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Amorphous Kane-Mele model in disordered hyperuniform two-dimensional networks
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As a prototype system of the quantum spin Hall effect, the Kane-Mele model which was proposed initially
in graphene promotes the search for two-dimensional topological materials of hexagonal lattices. Here we
generalize the Kane-Mele model to exotic amorphous systems which possess a remarkable structural property
called hyperuniformity. We show that, in general, the Quantum spin Hall state still survives in disordered
hyperuniform lattices that are constructed by structural transformation involving Stone-Wales defects. However,
compared to that in the honeycomb lattice, the gapped topological region in the phase diagram shrinks and
the size of the corresponding topological gap decreases remarkably in disordered hyperuniform lattices. By
introducing random vacancies in either perfectly ordered or disordered hyperuniform lattices, we further show
that the degradation or destruction of hyperuniformity is detrimental to the existence of gapped topological
states. We therefore propose that the hyperuniform metric of an amorphous lattice, which quantifies the extent of
disordered hyperuniformity, reflects its ability to preserve topological states. Our finding not only establishes the
possible underlying link between electronic topology and disordered hyperuniformity but also provides useful
guidance for the seeking of topological materials in amorphous states of matter.
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I. INTRODUCTION

Quantum spin Hall (QSH) effects, which are character-
ized by topological protected helical edge states within the
insulating bulk gap, have attracted tremendous attention in
the past decade [1–3]. So far, a large number of QSH ma-
terials have been discovered [4,5], most of them are based
on two prevailing lattice models, i.e., the Bernevig-Hughes-
Zhang (BHZ) [6] and Kane-Mele (KM) models [7,8]. The
former was initially derived from the HgTe/CdTe quantum
well system, where an inverted band order between valence
and conduction bands with opposite parities occurs at the �

point of the Brillouin zone [6]. On the other hand, the KM
model starts from a Dirac semimetal of a hexagonal lattice
such as graphene, where the valence and conduction bands
touch each other to form a Dirac cone as a consequence of
the hexagonal symmetry. As the band order has already been
inverted in this case, any finite spin-orbit coupling (SOC) lifts
the band degeneracy and opens a nontrivial SOC gap to turn
the system into a QSH state [7,8]. Consequently, it triggered
extensive research on other two-dimensional (2D) QSH ma-
terials of hexagonal lattices with large SOC, such as silicene,
germanene, stanene, and their derivatives [9–11]. In addition,
the two original models also inspired further research on the
interplay of topological band structure and many-body inter-
action effects, such as Hubbard repulsion [12–14], Anderson
localization [15–17], and quantum magnetism [18–20].
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Stimulated by the rapid progress in the search for QSH
states in crystalline materials, the study of topological phases
has lately extended to noncrystalline solids [21,22]. Mean-
while, some novel topological states, such as the exotic phase
of topological amorphous metal [23] and structural-disorder
induced higher-order topological phases [24,25], have been
predicted in amorphous systems. Recently, QSH states were
proposed in quasicrystals [26–28] and amorphous lattices
[29–34] based on the BHZ model with a band inversion mech-
anism. However, as the basic line of argument for constructing
the KM model is reliant on the hexagonal lattice, it seems that
the KM model cannot extend to amorphous systems where
lattice symmetries are broken. In the course of searching for
new amorphous topological materials, the following question
naturally arose: Is it possible to realize the QSH state in
amorphous lattices based on the KM model? If so, which type
of structural disorder prefers to sustain rather than ruin the
topological states?

