifold with conical singularities.

Another possible way to estimate the partition function
Z (n) is through the Green’s function G(n) on replica manifold
[17,33,63,68]. They are related by taking a derivative with
respect to the mass [92]

∂

∂m2
ln Z (n) = −1

2
TrG(n). (8)

Here the concept of the Green’s function is not limited to
its original meaning in solving differential equations, but is
extended to the two-point correlation function of QFTs. This
is important for calculating EE in the theories with no direct
field-equation representation, e.g., disordered systems. How-
ever, unlike the universal expansion procedure in heat-kernel
technique, there is no general way for calculating replicated
Green’s function in higher-dimensional interacting theories.
Fortunately, the calculation of Green’s function of QFTs in
curved spacetime with conical singularities has been attracted
considerable attentions in various contexts, such as scattering
of electromagnetic waves [93–96] and orbifold conformal
field theory [97–101]. These studies provide valuable knowl-
edge for calculating EE in QFTs.

3. Conformal field theory approach

For critical systems described by CFT, there are some uni-
versal behaviors of the EE that are analytically accessible. In
(1+1) dimension, CFT techniques (combine with the replica
trick) have received great achievement of calculating the EE
in critical systems, demonstrating a logarithmic divergent EE
with a prefactor of central charge c that characterizes univer-
sality of the quantum criticality [15,17,48]

S2D CFT = c

3
ln

l

ε
+ c′, (9)

where l is the size of a single-interval subsystem in an infi-
nite chain, ε is a UV cut-off of lattice constant, and c′ is a
nonuniversal finite term.

For higher dimensions, the conformal symmetry is gen-
erally not so strong as 2D to fully determine the scaling
behavior of the EE. For spherical entangling surface in R1,d

flat Minkowski spacetime, the problem of the EE of a CFT can
be conformally mapped to the solution of thermal entropy in a
R × Hd hyperbolic space [45,49,102–104], where an infrared
(IR) cutoff leads to the area-law EE of the quantum fields in
R1,d at UV. However, this approach cannot be extended to
generic geometries, where the local form of modular Hamil-
tonian is unknown.

4. Holographic approach

The difficulty of calculating the EE in higher dimensional
QFTs motivates a holographic interpretation of the EE based
on the conjecture of AdS/CFT correspondence, which bridges
the (d + 2)D AdS space and a (d + 1)D CFT [105]. It was
proposed that the calculation of EE can be reduced to the
problem of finding extreme surface inside the AdS space, for

which a Bekenstein-Hawking-like formula (the RT formula)
naturally gives an area law [7,50]. Nevertheless, the RT for-
mula is still far away from the answer to entanglement in
QFTs. The use of RT formula requires the dictionary between
field theories and its gravitational dual, however, only few
cases are known. Meanwhile, in the AdS calculation, although
solving the extreme surface is a classical task, in most cases
we can only perform a numerical estimation on it. More
importantly, there is no rigorous proof of the holographic
principle, and the sufficient condition for the establishment
of RT formula remains an open question.

5. Quasiparticle picture and extensive mutual information model

The area-law EE can be understood within a quasiparticle
picture, which assumes that the entanglement is made of the
correlations between entangled quasiparticles in the system
[20,27,28]. This assumption reduces the calculation of EE to
a simple geometric problem of summing up the distribution
of these quasiparticle pairs. In parallel to the aforementioned
quasiparticle picture that comes from a dynamical diffusion-
annihilation process of free fermions, the observation of
extensive mutual information in the ground state of (1+1)D
massless Dirac fermions [54] motivates investigations on an
“extensive mutual information” model [51], which has been
used for understanding the entanglement structure with var-
ious applications [106–108]. Recently, it is proven that the
extensive mutual information model does not correspond to
an actual CFT beyond (1+1) dimensions, so that fail to be an
exact solution of EE in higher dimensions [52]. However, it
does capture the leading scaling behavior of entanglement and
provide significant understanding in fermionic scale-invariant
systems.

B. General strategy of dimensional reduction

The general idea of dimensional reduction is to use
low-dimensional results (which is known) to calculate higher-
dimensional results (which is hard to know). For noninter-
acting cases, one can consider that the higher-dimensional
theories are constructed by infinite many (1+1)D modes
with an effective mass that is associated with its momentum.
This fact motivates a direct reduction of higher-dimensional
entropy to a sum of (1+1)D entropic c-function [defined
as c(L) = L dS(L)

L for the subsystem with spatial size L]
[33,53,54,109,110]. These calculations are quite simple and
provide an intuitive picture on entanglement structure of
(2+1)D many-body states. However, this procedure has two
drawbacks. First, this calculation of the EE [53,54] requires
the additivity of the entropic function, which is mathemati-
cally less evident. Second, this method is hard to be extended
into generic models for exact results, so the dimensional re-
duction scheme in previous works only has phenomenological
meaning. Therefore, seeking for other possible (exact) dimen-
sional reduction approach on a firm ground is highly desired.

In order to solve the aforementioned problems, let us con-
sider one question first: Which physical quantity (that we are
familiar with) is capable of giving the scaling of EE? Appar-
ently, the most suitable one for QFTs is the Green’s function
on replica manifold G(n), which has great advantages on com-
putation with the help of tools from conventional perturbation
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theory such as diagram technique and renormalization group
analysis [63]. In this paper, we explore an efficient framework
of dimensional reduction to obtain G(n) for calculating EE.

Here, we explain how this works for the simplest case of
constructing (d + 1)D Green’s function of free scalar field in
usual flat Minkowski spacetime from its (d + 0)D reduction.
Start from its action

I [d+1] =
∫

dt
∫

dd x

(
−1

2
∂μφ∂μφ − m2

2
φ2

)
=
∫

dt
∫

dd x
∫

dω

2π
e−iωt

[
Ld

0 + Ld
int (ω)

]
, (10)

where Ld
0 = − 1

2∂ iφ(ω)∂iφ(ω) − m2

2 φ2(ω) is the free La-

grangian density and Ld
int (ω) = ω2

2 φ2(ω) is the interacting
term in (d + 0)D in a quadratic form, with the index μ

runs over the spacetime dimensions and i only for spatial.
This action has the exact solution of the Green’s function as
G[d+1]

0 (k, ω) = (−ω2 + k2 + m2)−1, and can be represented
as a sum of all tree-level diagrams with respect to ω,

G[d+1]
0 (k, ω) = g[d+0]

0 (k)
∞∑

l=0

[
ω2g[d+0]

0 (k)
]l

. (11)

Here the (d + 0)D Green’s function g[d+0]
0 (k, 0) is regarded

as the “free” solution of Ld
0 , and Eq. (11) actually defines

an alternative approach of dimensional reduction, with the
quadratic construction as an inherent regulator. From here on,
we use the upper index in [...] to represent the spacetime
dimension, while that in (...) to denote the replica index.
For simplicity, g[d+0] ≡ g stands for the Green’s function in
(d + 0) dimension, and symbol G[d+1] ≡ G is used for the full
Green’s function in (d + 1) dimension.

The advance of the above dimensional reduction of Green’s
function can also deal with possible interactions, at least in the
perturbative region. In particular, for the case of adding a static
potential without dynamics, i.e., the interaction with an field
that does not depend on time, the extension can be made by
considering the effect of interactions as quantum corrections
to the (d + 0)D Green’s function g[d+0](k) as

G[d+1](k, ω) = g[d+0](k)
∞∑

l=0

[ω2g[d+0](k)]l . (12)

Here we note that this formula is just a formal representa-
tion, and we are not limited to this concrete construction.
A direct application is the system with quenched disorders,
of which the random effect can be absorbed into the lower-
dimensional Green’s function as a dimensional reducible
interaction. More importantly, the above discussions are not
restricted to the flat spacetime, but can be directly extended
to the case of curved spacetime with certain singularities.
In other words, it works for the Green’s function on replica
manifold G(n) that is able to give the EE. Therefore, our task
of calculating higher-dimensional EE turns into the calcula-
tion of lower-dimensional interacting Green’s functions on the
replica spacetime manifold. This is of course a difficult prob-
lem, however, we will show that the calculation at replica limit
n → 1 is very much similar to the usual perturbation theory in
flat spacetime, but with a term of the conical singularity.

At the end of this section, let us emphasize the motiva-
tion to apply the dimensional reduction scheme, instead of
calculating perturbative expansions directly in high dimen-
sions [66]. Generally speaking, one important consequence of
interactions is the breakdown of Gaussianality of the many-
body ground state, which usually requires a higher-order
(multiloop) calculation to capture the non-Gaussian features.
Unfortunately, a proper renormalization scheme for these
higher-order corrections in (2+1)D is less known in the con-
text of calculating the EE, since the fields are living on the
replica manifold with conical singularities instead of the usual
flat spacetime [70–72]. Moreover, it is worth noting that there
are celebrated approaches to access nonperturbative properties
of the ground state in (1+1)D, such as the (1+1)D CFT.
The further construction of an approximate (effective) theory
based on these nonperturbative results has shown a powerful
perspective in understanding low-energy collective excitations
in condensed matter [111]. The key of our dimensional re-
duction method is to access the entanglement structure via
a similar manner. Later we will see that this construction
does reproduce the explicit form of (2+1)D results through
conventional field theory techniques.

III. (2+1)D FREE SCALAR FIELD

We start the calculation of EE in (2+1)D QFT by the free
scalar field using the above dimensional reduction method, as
a benchmark. This process is instructive and provides insights
on the further calculation for (2+1)D Dirac field.

A. Direct solution

Let us start from a brief review of the area-law EE of a free
scalar field living on a “waveguide” geometry R2 × I, where
the wavefunction propagates as a plane wave on the finite
interval I [17,47,64]. The noninteracting Green’s function
of scalar fields G(n) satisfies the Helmholtz equation that is
defined on the corresponding 3D replica spacetime manifold
M(n),

(∇2 − m2)G(n)(r, r′) = −δ[3](r, r′), (13)

where r, r′ are 3D vectors and δ[3] is the Dirac-delta function
in 3D. In our case, the replica manifold follows the waveguide
construction M(n) = C2 × I as the product of a 2D cone C2

and the interval I, with the metric in Eq. (7). The solution of
G(n) in cylindrical coordinates r = (ρ, θ, r⊥) is then given by

G(n)(r, r′) =
∫

dk⊥
2π

eik⊥(r⊥−r′
⊥ ) 1

2πn

∞∑
q=0

dq cos
[q

n
(θ − θ ′)

]
×
∫ ∞

0

Jq/n(λρ)Jq/n(λρ ′)
λ2 + m2 + k2

⊥
λdλ, (14)

where k⊥ is the momentum of the translation-invariant r⊥
direction that perpendicular to the plane of polar coordinates
r‖ = (ρ, θ ), q is the angular momentum in the (ρ, θ ) plane
that takes integer values, d0 = 1, dq>0 = 2, and Jq(λρ) is the
Bessel function of first kind at qth order with the eigenvalue λ

in the radial equation.
Taking trace of G(n) requires the information at coincident

points (ρ, θ ) → (ρ ′, θ ′), where the Green’s function is gener-
ally UV divergent. In our case, the divergence comes from the
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sum over angular momentum q, and can be regularized in the
calculation of the normalized partition function Z (n)/[Z (1)]n.
Mathematically, this is achieved by using the Euler-Maclaurin
formula that translates the summation to an improper integral
with remaining terms (see Appendix A). It gives

G(n) − G(1) =
∫

dk⊥
2π

1 − n2

12πn2
[K0(

√
k2
⊥ + m2ρ)]2, (15)

where K0(x) is the zeroth order modified Bessel function of
the second kind, and all the higher-order remaining terms in
Euler-Maclaurin expansion vanish at the coincident points.
Then it leads to

∂

∂m2
ln

Z (n)

[Z (1)]n = −1

2
Tr(n)[G(n) − G(1)]

= −
∫

dr⊥
∫

dk⊥
2π

1 − n2

24n(k2
⊥ + m2)

, (16)

where Tr(n) represents that the integral over full spacetime is
taking on the n-fold manifold. The integral

∫
dr⊥ = A gives

the area of the entangling surface in the finite interval I.
Here the integral over k will lead to logarithmic divergence
that requires a cut-off of ε−1 (ε 
 1 plays the role of lattice
constant). These give the regularized area-law EE

S = − A
12

∫ ∞

−∞

dk⊥
2π

ln
k2
⊥ + m2

k2
⊥ + ε−2

= A
12

(ε−1 − m). (17)

For the massless case m = 0, we simply have S = A
12ε

as the
leading UV-divergent area-law scaling.

B. Dimensional reduction calculation

In this section, we show that the above result of EE can
be reproduced through the dimensional reduction method. As
we have introduced in Sec. II B, for dimensional reduction we
need to calculate the products of the Green’s function on 2D
replica manifold. In real-space representation, they are

P(n)
l (r‖, r′

‖) =
∫ (n)

d2r‖,1 · · ·
∫ (n)

d2r‖,l

× g(n)(r‖, r‖,1) · · · g(n)(r‖,l , r′
‖), (18)

which gives the l-order perturbation (−k2
⊥)lP(n)

l . Here
∫ (n)

represents that the integral is performed on the n-fold mani-
fold. The exact calculation of these products are hard, since
for g(n) at general two points we do not have a simple rela-
tion as Eq. (15). However, if one consider the approximate
expansion near the coincident points that contributes to the
entanglement entropy [66], the calculation can be simplified
again by using the Euler-Maclaurin formula, which gives

g(n)(r‖, r′
‖) ∼ g(1)(r‖, r′

‖) + 1 − n2

12πn2
K0(mρ)K0(mρ ′). (19)

This relation reduces the product of g(n) into

P(n)
l (r‖, r′

‖) = (l + 1)
∫ (1)

d2r‖,1 · · ·
∫ (1)

d2r‖,l g(n)(r‖, r‖,1)

×g(1)(r‖,1, r‖,2) · · · g(1)(r‖,l , r′
‖)+O((1 − n)2),

(20)

FIG. 1. The diagram representation of the replicated Green’s
function of (2+1)D free scalar field via the dimensional reduction
method, with ignoring higher-order terms of O((1 − n)2). Here the
lines are the usual flat Green’s function in its real-space representa-
tion, the dot with label r⊥,l represents a vertex of −ω2

∫ (1) d2r⊥,l ,

and the x at original point denotes a factor of 2π 1−n2

6n2 .

where the factor of (l + 1) is the symmetry factor, and the
higher-order terms of O((1 − n)2) vanish in the EE as tak-
ing the derivative and the replica limit n → 1. The Eq. (20)
actually defines an expansion of the products P(n)

l around
(1 − n), which leads to the simplification of calculating P(n)

l
via conventional diagram techniques as we will demonstrate
below. Here g(n) should be written in terms of g(1) and the
remaining term, since we have changed the integral measure
onto a single copy instead of the entire n-fold manifold. It
gives

P(n)
l (r‖, r′

‖) − P(1)
l (r‖, r′

‖)

= (l + 1)
1 − n2

12πn2
K0(mρ)

∫ (1)

d2r‖,1 · · ·
∫ (1)

d2r‖,l

× K0(mρ1)g(1)(r‖,1, r‖,2) · · · g(1)(r‖,l , r′
‖). (21)

It is important to notice that elements in the above expansion
contains only the usual flat Green’s function of free scalar field
in 2D spacetime,

g(1)(r‖, r′
‖) =

∫
d2k‖
(2π )2

eik‖(r‖−r′
‖ )

k2
‖ + m2

= 1

2π
K0(m|r‖ − r′

‖|).
(22)

This means that we are dealing with nothing unusual but
the ordinary diagrams with a nontrivial additional vertex that
comes from the conical singularity, see Fig. 1. Now the cal-
culation of EE is fully reduced to conventional perturbation
theory that we are familiar with, Eq. (21) is then simplified as

P(n)
l (r‖, r′

‖) − P(1)
l (r‖, r′

‖)

= l + 1

�(l + 1)

1 − n2

12πn2
K0(mρ)

(
ρ ′

2m

)l

Kl (mρ ′). (23)

In practice, we find that it is more convenient to trace over the
reduced two dimensions before taking the summation over the
perturbation levels l , which gives

(−k2
⊥
)l

Tr(n)
2D

[
P(n)

l − P(1)
l

] = 1 − n2

12nm2

(
− k2

⊥
m2

)l

. (24)

Its sum over l is just a geometric sequence, and gives to the
higher-dimensional Green’s function as shown diagrammati-
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cally in Fig. 1. This leads to

Tr(n)
3D[G(n) − G(1)] = 1 − n2

12n

∫
dr⊥

∫
dk⊥
2π

1

k2
⊥ + m2

, (25)

which is identical to the calculation in Eq. (16), and leads the
same result of EE in Eq. (17). Here we have tested that ex-
changing the order of Tr(n)

2D and sum over l does not influence
on the result (see details in Appendix B).

