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We theoretically study the anomalous Hall effect (AHE) in perovskites with antiferromagnetic (AFM) order-
ings. By studying the multiorbital Hubbard model for d electrons in perovskite transition metal oxides under the
GdFeO3-type distortion within the Hartree-Fock approximation, we investigate the behavior of intrinsic AHE
owing to the atomic spin-orbit coupling via the linear response theory. We consider the cases where there exist
two (d2) and three (d3) electrons in the t2g orbitals, and show that AFM ordered states can exhibit AHE. In the d2

case, C-type AFM states give rise to dc AHE in metals and optical (finite-ω) AHE in insulators accompanying
orbital ordering, while in the d3 case, a G-type AFM insulating state supports the optical AHE. By resolving the
components in the spin patterns compatible with the space group symmetry, we specify the collinear AFM
component to be responsible for the AHE, rather than the small ferromagnetic component. We discuss the
microscopic origin of the AHE: the collinear AFM spin structure produces a nonzero Berry phase from the
triangular units of the lattice, activated by the complex orbital mixing terms owing to the GdFeO3-type distortion,
and results in the microscopic Lorentz force.
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I. INTRODUCTION

The anomalous Hall effect (AHE) has extended its plat-
form over the years, from ferromagnets, where it was
originally discovered [1,2], to other magnetic metals exhibit-
ing different spin structures [3,4]. Modern research expanded
especially after the developments displaying that noncoplanar
spin configurations can produce the AHE, by the so-called
spin chirality mechanism, associated with the Berry phase felt
by conduction electrons [5,6]. Such a phenomenon is now
called the topological Hall effect, which is in turn widely used
to detect nonplanar spin structures, such as skyrmions [7].

On the other hand, coplanar spin structures can also host
the AHE under certain conditions, typically discussed for the
kagome lattice [8,9]. When the orbital degree of freedom is
considered, an orbital-driven Berry phase brings about the
AHE [8]. This is indeed detected in a coplanar-type magnet-
ically ordered state in a kagome compound Mn3Sn: a large
AHE, compared to that naively expected from the small net
magnetic moment from the spin canting, is experimentally
observed [10]. Engineering large-AHE materials is of interest,
and it is discussed that Weyl points in the band structure can
be the source [11–15].

Recently, it was shown that certain collinear antiferromag-
netic (AFM) states exhibit the AHE as well [16,17]. In a
theoretical study on an organic system κ-(BEDT-TTF)2X that
shows a collinear-type AFM order, an analytical formula for
the AHE is derived by the present authors and coworkers [17].
We find that the net magnetic moment from the spin canting
is not relevant, but the staggered moment, i.e., the AFM order

parameter, is essential together with the spin-orbit coupling
(SOC). In addition, an intuitive understanding was pursued
by counting the Berry phase in each triangular unit of the
lattice; the combination of the collinear AFM order and SOC
brings about the microscopic Lorentz force to the conduction
electrons, i.e., the origin of AHE.

All the types of AHE require time-reversal symmetry
breaking. Meanwhile, another spin transport phenomenon un-
der such time-reversal symmetry breaking has been discussed:
spin current generation, a key ingredient for spintronic de-
vices. Similarly to the case of AHE, the expansion of its stage
from ferromagnets to other materials is now widely investi-
gated. Among them, some AFM systems are pointed out to
show spin-split band structures even without a net moment,
which result in the spin current generation [18,19]; conditions
for the occurrence of such a spin splitting have theoretically
been pursued [20–25]. This mechanism does not require SOC,
and the generated spin current shows highly anisotropic be-
havior depending on the electric field direction. Therefore, it
is distinct from the spin Hall effect where transverse spin cur-
rent is driven by the electric field under the spin-momentum
locking owing to the SOC [26–29].

In the above-mentioned κ-(BEDT-TTF)2X, its AFM state
in fact hosts such a SOC-free spin current generation, and
then, by including the SOC, the AHE is activated [17]. Here
in this work, we show that the AHE appears also in inor-
ganic perovskite-type materials ABX3 with B taking transition
metals, where we have recently predicted the spin current
generation by the mechanism analogous to that in κ-(BEDT-
TTF)2X [30]. Indeed, a first-principles band calculation [31]
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showed that perovskite transition metal oxides LaMO3 (M =
Cr, Mn, and Fe), in their AFM insulating states, show strong
magneto-optical nonreciprocity; this is the finite-ω counter-
part of the AHE in metals that we call the optical AHE in the
following, and we expect the symmetry condition should be
the same.

By incorporating the SOC in the framework of the mul-
tiorbital Hubbard model for the perovskites, we theoretically
investigate the AHE and elucidate its microscopic mechanism.
In our previous work, the role of the GdFeO3-type distortion
from the cubic perovskite was emphasized [30]. Because of
this distortion, the similarity to the κ-type organic conductors
holds: crystallographically we can make a one-to-one corre-
spondence between the dimers of BEDT-TTF molecules and
the rotated BX6 octrahedra. In fact, they both belong to the
same space group Pbnm, or equivalently, Pnma. Below we
will show that the GdFeO3-type distortion is also essential
for the AHE: the orbital mixing effect together with the SOC
leads to the microscopic Lorentz force under AFM ordering.