We note that the recently proposed concept of hyper-
uniformity generalizes the traditional long-range order in
many-particle systems to not only include crystals and qua-
sicrystals but also some exotic amorphous systems [35–38].
Hyperuniform (or superhomogeneous) states of matter are
characterized by an anomalously large suppression of long-
wavelength (i.e., large length scale) density fluctuations,
which indicates that the static structure factor S(k) tends
to zero as the wave number k ≡ |k| tends to zero, i.e.,
limk→0 S(k) = 0. Disordered hyperuniform materials are spe-
cial amorphous states of matter that lie between liquids and
crystals. They are statistically isotropic without Bragg peaks
like liquids or glasses, and yet they completely suppress
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FIG. 1. (a) Schematic illustration of the bond flip process to form a SW defect. (b) A typical amorphous lattice of pSW = 0.06 (containing
3200 atoms); red lines indicate interatomic hoppings. (c) Structural factor S(k) of the amorphous lattice converges to zero as the wave vector
k approaches zero, indicating the preservation of the disordered hyperuniformity. The inset shows the pair correlation function ρ(r) of the
amorphous lattice, where the distance is scaled by the bond length of the original honeycomb lattice. (d) The energy spectrum of the amorphous
KM model in an disordered hyperuniform lattice with pSW = 0.06. The parameters used here are λR = 0.05, λS = 0.06, and λv = 0.1 eV
[marked as red square in Fig. 2(a)]. The inset shows the real-space distribution of a midgap state [marked as blue asterisk in (d)]. (e) Two-
terminal conductance G as a function of the Fermi energy E . The inset shows the local density of state at E = 0.08 eV [marked as cyan asterisk
in (e)] for the central amorphous sample. (f) Unfolded band structure of the amorphous KM model in the disordered hyperuniform structure,
where the black dash lines indicate the bands of the pristine KM model with the same parameters in the honeycomb lattice.

large-scale density fluctuations similar to perfect crystals.
Due to the hidden order on large length scales, disordered
hyperuniform systems are endowed with novel physical prop-
erties and attract considerable attention [39–48]. Recently,
Zheng et al. [49] reported the discovery of disordered hy-
peruniformity in 2D amorphous silica. Later, Chen et al.
[50] showed that Stone-Wales (SW) defects (i.e., a typical
topological defect composed of twinned pentagon-heptagon
pairs in honeycomb lattices) [51] preserve hyperuniformity
in 2D hexagonal structures, which are verified by recently
synthesized amorphous graphene [52].

In view of the recent progress in topological physics
and disordered hyperuniformity, here we generalize the KM
model to amorphous 2D lattices with disordered hyperuni-
formity. Specifically, we construct the disordered hyperuni-
form lattices by continuously performing hyperuniformity-
preserving SW transformations in 2D hexagonal network
structures. Then we consider a modified KM model where
the hopping integrals depend on intersite distances in the
disordered hyperuniform lattice. The existence of QSH states
is confirmed by numerical calculations and the topological
phase diagrams in different parameter spaces are studied in
depth. Finally, we investigate the effect of the degradation of
hyperuniformity by introducing random vacancies in either
perfectly ordered or disordered hyperuniform lattices and find
that the degree of disordered hyperuniformity reflects the abil-

ity of the amorphous lattice to preserve the gapped topological
state.

The organization of this paper is as follows. In Sec. II, we
describe the model and method, including the construction
of the disordered hyperuniform lattice, the amorphous KM
model, the calculation of the spin Bott index, and unfolded
band structure, and transport simulation based on the nonequi-
librium Green’s function (NEGF) formalism. In Sec. III, we
identify the QSH state in disordered hyperuniform lattices
and study the topological phase diagram of the amorphous
KM model. Finally, we summarize our main conclusions in
Sec. IV.

II. MODEL AND METHOD

A. Construction of the amorphous lattices

We construct amorphous lattices following the bond-
flipping procedure, which has been proved to be an ef-
fective approach for generating hyperuniform 2D networks
[49,50,53]. Specifically, starting from a pristine honeycomb
lattice, we randomly select a certain number of bonds and
rotate each bond by 90º, which changes its local network
topology of the original honeycomb lattice, as shown in the
inset of Fig. 1(a). The resulting defective local structures con-
taining flipped bonds are composed of two pentagons and two
heptagons, which are typically referred to as the SW defects.
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After the bond-flipping procedure, all structures are optimized
by molecular dynamics simulations using LAMMPS with the
modified reactive empirical bond order potential [54]. The SW
transformation generates amorphous lattices with fixed coor-
dination numbers, which is a realistic feature of covalently
bonded amorphous solids. In fact, it was previously known
that SW defects preserve hyperuniformity in the amorphous
2D networks [49,50]. The concentration of SW defects pSW

is estimated as the fraction of bonds in the network that un-
dergoes the SW transformation (i.e., pSW ≡ NSW/Nb, where
NSW is the number of SW transformations performed and Nb

is the number of bonds in the network). For comparison, we
also construct disordered lattices with vacancies by randomly
removing a certain number of atoms Nv . Similarly, the con-
centration of vacancies pv = Nv/Na is defined as the ratio
between Nv and the total number of atoms Na in the lattice.

