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Fractons on graphs and complexity

Pranay Gorantla ,1 Ho Tat Lam,2 and Shu-Heng Shao 3

1Physics Department, Princeton University, New Jersey, USA
2Center for Theoretical Physics, Massachusetts Institute of Technology, Massachusetts, USA

3C. N. Yang Institute for Theoretical Physics, Stony Brook University, New York, USA

(Received 12 September 2022; accepted 8 November 2022; published 21 November 2022)

We introduce two exotic lattice models on a general spatial graph. The first one is a matter theory of a compact
Lifshitz scalar field, while the second one is a certain rank-2 U(1) gauge theory of fractons. Both lattice models
are defined via the discrete Laplacian operator on a general graph. We unveil an intriguing correspondence
between the physical observables of these lattice models and graph theory quantities. For instance, the ground
state degeneracy of the matter theory equals the number of spanning trees of the spatial graph, which is a common
measure of complexity in graph theory (“GSD = complexity”). The discrete global symmetry is identified
as the Jacobian group of the graph. In the gauge theory, superselection sectors of fractons are in one-to-one
correspondence with the divisor classes in graph theory. In particular, under mild assumptions on the spatial
graph, the fracton immobility is proven using a graph-theoretic Abel-Jacobi map.
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I. INTRODUCTION

The past decades have seen an explosion of various ex-
otic lattice models including gapped fracton models [1–3]
(see Refs. [4–6] for reviews)1 and gapless models [9] with
subsystem symmetries. These models have various peculiar
properties.

(1) Exotic global symmetries such as (planar or fractal)
subsystem global symmetries [3,9], multipole global symme-
tries [10–13], etc. (See Refs. [14,15] for recent reviews on
generalized global symmetries [16].)

(2) In gapped fracton models, the logarithm of the ground
state degeneracy (GSD) grows, typically subextensively, with
the linear size of the system [17].

(3) Massive particle-like excitations that have restricted
mobility—a particle can be completely immobile, also known
as fracton, or can move only along a line, also known as
lineon, etc.
These peculiarities do not fit into the framework of con-
ventional continuum quantum field theory. In particular, the
gapped fracton models do not admit a topological quantum
field theory (TQFT) description at low energies. Instead, one
has to go beyond the standard relativistic continuum field
theory to describe them (see, for example, Ref. [18] for a
recent review, and references therein).

While there is a plethora of exotic lattice models, in most
cases, the spatial lattice is assumed to be cubic with manifest
translation invariance in the three spatial directions. There is
usually no obvious way to define them on a triangulation of
an arbitrary spatial manifold. See Refs. [19–21] for fracton

1The word “fracton” was also used in other different contexts, for
example, Refs. [7,8].

models on more general manifolds. In some examples, a fo-
liation of spatial manifold is essential [22–31]. In contrast,
standard lattice models, such as the Ising model, or the toric
code, can be defined on an arbitrary triangulation of the spatial
manifold.

What is the minimal structure we need to assume about
the lattice? We need a set of vertices, which host the degrees
of freedom, and a set of edges connecting them. This defines
a mathematical object known as a graph. For example, the
quantum Ising model can be defined on any spatial graph
where the interaction is along the edges. In fact, lattice models
on general graphs can be engineered in cold atom experi-
ments. See Refs. [32–34], for examples. One is then naturally
led to the question: can we construct exotic lattice models such
as fractons on a general graph? (See Ref. [35] for an example
in this direction.)

In this work, we propose two lattice models on an arbitrary
finite, undirected graph �. (For simplicity, we assume that the
graph is simple and connected. See Sec. II for the definitions
of these adjectives.) We work with a Euclidean space-time
where each spatial slice is � (see Fig. 1). Our results can
easily be recast in a Hamiltonian formulation. One model
is a matter theory based on a compact scalar field φ, while
the other is a pure U(1) gauge theory associated with the
global symmetry of the matter theory. We refer to them as
the Laplacian φ-theory and the U(1) Laplacian gauge theory,
respectively, because they are constructed using the discrete
Laplacian operator �L on a general graph �.