Here, we stress that the key step in the above calculation is
an integral of the replicated Green’s function G(n) over the
cone C2, as shown in Eqs. (21) and (23). It is usually UV
divergent and requires introducing a microscopic cutoff for
accessing its finite contribution. Fortunately, to distinguish
these singularities on the replica n-fold manifold is quite
straightforward in dimensional reduction scheme, with the aid
of experience in (2+0)D [17]. In a word, this example shows
the proposed dimensional reduction scheme correctly captures
the singularity contributed to the EE.

IV. (2+1)D FREE DIRAC FIELD

In previous section we have shown that our proposed di-
mensional reduction method faithfully recovers the area-law
EE for free scalar field. Now we will present an exact deriva-
tion of the area-law EE in (2+1)D free Dirac field in a similar
manner.

The action of free Dirac field in 2D Euclidean space is

I [2]
D =

∫
d2x�(γ μ∂μ + m)�, (26)

and the corresponding spinor Green’s function satisfies

(γ μ∂μ + m)g(n)
D (r‖, r′

‖) = −δ[2](r‖, r′
‖), (27)

where the index of spacetime dimensions μ = 1, 2 with γ 1 =
σ1 and γ 2 = σ2. The solution on polar coordinates r‖ = (ρ, θ )
is

g(n)
D (r‖, r′

‖) = 1

4πn

∞∑
q=−∞

ei q
n (θ−θ ′ )

∫ ∞

0

λdλ

λ2 + m2

(
mJ q

n
(λρ)J q

n
(λρ ′) iλe−iθ ′

J q
n
(λρ)J q

n +1(λρ ′)

×iλeiθJ q
n +1(λρ)J q

n
(λρ ′) mei(θ−θ ′ )J q

n +1(λρ)J q
n +1(λρ ′)

)
. (28)

As taking n = 1, it reduces to the usual spinor Green’s func-
tion with the difference on a global factor of 1

2 that comes
from the choice of normalizing the entire spinor (see details
in Appendix C). This ensures that the EE of each spinor
component of the free fermion is the half of the scalar case
in 2D.

For constructing the 3D spinor Green’s function, we need
to introduce an additional Dirac-γ matrix in higher dimension
γ 0 = σ3. Similar to the case of scalar field, the 3D spinor
Green’s function is represented as

G(n)
D (r‖, r′

‖; k⊥) =
∞∑

l=0

(ik⊥)lP(n)
D,l (r‖, r′

‖) (29)

with the l product of 2D functions g(n)
D

P(n)
D,l (r‖, r′

‖) =
∫ (n)

d2r‖,1 · · ·
∫ (n)

d2r‖,l g
(n)
D (r‖, r‖,1)

× [
γ 0g(n)

D (r‖,1, r‖,2)
] · · · [γ 0g(n)

D (r‖,l , r′
‖)
]
.

(30)

Analog to the free scalar field, here we would like to transform
the real-space Green’s function into momentum represen-
tation. The off-diagonal components in replicated spinor
Green’s function G(n)

D is generally hard to be dealt with, due to
the nontrivial spin structure. However, it is important to notice
that the double product of the spinor function is diagonal and
identical to the scalar case [47]. Meanwhile, the odd-order
terms all vanish in the later trace of the higher dimension (the
integral over k⊥), since they are odd functions of k⊥. These
facts lead to the simplification of

G(n)
D − G(1)

D =
∞∑

l=0

(−k2
⊥)l
[
P(n)

D,2l − P(1)
D,2l

]
(31)

with

P(n)
D,2l (r‖, r′

‖) − P(1)
D,2l (r‖, r′

‖)

= (l + 1)
1 − n2

6n2

m

2π
K0(mρ)

∫
d2k‖
2π

eik‖r′
‖ Id

(k2
‖ + m2)l+1

, (32)

where Id is a two-by-two identity matrix, and the higher-order
terms of O((1 − n)2) are ignored. Analog to the free scalar
field, it leads to the trace on 3D replica manifold

Tr(n)
3D

[
G(n)

D − G(1)
D

] = 1 − n2

12n

∫
dr⊥

∫
dk⊥
2π

2m

k2
⊥ + m2

(33)

and the corresponding normalized partition function

ln
Z (n)

[Z (1)]n = −
∫

dmTr(n)
3D

[
G(n)

D − G(1)
D

]
= −1 − n2

12n
A
∫

dk⊥
2π

∫
dm2 1

k2
⊥ + m2

. (34)

Finally, we have the EE in (2+1)D free Dirac field

S = 1
6A(ε−1 − m). (35)

Comparing with the free scalar case, we obtain

rdirac = 2rscalar, (36)

where r is the coefficient of the mass scaling in Eq. (2). Here
we see, through the dimensional reduction calculation, the EE
of (2+1)D free Dirac field is observed to exhibit an area-law
behavior, consistent with the previous results of calculating
the entropic c-function [50,54,112,113] and the heat-kernel on
replica manifold [47].

At last, we would like to comment on the difficulty of
performing a direct calculation of solving the eigenvalue
problem on replica manifold. Opposite to the scalar case,
the spinor wavefunction on replicated waveguide geometry
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C2 × I cannot be separated into the product of two individ-
ual eigenfunctions on C2 and I. However, analogous to the
previous investigation on the heat kernel [47], we find that the
dimensional reduction of the spinor Green’s function does not
require the separation of eigenfunctions (see Appendix C).

V. (2+1)D DIRAC FERMIONS EXPOSED TO
A RANDOM MAGNETIC FIELD

After recovering the known results of (2+1)D free scalar
and Dirac fields as a benchmark, in this section, we move
onto the case of (2+1)D Dirac fermions exposed to a random
magnetic field (static gauge field) [80,86–89,114],

L = �γ μ(∂μ + i
√

gAAμ)� + �(iωγ 0)�, (37)

where Aμ describes the random gauge field (vector potential).
For simplicity, here Aμ is chosen to be Gaussian-distributed

P (Aμ) ∝ e− 1
2

∫
d2r‖A2

μ(r‖ ), (38)

with vanishing gauge flux on average. By absorbing the cou-
pling constant

√
gA into the gauge field Aν , it is clear that gA

plays the role of the variance of the disorders.
We would like to highlight that this example is quite

meaningful. First, in the presence of randomness, one cannot
exactly solve the eigenvalue problem of Dirac spinor due to
the lack of a straightforward field-equation description. One
may consider an average of the random field, however, this
will lead to a certain type of effective interaction of the Dirac
field gA(�γ μ�)2 [79,115] that is hard to be dealt with by
many established tools such as heat-kernel technique. Sec-
ond, instead of a model with explicit interactions, the EE of
this model can be numerically calculated up to ∼104 lattice
sizes (see Sec. V C), which provides an unbiased way to
validate our analytical results. As a comparison, for a model
with explicit interactions, the numerical calculation of the EE
may suffer from strong finite-size effect. Third, it is conjec-
tured that the random magnetic field leads to a multifractal
critical ground state [80,86,87,116], based on the traditional
numerical/theoretical methods. We anticipate to uncover this
criticality from its internal entanglement structure. In a word,
this is a good example to demonstrate the power of our dimen-
sional reduction method.

A. Preliminary results

The study on the localization-delocalization transition in-
duced by disorder is a central subject in condensed matter
physics [117–121]. It is well known that localization prop-
erty depends on the dimensionality and underlying symmetry
[118,119,122,123]. In history, (2+1)D Dirac fermion exposed
to a random magnetic field or transverse gauge-field random-
ness received much attention, which is expected to describe
the universality class of the metal-insulator transition in the
integer quantum Hall effect [77,80,86,88,89], the quantum
fluctuations in quantum spin liquids [124], and disordered
graphene [125]. Interestingly, it has been proposed that this
problem has an exactly solvable zero-energy wavefunction
with multifractal critical scaling behaviors [86,87,116], which
could be immune to randomness and thus escape from local-
ization.

Especially, when ω = 0 in Eq. (37) the random gauge field
preserves the chiral symmetry, so that the zero-energy wave-
function of this model remains critical under the perturbation.
It can be exactly solved within a nonunitary CFT, and the mul-
tifractal scaling exponents of zero-energy state is determined
to be � = 1 − gA

2π
as a consequence of negative dimensional

operators [86]. The exponent is continuously tuneable as
changing the randomness strength gA, and it becomes negative
at gc = 2π , indicating a spontaneous symmetry breaking.

For solving the zero mode, it is beneficial to apply the
Hodge decomposition to the 2D gauge field

Aμ = εμν∂ν�1(x) + ∂μ�2(x) (39)

and introducing the axial gauge transformation

� = �
′
eγ 5√gA�1+i

√
gA�2 , � = eγ 5√gA�1−i

√
gA�2� ′. (40)

The original Lagrangian density becomes

L = �
′
(γ μ∂μ + M )� ′ + iω�

′
e2γ 5√gA�1γ 0� ′. (41)

Here we impose a “mass” term M�
′
� ′ into the theory, which

measures the gap between ground state and the first excited
state in the chiral representation. Rather than dealing with the
real mass of the original Dirac field, this treatment does not
break the chiral symmetry of the fixed points. This leads to a
simple calculation of the partition function and a reasonable
estimation on the scaling behavior with respect to the finite
correlation length, which is important for further analysis on
the RG flows (see Sec. VI). The first term is just a free theory
of the axial spinor filed {� ′, �

′}, and the second term can be
calculated perturbatively. Since there is no dynamical term of
the gauge field, the components after Hodge decomposition
can be treated as real scalars. Our choice of the Gaussian-
distributed probability P (Aμ) leads to the equivalence with
a massless free scalar theory for both of �1 and �2. This
ensures the exact representation of the axial transformation
and leads to nonperturbative solution of the zero mode.

B. Explicit derivation of the EE for Dirac fermions
exposed to a random magnetic field

Here we calculate the EE in this model by using the
dimensional reduction method. To achieve this, we need to
solve the replicated Green’s function g(n)

D,gauge(r‖, r′
‖) for the

Lagrangian in Eq. (41). The situation is more complicated
than the previous free cases, since now we have to deal with
an additional random field. Fortunately, the nonperturbative
solution of zero mode in (2+0) dimension provides a suitable
starting point to apply our dimensional reduction scheme.

To be specific, we construct the approximated excited
states from the exact zero-mode by using the perturbation
theory. The replicated Green’s function of massive free Dirac
theory has been shown in Eq. (28), we now consider the
effect of random magnetic field as the correction to internal
lines in the construction of higher-dimensional theory, which
appears in the form of an additional vertex correlator of the
longitudinal axial field �1. It gives the following perturbation
expansion of the replicated Green’s function for Dirac field
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with random static gauge:

G(n)
D,gauge(r‖, r′

‖, ω) =
∞∑

l=0

(−ω2)lP(n)
D,2l (r‖, r′

‖), (42)

with the 2lth order product of (2+0)D Green’s function

P(n)
D,2l (r‖, r′

‖) =
∫

d2r‖,1 · · ·
∫

d2r‖,2l g
(n)
D (r‖, r‖,1)

× γ 0g(n)
D (r‖,1, r‖,2)V (n)

gA
γ 0g(n)

D (r‖,2, r‖,3) · · ·
× γ 0g(n)

D (r‖,2l−1, r‖,2l )V (n)
gA

γ 0g(n)
D (r‖,2l , r′

‖),
(43)

where g(n)
D is the (2+0)D replicated Green’s function of Dirac

field, and V (n)
gA

= 〈e√
gA�1(r‖,1 )e−√

gA�1(r‖,2 )〉R(n) is the vertex cor-
relator of scalar �1 on 2D replica manifold that appears as
the consequence of disorder averaging. Here all odd-order
terms are ruled out due to the vanishing vertex correlator. To
further evaluate the full replicated Green’s function, one can
simplify the calculation by noticing that only conical singu-
larity of order (1 − n) contributes to the EE. Meanwhile, due
to its nontrivial vanishing at the coincident points, the vertex
function can be approximated as V (n)

gA
∼ V (1)

gA
= |r‖,1 − r‖,2|

gA
2π

without counting its conical contribution. These leads to

P(n)
D,2l (r‖, r′

‖) − P(1)
D,2l (r‖, r′

‖)

∼ (l + 1)
1 − n2

6n2

M

2π
K0(Mρ)

∫
d2k
2π

× eikr′
‖

[C(gA)]2l

(k2 + M2)l (1+ gA
2π

)+1
, (44)

where C(gA) = 2
gA
2π

�(1+ gA
4π

)

�(1− gA
4π

)
, and we have ignored the terms of

O((1 − n)2) that vanish in the EE as taking the replica limit
n → 1 of Eq. (6).

With the above expansion in hand, a resummation of
perturbative order l reproduces an approximated (2+1)D
replicated Green’s function G(n)

D,gauge, and consequently the
partition function Z (n). By skipping the sophisticated algebra
(see Appendix D), the leading term of EE for Dirac fermions
exposed to a random static gauge field (magnetic field) is
given by

Sgauge = 1

6

(
1 − gA

2π
μgauge

) A
ε1+ gA

2π

≈ 1

6

A
ε

[
1 − gA

2π
μgauge + gA

2π
ln ε−1

]
, (45)

where A is the subsystem boundary length, μgauge = ln 2 − γ

is a positive constant, and ε is an UV cutoff. Equation (45) is
the main result of this paper. It shows that the EE of (2+1)D
Dirac fermions under random magnetic field remains the area-
law scaling. The disorder effect only modifies the area-law
coefficient. Here we only keep the lowest-order correction that
is linear in gA in the current calculation. As we will show
below, by comparing with the numerical simulation the main
feature of a random magnetic field is well captured in the
current construction.

C. Area-law scaling in the lattice realization

To validate the EE dependence on the subsystem size,
we perform a large-scale numerical simulation on the π -flux
square lattice as a typical lattice realization of the Dirac
fermion, with implementing the random magnetic field as
[80,126,127]

H = −
∑
〈i, j〉

(−1)2ix+iy eiAi j c†
ix,iy

c jx, jy , (46)

where c†, c are the creation and annihilation operators of
spinless fermions, 〈i, j〉 represents the nearest-neighboring
sites, and the random phase factor Ai j is set to be Gaussian-
distributed with the randomness strength (variance) gA. At
low-energy limit, this lattice Hamiltonian leads to the mass-
less theory of Eq. (37).

We numerically calculate the EE of the ground state by
using the correlation matrix technique [41–43]. As shown
in the left panel of Fig. 2, the half-cut EE exhibits a linear
growth with the boundary size L. We confirm that, for a mod-
erate value of randomness strength (variance) gA ∈ [0, 0.5],
the linear area-law scaling behavior is robust. Meanwhile, in
the upper inset of Fig. 2, we also investigate the dependence
of the area-law coefficient on the randomness strength gA. It
slightly increases with gA, which could be understood by ana-
lytical prediction Eq. (45) if we assume ε as a small number.
Moreover, numerically we have tested that choosing different
kinds of randomness does not lead to qualitative change in
these results. Therefore, we conclude that our dimensional
reduction scheme fairly captures the main features of the EE
for (2+1)D Dirac fermions exposed to a random magnetic
field.

D. Correlation, entanglement, and criticality

We now turn to discuss the entanglement structure in the
(2+1)D Dirac field under random magnetic field, and its
relation to quantum correlation of the field operator. In the
right panel of Fig. 2, we show the squared two-point correlator
after average, which exhibits a power-law scaling at long
distance |C(1, r)|2 ∼ r−k . Moreover, we numerically find that
the power-law correlation has little change when adjusting the
strength gA of random magnetic field. This motivates us to
think about some universal connections between the EE and
intrinsic correlations.