B. Amorphous KM model

Due to the different bond length in the amorphous lattices,
we modify the KM model [7,8] by considering the distance
dependence of intersite hoppings which follows the Harrison’s
r−2 scaling law [55]. The tight-binding (TB) Hamiltonian of
the modified KM model for amorphous lattices is given by

H = d2
0

d2
i j

t
∑

〈i j〉
c†

i c j + iλR

∑

〈i j〉
c†

i (s × d̂i j )zc j,

+iλS

∑

〈〈i j〉〉
vi jc

†
i szc j + λv

∑

i

ξic
†
i ci, (1)

where c†
i (ci ) is a creation (annihilation) operator on site i. t is

the original spin-independent nearest neighbor (NN) hopping,
which is set to 1 eV for simplicity. The single and double
brackets 〈·〉/〈〈·〉〉 in summation run over all the NN or next-
NN (NNN) hopping sites. di j = |di j | and d̂i j = di j/di j are the
length and unit vector of di j , which is the NN vector from
the site i to j. Note that all lengths are scaled in units of the
pristine bond length d0 of the honeycomb lattice, and we set
d0 = 1 without loss of generality. vi j = (2/

√
3)(d̂ik × d̂k j ),

where site k connects the NNN sites i and j. s = (sx, sy, sz ) are
the Pauli matrices for the spin degree of freedom. λR and λS

are the strength of the Rashba and intrinsic SOC, respectively.
The last term is a staggered potential with ξi = ±1 indicating
the original A and B sublattices. Noting that the staggered po-
tentials is absence for elemental substances such as graphene
[56], silicene [9,57], germanene [10,58], and stanane [11], we
also discuss the amorphous KM model without the staggered
potential (λv = 0), as presented in the Supplemental Material
[59].

C. Spin Bott index

To verify the bulk topology of the amorphous KM model,
we compute the real-space topological invariant, the spin
Bott index Bs, which enables the identification of quantum
spin Hall (QSH) states in both crystalline and noncrystalline
systems [26,27]. To obtain the spin Bott index Bs, we first
split all eigenstates into two spin subspaces according to their
expectation values of sz. Specifically, we solve the eigenvalue

problem for the projected spin operator,

Pz|φi
±〉 = si

±|φi
±〉, (2)

where Pz = PszP, and P = ∑
J∈occ |ψJ〉〈ψJ | is the projector

operator of the occupied states. The subscript ± stands for the
sign of eigenvalues. Apart from some irrelevant zero eigen-
values, si

± are equal to ±1 precisely for systems with spin sz

conservation. For systems with spin-mixing terms (e.g., the
nonzero Rashba SOC), si

± deviates from ±1. In this case,
we can still construct the projected position operators for two
subspaces with opposite signs of si

±, respectively,

U± = P±ei2πX P± + Q±, V± = P±ei2πY P± + Q±, (3)

where P± = I − Q± = ∑
i |φi

±〉〈φi
±| is the projector to occu-

pied states of spin ±, and X,Y are the normalized coordinates
defined between [0,1). Finally, we calculate the Bott index for
each spin

B± = 1

2π
Im{tr[ln(V±U±V †

±U †
±)]} (4)

and obtain the spin Bott index as Bs = (B+ − B−)/2. Similar
to the nontrivial Z2 topological invariant which represents an
obstruction for the construction of Wannier functions with
a smooth gauge that respects the time-reversal symmetry
[60], the nonzero spin Bott index also indicates the topolog-
ical obstruction to construct exponentially localized Wannier
functions. Thus, it identifies the nontrivial topology of the oc-
cupied states. The effectiveness and robustness are guaranteed
by the insulating gap of the Hamiltonian and the spectral gap
of the projected spin operator Pz [27].