The rest of the paper is organized as follows. In Sec. II, we
introduce the multiorbital Hubbard model for the d electrons
including the atomic SOC in ABX3; we consider the cases
where there exist two (d2) or three (d3) electrons per B site. By
applying the Hartree-Fock approximation, we determine the
ground state self-consistently, and then calculate the intrinsic
AHE by the linear response theory. In Sec. III A, the results for
the d2 case, where phase competition among different AFM
orderings shows up, are shown. The AHE becomes nonzero
when the C-type AFM ordered metallic states are stabilized;
this AFM pattern satisfies the same condition for the spin
current generation [30]. As for the d3 case shown in Sec. III B,
a G-type AFM ordered insulating state is stabilized, and re-
sults in the optical AHE. We discuss symmetry conditions
for the appearance of AHE in Sec. IV A and the microscopic
mechanism for the AHE in Sec. IV B, and propose material
systems to observe our predictions in Sec. IV C. Section V is
devoted to the conclusion of our work.

II. MODEL AND METHOD

The crystal structure of perovskite ABX3 with the GdFeO3-
type distortion is schematically shown in Fig. 1(a). The global
axes, xyz, correspond to the crystallographic axes, abc, in the
space group Pbnm, or, cab, in terms of the equivalent Pnma.
There are four BX6 octahedra in the unit cell, B1-B4, while
the rotation modes for the GdFeO3-type distortion of B1 as an
example are shown in Fig. 1(b). The two xy slices in the unit
cell are shown in Fig. 1(c), connected by the mirror symmetry.
B1 and B2, B3 and B4 (B1 and B4, B2 and B3) are respectively
connected by a glide operation with respect to the yz (xz)
plane, while there is no translation operation connecting them:
half-unit-cell translation symmetry is absent. Accordingly,
when a collinear AFM ordering within the unit cell occurs,
the resultant structure does not have the combined symmetry
of the time-reversal and half-unit-cell translation operations,
which might bring about the AHE, as suggested in Ref. [16].

Here we extend the multiorbital Hubbard model for the
transition metal B sites [32–35] constructed in our previous
work [30] from the multiorbital d-p model. We consider the
d2 and d3 cases to investigate the behavior of AHE under
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FIG. 1. (a) Perovskite structure with the GdFeO3-type distortion.
B1-B4 denote the four BX6 octahedra in the unit cell, connected by
symmetry operations thus crystallographically equivalent. (b) Two
kinds of BX6 rotation modes with the angles φ and ψ in the GdFeO3-
type distortion for the B1 site. The right panel shows the x′y′z′

axes, the local coordinate defined for each octahedron. (c) Schematic
illustration of the two xy slices in the unit cell. (d) The real-space
hopping paths of the intra- and inter-xy-plane NNN bonds between
the transition metal B sites through the ligands X, and their schematic
energy diagram. �ct denotes the p-d charge transfer energy.

several AFM spin patterns, therefore restrict ourselves to the
threefold t2g orbitals under the octahedral crystalline field.
These filling factors are chosen referring to previous works:
the spin current generation was demonstrated for the d2 case
[30], and the optical AHE was shown in the first-principles
band calculation for LaCrO3, a nominally d3 compound [31].
Nevertheless, the resultant conditions for the appearance of
AHE should generally be applicable to other filling factors as
well.

Our Hamiltonian consists of three parts: H = H0 + Hint +
HSOC. The first is the hopping term,

H0 =
NN∑

i jββ ′σ

[
t̂ d pd
i j (φ)

]
ββ ′c

†
iβσ c jβ ′σ

+
NNN∑

i jββ ′σ

[
t̂ d ppd
i j (φ)

]
ββ ′c

†
iβσ c jβ ′σ , (1)

where ciβσ and c†
iβσ are the annihilation and creation op-

erators of a d electron with spin σ for the t2g orbital β

(= x′y′, y′z′, z′x′), respectively, represented in the local x′y′z′
axes fixed on the ith octahedron as shown in Fig. 1(b), while
the spin axes are globally defined along the crystal axes
xyz, common to all the sites. The first and second terms
are the nearest-neighbor (NN) and next-nearest-neighbor
(NNN) hoppings, considering the second-order and third-
order perturbation processes through the ligand X p orbitals,
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respectively. The 3 × 3 transfer integral matrices, as a func-
tion of the major rotation angle φ of the GdFeO3-type
distortion [Fig. 1(b)], are given as

t̂ d pd
i j (φ) = − 1

�ct

[
τ̂

pd
i;i j

]� R̂i j (φ) τ̂
pd
j;i j,

t̂ d ppd
i j (φ) = 1

�2
ct

∑

k

[
τ̂

pd
i;ik

]� R̂ik (φ) τ̂
pp
ik;k j R̂k j (φ) τ̂

pd
j;k j, (2)

where �ct is the p-d charge transfer energy.
As introduced in Ref. [30], τ̂

pd
i;i j is the transfer integral

matrix from the t2g orbitals of the ith B site to the X p orbitals
shared by the ith and jth octahedra defined in the local coor-
dinate for the ith octahedron. R̂i j (φ) is defined by R̂i j (φ) =
R̂�

i (φ)R̂ j (φ), where R̂i(φ) represents the rotation matrix of the
ith octahedron, expressed by the Rodrigues rotation formula.
Note that the GdFeO3-type distortion is composed of two
rotation modes of the BX6 octahedra [30,36], as shown in
Fig. 1(b); the additional tilting angle ψ is given by a function
of φ as ψ = ± arctan[

√
2(1 − cos φ)/(2 + cos φ)]. The third-

order perturbation processes are shown in Fig. 1(d), via two X
sites involving another octahedron labeled k in Eq. (2). τ̂

pp
ik;k j

is the transfer integral matrix between the two X p orbitals
shared by the NN octahedra pairs (i, k) and (k, j), defined in
the coordinate for the kth octahedron; we take the sum over
two choices of k giving two paths, as drawn in Fig. 1(d).