Here, we adopt a quasiparticle picture to describe the
EE in scale-invariant fermionic systems [27,28], where the
entanglement is considered to be produced by quasiparticle
entangled-pairs in the system. The only control parameter in
this picture is the distribution function of those pairs P(r),
which gives the EE,

SA ∼
∫

A
dVA

∫
A

dVAP(rA,A), (47)

where A and A are complementary to the total system, and
rA,A is the distance between the (lattice) points in the two
subsystems A and A. Although the current case is a ground
state that different from the dynamical steady state with exci-
tations, it is still naturally to understand P(rA,A) as the squared
two-point correlation function of the fermion operator, which
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FIG. 2. Numerical simulation of the ground state properties of the random flux model on L × L square lattice. (Left panel) The half-cut EE
as a function of the total system size L for randomness strength gA = 0 (blue circle), 0.1 (orange plus), and 0.2 (cyan crossed). (Upper inset)
The area-law coefficient as a function randomness strength gA, obtained by a linear scaling of the half-cut EE for system size L ∈ [20, 160].
(Right panel) Double-log plot of two-point correlation |C(1, r)|2 as a function of the distance r, for various randomness strength gA with
system size L = 160. The red-dashed line is a power-law scaling of |C(1, r)|2 ∼ r−4, which is the theoretical value for the free Dirac fermions.
Numerically, we have observed that the scaling behavior of |C(1, r)|2 nearly unchanged in the region gA ∈ [0, 0.2]. For each value of gA, the
presented results are averaged over 200 random realizations.

gives a power-law decay of P(rA,A) ∝ r−k
A,A

for scale-invariant
systems. An estimation of the integral in Eq. (47) indicates
that an area-law EE occurs when k > 3 for the spatial di-
mension d = 2 (see details in Appendix E). It turns out that
the exponent of k determines the scaling behavior of EE, so
that a numerical estimation of the power-law scaling becomes
much more meaningful than the ordinary detection of the scale
invariance.

For (2+1)D free Dirac field, the asymptotic behavior of
two-point correlator at the long-distance limit, as |C(1, r)|2 ∝
r−4. In our finite-size numerics on a lattice model with size
160 × 160, we find a close power-law scaling of |C(1, r)|2 ∝
r−4.3. When varying the randomness strength (the variance of
the random gauge field) gA, the exponent is found to be almost
unchanged. Plugging in these observations into the quasipar-
ticle picture, it indicates a robust area-law scaling of the EE.
This is exactly what we have observed in both the field theory
calculation and numerical lattice simulation. In this context,
the current model is one more example that can be understood
in the quasiparticle picture phenomenologically. Moreover,
we also would like to point out that the quasiparticle picture
fails to capture the area-law coefficient, as discussed in the
previous literature [52].

VI. ENTANGLEMENT AND RENORMALIZATION GROUP

Besides the area-law scaling of the EE, our scheme is
also capable of deriving the subleading term of the EE that
is relevant with the dynamics of RG flow. The RG flow
serves as a coarse-graining of the microscopic degrees of
freedom of a physical system, so that it is expected to be
an irreversible process between the fixed points. For (1+1)D
QFTs, the irreversibility theorem of RG flows is known as the
famous Zamolodchikov’s c-theorem [128], which proves the
existence of a c-function (the central charge of CFT that de-
scribes the fixed points) that monotonically decreases during
RG flows. Seeking for possible extensions of the c-theorem

to generic dimensions is a long-standing challenge, especially
for odd spacetime dimensions without the concept of central
charges [56–59,61,62,129,130].

As mentioned in the introductory part, an important at-
tempting is to understand the irreversibility of RG flows
from EE. In (1+1)D CFT, the EE is fully determined by
the central charge, therefore it is natural to construct an en-
tropic c-function that points to the irreversibility of RG flows
[55]. Furthermore, this idea is extended into higher dimen-
sions, for which the universal finite term in EE [the γ term
in Eq. (1)] is expected to be an analog of the c-function
[56,57,59–61]. Specifically, for (2+1)D QFTs, the γ term
is expected to be negative and satisfying the irreversibility
relation [59,60,131,132]

|γUV| � |γIR|, (48)

which serves as a concrete construction of the F-function that
is expected to exist in the F -theorem.

In our derivation, this subleading term takes the form

γgauge ≈ rgauge(gA)AM1+ gA
2π ∼ rgauge(gA)

A
ξ

, (49)

where rgauge = − 1
6 (1 − gA

2π
μgauge), and ξ ∼ M1+ gA

2π is a finite
correlation (see details in Appendix D 3). Compared with the
leading contribution Eq. (45), the subleading term is indepen-
dent of UV cut-off. Here, several remarks are given in order.
First, γgauge is negative, as required by the F -theorem in (2+1)
dimension [10]. Second, as one can see in Fig. 3(left), the
absolute value of |γgauge| reduces monotonically by approach-
ing the IR limit (increasing ξ ), which again agrees with the
F -theorem [10]. Third, if we focus on the dependence of ran-
domness strength gA, we observe that |γgauge| monotonically
reduces as increasing gA. By endowing the dynamical aspect
to the EE along RG flows [10], i.e., the irreversibility relation
in Eq. (48), the present result of Eq. (49) indicates a possible
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FIG. 3. (Left) The subleading term |γgauge| of the EE under the
RG flow, where ξ is the correlation length. (Right) Schematic plot
of the critical line including disordered fixed points within 0 <

gA < 2π , and a spontaneous symmetry breaking occurs at gA = 2π

[80].

dynamic RG flow related to these disorder critical points [85]
in the perspective of quantum entanglement.

VII. CONCLUSIONS AND OUTLOOKS

For a (2+1)D QFT with quenched disorders, analytical
calculation of the EE is generally difficult. In the present
paper, we have developed a dimensional reduction approach
to calculate the entanglement entropy (EE), which is able to
deal with the presence of quenched disorders. In particular, we
transform the (2+1)D replicated Green’s function to infinite
series of the (2+0)D (interacting) replicated Green’s function,
which can be calculated via conventional field theory tech-
niques. The derivation can be greatly simplified in the replica
limit, albeit difficult in evaluation of the quenched disorder on
the n-fold replica manifold.

We first benchmark it on the free scalar field and Dirac
fermion field. As a nontrivial example, we consider Dirac
fermions exposed to a random magnetic (gauge) field, where
the traditional methods (in Table I) fail to give a straightfor-
ward derivation of the EE. Based on the proposed approach,
we explicitly derive the area-law EE and observe an enhance-
ment of quantum entanglement by the disorder. This nontrivial
observation indicates the delocalization nature of applying a
random static magnetic field to Dirac fermions, which is in
contrast with the decaying quantum correlation in ordinary
disordered systems. To our best knowledge, it has not been
studied before. We further utilize numerical simulation on the
lattice model to validate our analytical solution. Additionally,

we attempt to understand the emergent area-law EE from the
microscopic details of quantum correlation, pointing to the
critical scaling behavior of the ground state. Moreover, we
give affirmative evidences that the subleading term of the EE
monotonically reduces under the renormalization group flow.
It provides evidence to validate the F -theorem in (2+1)D
disordered quantum critical point.

Here we would like to stress that, the current dimensional
reduction scheme is distinct from the existing literature. In
existing papers [33,53,54,109,110], the starting point relies on
the known EE function in (1+1)D, summation of which gives
the EE in (2+1)D. This process is conceptually intuitive,
however, it is in against to the fact that the EE (of a many-body
ground state) is not an extensive quantity, so that it is difficult
to be extended into generic cases. In this paper, to overcome
this issue, we explore a distinguished path, based on con-
structing the (2+1)D Green’s function using the dimensional
reduction method. Compared to the aforementioned methods
[53,54] (see Table I), this Green’s function based scheme is
quite feasible, without any prior knowledge about the EE.
In addition, a series of papers [63,67,68] consider the EE of
CFT fixed points with dimension regularization scheme. The
treatment of quantum corrections distinguishes our method
from these calculations.

Finally, we expect the current methodology advance will
inspire fresh perspectives on the study of entanglement struc-
ture in (2+1)D critical systems. In particular, dimensional
reduction allows to start with nonperturbative results in low
dimension, which leads to the great advantage in the study
of nonconformal field theories. Through an estimation of
the scaling behavior of EE based on such a construction,
one could provide valuable information for understanding
low-energy collective behaviors of the system. Furthermore,
there are some more extensions of the proposed dimensional
reduction method. For example, a similar scheme could be
extended to calculate the mutual information, which is another
important entanglement measure that provides an upper bound
for correlations in quantum theories.
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APPENDIX A: REGULARIZATION OF THE UV DIVERGENT REPLICATED GREEN’S
FUNCTION AT COINCIDENT POINTS

In this Appendix, we show how the Euler-Maclaurin formula gives a regularization of the UV divergent replicated Green’s
function at coincident points. Here the derivation follows the previous paper [17] by Calabrese and Cardy.

The 2D Green’s function of the free scalar field on replica manifold is

g(n)(ρ, θ ; ρ ′, θ ′) = 1

2πn

∞∑
q=0

dq cos

[
q

n
(θ − θ ′)

] ∫ ∞

0

Jq/n(λρ)Jq/n(λρ ′)
λ2 + m2 + k2

⊥
λdλ, (A1)
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where d0 = 2 and dq = 1 for q � 1. At coincident points, it becomes

g(n)(ρ, θ ; ρ, θ ) = 1

2πn

∞∑
q=0

dq

∫ ∞

0

Jq/n(λρ)Jq/n(λρ)

λ2 + m2 + k2
⊥

λdλ = 1

2πn

∞∑
q=0

dqIq/n(mρ)Kq/n(mρ), (A2)

which shows a UV divergence due to summation over infinite many modes labeled by the angular momentum q. To regularize it
we use the Euler-Maclaurin formula∫ ∞

0
f (q)dq = h

{
f (0)

2
+ f (h) + f (2h) + · · ·

}
+

∞∑
k=1

h2kB2k

(2k)!
[−(∂q)2k−1 f (0)], (A3)

where Bk is Bernoulli number. We are interested in the case of h = 1 and f (q) = Iq/n(mρ)Kq/n(mρ), which is divergent under an
integral over q. For regularization, we insert a function F ( q

n�
) into f (q), i.e., let f (q) = Iq/n(mρ)Kq/n(mρ)F ( q

n�
). The function

F ( q
n�

) is chosen that F (0) = 1 and (∂q)iF (0) = 0, i � 1. Now, the integral of
∫∞

0 f (q)dq is controlled by the parameter �, and
goes back to the original form at the limit of � → ∞. Then

g(n)(ρ, θ ; ρ, θ ) = 1

2πn

∑
q=0

dqIq/n(mρ)Kq/n(mρ)F

(
q

n�

)

= 1

2πn

[
2
∫ ∞

0
Iq/n(mρ)Kq/n(mρ)F

(
q

n�

)
dq − 2

B2

2

∂

∂q
[Iq/n(mρ)Kq/n(mρ)]

∣∣∣∣
q=0

]

− 1

2πn

∞∑
k=2

B2k

(2k)!

(
∂

∂q

)2k−1

[Iq/n(mρ)Kq/n(mρ)]

∣∣∣∣
q=0

= 1

2πn

[
2
∫ ∞

0
Iq/n(mρ)Kq/n(mρ)F (

q

n�
)dq + 1

6n
[K0(mρ)]2

]
+ O(k = 2), (A4)

where we have used B2 = 1
6 , ∂Iν (z)

∂ν
|ν=0 = −K0(z), ∂Kν (z)

∂ν
|ν=0 = 0. It should be noticed that although the higher-order derivatives

of [Iq/n(mρ)Kq/n(mρ)] at q = 0 do not vanish, the their integral over ρ all vanishes in the later trace over the plane, as∫ ∞

0
ρdρ

dk

dqk
[Iq/n(mρ)Kq/n(mρ)] = dk

dqk

∫ ∞

0
ρdρ[Iq/n(mρ)Kq/n(mρ)] = dk

dqk

[
1

2m2

q

n

]
= 0 for k > 1. (A5)

The above regularization of the replicated Green’s function gives

g(n)(ρ, θ ; ρ, θ ) = g(1)(ρ, θ ; ρ, θ ) + 1 − n2

12πn2
[K0(mρ)]2. (A6)

The first term is just the flat divergence of the Green’s function at coincident points, and the second term is the contribution
from the conical singularity. Moreover, in the calculation of the products of these Green’s functions, one can first integrate out
the integral measure on the vertex as taking the trace over whole plane, then the higher-order derivatives of q all vanish as the
same. This makes an approximation of g(n) for general two points in the (ρ, θ ) plane reasonable in the calculation of dimensional
reduction method that is discussed in the main text.

APPENDIX B: CALCULATION OF CONSTRUCTING OF 3D REPLICATED PARTITION
FUNCTION FROM 2D GREEN’S FUNCTION

In this Appendix, we show that exchanging the order of summation over perturbation levels l and the outside trace does not
influence on the result of constructing higher-dimensional (3D) replicated partition function. Start from Eq. (23) in the main text,
before integral out k, here we perform the summation over l . It gives

G(n) − G(1) =
∞∑

l=0

(−k2
⊥)l
[
P(n)

l − P(1)
l

] = 1 − n2

12πn2
K0(mρ)

∫
d2k‖
2π

eik‖r′
‖

∞∑
l=0

(l + 1)

( −k2
⊥

k2
‖ + m2

)l

= 1 − n2

12πn2
K0(mρ)

[
K0(

√
m2 + k2

⊥ρ ′) − ρ ′k2
⊥

2
√

m2 + k2
⊥

K1(
√

m2 + k2
⊥ρ ′)

]
. (B1)

The trace in 3D replica spacetime is then given by

Tr(n)G(n) − nTr(1)G(1) = Tr(n)[G(n) − G(1)] =
∫

dr⊥
∫

dk⊥
2π

∫
d2r‖[G(n) − G(1)] = 1 − n2

12n

∫
dr⊥

∫
dk⊥
2π

1

k2
⊥ + m2

. (B2)
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It is clear to see that the result of TrG(n) is identical to the calculation that is presented in the main text, and of course leads the
same result of EE.

APPENDIX C: THE SOLUTION OF THE REPLICATED GREEN’S FUNCTION FOR (1+1)D MASSIVE FREE DIRAC FIELD

1. A direct derivation of the spinor Green’s function on 2D replica manifold

In this section, we present a detailed derivation of the replicated Green’s function for the (1+1)D free Dirac field. The
Lagrangian density of Dirac field in 2D (Euclidean) space is

L = �(γ μ∂μ + m)�. (C1)

We choose the representation of gamma matrices to be

γ 0 = σ3 =
(

1 0

0 −1

)
, γ 1 = σ1 =

(
0 1

1 0

)
, γ 2 = σ2 =

(
0 −i

i 0

)
. (C2)

By applying variation to the Lagrangian, we have the spinor Green’s function satisfies

(γ μ∂μ + m)G(n)
D (r, r′) = δ[2](r − r′), (C3)

its explicit matrix form is (
m∂x − i∂y

∂x + i∂y m

)(
G11 G12

G21 G22

)
=
(

δ2(r − r′) 0

0 δ2(r − r′)

)
. (C4)

To calculate the Green’s function we solve the eigenvalue problem

γ μ∂μ� = −λ�. (C5)

It is important to notice that the spinor differential operator γ μ∂ν is anti-Hermitian, so that its eigenvalue is purely imaginary.
For convenience, we rewrite the above equation to be

γ μ∂μ� = −iλ�, (C6)

with λ real.
Write it explicitly in the matrix form we have(

0 ∂x − i∂y

∂x + i∂y 0

)(
�1

�2

)
= −iλ

(
�1

�2

)
. (C7)

In the polar coordinates, we have

∂x − i∂y = e−iθ

[
∂ρ − i

ρ
∂θ

]
, ∂x + i∂y = eiθ

[
∂ρ + i

ρ
∂θ

]
, (C8)

use this to translate the eigenvalue problem, it becomes

e−iθ

[
∂ρ − i

ρ
∂θ

]
�2(ρ, θ ) = −iλ�1(ρ, θ ), eiθ

[
∂ρ + i

ρ
∂θ

]
�1(ρ, θ ) = −iλ�2(ρ, θ ). (C9)

Assuming the solution of �1 has the form

�1(ρ, θ ) = Aeiνθ R1(ρ), (C10)

where ν = q/n with integer q (take both negative and non-negative values). This form satisfies the periodic boundary condition
in the angular direction �1(ρ, θ + 2πn) = �1(ρ, θ ), and it gives

eiθ

[
∂ρ + i

ρ
∂θ

]
�1(ρ, θ ) = eiθ

[
∂ρ + i

ρ
∂θ

]
[Aeiνθ R1(ρ)] = Aei(ν+1)θ

[
∂ρR1(ρ) − ν

ρ
R1(ρ)

]
. (C11)

According to this, we assume

�2(ρ, θ ) = Aei(ν+1)θ R2(ρ). (C12)

We then have

−iλR1(ρ) =
[

d

dρ
+ ν + 1

ρ

]
R2(ρ), −iλR2(ρ) =

[
d

dρ
− ν

ρ

]
R1(ρ). (C13)
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This gives

ρ2 d2R1(ρ)

dρ2
+ ρ

dR1(ρ)

dρ
+ (λ2ρ2 − ν2)R1(ρ) = 0, ρ2 d2R2(ρ)

dρ2
+ ρ

dR2(ρ)

dρ
+ (λ2ρ2 − (ν + 1)2)R2(ρ) = 0, (C14)

which is the (ν + 1)th order Bessel equation, its solution is the Bessel function

R1(ρ) = Jν (λρ), R2(ρ) = Jν+1(λρ). (C15)

Finally, we have the solution of the eigenvalue problem as

� = A

(
eiνθ Jν (λρ)

ei(ν+1)θ Jν+1(λρ)

)
, (C16)

where A is the normalization factor. Note, there is still no constrain on the value that the eigenvalue λ can take, and ν = q/n that
q runs over all integers (including negative and zero).