D. Unfolded band structure of amorphous lattices

To directly compare the band structures of a pristine honey-
comb lattice and amorphous lattice, we construct an effective
band structure for the amorphous KM model from a supercell
calculation using the band-unfolding method [61–64]. Since
the amorphous lattice is usually studied based on supercell
calculations with an artificial periodic boundary condition,
here we use upper and lower case symbols to define variables
corresponding to the supercell and primitive cell. For exam-
ple, K, R, and N (k, r, and n) represent the crystal momentum,
the lattice vector, and the index of orbitals for the supercell
(primitive cell). According to the scheme of linear combi-
nation of atomic orbitals (LCAO), the Jth supercell Bloch
state at K can be expanded under the atomic basis function
{|R + tN , N, σ 〉} as

|K, J〉 =
∑

N,σ

CK,J
N,σ

∑

R

eiK·(R+tN )|R + tN , N, σ 〉, (5)

where tN is the location of orbital N in the supercell and σ de-
notes spin up and spin down. We obtain the LCAO coefficient
CK,J

N,σ by directly diagonalizing Eq. (1) at a given K. Because
the notation of a basis function |R, N, σ 〉 in the supercell is
the equivalence of |R + r(N, σ ), n(N, σ ), σ 〉 in a primitive
cell under the TB approximation [63], the unfolded spectral
weight can be written as [65]

W K,J (k) =
∑

M,σ ′,N,σ

C̃K,J
N,σ CK,J

M,σ ′eik·[r(N,σ )−r(M,σ ′ )]. (6)
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Finally, we obtain the spectral function at a specific energy E
and primitive crystal momentum k as

A(k, E ) =
∑

K,J

W K,J (k)δ(E − EK,J ), (7)

where EK,J is the eigenenergy of band J at K [64,66]. For
the amorphous KM model, we construct supercells containing
over 3200 sites, the corresponding first Brillouin zone is so
tiny that only a single � point is adopted in the supercell
calculation.

E. Transport simulations based on NEGF method

As an important consequence of the bulk topology, the
existence of topological edge states leads to quantized charge
conductance [8]. We investigate the transport properties of
the amorphous lattice based on the nonequilibrium Green’s
function method [67–71]. In the transport simulation, a fi-
nite amorphous sample is coupled to two semi-infinite leads,
which can be broken down into periodic stacks of principal
layers. For simplicity, the principal layer is set the same as
the central part. and the interlayer couplings are determined
using the periodic boundary condition along the transport di-
rection and the open boundary condition in the perpendicular
direction.

III. RESULTS

A. Disordered hyperuniform lattice

According to previous studies [50], disordered hyperuni-
formity is preserved in the amorphous lattice as long as the
SW defect concentration pSW � 0.14. As a first attempt, we
investigate the amorphous KM model in the disordered hy-
peruniform 2D lattice with a fixed pSW = 0.06. We present
a typical configuration of the amorphous lattice with pSW =
0.06 in Fig. 1(b). Since hyperuniform systems can be charac-
terized by a structure factor S(k) with a radial power-law form
S(k) ∼ |k|α in the vicinity of the origin [36], we plot the S(k)
for the amorphous lattice, as shown in Fig. 1(c). The structural
factor S(k) goes to 0 with scaling exponent α ≈ 4.28 in the
limit k → 0, indicating the preservation of class I (α > 1)
disordered hyperuniformity [35,48,72]. Moreover, as shown
in the inset of Fig. 1(c), the pair correlation function ρ(r)
exhibits sharp peaks at isolated distances, indicating that local
structural characteristics, such as the average bond length, are
similar to their crystalline counterparts.

B. Topological state in disordered hyperuniform lattices

As an illustrative example of the QSH state in the dis-
ordered hyperuniform lattice, we present the detailed results
of the amorphous KM model with fixed parameters λR =
0.05, λS = 0.06, and λv = 0.1 eV in Figs. 1(d)–1(f). For the
disordered hyperuniform lattice shown in Fig. 1(b), the cal-
culated energy spectrum with an artificial periodic boundary
condition (PBC) shows an energy gap, indicating that the sys-
tem is an insulator. When an open boundary condition (OBC)
is adopted, a set of edge states, as expected, appears in pairs
in the gap region. Moreover, these states are localized on the
edges of the finite amorphous sample [see inset in Fig. 1(d)],

which coincides with the nontrivial topology characterized by
the nonzero spin Bott index (Bs = 1).