In the present study, we evaluate τ̂
pd
i;i j and τ̂

pp
ik;k j using the

Slater-Koster parameters, Vpdπ , Vppσ , and Vppπ . Assuming the
cubic symmetry in each BX6 octahedron, the d-p hopping be-
tween the B t2g orbital β = γ δ(= x′y′, y′z′, z′x′) and X pγ (pδ)
orbital in the δ(γ ) direction from the B site is given by −Vpdπ ;
otherwise it is zero because of the orthogonality. The p-p hop-
pings are classified into three cases, Vppπ , (Vppσ + Vppπ )/2,
and (−Vppσ + Vppπ )/2, depending on the bond direction and
the p-orbital configurations [37]. Note that, owing to the
GdFeO3-type distortion, many interorbital matrix elements
of the effective hopping between d orbitals through the p
orbitals, which are absent for the undistorted case, become
nonzero. We will see below that these orbital mixing terms,
as well as the existence of the NNN hoppings that were not
considered in our previous study [30], play crucial roles for
the AHE.

The second part of our Hamiltonian is the on-site Coulomb
interactions between the d electrons, introduced in the con-
ventional manner as

Hint = U
∑

iβ

niβ↑niβ↓ + U ′

2

∑

iβ �=β ′
niβniβ ′

+ J
∑

iβ>β ′σσ ′
c†

iβσ c†
iβ ′σ ′ciβσ ′ciβ ′σ

+ I
∑

iβ �=β ′
c†

iβ↑c†
iβ↓ciβ ′↓ciβ ′↑, (3)

where the number operators are defined as niβσ = c†
iβσ ciβσ

and niβ = niβ↑ + niβ↓. U and U ′ represent the intra- and in-
terorbital Coulomb interactions, respectively, J is the Hund
coupling, and I is the pair hopping interaction.

The third part is the atomic SOC within the t2g orbitals
written as

HSOC = ζ
∑

i

l loc
i · sloc

i

= ζ
∑

iββ ′σσ ′

[
l loc

i

]
ββ ′ [UisiU

†
i ]σσ ′ c†

iβσ ciβ ′σ ′ , (4)

where l loc
i and sloc

i are the orbital and spin momentum opera-
tors, respectively, in units of h̄ in the local coordinate for the
ith octahedron; the latter is transformed from the spin in the
global axis, si = σ i/2 (σ i: Pauli matrices), used in the electron
operators, by the spin rotation operator,

Ui = e−imi·siψi e−ini·siφi ei π
4 sz

i , (5)

with mi and ni being the rotation axes for the GdFeO3-type
distortion: for example, mi = [100] and ni = [01̄1] for the B1

octahedron drawn in Fig. 1(b).
We treat Hint within the Hartree-Fock approximation,

where the mean fields 〈c†
iβσ ciβ ′σ ′ 〉 are sought for self-

consistently in the ground state, assuming four B sites [B1-B4

in Fig. 1(a)] in the unit cell. Since there is no inversion center
on either NN or NNN bonds between the B sites, the SOC
gives rise to spin canting between B-site spin moments as the
Dzyaloshinskii-Moriya interaction works [39,40].

Using the linear response theory, the intrinsic contribution
to the Hall conductivity is calculated as

σμν (ω) = h̄

iN

∑

klm

f (εkl ) − f (εkm)

εkl − εkm

[Jμ(k)]ml [Jν (k)]lm

h̄ω + εkm − εkl + iγ
,

(6)

where f (εkl ) is the Fermi distribution function for the Bloch
eigenstate with wave vector k and band index l . [Jμ(k)]ml is
the matrix element of the μ component of the total electric
current operator between these Bloch eigenstates, ω is the
frequency of the external electric field, and γ is the damping
factor; N is the total number of unit cells and the lattice
constants are set to unity.

In the following, we show results for typical model pa-
rameters for the 3d transition metal oxides: Vpdπ = 1 eV,
Vppσ = −0.6 eV, Vppπ = 0.15 eV, and �ct = 5 eV [33]. As
for the Coulomb interaction terms, we adopt the relations
U = U ′ + 2J and J = I [38]; we vary U while fixing the ratio
as U ′ = 2U/3 and J = U/6, and the rotation angle φ of the
BX6 octahedra. The SOC constant, which depends on B, is
also chosen to be a typical value, ζ = 0.04 eV [38] and the
damping factor is fixed to γ = 0.01 eV.

III. RESULTS

The SOC specifies the magnetic anisotropy and then the
mean-field solutions show certain spin directions. In fact,
all the possible patterns fall into either of the four types of
magnetic structures compatible with the space group Pbnm
(or Pnma) [41,42]. For example, when a C-type AFM pattern
for the x axis spin moment is realized, owing to the symmetry,
projections to the other axes must show ferromagnetic (F )
moments along the y axis and an A-type AFM pattern along
the z axis; it is written as CxFyAz [31,43,44]. For simplifica-
tion, we will represent each pattern by the major component
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FIG. 2. (a) Ground-state phase diagram in the U -φ plane for the
d2 case. Cx , Cy, and Ay represent the spatial patterns of the major
components of the AFM orders (see text), and A-OO and G-OO de-
note the orbital orderings. The hatched area represents the insulating
region while the rest is metallic. In Cx + Cy and Cy + Cz, the two spin
patterns coexist in an additive way. Schematic illustrations of the spin
structures in the (b) Cx and (c) Cy phases.

with the largest projected spin moments, e.g., as Cx-type AFM
state (see below). We will introduce others when they appear
in the following.