We then require the boundary condition that R1(ρ) vanishes at the boundary ρ = L, which means that the eigenvalues satisfy

λν,i = αν,i

L
, (C17)

where αν,i is the zeros of νth order Bessel function of the first kind. It is important to notice that the solution of eigenfunction
has a “particle-hole” symmetry with respect to the sign of the eigenvalue λν,i (it is also the sign of the “angular momentum”
ν). When we switch the sign of the eigenvalue λ → −λ, the choice of R1(ρ) → −R1(ρ) makes the differential equation of
Eq. (C14) unchanged. Require the form of Eq. (C16) is only valid for the positive eigenvalues, then for negative eigenvalues we
have

�− = A

(
eiνθ Jν (λρ)

−ei(ν+1)θ Jν+1(λρ)

)
. (C18)

The normalization factor Aν,i can be calculated as

1 =
∫ L

0
ρdρ

∫ 2πn

0
dθ�†(ρ, θ )�(ρ, θ )

= |Aν,i|2
∫ L

0
ρdρ

∫ 2πn

0
{[Jν (λν,iρ)]2 + [Jν+1(λν,iρ)]2}

= |Aν,i|22πn

{
L2

2
[Jν+1(λν,iL)]2 + L2

2
[Jν+1(λν,iL)]2

}
�⇒ |Aν,i|2 = 1

2πnL2

1

[Jν+1(λν,iL)]2 . (C19)

Note that the above equation has no typo, the two integrals of Bessel functions with different order indeed give the same result
due to the nice properties that λν,iL is the zero of Jν . This is ensured by the following fact. First, recall that we have the recurrence
relationship

d

dx

[
Jν (x)

xν

]
= −Jν+1(x)

xν
,

d

dx
[xνJν (x)] = xνJν−1(x). (C20)

If we take the zeros x = αν,i, it becomes

J ′
ν (αν,i ) = −Jν+1(αν,i ), J ′

ν (αν,i ) = Jν−1(αν,i ). (C21)

Now we see that the (ν + 1)th and (ν − 1)th Bessel functions are just different in a sign. Second, we have the integral of the
double product of Bessel functions as∫

tdt[Jν (at )]2 = t2

2
{[Jν (at )]2 − Jν+1(at )Jν−1(at )}. (C22)

By using

−Jν+1(αν,i ) = Jν−1(αν,i ), (C23)

we have ∫ L

0
tdt
[
Jν

(αν,i

L
t
)]2

= −L2

2
Jν+1(αν,i )Jν−1(αν,i )

= L2

2
[Jν+1(αν,i )]

2. (C24)

195152-14



ENTANGLEMENT ENTROPY OF (2+1)-DIMENSIONAL … PHYSICAL REVIEW B 106, 195152 (2022)

On the other hand ∫ L

0
tdt
[
Jν+1

(αν,i

L
t
)]2

= L2

2
[Jν+1(αν,i )]

2. (C25)

We move to the calculation of Green’s function, let

G(n)
D (ρ, θ ; ρ ′, θ ′) =

∑
ν,i

Cν,i,nψν,i,n(ρ, θ ). (C26)

Substitute it back to the Dirac equation, we have∑
ν,i

(iλν,i + m)Cν,i,nψν,i,n = δ(ρ − ρ ′)δ(θ − θ ′), (C27)

which leads to

G(n)
D (ρ, θ ; ρ ′, θ ′) =

∑
ν,i

1

iλν,i + m
ψν,i,n(ρ, θ )ψ†

ν,i,n(ρ ′, θ ′). (C28)

Note that here the eigenvalues λν,i = αν,i/L can take both negative and non-negative values.
Separation of the negative and non-negative will simplify the calculation of the Green’s function, as

G(n)
D (ρ, θ ; ρ ′, θ ′) =

∑
ν,i

ψν,i,n,+(ρ, θ )ψ†
ν,i,n,+(ρ ′, θ ′)

iλν,i + m
+
∑
ν,i

ψν,i,n,−(ρ, θ )ψ†
ν,i,n,−(ρ ′, θ ′)

−iλν,i + m

=
∑
ν,i

|Aν,i|2

(
eiν(θ−θ ′ )Jν (λρ)Jν (λρ ′) eiν(θ−θ ′ )e−iθ ′

Jν (λρ)Jν+1(λρ ′)

eiν(θ−θ ′ )eiθ Jν+1(λρ)Jν (λρ ′) ei(ν+1)(θ−θ ′ )Jν+1(λρ)Jν+1(λρ ′)

)
iλν,i + m

+
∑
ν,i

|Aν,i|2

(
eiν(θ−θ ′ )Jν (λρ)Jν (λρ ′) −eiν(θ−θ ′ )e−iθ ′

Jν (λρ)Jν+1(λρ ′)

−eiν(θ−θ ′ )eiθ Jν+1(λρ)Jν (λρ ′) ei(ν+1)(θ−θ ′ )Jν+1(λρ)Jν+1(λρ ′)

)
−iλν,i + m

=
∑
ν,i

|Aν,i|2
−λ2

ν,i + m2

(
2meiν(θ−θ ′ )Jν (λρ)Jν (λρ ′) 2iλeiν(θ−θ ′ )e−iθ ′

Jν (λρ)Jν+1(λρ ′)

2iλeiν(θ−θ ′ )eiθ Jν+1(λρ)Jν (λρ ′) 2mei(ν+1)(θ−θ ′ )Jν+1(λρ)Jν+1(λρ ′)

)
, (C29)

where we have set λν,i � 0. Note that here the index ν = q/n, and q takes both negative and non-negative integers. Here we do
not need to worry about the problem of double counting on the zero eigenvalue. The double counted terms of λ = 0 is the zero
of all non-zeroth order Bessel functions, so that all double counted terms vanish.

Now we extend the solution into thermodynamic limit L → ∞. The normalization factor becomes

lim
L→∞

|Aν,i|2 = lim
L→∞

1

2πnL2[Jν+1(λL)]2 = 1

2πnL2 2
πλL

= λ

4nL
, (C30)

and the value of λ becomes continuous for each given order ν. This means that the summation of index i changes into the integral
over λ via 1

L

∑
i → 1

2π

∫∞
0 dλ, then we have the spinor Green’s function

G(n)
D (ρ, θ ; ρ ′, θ ′) = 1

4πn

∑
ν

eiν(θ−θ ′ )
∫ ∞

0
dλ

λ

λ2 + m2

(
mJν (λρ)Jν (λρ ′) iλe−iθ ′

Jν (λρ)Jν+1(λρ ′)

iλeiθJν+1(λρ)Jν (λρ ′) mei(θ−θ ′ )Jν+1(λρ)Jν+1(λρ ′)

)
, (C31)

where ν = q/n with integer q.

2. Entanglement entropy of (1+1)D free Dirac field

As long as the 2D replicated Green’s function is obtained, we can calculate the entanglement entropy of (1+1)D free Dirac
field. The relation between the partition function and the Green’s function is

−∂ ln ZD

∂m
= TrGD. (C32)

Here the trace contains the sum over diagonal components of the spinor Green’s function, so that requires the explicit form of
them. The integral of diagonal components has been already calculated in the free scalar field. The sum over index ν has the
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following form for both G11 and G22:

m

4πn

∞∑
q=−∞

ei q
n (θ−θ ′ )

∫ ∞

0
dλ

λ

λ2 + m2
Jq/n(λρ)Jq/n(λρ ′)

= m

4πn

∞∑
q=−∞

ei q
n (θ−θ ′ ) π i

2

[
θ (ρ ′ − ρ)Jq/n(imρ)H (1)

q/n(imρ ′) + θ (ρ − ρ ′)Jq/n(imρ ′)H (1)
q/n(imρ)

]
= m

4πn

∞∑
q=−∞

ei q
n (θ−θ ′ )[θ (ρ ′ − ρ)Iq/n(mρ)Kq/n(mρ ′) + θ (ρ − ρ ′)Iq/n(mρ ′)Kq/n(mρ)]. (C33)

Then the trace of the Green’s function becomes

TrG(n)
D = 2

( m

4πn

) ∫ 2πn

0
dθ

∫ ∞

0
ρdρ

∞∑
q=0

dqIq/n(mρ)Kq/n(mρ) = m
∫ ∞

0
ρdρ

∞∑
q=0

dqIq/n(mρ)Kq/n(mρ). (C34)

The summation over q is UV divergent, so that we introduce a renormalization function F ( q
n�

), which is chosen that F (0) = 1
and F (k)(0) = 0. Similar to the 2D free scalar field, from the Euler-Maclaurin formula, we have

∞∑
q=0

dqIq/n(mρ)Kq/n(mρ)F
( q

n�

)
= 2

∫ ∞

0
Iq/n(mρ)Kq/n(mρ)F

( q

n�

)
dq + 1

6n
[K0(mρ)]2. (C35)

Then

TrG(n)
D = m

∫ ∞

0
ρdρ

[
2
∫ ∞

0
Iq/n(mρ)Kq/n(mρ)F

( q

n�

)
dq + 1

6n
[K0(mρ)]2

]
= 2mn

∫ ∞

0
ρdρ

∫ ∞

0
Iq(mρ)Kq(mρ)F

( q

�

)
dq + m

6n

∫ ∞

0
ρdρ[K0(mρ)]2

= 2mnC(m) + m

6n

[
1

2m2

]
= 2mnC(m) + 1

12mn
. (C36)

From this we have

− ∂

∂m
ln

Z (n)
D[

Z (1)
D

]n = Tr(n)G(n)
D − nTr(1)G(1)

D = 1 − n2

12mn
. (C37)

We intermediately notice that this will lead to the same partition function as the free scalar field

ln
Z (n)

D[
Z (1)

D

]n = n2 − 1

12n
ln m + C. (C38)

By letting C = n2−1
12n ln ε, it gives the entanglement entropy

SD = − ∂

∂n

Z (n)
D[

Z (1)
D

]n

∣∣∣∣∣
n=1

= −1

6
ln(mε), (C39)

where ε plays the role of UV cutoff of the theory (lattice constant).

3. Reduction to the usual flat spinor Green’s function at the replica limit n → 1

In this section, we show that by taking the replica limit n → 1, the above solved replicated Green’s function is reduced to the
usual flat one. The key is using the addition theorem of the Bessel function.

Starting from the diagonal components, they are

G(1)
11 = G(1)

22 = m

4π

∑
q

eiq(θ−θ ′ )
∫ ∞

0

λJq(λρ)Jq(λρ ′)
λ2 + m2

dλ. (C40)

One can exchange the summation and the integral, it gives

G(1)
11 = G(1)

22 = m

4π

∫ ∞

0
dλ

λ

λ2 + m2

∑
q

eiq(θ−θ ′ )Jq(λρ)Jq(λρ ′) = m

4π

∫ ∞

0

λJ0(λR)

λ2 + m2
dλ = m

4π
K0(mR), (C41)
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where we have applied the (Neumann) addition theorem of the Bessel function

J0(R) =
∞∑
0

dq cos [q(θ − θ ′)]Jq(ρ)Jq(ρ ′), (C42)

with R =
√

ρ2 + ρ ′2 − 2ρρ ′ cos(θ − θ ′) is the distance between (ρ, θ ) and (ρ ′, θ ′).
For the off-diagonal component, we have

G(1)
12 = i

4π

∑
q

eiq(θ−θ ′ )
∫ ∞

0
dλ

λ2

λ2 + m2
e−iθ ′

Jq(λρ)Jq+1(λρ ′)

= i

4π

∫ ∞

0
dλ

λ2

λ2 + m2
e−iθ ′ ∑

q

eiq(θ−θ ′ )Jq(λρ)Jq+1(λρ ′) = i

4π

∫ ∞

0
dλ

λ2J1(λR)

λ2 + m2
e−iθ ′

[
ρ ′ − ρe−i(θ−θ ′ )

ρ ′ − ρe+i(θ−θ ′ )

] 1
2

= i

4π

∫ ∞

0
dλ

λ2J1(λR)

λ2 + m2
e−iθ ′ ρ ′ − ρe−i(θ−θ ′ )

R
= i

4π
mK1(mR)

ρ ′e−iθ ′ − ρe−iθ

R
. (C43)

Similarly,

G(1)
21 = i

4π

∑
q

eiq(θ−θ ′ )
∫ ∞

0
dλ

λ2

λ2 + m2
eiθ Jq+1(λρ)Jq(λρ ′)

= i

4π

∫ ∞

0
dλ

λ2

λ2 + m2
eiθ ′ ∑

q

eiq(θ−θ ′ )Jq(λρ)Jq−1(λρ ′) = i

4π

∫ ∞

0
dλ

λ2J−1(λR)

λ2 + m2
eiθ ′
[
ρ ′ − ρe−i(θ−θ ′ )

ρ ′ − ρe+i(θ−θ ′ )

]− 1
2

= −i

4π

∫ ∞

0
dλ

λ2J1(λR)

λ2 + m2
eiθ ′ ρ ′ − ρe+i(θ−θ ′ )

R
= −i

4π
mK1(mR)

ρ ′e+iθ ′ − ρe+iθ

R
. (C44)

This is identical to the solution of usual Green’s function in flat Euclidean spacetime, which has the following form:

Gab(x, x′) =
∫

d2k

(2π )2
eik(x−x′ ) (iγ iki + m)ab

k2 + m2
= m

2π

⎛⎝ K0(mR) ei arctan R1
R2 K1(mR)

e−i arctan R1
R2 K1(mR) K0(mR)

⎞⎠. (C45)

The difference of a factor 1
2 comes from the choice of normalization condition. In our approach, we choose to normalization the

entire spinor. In the usual convention, the normalization is taken for each component of the spinor.