We also verify the conductive feature of these topological
edge states by directly calculating the two-terminal conduc-
tance based on the NEGF method. As shown in Fig. 1(e),
there is a nearly quantized conductance of G = 2e2/h in the
gap region of the energy spectrum, indicating the nontriv-
ial bulk topology. Moreover, the conductive channels of the
quantized plateau are mainly contributed by the topological
edge states, which is verified by the real-space distribution of
the local density of states for the central amorphous lattice at
E = 0.08 eV [see inset of Fig. 1(e)]. As the edge states are
not eigenstates of the perpendicular component of the spin, sz,
due to the existence of the Rashba SOC, the spin Hall conduc-
tances are not necessarily quantized. However, nonzero spin
accumulation persists at the edge when topological edge states
cross the Fermi level EF [7].

To directly examine the effect of structural amorphization
on the band structure, we unfold the energy spectrum of the
amorphous KM model into the primitive Brillouin zone of
the intrinsic honeycomb lattice. As shown in Fig. 1(f), the
unfolded band structure of the amorphous lattice retains the
overall band shape of the pristine KM model on the intrinsic
honeycomb lattice (black dash lines). However, SW defects
cause smearing and breaking up of the unfolded bands, which
reflects a finite lifetime of the quasiparticles in the amorphous
lattice. It is also worthy noting that SW defects give rise
to extra defect states, which forms new flat bands, around
the conduction band minimum and valence band maximum
[65,73]. Due to the broadening of the spectral functions and
the emergence of defect states, the effective energy gap of
the amorphous lattice decreases. It is, therefore, expected that
the energy gap would diminish gradually with the increasing
concentration of SW defects, as discussed later.

C. Phase diagram of the amorphous KM model

According to the pioneering work of Kane and Mele [7],
there is a clean phase boundary [marked as the black dotted
line in Figs. 2(a) and 2(b)] between the QSH and normal
insulator when λR/λS < 2

√
3 and λv/λS < 3

√
3. To deter-

mine the phase diagram of the amorphous KM model, all
physical quantities, such as the energy gap and spin Bott
index, are calculated with the configuration average of over
50 realizations of amorphous lattices for a given pSW. Fig-
ures 2(a) and 2(b) show the phase diagram of the amorphous
KM model in the (λR/λS, λv/λS) parameter space with a fixed
λS = 0.06 eV in accordance with Ref. [7]. For the amorphous
KM model, the QSH state is separate from a gapless state
(instead of a normal insulator for the pristine KM model) by
a curved phase boundary [the red dashed line in Fig. 2(a)],
although a normal insulator state would eventually appear at
a large value of λv/λS (>10, not shown here). It is noted
that the topologically nontrivial states of the amorphous and
pristine KM models share a similar area in the phase diagram,
which suggests the robust survivability of the QSH state in
amorphous systems. As shown in Fig. 2(b), the distribution
of Bs is compatible with the evolution of the energy gap in
Fig. 2(a), despite a slight discrepancy in the phase boundary
due to the numerical inefficiency for systems with small gaps.

195150-4



AMORPHOUS KANE-MELE MODEL IN DISORDERED … PHYSICAL REVIEW B 106, 195150 (2022)

(a)

(c)

Honeycomb
Amorphous

(b)

(d)

FIG. 2. (a), (b) The distribution of (a) energy gap and (b) spin Bott index in the (λR/λS, λv/λS) parameter space of the amorphous KM
model on the disordered hyperuniform lattice with pSW = 0.06. (c), (d) The distribution of (c) energy gap and (d) spin Bott index in the λR-λS

plane with fixed λv = 1 for the amorphous lattice. The black dotted line and red dashed line represent the gap-close boundary for the pristine
honeycomb lattice and amorphous lattice, respectively. The red square point in (a) [(c)] represents the system shown in Fig. 1 (Fig. S1 in the
Supplemental Material [59]). The blue up-pointing triangle in (d) stands for the system shown in Fig. S7 in the Supplemental Material [59].

This further confirms the topological phase in the amorphous
lattice. However, the energy gaps of amorphous lattices are
about one order of magnitude smaller than that of pristine ones
under the same TB parameters (see Fig. 3(a) and Fig. S1 in
the Supplemental Material [59]), implying a strong effect of
structural amorphization on the electronic topology.