A. d2 system

In the case where there exist two d electrons per site, we
have shown in our previous study for the five-orbital Hubbard
model [30] that, as U is increased, the C-type AFM ordering
is stabilized in a broad range of φ, where the spin current con-
ductivity becomes nonzero in the metallic region for φ �= 0;
when U is increased further, orbital ordering (OO) sets in and
the system becomes insulating. Here such overall features are
unchanged by restricting to the three t2g orbitals and including
the NNN hopping terms and the SOC. In the following, we
show the ground-state properties first (Sec. III A 1) and then
analyze the AHE (Sec. III A 2).

1. Ground-state properties

The ground-state phase diagram on the U -φ plane is shown
in Fig. 2(a). We show the region above U = 0.7 eV where

 0.7  0.8  0.9  1.0  1.1  1.2  1.3  1.4  1.5

(b)

 0.7  0.8  0.9  1.0  1.1  1.2  1.3  1.4  1.5

(a)

FIG. 3. U dependences of the local spin moments along the
global crystallographic axis, 〈sμ

i 〉 (μ = x, y, z), and the electron den-

sities in the y′z′ and z′x′ orbitals, 〈ny′z′
i 〉 and 〈nz′x′

i 〉, respectively, for
(a) φ = 15◦ and (b) φ = 25◦.

magnetically ordered states are realized, and for 2.5◦ � φ �
27.5◦ adopted from the realistic range for perovskites. C-type
AFM ordered states mostly show the lowest energy, except
the large-U region for φ � 25◦ where an Ay-type AFM state
(GxAyFz) is stabilized. For U � 0.9 eV, the C-type AFM
orders coexist with OO, and the system turns insulating in
the hatched area. The overall trend is that the Cx-type AFM
pattern, schematically drawn in Fig. 2(b), is favored for small
φ, while Cy-type characterized as FxCyGz drawn in Fig. 2(c)
has lower energy in the large-φ region.

When OO exists, the structural symmetry is lowered, and
the magnetic structures do not follow the conditions men-
tioned in the beginning of this section. In fact, in the small-φ
region, in one phase, an A-type OO coexists with the Cx-type
and Cy-type AFM orders, while in another phase, a G-type OO
coexists with the Cy-type and Cz-type (AxGyCz) AFM orders.
Here we will not further discuss their properties, since they
only occupy small regions in the phase diagram.

In Fig. 3, mean-field expectation values on the four sites
B1-B4 are shown as a function of U , for φ = 15◦ and 25◦.
The three components of spin moment 〈si〉 and the electron
densities of the y′z′ and z′x′ orbitals that show OO are plotted.
In the C-type AFM phases, the x′y′ orbitals are almost filled
(not shown) to gain the energy of the AFM interaction within
the xy plane [33]. In the Ay-type AFM phase, on the contrary,
their occupation is small (�0.4); to gain the AFM interaction
along the z direction, the occupations of the y′z′ and z′x′
orbitals become large [see Fig. 3(b)]; note that the orbital
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FIG. 4. Energy band structures in (a) Cx and (b) Cy metallic phases at (U, φ) = (0.75 eV, 15◦) and (U, φ) = (0.75 eV, 25◦), respectively.
The colors of the bands indicate the magnitude of the expectation value of (a) 〈sx〉 and (b) 〈sy〉 for their Bloch states. The gray lines represent
the spin-degenerate bands on the zone boundaries (Y-M, M-X, and R-T) where 〈sx〉 and 〈sy〉 are not uniquely determined.

occupation pattern here in the Ay phase does not break the
Pbnm (or Pnma) symmetry therefore it is not an OO phase.

For φ = 15◦ in Fig. 3(a), the system is in the Cx-type
AFM phase below U = 0.9 eV: 〈sx

i 〉 shows large AFM spin
moments with a checkerboard pattern within the xy plane,
uniformly stacked along the z direction (C-type). As for 〈sz

i 〉,
the A-type AFM pattern, i.e., ferromagnetic spins within the
xy plane stacked in a staggered manner along the z direction,
shows up (Az), with spin moments less than one order of
magnitude smaller than in 〈sx

i 〉. Finally, 〈sy
i 〉 is uniformly spin

polarized for all sites (Fy), with further smaller spin moments:
this is the canted AFM component, with a tiny net moment of
the order of 10−3 μB per site, where μB is the Bohr magneton.
Therefore the system shows a nearly collinear AFM state but
with small spin canting owing to the SOC.

Above U = 0.9 eV, the G-type OO sets in (Cx + G-OO)
where the electron densities of the y′z′ and z′x′ orbitals be-
come alternating in the NaCl-type manner. There, although
the Cx component is almost unchanged from the paraor-
bital state below U = 0.9 eV, 〈sx

i 〉 becomes slightly different
among the four sites although it is hardly distinguishable in
Fig. 3(a); 〈sy

i 〉 also shows small difference between the distinct
sites owing to OO, (B1, B2) and (B3, B4). To be precise, on
top of the CxFyAz order, another spin pattern GxAyFz is added;
namely, it is a phase where CxFyAz and GxAyFz spin orders
coexist with the G-OO.

When φ = 25◦ [Fig. 3(b)], the Cy-type AFM phase is seen
for U � 1 eV; the largest AFM component is the C-type
pattern of 〈sy

i 〉. It accompanies Gz and Fx: the NaCl-type order
in 〈sz

i 〉 is one order of magnitude smaller than 〈sy
i 〉, and the

canted FM component 〈sx
i 〉 is of the order of 10−2 μB per

site. When G-OO coexists at larger values of U , Cy remains
to be the major component, while 〈sy

i 〉 and 〈sz
i 〉 split into

two components by the OO. The added small spin order is
characterized as AxGyCz: it is an FxCyGz + AxGyCz + G-OO
phase.