APPENDIX D: (2+1)D DIRAC FERMIONS UNDER A RANDOM MAGNETIC FIELD

1. Preliminary results of the usual flat Green’s function

In this section, we present a detailed derivation of some known results of the Dirac field under a random static gauge field
(magnetic field). The 2D reduction of the Lagrangian in Minkowski spacetime is

L[ω] = �[iγ μ(∂μ − i
√

gAAμ)]� + �(ωγ 0)�, (D1)

where ω is the frequency (energy scale). Here we choose gμ
ν = diag(−1,+1,+1), γ 5 = γ 0 = iγ 1γ 2 = σ3 with γ 1 = iσ1 and

γ 2 = iσ2. For simplicity, the 2D random static gauge field Aμ is chosen to be Gaussian distributed

P (Aμ) ∝ e− 1
2

∫
d2r‖A2

μ(r‖ ), (D2)

with vanishing mean value and variance gA.
Let us start from the case of ω = 0. First, we apply the Hodge decomposition for the 2D static gauge field

Aμ = ε∂ν�1(r‖) + ∂μ�2(r‖), (D3)

where εμν is the Levi-Cevita tensor, �1 and �2 are longitudinal and transverse components. This gives

L[ω = 0] = �{iγ μ[∂μ − i
√

gA(εμν∂ν�1 + ∂μ�2)]}� (D4)

Second, we introduce the following axial gauge transformation:

� = �
′
eγ 5√gA�1−i

√
gA�2 , � = eγ 5√gA�1+i

√
gA�2� ′. (D5)

After some straightforward algebra, we have

L0 = �
′
(iγ μ∂μ)� ′. (D6)
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To make it easy to be calculated, we further transform the theory into the chiral basis

�(iγ μ∂μ)� = �†γ 1(iγ μ∂μ)� = −i�†(∂1 + γ 0∂2)� = −i
(
�

†
+ �

†
−
)(2∂z 0

0 2∂z

)(
�+
�−

)
, (D7)

where z = x + iy, z = x − iy, and r‖ = (x, y). In this representation, the filed operators can be written as

�
†
± = �

′†
±e∓√

gA�1−i
√

gA�2 , �± = e±√
gA�1+i

√
gA�2� ′

±, (D8)

and their two-point correlation function

〈�±(z, z)�†
±(w,w)〉 = 〈e±√

gA�1(z,z)+i
√

gA�2(z,z)� ′
±(z, z)� ′†

± (w,w)e∓√
gA�1(w,w)−i

√
gA�2(w,w)〉

= 〈� ′
±(z, z)� ′†

± (w,w)〉〈e±√
gA�1(z,z)e∓√

gA�1(w,w)〉〈e+i
√

gA�2(z,z)e−i
√

gA�2(w,w)〉, (D9)

where the correlation function of the chiral Dirac field is

〈� ′
+(z, z)� ′†

+ (w,w)〉 ∼ 1

2π

1

z − w
, 〈� ′

−(z, z)� ′†
− (w,w)〉 ∼ 1

2π

1

z − w
(D10)

and the correlation function of the axial field is simply the correlation function of the vertex operator of the free scalar field

〈e+i f �(z,z)e−i f �(w,w)〉 ∼ |z − w| −2 f 2

4π . (D11)

Interestingly, here we will see that, in 〈�±(z, z)�†
±(w,w)〉 the contribution from the longitudinal field �1 cancels with the

contribution from the transversal field �2, i.e.,

〈�±(z, z)�†
±(w,w)〉 = 〈� ′

±(z, z)� ′†
± (w,w)〉. (D12)

We now turn to consider the case of ω �= 0, where the frequency term can be understood as an interaction

ω�γ 0� = ω�
′
e2γ 5√gA�1γ 0� ′. (D13)

The lth order tree level diagram is

(ω)lP′
l (r‖, r′

‖) = (ω)l
∫

d2r‖,1 · · · d2r‖,2g′(r‖, r‖,1)e2γ 5√gA�1(r‖,1 )[γ 0g′(r‖,1, r‖,2)e2γ 5√gA�1(r‖,2 )] · · ·

× [γ 0g′(r‖,l−1, r‖,l )e2γ 5√gA�1(r‖,l )][γ 0g′(r‖,l , r′
‖)e2γ 5√gA�1(r′

‖ )]. (D14)

It is important to notice that the odd-order perturbations vanish since the expectation value of the charged vertex operators
vanishes. The even order perturbations contributes to the finial result as

(ω)2lP′
2l (r‖, r′

‖) = (ω)2l
∫

d2k
(2π )2

eik(r‖−r′
‖ )g̃(k)[γ 0g̃(k)]2l . (D15)

Here we introduce the modified Green’s function with gauge contribution as

g̃(r‖, r′
‖) = 〈e+√

gA�1(r‖ )e−√
gA�1(r′

‖ )〉g′(r‖, r′
‖) = r−1+ gA

2π

(
0 eiθ

e−iθ

)
, (D16)

where we have defined r = |r| = |r‖ − r′
‖| and θ = arctan ry

rx
. Its Fourier transformation is

g̃(k) =
∫ ∞

0
rdr

∫ 2π

0
dθe−ikr sin(θ+arctan kx

ky
)r−1+ gA

2π

(
0 eiθ

e−iθ 0

)
=
∫ ∞

0
r

g
2π J1(kr)dr

(
0 e−i arctan kx

ky

e+i arctan kx
ky 0

)
. (D17)

The integral is divergent when g
2π

� 1
2 . For 0 � g

2π
< 1

2 , we have

g̃(k) = 2
gA
2π

�
(
1 + gA

4π

)
�
(
1 − gA

4π

)k−
(

1+ gA
2π

)(
0 e−i arctan kx

ky

e+i arctan kx
ky 0

)
= 2

gA
2π

�
(
1 + gA

4π

)
�
(
1 − gA

4π

)k− gA
2π g′(k) = C(gA)k− gA

2π g′(k). (D18)

Then, for 0 <
gA

2π
< 1

2 , the summation over tree level diagrams then becomes

G(r‖, r′
‖; ω) =

∞∑
l=0

(ω)2l
∫

d2k
(2π )2

eik(r‖−r′
‖ )g̃(k)[γ 0g̃(k)]2l =

∞∑
l=0

(ω)2l
∫

d2k
(2π )2

eik(r‖−r′
‖ )[C(gA)k− gA

2π ]2l+1g′(k)[γ 0g′(k)]2l

=
∫

d2k
(2π )2

eik(r‖−r′
‖ ) C(gA)k− gA

2π g′(k)

1 − [C(gA)k− gA
2π γ 0g′(k)ω]2

=
∫

d2k
(2π )2

eik(r‖−r′
‖ ) −γ iki[C(gA)]−1k

gA
2π

[C(gA)]−2k2+ gA
π − ω2

. (D19)
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The Green’s function provides a lot of information of the theory. First, its poles are located at ω2 = [C(gA)]−2k2+ gA
π , which

indicates the dispersion relation as

E (k) ∝ |k|1+ gA
2π . (D20)

Meanwhile, as one of the most important physical quantity for single-electron physics, the density of states (DOS) can be
calculated from the Green’s function as

ρ(ω) = 1

2π i
lim

r‖→r′
‖
[G(r‖, r′

‖; ω)adv − G(r‖, r′
‖; ω)ret] = 1

π i
�[ lim

r‖→r′
‖
G(r‖, r′

‖; ω)adv
] ∝ ω

1−gA/2π

1+gA/2π . (D21)

This result is consistent with the previous calculations, e.g., [80,86] (note that here we have the difference on a factor of 2 in the
definition of gA with these literature), which again validates the dimensional reduction approach.

2. The replicated Green’s function of Dirac field under a random static gauge field

In the calculation of Green’s function, it is convenient to impose a “source” term M�
′
� ′ into the Lagrangian

L = �
′
(γ μ∂μ + M )� ′ + iω�

′
e2γ 5√gA�1γ 0� ′. (D22)

Here for Euclidean spacetime we choose gμ
ν = diag(+1,+1,+1), γ 1 = σ1, γ 2 = σ2, and γ 0 = γ 5 = −iγ 1γ 2 = σ3. For conve-

nience, below we set a parameter a = gA

2π
.

a. The Fourier transformation of the corrected internal spinor propagator

The presence of a random static gauge field leads to the corrected internal 2D propagator of the Dirac field

g̃(1)
D (r‖,1, r‖,2) = g(1)

D (r‖,1, r‖,2)ra
1,2. (D23)

Evaluating its Fourier transformation is the key to access the higher-dimensional construction

g̃(1)
D (k) =

∫
d2r1,2eik(r‖,1−r‖,2 )g̃(1)

D (r‖,1, r‖,2). (D24)

The diagonal components are[̃
g(1)

D (k)
]

11 = [̃
g(1)

D (k)
]

22 =
∫

d2re−ikrra M

2π
K0(Mr) =

∫ ∞

0
rdr

∫ 2π

0
dθe−ikr cos θ ra M

2π
K0(Mr)

= M
∫ ∞

0
r1+aJ0(kr)K0(Mr)dr = M

(
2aM−2−a

)[
�
(

1 + a

2

)]2

2F1

(
a

2
+ 1,

a

2
+ 1; 1; − k2

M2

)
, (D25)

and the off-diagonal components are[̃
g(1)

D (k)
]

12 = −[̃g(1)
D (k)

]∗
21 =

∫
d2re−ikrra(i)

M

2π
ei arctan r1

r2 K1(Mr) = iM

2π

∫ ∞

0
rdr

∫ 2π

0
dθe−ikr sin(θ+arctan k2

k1
)eiθ K1(Mr)ra

= iM

2π

∫ ∞

0
drr1+aK1(Mr)

∫ 2π

0
dθeiθ

∞∑
n=−∞

(i)nJn(−kr)ein(θ− π
2 +arctan k2

k1
)

= iM

2π

∫ ∞

0
drr1+aK1(Mr)(2π )(i)−1J−1(−kr)e−i(− π

2 +arctan k2
k1

)

= iMe−i arctan k2
k1

∫ ∞

0
r1+aK1(Mr)J1(kr)dr

= iMe−i arctan k2
k1 2akM−3−a�

(
1 + a

2

)
�
(

2 + a

2

)
2F1

(
a

2
+ 1,

a

2
+ 2; 2; − k2

M2

)
= (ik1 + k2)2aM−2−a�

(
1 + a

2

)
�
(

2 + a

2

)
2F1

(
a

2
+ 1,

a

2
+ 2; 2; − k2

M2

)
. (D26)

The above is the nonperturbative results of the internal propagator, we then expand them to the lowest order with respect to
a. For that, on the one hand, the series of momentum-independent coefficients are

2aM−2−a

[
�

(
1 + a

2

)]2

= 1

M2
+ (−γ + ln 2 − ln M )a

M2
+ O(a2) (D27)
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and

2aM−2−a�
(

1 + a

2

)
�
(

2 + a

2

)
= 1

M2
+ (−γ + ln 2 − ln M )a

M2
+ a

2M2
+ O(a2), (D28)

where γ � 0.577216 is the Euler’s constant. On the other hand, for expanding the hypergeometric function, we need to calculate
its derivative with respect to the parameters [133]

∂

∂α
2F1

(
α, 1; 1; − k2

M2

)∣∣∣∣
α=1

= ∂

∂β
2F1

(
1, β; 1; − k2

M2

)∣∣∣∣
β=1

= ∂

∂α
2F1

(
α, 2; 2; − k2

M2

)∣∣∣∣
α=1

= − k2

M2

∞∑
n=0

(1)n

(2)n

(1)n(2)n

(2)n

(− k2

M2

)n

n!
3F2

(
1, n + 2, n + 2; n + 2, n + 2; − k2

M2

)

= − k2

M2

∞∑
n=0

(1)n(1)n

(2)n

(− k2

M2

)n

n!

1

1 + k2

M2

= − k2

k2 + M2 2F1

(
1, 1; 2; − k2

M2

)

= − k2

k2 + M2

(
k2

M2

)−1

ln

(
1 + k2

M2

)
= −

(
1 + k2

M2

)−1

ln

(
1 + k2

M2

)
, (D29)

and

∂

∂β
2F1

(
1, β; 2; − k2

M2

)∣∣∣∣
β=2

= − k2

M2

1

2

∞∑
n=0

(1)n

(2)n

(2)n(2)n

(3)n

(− k2

M2

)n

n!
3F2

(
1, n + 2, n + 3; n + 2, n + 3; − k2

M2

)

= −1

2

k2

k2 + M2 2F1

(
1, 2; 3; − k2

M2

)
= −1

2

k2

k2 + M2

2
[
k2M2 − M4 ln

(
1 + k2

M2

)]
k4

= −
(

1 + k2

M2

)−1

+
(

k2

M2

)−1(
1 + k2

M2

)−1

ln

(
1 + k2

M2

)
, (D30)

where (λ)0 = 1 and (λ)n = �(λ + n)/�(λ) for n � 1 is the Pochhammer symbol.
Meanwhile, we have the zeroth-order contribution

2F1

(
1, 1; 1; − k2

M2

)
= 2F1

(
1, 2; 2; − k2

M2

)
=
(

1 + k2

M2

)−1

. (D31)

These lead to the expansion of g̃(1)
D (k) at the lowest-order with respect to a

[̃
g(1)

D (k)
]

11 = [̃
g(1)

D (k)
]

22 = M

[
1

M2
+ (−γ + ln 2 − ln M )a

M2

](
1 + k2

M2

)−1[
1 − a ln

(
1 + k2

M2

)]
+ O(a2)

= M

k2 + M2
{1 + a[−γ + ln 2 + ln M − ln(k2 + M2)]} + O(a2) (D32)

and [̃
g(1)

D (k)
]

12 = −[̃g(1)
D (k)

]∗
21 = ik1 + k2

k2 + M2

{
1 + a

[
−γ + ln 2 − 1

2
ln
(
k2 + M2

)+ M2

2k2
ln

(
1 + k2

M2

)]}
+ O(a2). (D33)

Recall that the scalar nature of the double product of spinor propagators strongly simplifies the calculation of entanglement
entropy for free Dirac field. Here, it is important to notice that the Dirac Green’s function in presence of a random static gauge
field has the same property, since the gauge correction is a scalar function. After some straightforward calculation, we have the
double product of the modified Green’s function as

γ 0g̃(1)
D (k)γ 0g̃(1)

D (k) = 1

k2 + M2

{
1 + 2a

[
−γ + ln 2 − 1

2
ln
(
k2 + M2

)]}
Id + O(a2). (D34)

b. The construction from the 2D corrected propagator to 3D theory

The above calculation leads to the elements of the infinite series that are used to construct the higher-dimensional theory,
namely the interacting two-point correlator on 2D replica manifold,

(−ω2)l
[
P(n)

D,2l,int (r‖, r′
‖) − P(1)

D,2l,int (r‖, r′
‖)
]

diag

= (l + 1)(−ω2)l
∫

d2r‖,1 · · ·
∫

d2r‖,2l
[
g(n)

D (r‖, r‖,1) − g(1)
D (r‖, r‖,1)

]
diagγ

0g̃(1)
D (r‖,1, r‖,2) · · · γ 0g̃(1)

D (r‖,2l , r′
‖)
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= (l + 1)(−ω2)l 1 − n2

6n2

M

2π
K0(Mρ)

∫
d2k
2π

eikr′
‖

[
γ 0g̃(1)

D (k)γ 0g̃(1)
D (k)

]l

k2 + M2
+ O(a2)

= (l + 1)(−ω2)l 1 − n2

6n2

M

2π
K0(Mρ)

∫
d2k
2π

eikr′
‖

{
1 + 2la

[−γ + ln 2 − 1
2 ln (k2 + M2)

]
(k2 + M2)l+1

}
+ O(a2). (D35)

c. The entanglement entropy and partition function of constructed 3D theory

To calculate the partition function, we start from evaluating the trace of the corrected replicated Green’s function
(−ω2)lP(n)

D,2l,int . In the previous section, we have presented the explicit evaluation of its lowest-order perturbation with respect to
the randomness strength a = gA

2π
. We now separate it into three parts, the first one is

(−ω2)lTr(n)
2D

[
P(n)

D,2l,int (r‖, r′
‖) − P(1)

D,2l,int (r‖, r′
‖)
]

first

= Tr(n)
2D

[
(l + 1)(−ω2)l 1 − n2

6n2

M

2π
K0(Mρ)

∫ ∞

0

kJ0(kρ ′)
(k2 + M2)l+1

dk

]
= Tr(n)

2D

[
(l + 1)(−ω2)l 1 − n2

6n2

M

2π
K0(Mρ)

(ρ ′)lM−l

2l�(l + 1)
Kl (Mρ ′)

]
= 2(l + 1)(−ω2)l 1 − n2

6n2

M−l+1

2l�(l + 1)

∫ ∞

0
ρ l+1K0(Mρ)Kl (Mρ)dρ

= 2(l + 1)(−ω2)l 1 − n2

6n2

M−l+1

2l�(l + 1)

�(l + 1)

l + 1
2l−1M−l−2 = 1 − n2

6n

1

M

(
− ω2

M2

)l

. (D36)

The summation over perturbation levels l gives

Tr(n)
2D

[
G(n)

D,int − G(1)
D,int

]
first

=
∞∑

l=0

Tr(n)
2D

(−ω2
)l

Tr(n)
2D

[
P(n)

D,2l,int − P(1)
D,2l,int

]
first

= 1 − n2

6n

M

ω2 + M2
, (D37)

which leads to the free contribution of the EE

Sfirst = 1
6A(ε−1 − M ). (D38)