Naïvely, the Laplacian φ-theory can be viewed as a par-
ticular regularization of the compact scalar Lifshitz theory
described by the Lagrangian

L = μ0

2
(∂τφ)2 + μ

2
(∇2φ)2, (1.1)
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(a) (b)

FIG. 1. (a) The Euclidean space-time ZLτ
× �: The solid lines

and dots correspond to a spatial slice which is the graph �, and
the dashed lines represent the τ -links. (b) A spanning tree of �

associated with the highlighted (green) edges.

where ∇2 is the Laplacian differential operator on the spatial
manifold. On the other hand, the U(1) Laplacian gauge theory
can be viewed as a particular regularization of a rank-2 U(1)
gauge theory with gauge fields (Aτ , A) satisfying the gauge
symmetry2

Aτ ∼ Aτ + ∂τα, A ∼ A + ∇2α. (1.2)

The Lagrangian is

L = 1

2g2
E2, (1.3)

where E = ∂τ A − ∇2Aτ is the gauge invariant electric field.
However, these continuum Lagrangians do not specify the
systems unambiguously. In this paper, we use the modified
Villain formulation [36,37] to provide a precise formulation of
these systems. We will see that various physical observables
(including the GSD) depend sensitively on how the space is
discretized by a discrete lattice graph �. In particular, the
discrete Laplacian difference operator �L does not have a
smooth continuum limit to the differential operator ∇2.

It is important to emphasize that the Laplacian φ-theory
is not robust. Small deformations of the short distance theory
change the elaborate long distance structure that we find here.
(See the discussion in Ref. [38].) On the other hand, the U(1)
Laplacian gauge theory is a robust model. In an upcoming
paper [39], we will discuss gapped robust models that are
related to these models.

Since our models can be placed on any spatial graph �,
they can be defined in general spatial dimensions. In particu-
lar, we can take the graph � to be a d-dimensional torus lattice
for any d � 1. We will examine our models on 1d and 2d
torus graphs in details below. More generally, we can place
our models on a general graph where there is no clear notion
of dimensionality or locality. In particular, foliation structure
is not needed to define these models.

In analyzing these models, we follow the approach ad-
vocated in Refs. [37,38,40–48], i.e., we focus on the global
symmetries and pursue their consequences. Here are the high-
lights of these models.

2We call this a “rank-2” gauge theory because the gauge trans-
formation of the spatial gauge field involves a second-order spatial
derivative.

(1) The discrete global symmetry of the matter theory
is based on the Jacobian group of the graph �, denoted as
Jac(�), which is a well-studied finite Abelian group associated
with a general graph in graph theory. Relatedly, the discrete
time-like global symmetry [48], which acts on defects, is also
given by Jac(�) in the gauge theory.

(2) In the matter theory, the ground state degeneracy is
equal to | Jac(�)|, the order of the Jacobian group. This in
turn is equal to the number of spanning trees of �, which we
will define in the main text. The number of spanning trees is
a common measure of the complexity of a general graph in
graph theory (see, for example, Refs. [49,50]). This is one
manifestation of the UV/IR mixing phenomenon observed
in many of these exotic models: Certain low-energy/long-
distance observables depend sensitively on the short-distance
details [38,46]. In our matter theory, the GSD equals the com-
plexity of the discretized spatial graph, which can be thought
of as a short-distance regularization. Under a mild assumption
on �, the ground state degeneracy grows exponentially in the
number of vertices of � [50].3

(3) In the gauge theory, the defects, which describe the
worldlines of infinitely heavy probe particles, are immobile
under a mild assumption on the graph �. Therefore the U(1)
Laplacian gauge theory is a theory of fractons on a gen-
eral graph.4 There is a beautiful correspondence between the
physical observables for fractons and various graph-theoretic
concepts. In particular, the space of superselection sectors for
fractons is translated into the theory of divisors of a graph.
These features are analogous to those at the beginning of this
introduction. Interestingly, they are intimately related to some
well-studied properties of a graph.

This paper is organized as follows. In Sec. II, we collect
some useful mathematical facts about graphs, and functions
on their vertices. We define the Laplace difference operator
�L on the graph �, and discuss the properties of solutions to
discrete Laplace and Poisson equations. We introduce the the-
ory of divisors on a finite graph, and define the Picard group
and the Jacobian group of �. We also define the Abel-Jacobi
map on the graph and discuss its properties. We relate the
Jacobian group to the Smith normal form of the Laplacian op-
erator and the spanning trees of �. These results can be found
in any standard textbook on graph theory such as [51,52].
In Appendix, we solve the discrete Poisson equation on any
graph using the Smith decomposition of the Laplacian matrix.

3One might wonder if this system is as trivial as decoupled spins
on the sites of the graph because the GSD grows exponentially in
N in both cases. However, as we will show below, the origins of
this exponential behavior are very different. When both systems are
placed on a 2d torus spatial lattice with L sites in each direction,
the minimal number of generators of discrete momentum symmetry
group of the Laplacian φ-theory grows only linearly in L, whereas
it grows as L2 in the decoupled spin system. So the large GSD of
the Laplacian φ-theory comes from the large orders of some of the
generators of Jac(�) rather than the number of generators.