Figures 4(a) and 4(b) show the energy band structures
in the metallic state within the Cx and Cy phases, for (U ,
φ) = (0.75 eV, 15◦) and (0.75 eV, 25◦), respectively. The
symmetric lines in the first Brillouin zone (BZ) are indicated
in Fig. 4(c). The magnitudes of the expectation value of spin
moment along the x and y axes, sx and sy, respectively, for the
one-electron Bloch states are indicated as well. In both cases,

the bands are spin-split in the general k points except for the
planes kx = ±0.5 and ky = ±0.5, in units of the reciprocal
vectors, at the side edges of the first BZ. The SOC lifts the de-
generacy along kx = 0 and ky = 0 seen in our previous study
[30]. The Fermi surface is limited around the R and T points,
basically composed of the y′z′ and z′x′ orbitals, showing large
weight compared to the x′y′ orbital [30]. We note that the
behavior of the spin splitting and spin degeneracy in the kxky

plane is analogous to that in κ-(BEDT-TTF)2X [17,18,45].

2. Anomalous Hall effect

The AHE and its finite-ω counterpart (also called the
magneto-optical Kerr effect), i.e., the dc and optical Hall
conductivity, for the d2 case are displayed in Figs. 5 and 6,
respectively. Figures 5(a) and 5(b) show the U dependences
of the Hall conductivity for φ = 15◦ and 25◦, respectively,
corresponding to Figs. 3(a) and 3(b); Figure 5(c) shows their φ

dependences for a fixed value of U = 0.75 eV. The quantities
that become active under the magnetic orders are plotted:
σzx for the Cx-type and σyz for the Cy-type AFM patterns. In
these states, there are ferromagnetic components Fy and Fx,
respectively, and the AHE appears in the plane perpendicular
to them, reminiscent of the case for simple ferromagnets.
However, their magnitude compared to the net moments are
exceptionally large [3]. In fact, when we retain only the major
component Cx or Cy by artificially restricting our mean-field
solutions to impose the conditions 〈sy

i 〉 = 〈sz
i 〉 = 0 or 〈sx

i 〉 =
〈sz

i 〉 = 0, respectively, the calculated Hall conductivities σ̃zx

and σ̃yz, also plotted in Figs. 5(a) and 5(b), respectively,
roughly recover the original values. This indicates that the
collinear AFM order is essential for the appearance of the
AHE.

The U dependences of the AHE show a general trend that
it increases as we get away from the insulating state toward
small U , although the opposite behavior is sometimes seen;
for example, a nonmonotonic variation is seen in σzx (and
σ̃zx) in Fig. 5(a). Such a trend is also seen in the model
for κ-(BEDT-TTF)2X [17]: the AHE increases when we de-
crease the Hubbard U in the AFM metallic state, and shows
the largest value at the AFM-paramagnetic phase transition
boundary. This was explained from the derived analytical
formula of the dc Hall conductivity in a single-band model
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FIG. 5. U dependences of the dc Hall conductivity σμν : (a) σzx

for φ = 15◦ and (b) σyz for φ = 25◦. The hatched area are insulating,
where σμν = 0. σ̃zx and σ̃yz are the results obtained by artificially
restricting the mean fields to the major collinear AFM orders. (c) φ

dependences of them for U = 0.75 eV.

as a limiting case, by its dependence inversely proportional
to the AFM order parameter. Here also, the major AFM or-
der parameter, i.e., the Cx or Cy component decreases as we
decrease U , as seen in Fig. 3. The nonmonotonic behavior
is owing to the multiband nature of our model here, which
give rise to a more complicated band structure (Fig. 4) than in
κ-(BEDT-TTF)2X.

One point we emphasize is that the AHE vanishes at φ = 0,
as shown in Fig. 5(c). This lays out the necessity of the
GdFeO3-type distortion, which produces orbital mixing in
both NN and NNN hopping terms. We should also note that
the AHE always disappears when we set the NNN terms to
zero, even for finite φ. These terms are crucial for the AHE,
as we will discuss further in Sec. IV B.

The optical Hall conductivity is shown for several pa-
rameter sets in the AFM insulating states together with the
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FIG. 6. (a) The optical Hall conductivity spectra σzx (ω) and
σxy(ω) (inset), which are active in the Cx + G-OO phase, and (b) the
longitudinal conductivity σμμ(ω) for (U , φ) = (1.3 eV, 15◦). Those
for the Cy + G-OO phase, (c) σyz(ω) and (d) σμμ(ω) for (U , φ) =
(1.3 eV, 25◦). σ̃μν (ω) are analogous to those in Fig. 5.

longitudinal optical conductivity, in Fig. 6. The case for the
Cx + G-OO phase is shown in Fig. 6(a), where σzx(ω) is
active owing to the Cx-type AFM order as discussed above for
the dc AHE. In addition, σxy(ω), plotted in the inset, is also
induced. This is because of the lowering of symmetry owing
to OO, reflected in the AFM pattern as discussed above: the
additional spin component GxAyFz contains the ferromagnetic
component in the z direction. Nevertheless, the optical AHE
signal is not much changed when we switch off the 〈sy

i 〉 and
〈sz

i 〉 mean fields and leave only the 〈sx
i 〉 components (Cx and

Gx), as shown in σ̃zx(ω) and σ̃xy(ω), respectively, analogously
to the case of dc AHE. The values of ω where the optical Hall
signal becomes large roughly correspond to the opitcal d-d
excitations signaled in the longitudinal optical conductivity
σμμ(ω) [Fig. 6(b)], although the transverse spectra show more
complicated behavior.
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In Figs. 6(c) and 6(d), the optical Hall and longitudinal
conductivity spectra for the Cy + G-OO phase are shown,
respectively. In this case, only the AHE activated by the
Cy-AFM order, σyz(ω), is finite, and there is no additional
component. This is consistent with the fact that there is no
ferromagnetic component additional to Fy under OO, as dis-
cussed above: the additional spin pattern is AxGyCz (see also
Sec. IV A). The spectrum shape of σyz(ω) is complicated, but
the behavior that large values appear at charge transfer peaks
in the longitudinal signal holds as well.