The second part is

(−ω2)lTr(n)
2D

[
P(n)

D,2l,int (r‖, r′
‖) − P(1)

D,2l,int (r‖, r′
‖)
]

second

= Tr(n)
2D

[
(l + 1)2la(−γ + ln 2)(−ω2)l 1 − n2

6n2

M

2π
K0(Mρ)

∫ ∞

0

kJ0(kρ ′)
(k2 + M2)l+1

dk

]

= 2a(−γ + ln 2)
1 − n2

6n

1

M

[
l

(
− ω2

M2

)l
]
. (D39)

The summation over perturbation levels l gives

Tr(n)
2D

[
G(n)

D,int − G(1)
D,int

]
second

=
∞∑

l=0

(−ω2)lTr(n)
2D

[
P(n)

D,2l,int − P(1)
D,2l,int

]
second

= 1 − n2

6n
2a(−γ + ln 2)

−Mω2

(ω2 + M2)2 , (D40)

which leads to the correction to EE as

Ssecond = −a(−γ + ln 2) 1
6A(ε−1 − M ). (D41)

The third part is much more complicated,

(−ω2)lTr(n)
2D

[
P(n)

D,2l,int (r‖, r′
‖) − P(1)

D,2l,int (r‖, r′
‖)
]

third

= −1

2
Tr(n)

2D

[
(l + 1)2la(−ω2)l 1 − n2

6n2

M

2π
K0(Mρ)

∫ ∞

0

k ln (k2 + M2)J0(kρ ′)
(k2 + M2)l+1

dk

]

= −2a
1 − n2

6n2

M

2π
l (l + 1)(−ω2)l

∫ ∞

0
ρdρ

∫ 2πn

0
dθK0(Mρ)

1

�(l + 1)
2−lM−lρ l

×
{

K−l (Mρ)[ln 2 + ln M − ln ρ + ψ (l + 1)] + ∂

∂ν
Kν (Mρ)

∣∣∣∣
ν=−l

}
= i) + ii) + iii). (D42)
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To evaluate this integral, we further separate it into three parts. The first part is

(i) = (−ω2)lTr(n)
2D

[
P(n)

D,2l,int (r‖, r′
‖) − P(1)

D,2l,int (r‖, r′
‖)
]

third,1

= −2a
1 − n2

6n

l (l + 1)

�(l + 1)
2−lM−l+1(−ω2)l [ln 2 + ln M + ψ (l + 1)]

∫ ∞

0
ρ l+1K0(Mρ)Kl (Mρ)dρ

= −2a
1 − n2

6n

l (l + 1)

�(l + 1)
2−lM−l+1(−ω2)l [ln 2 + ln M + ψ (l + 1)]

�(l + 1)

l + 1
2l−1M−l−2

= −a
1 − n2

6n

1

M
l[ln 2 + ln M + ψ (l + 1)]

(
− ω2

M2

)l

. (D43)

Its summation over perturbation levels l gives

Tr(n)
2D

[
G(n)

D,int − G(1)
D,int

]
third,1

=
∞∑

l=0

(−ω2)lTr(n)
2D

[
P(n)

D,2l,int − P(1)
D,2l,int

]
third,1

= −a
1 − n2

6n

1

M

∞∑
l=0

l[ln 2 + ln M + ψ (l + 1)]

(
− ω2

M2

)l

= −a
1 − n2

6n

1

M

[
(ln 2 + ln M )

∞∑
l=0

l

(
− ω2

M2

)l

+
∞∑

l=0

lψ (l + 1)

(
− ω2

M2

)l
]

= −a
1 − n2

6n

1

M

{
(ln 2 + ln M )

−M2ω2

(M2 + ω2)2 + M2ω2
[−1 + γ + ln

(
1 + ω2

M2

)]
(M2 + ω2)2

}
(D44)

which leads to the correction to EE as

Sthird,1 = −a

2
(1 + γ + ln 2)

1

6
A(ε−1 − M ) − a

2

1

6
A(−ε−1 ln ε−1 + M ln M ). (D45)

The second part is

(ii) = (−ω2)lTr(n)
2D

[
P(n)

D,2l,int (r‖, r′
‖) − P(1)

D,2l,int (r‖, r′
‖)
]

third,2

= −2a
1 − n2

6n

l (l + 1)

�(l + 1)
2−lM−l+1(−ω2)l (−1)

∫ ∞

0
ρ l+1 ln ρK0(Mρ)Kl (Mρ)dρ

= 2a
1 − n2

6n

l (l + 1)

�(l + 1)
2−lM−l+1(−ω2)l

[
−�(l + 1)

(l + 1)2
2l−1M−l−2 + �(l + 1)

l + 1
2l−1M−l−2(−γ + ln 2 − ln M )

]

= a
1 − n2

6n

1

M

[
− l

l + 1

(
− ω2

M2

)l

+ (−γ + ln 2 − ln M )l

(
− ω2

M2

)l
]
. (D46)

Its summation over perturbation levels l gives

(−ω2)lTr(n)
2D

[
P(n)

D,2l,int (r‖, r′
‖) − P(1)

D,2l,int (r‖, r′
‖)
]

third,2

= a
1 − n2

6n

1

M

[
−

∞∑
l=0

l

l + 1

(
− ω2

M2

)l

+ (−γ + ln 2 − ln M )
∞∑

l=0

l

(
− ω2

M2

)l
]

= a
1 − n2

6n

1

M

[
M2
[−ω2 + (M2 + ω2) ln

(
1 + ω2

M2

)]
ω2(M2 + ω2)

+ (−γ + ln 2 − ln M )
−M2ω2

(M2 + ω2)2

]
(D47)

which leads to the correction to EE as

Sthird,2 = a

2
(1 + γ − ln 2)

1

6
A(ε−1 − M ) + a

2

1

6
A(ε−1 ln ε−1 − M ln M ). (D48)
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The third part is

(iii) = (−ω2)lTr(n)
2D

[
P(n)

D,2l,int (r‖, r′
‖) − P(1)

D,2l,int (r‖, r′
‖)
]

third,3

= −2a
1 − n2

6n2

M

2π
l (l + 1)(−ω2)l

∫ ∞

0
ρdρ

∫ 2πn

0
dθK0(Mρ)

1

�(l + 1)
2−lM−lρ l ∂

∂ν
Kν (Mρ)

∣∣∣∣
ν=−l

= 2a
1 − n2

6n

M

2
l (l + 1)

(
− ω2

M2

)l ∫ ∞

0
ρdρ

l−1∑
k=0

1

k!(l − k)!
2−kMkρkKk (Mρ). (D49)

By exchanging the summation of k and the integral over ρ, we have

(−ω2)lTr(n)
2D

[
P(n)

D,2l,int (r‖, r′
‖) − P(1)

D,2l,int (r‖, r′
‖)
]

third,3
= a

1 − n2

6n
Ml (l + 1)

(
− ω2

M2

)l l−1∑
k=0

1

k!(l − k)!
2−kMk �(k + 1)

k + 1
2k−1M−k−2

= a
1 − n2

6n

1

2M
l (l + 1)

(
− ω2

M2

)l l−1∑
k=0

1

(k + 1)(l − k)!
. (D50)

Its summation over perturbation levels l gives

Tr(n)
2D

[
G(n)

D,int − G(1)
D,int

]
third,3

=
∞∑

l=0

(−ω2
)l

Tr(n)
2D

[
P(n)

D,2l,int − P(1)
D,2l,int

]
third,3

= a
1 − n2

6n

1

2M

∞∑
l=0

l (l + 1)

(
− ω2

M2

)l l−1∑
k=0

1

(k + 1)(l − k)!

= a
1 − n2

6n

1

2M

[ ∞∑
l=0

l∑
k=0

l (l + 1)
1

(k + 1)(l − k)!

(
− ω2

M2

)l

−
∞∑

l=0

l

(
− ω2

M2

)l
]
. (D51)

Consider an auxiliary function

f (x) =
∞∑

l=0

l∑
k=0

xl

(k + 1)(l − k)!
=
[ ∞∑

l=0

1

l + 1
xl

][ ∞∑
k=0

1

k!
xk

]
= ln(1 − x)

x
ex. (D52)

Its derivatives are

f ′(x) =
∞∑

l=0

l∑
k=0

lxl−1

(k + 1)(l − k)!
= 1

x

∞∑
l=0

l∑
k=0

lxl

(k + 1)(l − k)!
,

f ′′(x) =
∞∑

l=0

l∑
k=0

l (l − 1)xl−2

(k + 1)(l − k)!
= 1

x2

∞∑
l=0

l∑
k=0

l (l − 1)xl

(k + 1)(l − k)!
(D53)

These gives

Tr(n)
2D

[
G(n)

D,int − G(1)
D,int

]
third,3

= a
1 − n2

6n

1

2M

{[(
− ω2

M2

)2

f ′′
(

− ω2

M2

)
+ 2

(
− ω2

M2

)
f ′
(

− ω2

M2

)]
− −M2w2

(M2 + w2)2

}
, (D54)

which leads to the correction to EE as

Sthird,3 = a

4

[
γ√
π

+ eErfc(1) − √
πErfi(1) + 2√

π
2F2

(
1, 1;

3

2
, 2; 1

)
+ 2√

π
ln 2 + 1

]
1

6
A(ε−1 + M )

= μthird,3a
1

6
A(ε−1 + M ) = (0.310214 . . . )a

1

6
A(ε−1 + M ), (D55)

where Erfc and Erci are the complementary and imaginary error functions.
In summary, combining with Eqs. (D38), (D41), (D45), (D48), and (D55), we have

S = Sfirst + Ssecond + Sthird,1 + Sthird,2 + Sthird,3

= 1
6A(ε−1 − M )[1 − a(−γ + 2 ln 2 − μthird,3)] + a 1

6A(ε−1 ln ε−1 − M ln M ), (D56)
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where a = gA

2π
represents the disorder strength. The above expansion includes two parts of entanglement entropy: the leading

UV terms and the subleading finite terms. By taking M → 0 in Eq. (D56), we have the leading terms as

Sleading UV ≈ 1

6
Aε−1

[
1 − gA

2π
μgauge + gA

2π
ln ε−1 + O

(
g2

A

)]
, (D57)

where μgauge = −γ + 2 ln 2 − μthird,3 ≈ 0.5 is a positive number, and ε is the UV cut-off. We notice that the area-law coefficient
depends on the disorder strength gA. This is the main result of the present study.

The subleading corrections to the entanglement entropy appears as letting M to have a finite value. According to the above
derivations, at the first order of gA they take the following form:

Sfinite ≈ −1

6
AM

[
1 − gA

2π
μgauge + gA

2π
ln M + O

(
g2

A

)]
. (D58)

One subtlety of this result is that the dimension of the inserted parameter M is not identical to the inverse of the surface area A,
so that AM is not a dimensionless parameter that scales under RG transformation. [Note that Aε−1 is a dimensionless parameter,
so the Eq. (D57) is sufficient to identify the change on leading area-law term.] In this sense, it is difficult to address the obtained
finite terms of Eq. (D58) with the universal subleading correction of EE. However, as we will show in the next section, a direct
connection to the RG flows can be achieved by considering the full form of the subleading terms.

3. The full form of the entanglement entropy of Dirac fermions exposed to a random static gauge field

In our dimensional reduction scheme, one necessary step for accessing the entanglement entropy of Dirac fermions, is to
estimate the double product of lower-dimensional (flat) Green’s function [γ 0g̃(1)

D (k)]2. This double product contains the dominate
correction of applying a random static gauge field, for which an estimation only requires the knowledge of performing ordinary
perturbation theory for Green’s function on flat spacetime.

However, in presence of disorders, an exact calculation of the double product is hard even for noninteracting models. In
the previous section, we have presented a perturbative analysis of the double product, and use it to calculate the entanglement
entropy at the lowest-order of randomness strength gA. The calculation appears to be mathematically complicated, and a direct
extension to higher orders meets the difficulty on summing/integrating certain special functions. Here we show that, instead
of computing a perturbative series order by order, it would be more convenient to estimate the full form of the entanglement
entropy.

Recall that we have derived explicitly the ordinary Green’s function on flat spacetime in Appendix D 1. While the nonper-
turbative results are obtained for the massless case, the influence of a inserted source term M (used to calculate the partition
function from the Green’s function) can be naturally considered as shifting the momentum k2 → k2 + M2. By applying this
transformation to Eq. (D19), we can write down the nonperturbative double product as

γ 0g̃(1)
D (k)γ 0g̃(1)

D (k) = [C(gA)]2

(k2 + M2)1+ gA
2π

Id with C(gA) = 21+ gA
2π

�
(
1 + gA

4π

)
�
(
1 − gA

4π

) , (D59)

It is easy to check that the first-order expansion of the above formula with respect to the disorder strength gA is identical to the
result of Eq. (D34) that derived in previous sections. With this nonperturbative result in hand, the interacting two-point correlator
on 2D replica manifold of Eq. (D35) becomes

(−ω2)l
[
P(n)

D,2l,int (r‖, r′
‖) − P(1)

D,2l,int (r‖, r′
‖)
]

diag
= (l + 1)(−ω2)l 1 − n2

6n2

M

2π
K0(Mρ)

∫
d2k
2π

eikr′
‖

[C(gA)]2l

(k2 + M2)l (1+ gA
2π

)+1
. (D60)

It can be calculated as follows:

(l + 1)[−ω2C2(gA)]l 1 − n2

6n2

M

2π
K0(Mρ)

∫ ∞

0
dk

kJ0(kρ ′)

(k2 + M2)l (1+ gA
2π

)+1

= (l + 1)[−ω2C2(gA)]l 1 − n2

6n2

M

2π
K0(Mρ)

1

�
[
l
(
1 + gA

2π
+ 1

)]( ρ ′

2M

)l (1+ gA
2π

)

Kl (1+ gA
2π

)(Mρ ′). (D61)

Its trace over 2D replica manifold gives

Tr(n)
2D(−ω2)l

[
P(n)

D,2l,int (r‖, r′
‖) − P(1)

D,2l,int (r‖, r′
‖)
]

= 2
(l + 1)[−ω2C2(gA)]l

�
[
l
(
1 + gA

2π
+ 1

)] 1 − n2

6n2

M

2π

∫ 2πn

0
dθ

∫ ∞

0
ρdρ

(
ρ ′

2M

)l (1+ gA
2π

)

K0(Mρ)Kl (1+ gA
2π

)(Mρ ′)

= 1 − n2

6n

l + 1

1 + l
(
1 + gA

2π

) [−ω2C2(gA)]lM−1−2l (1+ gA
2π

). (D62)

195152-24



ENTANGLEMENT ENTROPY OF (2+1)-DIMENSIONAL … PHYSICAL REVIEW B 106, 195152 (2022)

Then a resummation of l leads to the trace of corresponding 3D Green’s function

Tr(n)
2D

[
G(n)

D,int − G(1)
D,int

]
=

∞∑
l=0

Tr(n)
2D(−ω2)l

[
P(n)

D,2l,int (r‖, r′
‖) − P(1)

D,2l,int (r‖, r′
‖)
] = 1 − n2

6n

∞∑
l=0

l + 1

1 + l (1 + gA

2π
)
[−ω2C2gA]lM−1−2l (1+ gA

2π
)

= 1 − n2

6n

1

2M

{
2F1

[
1,

1

1 + gA

2π

;
2 + gA

2π

1 + gA

2π

; −C2(gA)ω2

M2(1+ gA
2π

)

]
+ 1

2 + gA

2π

C2(gA)ω2

M2(1+ gA
2π

) 2F1

[
2,

2 + gA

2π

1 + gA

2π

;
3 + 2 gA

2π

1 + gA

2π

; −C2(gA)ω2

M2(1+ gA
2π

)

]}
.

(D63)

This results the full form of entanglement entropy

S = 1

6
A
[(

1 − g2
A

4π2

)
C(gA)

]−1[
ε−(1+ gA

2π
) − M1+ gA

2π

]
. (D64)

Its lowest-order expansion in gA gives S ≈ 1
6A(1 − gA

2π
μ)[ε−1(1 + gA

2π
ln ε−1) − M(1 + gA

2π
ln M )], which is consistent with the

obtained form in Eq. (D56). The only difference is on the value of μ = ln 2 − γ ≈ 0.115932 that could be caused by exchanging
integral and summation in the computation represented in Appendix D 2 c. However, this does not influence on the main result of
present paper. Moreover, for the finite term that associated with parameter M, here we have AM1+ gA

2π ∼ A/ξ as a dimensionless
parameter (ξ is the correlation length), so that the finite term can be understood as the universal subleading correction of EE.