Next, we study the phase evolution of pristine and amor-
phous KM models with a fixed staggered potential λv = 1 eV.
Figures 2(c) and 2(d) show the phase diagram in the λR-λS

plane. For the pristine KM model on the honeycomb lattice,
the QSH and normal insulator phases are divided by an energy
gap closing line, which is plotted as the black dotted line in
Figs. 2(c) and 2(d). On the contrary, for the amorphous KM
model, only a small region [the area surrounded by the red
dashed line in Fig. 2(c)] remains to be the QSH insulator
with a finite gap. The energy gap decreases dramatically to
almost zero with either increasing of λR or λS , as shown in
Fig. 2(c). Because both the Rashba and intrinsic SOC terms
depend on local atomic environments (i.e., the relative bond
orientations d̂i j), the effect of structural amorphization be-

comes more important when λR and λS dominate the spectral
gap. Remarkably, as shown in Fig. 2(d), the phase boundary of
the amorphous lattice from Bs calculations is distinct from the
gap-close boundary (red dashed line) in Fig. 2(c), but nearly
coincides with that of the pristine model. This implies that
the amorphous KM model highly preserves the topological
properties as the pristine model. Comparing Figs. 2(c) and
2(d), one can find that there exists a gapless region with
nonzero Bs in the right of the phase diagram (e.g., when
λS > 1.2). These states are dubbed gapless QSH insulators
[74], which are characterized by the closed gap and nonzero
spin Bott index. Both gapped and gapless QSH insulators
manifest the nontrivial topology with robust topological edge
states. Nevertheless, except for the edge states, the bulk states
can also contribute to the electronic transport in gapless QSH
insulators. Therefore, the electronic transport in gapless QSH
insulators are not dissipationless and the conductances are no
longer quantized (see Fig. S7 in Supplemental Material [59]).
Thus, we focus on gapped QSH insulators which have more
practical implications in potential applications.
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(a)

(b)

FIG. 3. (a) Semilog plots of the energy gap versus concentration
of SW defects or vacancies. The parameters used here are λR =
0.4, λS = 0.6, and λv = 1.0 eV. (b) Structural factor S(k) of amor-
phous lattices with SW defects and vacancies. The concentration
of SW defects is fixed at pSW = 0.02, while the concentration of
vacancies varies from pv = 0 to 0.06. The inset shows the energy
gap of disordered systems in (b) with the same TB parameters used
in (a).

In addition, we note that the normal insulator region in the
phase diagram seems unaffected for the pristine and amor-
phous lattices. For the normal insulator phase in the left
bottom region with small λS , the energy gap is mainly deter-
mined by the NN hopping term and the staggered potential.
According to Eq. (1), the hopping term depends only on
the NN coordination number (i.e., the number of NN sites)
and average bond length [see the inset of Fig. 1(c)], while
the staggered potential relies on the sublattice symmetry of
the honeycomb lattice. As the local structural environment is
fairly retained but lattice symmetries are broken in disordered
hyperuniform lattices, the normal insulator with a reduced
energy gap still preserves.

As a test, we also calculated disordered nonhyperuniform
lattices [36] with the same coordination number but different
distribution of bond lengths [75]. It is found that the normal
insulator phase disappears from the phase diagram while the
gapped QSH region remains (see Figs. S9 and S10 in the
Supplemental Material [59]). Alternatively, by randomly re-
moving NN bonds of a honeycomb lattice, one can reduce the
average coordination number but keep the same bond length.
Contrarily, the normal insulator phase remains and the gapped

QSH state disappears completely in this case (see Fig. S11 in
the Supplemental Material [59]). From the above calculations,
we conclude that the topological state would generally still
survive in amorphous lattices, although the gapped topologi-
cal area in the parameter space shrinks significantly and the
size of the corresponding topological gap is much smaller
compared to the pristine KM model with the same parameters.