B. d3 system

When there are three d electrons per site, as shown in
previous works [31,33,46], the G-type AFM ordered state is
generally stabilized. Our calculation shows that the ground
state at sufficiently large values of U shows the Gx-type AFM
order with the full pattern of GxAyFz. This is seen in the
U dependences of the mean-field order parameters shown in
Fig. 7(a) for φ = 20◦; the AFM pattern is schematically drawn
in Fig. 7(b). These results do not change much by varying φ,
in contrast to the d2 case. The G-type AFM state is supported
by the AFM interaction that is nearly spatially isotropic owing
to the high-spin configuration of t2g electrons, without the
orbital degree of freedom. In fact, the largest component 〈sx

i 〉
becomes nearly fully polarized (|〈sx

i 〉| = 3/2) at large U as
seen in Fig. 7(a). Now the Ay and Fz components from the
spin canting are much smaller; the net moment is less than
10−3 μB, as plotted in the inset of Fig. 7(a). Note that the
symmetry of this AFM pattern is the same as the Ay phase
in the d2 case seen above, whereas the major component is
different [see Fig. 3(b)].

The band structure in the Gx phase for (U , φ) = (1.3 eV,
20◦) is shown in Fig. 7(c). One can see a large band gap of
about 1.5 eV, in which the Fermi level situates: the system
is insulating. The spin splitting due to the AFM ordering is
seen in the general k points in the first BZ, similarly to Fig. 4;
however, there is a difference that 〈sx〉 = 0 on the kxky plane
at kz = 0. This is because the sign of the spin splitting is
reversed between kz > 0 and kz < 0, in contrast to the case
of the C-type AFM phases. This difference gives the distinct
behavior in the spin current generation between the C- and
G-type AFM phases, as discussed in Ref. [30]. The optical
AHE spectrum σxy(ω) appears at the energy region across this
gap, as shown in Fig. 7(d); the longitudinal optical transitions
are also seen there in a nearly isotropic manner [Fig. 7(e)],
consistent with the high-spin (t2g)3 configuration. Although
one naively does not expect the appearance of AHE in the
G-type AFM order as it is an apparent Néel state, under the
GdFeO3-type distortion the up- and down-spin sites are no
longer connected by symmetry operations of time reversal
combined with (half-unit-cell) translation, which thus results
in the nonzero optical AHE.

IV. DISCUSSIONS

A. Symmetry consideration

As mentioned above, the AFM spin orderings in the
GdFeO3-type distorted perovskite with the Pbnm (or Pnma)
space group fall into either of the four patterns: CxFyAz,

FIG. 7. (a) U dependences of the local spin moments along the
global crystallographic axis, 〈sx

i 〉, 〈sy
i 〉, and 〈sz

i 〉 (inset), for φ = 20◦.
The system is in the Gx-type AFM insulating state, whose spin
structure is schematically shown in (b). (c) The energy band structure
of the Gx-AFM insulator, for (U , φ) = (1.3 eV, 20◦). The colors of the
bands indicate the magnitude of the expectation value of 〈sx〉 for their
Bloch states. (d) The optical Hall conductivity spectra, σxy(ω), which
is active and σ̃xy(ω) obtained by artificially extracting the collinear
Gx-AFM order, and (e) the longitudinal conductivity σμμ(ω).

FxCyGz, GxAyFz, and AxGyCz. From the viewpoint of symme-
try, mutually independent one-mirror and two-glide symme-
tries in the perovskite structure, introduced in Sec. III, become
broken or preserved depending on the AFM pattern: the mirror
symmetry perpendicular to the z axis, the b-glide symmetry
perpendicular to the x axis, and the n-glide symmetry perpen-
dicular to the y axis, in terms of Pbnm.

Table I summarizes the relation between the symme-
try breaking by the four AFM patterns and the activated
AHE component obtained in the present numerical cal-
culations. The result indicates that, when the two of the
above-mentioned symmetries are broken by the AFM or-
dering, the effective magnetic field is generated parallel to
the axis common to the two broken mirror/glide planes and
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TABLE I. Relation between the AHE and the symmetries of the
AFM patterns on Pbnm structure. Y (N) represents the presence
(absence) of the symmetry.

AFM mirror ⊥ z b-glide ⊥ x n-glide ⊥ y active AHE

CxFyAz N N Y σxz

FxCyGz N Y N σyz

GxAyFz Y N N σxy

AxGyCz Y Y Y N/A

results in the AHE in the plane perpendicular to this field.
Based on this symmetry consideration, the AHE does not
occur in the AxGyCz phase, where all the three symmetries
are preserved. In fact, this is consistent with the previous DFT
calculations of the optical AHE in perovskites [31] as well as
the result in Sec. III B.

We note that in each of the AFM patterns in Table I, the
sx, sy, and sz components have the same symmetries; for
example, in the CxFyAz pattern, each component, Cx, Fy, and
Az, in common, breaks the mirror and b-glide symmetries and
preserves the n-glide symmetry. This implies that, once one
of the components appears, the AHE can be active, i.e., even
in the collinear AFM state without any spin canting. We also
note that Table I is applicable to the cases where AFM patterns
coexist with each other due to OO, and the activated AHE
components also occur in an additive way.