APPENDIX E: ESTIMATION OF THE ENTANGLEMENT ENTROPY IN THE QUASIPARTICLE PICTURE

Here, we adopt a quasiparticle picture to describe the EE in scale-invariant fermionic systems [27,28], where the entanglement
is considered to be produced by quasiparticle entangled-pairs in the system. The only control parameter in this picture is the
distribution function of those pairs P(r), which gives the EE,

SA ∼
∫

A
dVA

∫
A

dVAP(rA,A), (E1)

where A and A are complementary to the total system, and rA,A is the distance between the (lattice) points in the two subsystems
A and A. Although the current case is a ground state that different from the dynamical steady state with excitations, it is still
naturally to understand P(rA,A) as the squared two-point correlation function of the fermion operator, which gives a power-law
decay of P(rA,A) ∝ r−k

A,A
for scale-invariant systems.

It is convenient to work in polar coordinate with disk geometry, then the above integral becomes

SA ∼
∫ LA

0
r′dr′

∫ 2π

0
dϕ′

∫ ∞

LA+ε

rdr
∫ 2π

0
dϕ

1

|�r − �r′|k . (E2)

There are two set of angular variable, and one of them can be always removed. For instance, we have

SA ∼ 2π

∫ LA

0
r′dr′

∫ ∞

LA+ε

rdr
∫ 2π

0
dϕ

1

|�r − �r′|k ∼ 2πL4
A

∫ 0

−1
dux

∫ ∞

ε/LA

dvx

∫ ∞

−∞
dvy

{
L2

A

[
(ux − vx )2 + v2

y

]}− k
2 , (E3)

where we have used �r′ = LA�u and �r = LA�v. For k > 3, this integral gives a robust area-law EE

SA ∼ 2π (LA)4−k

(
ε

LA

)3−k

∝ LA. (E4)

For k = 3, this integral gives a logarithmic violation of the area law,

SA ∼ −4πLA ln
ε

LA
∼ 4πLA ln LA ∝ LA ln LA. (E5)

APPENDIX F: ENTANGLEMENT ENTROPY IN THE PRESENCE OF INTERACTIONS

In the main text, an explicit calculation of entanglement entropy is performed for noninteracting theories. In this section, we
discuss the calculation of the entanglement entropy for interacting theories. In general, in the calculation of the entanglement
entropy, the starting point is two-point correlations. As shown in Appendix D, the main features of entanglement entropy are
captured by the spatial scaling behavior of Green’s function g(r‖, r′

‖) ∼ |r‖ − r′
‖|−1+ gA

2π . Here, by providing a renormalization
group analysis, we would like to argue that such spatial scaling behavior is qualitatively unchanged in the presence of
interactions. Therefore, the main results on entanglement entropy (such as the area-law scaling) are believed to be universal.
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The stability/instability of the noninteracting disordered critical points was widely discussed in previous literature [114,134–
139]. On one hand, short-range interactions or screened Coulomb interactions are found to be irrelevant to the noninteracting
disordered critical points that induced by random static gauge fields [134,136], so that we expect the scaling behaviors of
two-point correlations and consequently the entanglement entropy remain unchanged. On the other hand, the noninteracting
disordered critical points are unstable under a true long-range Coulomb interaction and the system flows to a line of new fixed
points [114,135,138,139]. Interestingly, the spatial scaling behavior of two-point correlators on this critical line is found to be
similar with the noninteracting disordered critical points. (Details will be present in a future coming paper.) If one repeat the
calculation of using the two-point Green’s function at the interacting critical points, one should reach the same area-law scaling
of the entanglement entropy. Thus, we believe that the entanglement entropy should take the same form in disordered quantum
critical points in the presence of (weak) interactions.

[1] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement
in many-body systems, Rev. Mod. Phys. 80, 517 (2008).

[2] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws
for the entanglement entropy, Rev. Mod. Phys. 82, 277 (2010).

[3] L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, Quantum
source of entropy for black holes, Phys. Rev. D 34, 373 (1986).

[4] M. Srednicki, Entropy and Area, Phys. Rev. Lett. 71, 666
(1993).

[5] C. Callan and F. Wilczek, On geometric entropy, Phys. Lett. B
333, 55 (1994).

[6] D. Kabat, Black hole entropy and entropy of entanglement,
Nucl. Phys. B 453, 281 (1995).

[7] S. Ryu and T. Takayanagi, Holographic Derivation of En-
tanglement Entropy from the anti–de Sitter Space/Conformal
Field Theory Correspondence, Phys. Rev. Lett. 96, 181602
(2006).

[8] B. Swingle, Entanglement renormalization and holography,
Phys. Rev. D 86, 065007 (2012).

[9] M. Rangamani and T. Takayanagi, Holographic Entanglement
Entropy (Springer, New York, 2017).

[10] T. Nishioka, Entanglement entropy: Holography and renor-
malization group, Rev. Mod. Phys. 90, 035007 (2018).

[11] A. Kitaev and J. Preskill, Topological Entanglement Entropy,
Phys. Rev. Lett. 96, 110404 (2006).

[12] M. Levin and X.-G. Wen, Detecting Topological Order in a
Ground State Wave Function, Phys. Rev. Lett. 96, 110405
(2006).

[13] H. Li and F. D. M. Haldane, Entanglement Spectrum as
a Generalization of Entanglement Entropy: Identification of
Topological Order in Non-Abelian Fractional Quantum Hall
Effect States, Phys. Rev. Lett. 101, 010504 (2008).

[14] X.-L. Qi, H. Katsura, and A. W. W. Ludwig, General Rela-
tionship between the Entanglement Spectrum and the Edge
State Spectrum of Topological Quantum States, Phys. Rev.
Lett. 108, 196402 (2012).

[15] C. Holzhey, F. Larsen, and F. Wilczek, Geometric and renor-
malized entropy in conformal field theory, Nucl. Phys. B 424,
443 (1994).

[16] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Entanglement
in Quantum Critical Phenomena, Phys. Rev. Lett. 90, 227902
(2003).

[17] P. Calabrese and J. Cardy, Entanglement entropy and quantum
field theory, J. Stat. Mech. (2004) P06002.

[18] E. Fradkin and J. E. Moore, Entanglement Entropy of 2D
Conformal Quantum Critical Points: Hearing the Shape of a
Quantum Drum, Phys. Rev. Lett. 97, 050404 (2006).

[19] P. Bueno, R. C. Myers, and W. Witczak-Krempa, Universality
of Corner Entanglement in Conformal Field Theories, Phys.
Rev. Lett. 115, 021602 (2015).

[20] P. Calabrese and J. Cardy, Evolution of entanglement en-
tropy in one-dimensional systems, J. Stat. Mech. (2005)
P04010.

[21] P. Calabrese and J. Cardy, Entanglement entropy and confor-
mal field theory, J. Phys. A: Math. Theor. 42, 504005 (2009).

[22] N. Laflorencie, Quantum entanglement in condensed matter
systems, Phys. Rep. 646, 1 (2016).

[23] X.-G. Wen, Colloquium: Zoo of quantum-topological phases
of matter, Rev. Mod. Phys. 89, 041004 (2017).

[24] C. W. von Keyserlingk, T. Rakovszky, F. Pollmann, and S. L.
Sondhi, Operator Hydrodynamics, OTOCs, and Entanglement
Growth in Systems without Conservation Laws, Phys. Rev. X
8, 021013 (2018).

[25] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Collo-
quium: Many-body localization, thermalization, and entangle-
ment, Rev. Mod. Phys. 91, 021001 (2019).

[26] R. J. Lewis-Swan, A. Safavi-Naini, A. M. Kaufman, and A. M.
Rey, Dynamics of quantum information, Nat. Rev. Phys. 1,
627 (2019).

[27] A. Nahum and B. Skinner, Entanglement and dynamics of
diffusion-annihilation processes with Majorana defects, Phys.
Rev. Res. 2, 023288 (2020).

[28] Q. Tang, X. Chen, and W. Zhu, Quantum criticality in the
nonunitary dynamics of (2+1)-dimensional free fermions,
Phys. Rev. B 103, 174303 (2021).

[29] M. B. Hastings, Entropy and entanglement in quantum ground
states, Phys. Rev. B 76, 035114 (2007).

[30] M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, Area
Laws in Quantum Systems: Mutual Information and Correla-
tions, Phys. Rev. Lett. 100, 070502 (2008).

[31] F. G. S. L. Brandão and M. Horodecki, An area law for entan-
glement from exponential decay of correlations, Nat. Phys. 9,
721 (2013).

[32] J. Cho, Realistic Area-Law Bound on Entanglement from Ex-
ponentially Decaying Correlations, Phys. Rev. X 8, 031009
(2018).

[33] H. Casini and M. Huerta, Entanglement entropy in free quan-
tum field theory, J. Phys. A: Math. Theor. 42, 504007 (2009).

[34] M. Van Raamsdonk, Building up spacetime with quantum
entanglement, Gen. Relativ. Gravit. 42, 2323 (2010).

[35] T. Faulkner, M. Guica, T. Hartman, R. C. Myers, and M. Van
Raamsdonk, Gravitation from entanglement in holographic
CFTs, J. High Energy Phys. 03 (2014) 051.

195152-26

https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/PhysRevD.34.373
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1016/0370-2693(94)91007-3
https://doi.org/10.1016/0550-3213(95)00443-V
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevD.86.065007
https://doi.org/10.1103/RevModPhys.90.035007
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1103/PhysRevLett.108.196402
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1088/1742-5468/2004/06/p06002
https://doi.org/10.1103/PhysRevLett.97.050404
https://doi.org/10.1103/PhysRevLett.115.021602
https://doi.org/10.1088/1742-5468/2005/04/P04010
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1016/j.physrep.2016.06.008
https://doi.org/10.1103/RevModPhys.89.041004
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1038/s42254-019-0090-y
https://doi.org/10.1103/PhysRevResearch.2.023288
https://doi.org/10.1103/PhysRevB.103.174303
https://doi.org/10.1103/PhysRevB.76.035114
https://doi.org/10.1103/PhysRevLett.100.070502
https://doi.org/10.1038/nphys2747
https://doi.org/10.1103/PhysRevX.8.031009
https://doi.org/10.1088/1751-8113/42/50/504007
https://doi.org/10.1007/s10714-010-1034-0
https://doi.org/10.1007/JHEP03(2014)051


ENTANGLEMENT ENTROPY OF (2+1)-DIMENSIONAL … PHYSICAL REVIEW B 106, 195152 (2022)

[36] B. Swingle and M. V. Raamsdonk, Universality of gravity
from entanglement, arXiv:1405.2933 [hep-th].

[37] S. R. White, Density Matrix Formulation for Quantum Renor-
malization Groups, Phys. Rev. Lett. 69, 2863 (1992).

[38] F. Verstraete and J. I. Cirac, Renormalization algorithms for
quantum-many body systems in two and higher dimensions,
arXiv:cond-mat/0407066.

[39] G. Vidal, Class of Quantum Many-Body States That Can Be
Efficiently Simulated, Phys. Rev. Lett. 101, 110501 (2008).

[40] U. Schollwöck, The density-matrix renormalization group in
the age of matrix product states, Ann. Phys. 326, 96 (2011).

[41] M.-C. Chung and I. Peschel, Density-matrix spectra of solv-
able fermionic systems, Phys. Rev. B 64, 064412 (2001).

[42] I. Peschel, Calculation of reduced density matrices from cor-
relation functions, J. Phys. A: Math. Gen. 36, L205 (2003).

[43] I. Peschel and V. Eisler, Reduced density matrices and en-
tanglement entropy in free lattice models, J. Phys. A: Math.
Theor. 42, 504003 (2009).

[44] H. Casini and M. Huerta, Reduced density matrix and internal
dynamics for multicomponent regions, Class. Quantum Grav.
26, 185005 (2009).

[45] H. Casini and M. Huerta, Entanglement entropy for the n-
sphere, Phys. Lett. B 694, 167 (2010).

[46] S. N. Solodukhin, Entanglement entropy of black holes, Living
Rev. Relativ. 14, 8 (2011).

[47] A. Lewkowycz, R. C. Myers, and M. Smolkin, Observations
on entanglement entropy in massive QFT’s, J. High Energy
Phys. 04 (2013) 017.

[48] J. L. Cardy, O. A. Castro-Alvaredo, and B. Doyon, Form fac-
tors of branch-point twist fields in quantum integrable models
and entanglement entropy, J. Stat. Phys. 130, 129 (2007).

[49] H. Casini, M. Huerta, and R. C. Myers, Towards a derivation
of holographic entanglement entropy, J. High Energy Phys. 05
(2011) 036.

[50] S. Ryu and T. Takayanagi, Aspects of holographic entangle-
ment entropy, J. High Energy Phys. 08 (2006) 045.

[51] H. Casini and M. Huerta, Remarks on the entanglement en-
tropy for disconnected regions, J. High Energy Phys. 03 (2009)
048.

[52] C. A. Agón, P. Bueno, and H. Casini, Is the EMI model a QFT?
An inquiry on the space of allowed entropy functions, J. High
Energy Phys. 08 (2021) 084.

[53] S. Ryu and Y. Hatsugai, Entanglement entropy and the Berry
phase in the solid state, Phys. Rev. B 73, 245115 (2006).

[54] H. Casini and M. Huerta, Entanglement and alpha entropies
for a massive scalar field in two dimensions, J. Stat. Mech.
(2005) P12012.

[55] H. Casini and M. Huerta, A finite entanglement entropy and
the c-theorem, Phys. Lett. B 600, 142 (2004).

[56] R. C. Myers and A. Sinha, Seeing a c-theorem with hologra-
phy, Phys. Rev. D 82, 046006 (2010).

[57] R. C. Myers and A. Sinha, Holographic c-theorems in arbitrary
dimensions, J. High Energy Phys. 01 (2011) 125.

[58] I. R. Klebanov, S. S. Pufu, S. Sachdev, and B. R. Safdi,
Entanglement entropy of 3-d conformal gauge theories with
many flavors, J. High Energy Phys. 05 (2012) 036.

[59] H. Casini and M. Huerta, Renormalization group running of
the entanglement entropy of a circle, Phys. Rev. D 85, 125016
(2012).

[60] H. Liu and M. Mezei, A refinement of entanglement entropy
and the number of degrees of freedom, J. High Energy Phys.
04 (2013) 162.

[61] L. Fei, S. Giombi, I. R. Klebanov, and G. Tarnopolsky, Gen-
eralized F-theorem and the ε expansion, J. High Energy Phys.
12 (2015) 1.

[62] D. L. Jafferis, I. R. Klebanov, S. S. Pufu, and B. R. Safdi, To-
wards the F-theorem: N = 2 field theories on the three-sphere,
J. High Energy Phys. 06 (2011) 102.

[63] M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Entanglement
entropy in the O(N ) model, Phys. Rev. B 80, 115122 (2009).

[64] M. P. Hertzberg and F. Wilczek, Some Calculable Contribu-
tions to Entanglement Entropy, Phys. Rev. Lett. 106, 050404
(2011).

[65] I. R. Klebanov, S. S. Pufu, S. Sachdev, and B. R. Safdi,
Rényi entropies for free field theories, J. High Energy Phys.
04 (2012) 074.

[66] M. P. Hertzberg, Entanglement entropy in scalar field theory,
J. Phys. A: Math. Theor. 46, 015402 (2013).

[67] S. Whitsitt, W. Witczak-Krempa, and S. Sachdev, Entangle-
ment entropy of large-N Wilson-Fisher conformal field theory,
Phys. Rev. B 95, 045148 (2017).

[68] L.-Y. Hung, Y. Jiang, and Y. Wang, Area term of the entangle-
ment entropy of a supersymmetric O(N ) vector model in three
dimensions, Phys. Rev. D 95, 085004 (2017).

[69] A. Bhattacharyya, L.-Y. Hung, and C. M. Melby-Thompson,
Instantons and entanglement entropy, J. High Energy Phys. 10
(2017) 081.