D. Effect of defect types and concentrations

The above results suggest that the effect of structural amor-
phization to modify gapped topological states is triggered by
a gap-closing mechanism. Then, one may expect the ability of
disordered hyperuniform lattices to preserve the topological
gap is dependent on the defect concentration pSW; namely, the
larger pSW is, the smaller the nontrivial energy gap will be. To
reveal the dependence, we calculate the bulk energy gap as a
function of pSW. As shown in Fig. 3(a), with increasing pSW,
the topological energy gap decreases monotonically to nearly
zero, implying the occurrence of gap closure. It is previously
reported that introducing imperfections (such as vacancies) in
perfectly ordered or disordered hyperuniform systems would
degrade or destroy their original perfect hyperuniformity [76].
Therefore, we also consider disorder lattices with random
vacancies [77,78]. Noting that vacancies in graphene induce
midgap states which are mainly contributed by atoms nearest
the vacancies [65,79], it is expected that the presence of ran-
dom vacancies tends to reduce the topological gap. As shown
in Fig. 3(a), the energy gap indeed decreases rapidly with the
increasing vacancy concentration pv .

Different from SW defects which preserve hyperunifor-
mity in amorphous lattices [50], vacancies degrade hyper-
uniformity in proportion to the defect concentration pv [76],
which leads to significant damage to the topological state. To
analyze quantitatively the extent to which hyperuniformity is
destroyed when vacancies are introduced, we calculate the
hyperuniform metric [36,76],

H = S(k → 0)

S(kpeak)
, (8)

where S(kpeak) is the structure factor at the first dominant
peak. If the ratio H is of the order of 10−4 or smaller, the
disordered system can be regarded as effectively hyperuni-
form, otherwise it is nonhyperuniform [36,76,80]. We study
amorphous lattices with different vacancy concentrations pv

and a fixed pSW = 0.02. As shown in Fig. 3(b), the structural
factor S0(k) of the amorphous lattice without vacancy (pv =
0) vanishes rapidly as in the small-wave-vector limit, and the
corresponding hyperuniform metric is H ∼ 10−5. However,
for amorphous lattices with a finite concentration of vacan-
cies, the structural factor S(k) converges to a nonzero value
of the order of 10−2 in the limit k → 0. Consequently, the
hyperuniform metric H increases to the order of 10−1 ∼ 10−2,
indicating the nonhyperuniformity of these systems.

In addition, the vacancy-induced destruction of hyperuni-
formity also affects the topological gap. As shown in the inset
of Fig. 3(b), the energy gap decreases further with the increase
of pv , implying that the degradation of hyperuniformity de-
clines the ability to preserve bulk topology. Specifically, for
the disordered hyperuniform lattice with pSW = 0.02, a very
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low concentration of vacancies (e.g., pv = 0.02) would reduce
the energy gap by more than 50%. And the resultant gap size
is even smaller than that of disordered hyperuniform lattices
with pSW = 0.04 and pv = 0, indicating that vacancies are
more detrimental to the topological gap than SW defects.
When the concentration pv increases to 0.06, the energy gap
reduces to be comparable with that of amorphous lattices with
pSW = 0.14 in the absence of vacancies pv = 0. Given the
opposite trends of the topological gap and the hyperuniform
metric H with the increasing concentration of vacancies pv ,
we expect that H can signal the compatibility between the
structural amorphization and topological states. To further
strengthen our conclusion, we also investigate the relation
between H and the topological gap at high concentrations of
SW defects in the Supplemental Material [59].

IV. CONCLUSION

In summary, we studied the amorphous KM model in
disordered hyperuniform lattices which are constructed by
performing SW transformations on the honeycomb lattice. In
general, the QSH state survives in amorphous lattices with
disordered hyperunformity. The resulting QSH phase is con-
firmed by the nonzero spin Bott index, robust edge states,
and quantized conductance. With the increasing concentra-
tion of SW defects, the gapped topological region in the
phase diagram shrinks gradually, associated with the decline

of the topological energy gap. We also verify the existence
of gapless QSH insulators which manifest a weak metallic
behavior in amorphous networks, implying the impossibility
of observation of stable quantized conductance in gapless
states. In comparison, we also considered the degradation of
hyperuniformity induced by random vacancies and found that
the topological state vanishes rapidly after introducing vacan-
cies in either perfectly ordered or disordered hyperuniform
systems. We therefore expect that the hyperuniform metric H
of amorphous lattices, which delineates the effective hyper-
uniformity, signals their ability to sustain topological states.
As structural disorders are inevitable in the synthesis of real-
istic materials, our results point to the possible preservation
of topological states in disordered hyperuniform materials,
which largely release the high-quality constraint of preparing
topological materials.
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