B. Fictitious magnetic field in real space

To see how the AHE can occur in complex magnets, esti-
mations of the microscopic magnetic fluxes in triangular units
in the lattice have provided intuitive understanding [3,5,8,47–
49]. The magnetic flux θ penetrating a closed path C is defined
by exp(iθ ) = exp(i

∫
C A · dr), where A represents the vector

potential associated with the path. The flux for a triangle i jk
is given by θ = arg(ti jt jktk j ) where tμν (μ, ν = i, j, k) are the
hopping integrals between μ and ν states; complex numbers
are required, either by the underlying spin structure (spin
chirality) or by orbital mixing owing to the SOC. This leads
to the Aharonov-Bohm effect and, as a consequence, to an
anomalous Hall response, if the total flux becomes nonzero.

As shown in Sec. III, when the spin ordering contains an F
component, namely, when the system holds a net moment, the
AHE in the plane perpendicular to its direction is activated.
However, unlike usual ferromagnets where the net moment
itself is the source of the Lorentz force to the conduction
electrons through the SOC, we have seen that the collinear
AFM component is rather essential for the AHE, as is also
implied from the symmetry consideration above. This sug-
gests the existence of a fictitious magnetic field triggered by
the AFM order combined with the SOC, which we discuss in
the following.

Let us discuss a real-space picture by taking the Cy-type
AFM state as an example, since it is realized in several com-
pounds, such as in AVO3 (A = La-Y) [50] and CaCrO3 [51],
while other AFM states can also be chosen to follow similar
procedures. We assume the collinear Cy pattern without other
minor components and see how a fictitious magnetic field

along the x direction appears, which gives rise to the AHE
in the yz plane seen in Sec. III A 2.

For this purpose, we analyze a simplified mean-field
Hamiltonian: HMF

AFM = H0 + HSOC + Hex. The first and sec-
ond terms are identical to Eqs. (1) and (4), respectively, while
the third term provides the Cy-type collinear exchange field
coupled to the t2g electrons, which is given by

Hex = −
∑

iβσσ ′
c†

iβσ hi · [si]σσ ′ciβσ ′ , (7)

where hi = (0,±h, 0) is the local field on the ith B site,
pointing along the global y axis. The spatial configuration of
hi is schematically shown in Fig. 8(a). Similarly to the case
of κ-(BEDT-TTF)2X in Ref. [18], in HSOC, the contribution
including the sy operator (in terms of the global axes), referred
to as the sy term in the following [52], is essential to the
AHE, while the other terms coupled to sx and sz are irrelevant.
Hence, we calculate the fictitious magnetic field acting on the
conduction electrons owing to the sy term, focusing on the
smallest triangular paths composed of two NN and one NNN
bonds.

The triangular paths that can generate the fictitious mag-
netic field along the x direction are in the (110) and (11̄0)
planes. Here we first focus on the (11̄0) plane highlighted in
Fig. 8(a). Figure 8(b) shows all the triangles on the two differ-
ent square plaquettes composed of the B ions in the unit cell.
For example, on the triangle composed of B1, B2, and B3 sites
[the lower leftmost panel of Fig. 8(b)], the above-mentioned
magnetic flux is given by

θ1 = arg
(
tB1B2tB2B3tB3B1

)
, (8)

where tB1B2 , tB2B3 , and tB3B1 are the hopping integrals between
the lowest eigenstates of HSOC + Hex on these sites [3,5,8,47–
49]. Since now sy is a good quantum number for the con-
duction electrons, conserved during moving around the path,
we can separately treat the magnetic fluxes acting on up-spin
(sy = 1/2) and down-spin (sy = −1/2) electrons.

The fluxes acting on an up-spin electron moving around the
smallest triangles are given by four kinds of values, θ1-θ4, as
shown in Fig. 8(b): θi satisfies the relation

∑
i=1,2,3,4 θi = 0.

They are classified into two types, depending on the arrange-
ment of the exchange fields: an up-spin electron experiences
two (one) parallel and one (two) antiparallel exchange fields
for the θ1 and θ3 (θ2 and θ4) cases. We call the former
(latter) triangular paths the low-(high-)energy paths. Then
we can make two kinds of triangles composed of pairs of
the low- or high-energy paths with (θ1, θ3) or (θ2, θ4), with
combined phases θ1 + θ3 = −� or θ2 + θ4 ≡ �, respectively.
Figure 8(c) shows the two possible ways of tiling these tri-
angular paths in the (11̄0) plane featured in Figs. 8(a) and
8(b). For instance, in the left panel, the B2B4B2B3 path, as-
sociated with �, is made up of the two high-energy paths,
while the B3B1B3B2 path, penetrated by −�, is composed of
the low-energy paths. Owing to this energy imbalance, the
cancellation of the magnetic fluxes ±� becomes incomplete
and the up-spin electrons feel more −� fluxes penetrating the
lower-energy paths.

In this way we can add up all the fluxes contribut-
ing to the x direction in the unit cells. There is another
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FIG. 8. (a) Schematic view of the Cy-type collinear exchange field. The arrows represent the directions of the local exchange field
hi = (0,±h, 0) at the transition metal B sites. We focus on the highlighted square plaquettes on the (11̄0) plane, where the broken lines show
the NNN bonds. (b) The smallest triangular paths and fictitious magnetic fluxes. The direction of each path is defined to be counterclockwise
when viewed from the x axis. (c) The triangular paths composed of pairs of triangles in (b), and fictitious magnetic fluxes acting on up-spin
(sy

i = 1/2) electrons. The two panels denote the two ways of tilings of the triangular paths. (d) The top view of the magnetic flux distribution
in the Cy-type AFM state. The small purple arrows represent the fictitious magnetic fluxes penetrating the square plaquettes on the (11̄0) and
(110) planes and the large one is the net flux along the −x direction.

independent (11̄0) plane shifted from that discussed above by
the vector (−1/2, 1/2, 0), and we find that it gives the same
contribution; the fictitious magnetic field points toward the
[1̄10] direction. On the other hand, as for the above argument
to the (110) plane, we find that the field points toward [1̄1̄0].
Consequently, the resulting net magnetic flux is along the x
axis as that along the y axis is canceled out, as shown in
Fig. 8(d), and then the up-spin conduction electrons driven
by the electric field in the yz plane drift to the perpendicular
direction.