[70] Y. Chen, L. Hackl, R. Kunjwal, H. Moradi, Y. K. Yazdi, and
M. Zilhão, Towards spacetime entanglement entropy for inter-
acting theories, J. High Energy Phys. 11 (2020) 114.

[71] S. Iso, T. Mori, and K. Sakai, Entanglement entropy in scalar
field theory and ZM gauge theory on Feynman diagrams, Phys.
Rev. D 103, 105010 (2021).

[72] S. Iso, T. Mori, and K. Sakai, Non-Gaussianity of entangle-
ment entropy and correlations of composite operators, Phys.
Rev. D 103, 125019 (2021).

[73] G. Refael and J. E. Moore, Entanglement Entropy of Random
Quantum Critical Points in One Dimension, Phys. Rev. Lett.
93, 260602 (2004).

[74] Y.-C. Lin, F. Iglói, and H. Rieger, Entanglement Entropy
at Infinite-Randomness Fixed Points in Higher Dimensions,
Phys. Rev. Lett. 99, 147202 (2007).

[75] R. Yu, H. Saleur, and S. Haas, Entanglement entropy in the
two-dimensional random transverse field Ising model, Phys.
Rev. B 77, 140402(R) (2008).

[76] A. B. Harris, Effect of random defects on the critical behaviour
of Ising models, J. Phys. C: Solid State Phys. 7, 1671 (1974).

[77] H. Levine, S. B. Libby, and A. M. M. Pruisken, Electron
Delocalization by a Magnetic Field in Two Dimensions, Phys.
Rev. Lett. 51, 1915 (1983).

[78] D. S. Fisher, Random Transverse Field Ising Spin Chains,
Phys. Rev. Lett. 69, 534 (1992).

[79] A. A. Nersesyan, A. M. Tsvelik, and F. Wenger, Disorder
Effects in Two-Dimensional d-Wave Superconductors, Phys.
Rev. Lett. 72, 2628 (1994).

[80] A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G.
Grinstein, Integer quantum Hall transition: An alternative ap-
proach and exact results, Phys. Rev. B 50, 7526 (1994).

195152-27

http://arxiv.org/abs/arXiv:1405.2933
https://doi.org/10.1103/PhysRevLett.69.2863
http://arxiv.org/abs/arXiv:cond-mat/0407066
https://doi.org/10.1103/PhysRevLett.101.110501
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevB.64.064412
https://doi.org/10.1088/0305-4470/36/14/101
https://doi.org/10.1088/1751-8113/42/50/504003
https://doi.org/10.1088/0264-9381/26/18/185005
https://doi.org/10.1016/j.physletb.2010.09.054
https://doi.org/10.12942/lrr-2011-8
https://doi.org/10.1007/JHEP04(2013)017
https://doi.org/10.1007/s10955-007-9422-x
https://doi.org/10.1007/JHEP05(2011)036
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.1088/1126-6708/2009/03/048
https://doi.org/10.1007/JHEP08(2021)084
https://doi.org/10.1103/PhysRevB.73.245115
https://doi.org/10.1088/1742-5468/2005/12/P12012
https://doi.org/10.1016/j.physletb.2004.08.072
https://doi.org/10.1103/PhysRevD.82.046006
https://doi.org/10.1007/JHEP01(2011)125
https://doi.org/10.1007/JHEP05(2012)036
https://doi.org/10.1103/PhysRevD.85.125016
https://doi.org/10.1007/JHEP04(2013)162
https://doi.org/10.1007/JHEP12(2015)155
https://doi.org/10.1007/JHEP06(2011)102
https://doi.org/10.1103/PhysRevB.80.115122
https://doi.org/10.1103/PhysRevLett.106.050404
https://doi.org/10.1007/JHEP04(2012)074
https://doi.org/10.1088/1751-8113/46/1/015402
https://doi.org/10.1103/PhysRevB.95.045148
https://doi.org/10.1103/PhysRevD.95.085004
https://doi.org/10.1007/JHEP10(2017)081
https://doi.org/10.1007/JHEP11(2020)114
https://doi.org/10.1103/PhysRevD.103.105010
https://doi.org/10.1103/PhysRevD.103.125019
https://doi.org/10.1103/PhysRevLett.93.260602
https://doi.org/10.1103/PhysRevLett.99.147202
https://doi.org/10.1103/PhysRevB.77.140402
https://doi.org/10.1088/0022-3719/7/9/009
https://doi.org/10.1103/PhysRevLett.51.1915
https://doi.org/10.1103/PhysRevLett.69.534
https://doi.org/10.1103/PhysRevLett.72.2628
https://doi.org/10.1103/PhysRevB.50.7526


QICHENG TANG AND W. ZHU PHYSICAL REVIEW B 106, 195152 (2022)

[81] P. Goswami, H. Goldman, and S. Raghu, Metallic phases
from disordered (2+1)-dimensional quantum electrodynam-
ics, Phys. Rev. B 95, 235145 (2017).

[82] A. Thomson and S. Sachdev, Quantum electrodynamics in
2+1 dimensions with quenched disorder: Quantum critical
states with interactions and disorder, Phys. Rev. B 95, 235146
(2017).

[83] H. Yerzhakov and J. Maciejko, Disordered fermionic quantum
critical points, Phys. Rev. B 98, 195142 (2018).

[84] H. Goldman, A. Thomson, L. Nie, and Z. Bi, Interplay of
interactions and disorder at the superfluid-insulator transition:
A dirty two-dimensional quantum critical point, Phys. Rev. B
101, 144506 (2020).

[85] V. Narovlansky and O. Aharony, Renormalization Group in
Field Theories with Quantum Quenched Disorder, Phys. Rev.
Lett. 121, 071601 (2018).

[86] C. Mudry, C. Chamon, and X.-G. Wen, Two-dimensional con-
formal field theory for disordered systems at criticality, Nucl.
Phys. B 466, 383 (1996).

[87] C. C. Chamon, C. Mudry, and X.-G. Wen, Localization in
Two Dimensions, Gaussian Field Theories, and Multifractal-
ity, Phys. Rev. Lett. 77, 4194 (1996).

[88] F. Evers, A. Mildenberger, and A. D. Mirlin, Multifractality of
wave functions at the quantum Hall transition revisited, Phys.
Rev. B 64, 241303(R) (2001).

[89] M. S. Foster, S. Ryu, and A. W. W. Ludwig, Termination
of typical wave-function multifractal spectra at the Anderson
metal-insulator transition: Field theory description using the
functional renormalization group, Phys. Rev. B 80, 075101
(2009).

[90] D. V. Vassilevich, Heat kernel expansion: User’s manual, Phys.
Rep. 388, 279 (2003).

[91] D. Nesterov and S. N. Solodukhin, Short-distance regularity of
Green’s function and UV divergences in entanglement entropy,
J. High Energy Phys. 09 (2010) 041.

[92] This is only for free scalar field, and for free Dirac field this
relation becomes ∂m ln Z (n) = −TrG(n).

[93] J. S. Dowker, Quantum field theory on a cone, J. Phys. A:
Math. Gen. 10, 115 (1977).

[94] J. S. Dowker, Thermal properties of Green’s functions in
Rindler, de Sitter, and Schwarzschild spaces, Phys. Rev. D 18,
1856 (1978).

[95] M. E. X. Guimarães and B. Linet, Scalar Green’s functions
in an Euclidean space with a conical-type line singularity,
Commun. Math. Phys. 165, 297 (1994).

[96] B. Linet, Euclidean spinor Green’s functions in the space–time
of a straight cosmic string, J. Math. Phys. 36, 3694 (1995).

[97] J. S. Dowker and P. Chang, Polyhedral cosmic strings, Phys.
Rev. D 46, 3458 (1992).

[98] P. Chang and J. S. Dowker, Vacuum energy on orbifold factors
of spheres, Nucl. Phys. B 395, 407 (1993).

[99] D. V. Fursaev and G. Miele, Finite-temperature scalar field
theory in static de Sitter space, Phys. Rev. D 49, 987
(1994).

[100] G. Cognola, K. Kirsten, and L. Vanzo, Free and self-
interacting scalar fields in the presence of conical singularities,
Phys. Rev. D 49, 1029 (1994).

[101] E. Aurell and P. Salomonson, On functional determinants of
Laplacians in polygons and simplicial complexes, Commun.
Math. Phys. 165, 233 (1994).

[102] J. J. Bisognano and E. H. Wichmann, On the duality condition
for a Hermitian scalar field, J. Math. Phys. 16, 985 (1975).

[103] J. J. Bisognano and E. H. Wichmann, On the duality condition
for quantum fields, J. Math. Phys. 17, 303 (1976).

[104] P. D. Hislop and R. Longo, Modular structure of the local
algebras associated with the free massless scalar field theory,
Commun. Math. Phys. 84, 71 (1982).

[105] J. Maldacena, The large-N limit of superconformal field theo-
ries and supergravity, Int. J. Theor. Phys. 38, 1113 (1999).

[106] H. Casini, M. Huerta, R. C. Myers, and A. Yale, Mutual in-
formation and the F -theorem, J. High Energy Phys. 10 (2015)
003.

[107] P. Bueno, H. Casini, and W. Witczak-Krempa, Generalizing
the entanglement entropy of singular regions in conformal
field theories, J. High Energy Phys. 08 (2019) 069.

[108] P. Bueno, H. Casini, O. L. Andino, and J. Moreno, Disks glob-
ally maximize the entanglement entropy in 2 + 1 dimensions,
J. High Energy Phys. 10 (2021) 179.

[109] B. Swingle, Conformal field theory approach to Fermi liquids
and other highly entangled states, Phys. Rev. B 86, 035116
(2012).

[110] S. Murciano, P. Ruggiero, and P. Calabrese, Symmetry
resolved entanglement in two-dimensional systems via dimen-
sional reduction, J. Stat. Mech. (2020) 083102.

[111] R. Shankar, Renormalization-group approach to interacting
fermions, Rev. Mod. Phys. 66, 129 (1994).

[112] H. Casini and M. Huerta, Universal terms for the entanglement
entropy in 2+1 dimensions, Nucl. Phys. B 764, 183 (2007).

[113] H. Casini, M. Huerta, and L. Leitao, Entanglement entropy
for a Dirac fermion in three dimensions: Vertex contribution,
Nucl. Phys. B 814, 594 (2009).

[114] J. Ye, Effects of weak disorders on quantum Hall critical
points, Phys. Rev. B 60, 8290 (1999).

[115] E. Fradkin, Critical behavior of disordered degenerate semi-
conductors. I. Models, symmetries, and formalism, Phys. Rev.
B 33, 3257 (1986).

[116] H. E. Castillo, C. C. Chamon, E. Fradkin, P. M. Goldbart, and
C. Mudry, Exact calculation of multifractal exponents of the
critical wave function of Dirac fermions in a random magnetic
field, Phys. Rev. B 56, 10668 (1997).

[117] P. W. Anderson, Absence of diffusion in certain random lat-
tices, Phys. Rev. 109, 1492 (1958).

[118] F. J. Wegner, Disordered system with n orbitals per site: n =
∞ limit, Phys. Rev. B 19, 783 (1979).

[119] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Scaling Theory of Localization: Absence of
Quantum Diffusion in Two Dimensions, Phys. Rev. Lett. 42,
673 (1979).

[120] B. Kramer and A. MacKinnon, Localization: Theory and ex-
periment, Rep. Prog. Phys. 56, 1469 (1993).

[121] F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod.
Phys. 80, 1355 (2008).

[122] A. MacKinnon and B. Kramer, One-Parameter Scaling of
Localization Length and Conductance in Disordered Systems,
Phys. Rev. Lett. 47, 1546 (1981).

[123] A. M. M. Pruisken and L. Schäfer, Field Theory and the An-
derson Model for Disordered Electronic Systems, Phys. Rev.
Lett. 46, 490 (1981).

[124] L. Savary and L. Balents, Quantum spin liquids: A review,
Rep. Prog. Phys. 80, 016502 (2017).

195152-28

https://doi.org/10.1103/PhysRevB.95.235145
https://doi.org/10.1103/PhysRevB.95.235146
https://doi.org/10.1103/PhysRevB.98.195142
https://doi.org/10.1103/PhysRevB.101.144506
https://doi.org/10.1103/PhysRevLett.121.071601
https://doi.org/10.1016/0550-3213(96)00128-9
https://doi.org/10.1103/PhysRevLett.77.4194
https://doi.org/10.1103/PhysRevB.64.241303
https://doi.org/10.1103/PhysRevB.80.075101
https://doi.org/10.1016/j.physrep.2003.09.002
https://doi.org/10.1007/JHEP09(2010)041
https://doi.org/10.1088/0305-4470/10/1/023
https://doi.org/10.1103/PhysRevD.18.1856
https://doi.org/10.1007/BF02099773
https://doi.org/10.1063/1.530991
https://doi.org/10.1103/PhysRevD.46.3458
https://doi.org/10.1016/0550-3213(93)90223-C
https://doi.org/10.1103/PhysRevD.49.987
https://doi.org/10.1103/PhysRevD.49.1029
https://doi.org/10.1007/BF02099770
https://doi.org/10.1063/1.522605
https://doi.org/10.1063/1.522898
https://doi.org/10.1007/BF01208372
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1007/JHEP10(2015)003
https://doi.org/10.1007/JHEP08(2019)069
https://doi.org/10.1007/JHEP10(2021)179
https://doi.org/10.1103/PhysRevB.86.035116
https://doi.org/10.1088/1742-5468/aba1e5
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1016/j.nuclphysb.2006.12.012
https://doi.org/10.1016/j.nuclphysb.2009.02.003
https://doi.org/10.1103/PhysRevB.60.8290
https://doi.org/10.1103/PhysRevB.33.3257
https://doi.org/10.1103/PhysRevB.56.10668
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevB.19.783
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1088/0034-4885/56/12/001
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/PhysRevLett.47.1546
https://doi.org/10.1103/PhysRevLett.46.490
https://doi.org/10.1088/0034-4885/80/1/016502


ENTANGLEMENT ENTROPY OF (2+1)-DIMENSIONAL … PHYSICAL REVIEW B 106, 195152 (2022)

[125] M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, Gauge
fields in graphene, Phys. Rep. 496, 109 (2010).

[126] C. Mudry, S. Ryu, and A. Furusaki, Density of states for the
π -flux state with bipartite real random hopping only: A weak
disorder approach, Phys. Rev. B 67, 064202 (2003).

[127] S. Ryu and Y. Hatsugai, Singular density of states of dis-
ordered Dirac fermions in chiral models, Phys. Rev. B 65,
033301 (2001).

[128] A. B. Zamolodchikov, Irreversibility of the flux of the renor-
malization group in a 2D field theory, JETP Lett. 43, 730
(1986).

[129] J. L. Cardy, Is there a c-theorem in four dimensions? Phys.
Lett. B 215, 749 (1988).

[130] S. Giombi, I. R. Klebanov, and G. Tarnopolsky, Conformal
QEDd , F -theorem and the ε expansion, J. Phys. A: Math.
Theor. 49, 135403 (2016).

[131] T. Grover, A. M. Turner, and A. Vishwanath, Entanglement
entropy of gapped phases and topological order in three di-
mensions, Phys. Rev. B 84, 195120 (2011).

[132] T. Grover, Entanglement Monotonicity and the Stability of
Gauge Theories in Three Spacetime Dimensions, Phys. Rev.
Lett. 112, 151601 (2014).

[133] L. U. Ancarani and G. Gasaneo, Derivatives of any order
of the hypergeometric function pFq(a1, . . . , ap; b1, . . . , bq; z)
with respect to the parameters ai and bi, J. Phys. A: Math.
Theor. 43, 085210 (2010).

[134] D.-H. Lee and Z. Wang, Effects of Electron-Electron Interac-
tions on the Integer Quantum Hall Transitions, Phys. Rev. Lett.
76, 4014 (1996).

[135] I. F. Herbut, Quantum critical points with the Coulomb interac-
tion and the dynamical exponent: When and why z = 1, Phys.
Rev. Lett. 87, 137004 (2001).

[136] Z. Wang and S. Xiong, Electron-electron interactions, quan-
tum Coulomb gap, and dynamical scaling near integer
quantum Hall transitions, Phys. Rev. B 65, 195316 (2002).

[137] T. Stauber, F. Guinea, and M. A. H. Vozmediano, Disorder and
interaction effects in two-dimensional graphene sheets, Phys.
Rev. B 71, 041406(R) (2005).
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