The same argument can be done for the case of a down-spin
conduction electron. In this case, the signs of the magnetic
fluxes are inverted and low- and high-energy paths are inter-
changed from the up-spin electron case. As a result, all the
low-energy paths are penetrated by −�, also for the down-
spin electron case. Therefore, the down-spin electrons drift to
the same direction with the up-spin electrons under the electric
field, which results in the Hall conductivity σyz.

Let us comment on other contributions to the AHE. All the
AFM patterns discussed in this paper have minor spin com-
ponents, namely, the spin structures show spin canting owing
to the SOC under the distorted structure. Then if we consider
the triangular paths as above, the spin directions deviate from

collinear, and then the scalar spin chirality, which is defined
by the triple product of three spins on the triangle, becomes
nonzero. Therefore, in addition to the Lorentz force from the
collinear-type AFM spin component as derived above, there
should be a contribution from the spin chirality mechanism to
the full AHE. This can be one of the reasons for the difference
in the calculated σμν and σ̃μν shown in the previous section,
since the latter extracts the collinear component. Another pos-
sible reason for the difference is in the band structures for
the two cases because of the different mean-field values. In
fact, our calculations show notable change in the energy bands
near the Fermi surface by switching on/off the minor spin
components. Nevertheless, the U and ω dependences of the
Hall conductivities are well reproduced and the mechanism is
intuitively understood from the real-space fictitious field by
the contributions from the major AFM components, suggest-
ing that the present AHE is dominated by the collinear AFM
order.

C. Relevance to experiments

In the following we list some of the candidate materials:
AFM metals for observing the dc AHE, and AFM insulators
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for the optical AHE. We suggested in Ref. [30] that d2 com-
pounds with C-type AFM ordering might exhibit spin current
generation; they are also AHE active as we have shown above.
Typical examples are vanadates with a trivalent A3+, which
are mostly AFM ordered insulators at low temperatures. Sys-
tematic studies show that a competition occurs between two
phases with coexisting AFM order and OO [53]. One is typ-
ically realized in LaVO3 below T = 140 K, Cy-type AFM +
G-OO [50,54], reproduced in our phase diagram in Fig. 2(a).
Another is seen, e.g., in YVO3 below T = 77 K, Gz-type AFM
+ C-OO [55], which is not stabilized in our results; this is
presumably owing to the role of Jahn-Teller distortions [56],
not considered in our model. Investigating the optical AHE
across the two AFM patterns in AVO3 (A = La-Y) should be
interesting. Chromates with divalent A2+ are also nominally
d2 compounds, however, not many studies have been con-
ducted so far. A rare example is CaCrO3, an AFM metal below
T = 90 K, where experiments indicate the Cy-type pattern
without OO [51]. This corresponds to the Cy metallic phase in
our results therefore it is promising to observe the dc AHE σyz.

As for d3 systems, a first-principles band calculation
demonstrated nonzero optical AHE in LaCrO3 for the AFM
patterns above [31], while a later experiment suggested its
pattern to be either FxCyGz or GxAyFz [44]. Manganites with
divalent A2+, such as CaMnO3 and its lightly electron-doped
compounds are also candidates [57]: the major AFM compo-
nent in Ca1−xLaxMnO3 for 0 � x < 0.07 is assigned to be Gx

[58], and it is Gz in Ca1−xCexMnO3 for 0.025 � x < 0.075
[59]. A first-principles band calculation also supports a canted
G-type ground state in CaMnO3 [60].

As in CaMnO3 with La and Ce substitutions, in many
perovskites, chemical doping induces carriers with noninteger
d electrons per B site, and sometimes results in an AFM metal
out of insulating mother compounds [32]. eg systems with 3d
electrons more than d3 are also candidates. Moreover, 4d and
5d perovskites, incorporating stronger SOC than 3d systems

[61–63], may exhibit larger AHE when AFM orders are real-
ized. We leave the calculations using parameters suitable for
4d and 5d electrons, and for other filling factors than d2 and
d3 for future issues. Finally, first-principles band calculations
should provide quantitative estimation of the AHE and com-
plementary information about the material-specific electronic
structure, compared to our model study, which can expand the
parameter range and enables us to obtain systematic views.

V. CONCLUSION

We have proposed the appearance of the dc and optical
AHE in AFM perovskites with d2 and d3 electron configura-
tions. The AHE originates not from the net magnetization by
spin canting but from the collinear AFM ordering, in contrast
to the conventional AHE in ferromagnets and the topological
Hall effect due to the spin chirality mechanism in noncoplanar
magnets. The microscopic origin is the cooperative effect
of the fictitious magnetic field, emerging from the synergy
among the atomic SOC, the interorbital hoppings due to the
GdFeO3-type distortion, and the local exchange field owing
to the collinear AFM ordering; it gives rise to the net Lorenz
force acting on the conduction electrons. This mechanism
is not limited to d2 and d3 compounds, e.g., vanadates and
chromates, but applicable to a wide variety of perovskites
showing AFM ordering.
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