4In contrast to the matter theory, the ground state of the gauge
theory (which has fractons) is nondegenerate (assuming that the
θ -angle is not π ). See Sec. IV B.
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TABLE I. The correspondence between the theory of divisors
on the graph �, and the U(1) Laplacian gauge theory on the spatial
lattice �. The graph-theoretic objects in the left column are defined in
Sec. II, and the physical observables in the right column are discussed
in Sec. IV.

Theory of divisors U(1) Laplacian gauge theory

Graph � Spatial lattice

Divisor Configuration of fractons with
q ∈ F (�,Z) U(1) timelike charges q(i) at site i

Principal divisor Configuration of fractons in
q ∈ imZ �L trivial superselection sector

Degree of q Total U(1) timelike charge of
deg q := ∑

i q(i) a configuration of fractons

Picard group Space of all superselection sectors, or
Pic(�) space of all timelike charges

Jacobian group Space of superselection sectors
Jac(�) with trivial total U(1) timelike charge

Pontryagin dual of Pic(�)
Time-like symmetry groupU(1) × Jac(�)

In Sec. III, we introduce the Laplacian φ-theory on the
graph �. It is a self-dual model with momentum and wind-
ing symmetries. The momentum (or winding) symmetry is
U(1) × Jac(�), where Jac(�) is the Jacobian group of �. The
noncommutativity of the momentum and winding symmetries
leads to a ground state degeneracy equal to | Jac(�)|, the order
of the Jacobian group. This is also equal to the number of
spanning trees or the complexity of �. We note that this model
is not robust—deforming the theory by a winding operator
breaks the winding symmetry and lifts the degeneracy.

In Sec. IV, we introduce the U(1) Laplacian gauge the-
ory on the graph �. It is the pure gauge theory associated
with the momentum symmetry of the Laplacian φ-theory.
While the space-like global symmetry of this model is simply
U(1), the time-like global symmetry is U(1) × Jac(�). This
leads to selection rules on the mobility of defects. In partic-
ular, we prove that a defect with unit charge is completely
immobile when � is two-edge connected (we will define
this below). In other words, a single charged particle is a
fracton. We also give a complete characterization of mobility
of defects for arbitrary �. Finally, we note an interesting
correspondence between divisors in graph theory and config-
urations of fractons on �, which is summarized in Table I.

In both Secs. III and IV, we discuss two concrete exam-
ples where we place each model on spatial circle and torus
respectively. While the former gives the 1 + 1d dipole the-
ories analyzed in [48], the latter gives new 2 + 1d models
with interesting properties. These new 2 + 1d models can be
interpreted as extensions of the 1 + 1d dipole theories of [48]
to 2 + 1d. In fact, there are other ways to extend the 1 + 1d
dipole theories to 2 + 1d. In an upcoming paper [53], we
compare all these 2 + 1d models, and discuss their relation to
the 2 + 1d compact Lifshitz theory [54–63] and 2 + 1d rank-2
U(1) tensor gauge theory [10,11].

In another upcoming paper [39], we propose and analyze
two gapped ZN models on a graph. One of them is a fracton
model, which is a Higgsed version of the U(1) Laplacian
gauge theory on the graph. The other is a robust lineon model.
We also study these gapped models on a spatial torus, and
compare them with 2 + 1d rank-2 ZN tensor gauge theory
[64–68].

II. GRAPH THEORY PRIMER

In this section, we collect some important mathematical
facts about a finite graph, and functions on the graph valued in
Abelian groups such as R, U(1), Z, or ZN . Most of the details
can be found in a standard textbook on spectral graph theory
such as Ref. [51]. The theory of divisors on finite graphs is
discussed in Ref. [52].

Let � be a simple (at most one edge between any two
vertices and no self-loops), undirected (no directed edges),
connected (any two vertices are connected by a path) graph
on N vertices. We use i to denote a vertex (or site), and 〈i, j〉
or e to denote an edge (or link).

The adjacency matrix A of � is an N × N symmetric matrix
given by Ai j = 1 if there is an edge 〈i, j〉 between vertices
i and j, and Ai j = 0 otherwise. The degree di of a vertex
i is the number of edges incident to the vertex i. Let D =
diag(d1, . . . , dN) be the degree matrix. The Laplacian matrix
L of � is defined as L := D − A. Note that L is symmetric.

Here are some common examples/classes of graphs.
(1) A k-regular graph is a graph where every vertex has

degree k.
(12 A k-edge connected graph is a graph where removing

any k − 1 edges still leaves it connected.
(3) The complete graph on N vertices, denoted as KN, is a

graph that has an edge between any two vertices. Equivalently,
it is the only (N − 1)-regular graph on N vertices.

(4) The cycle graph on N vertices, denoted as CN, is a
graph that is a cycle or loop. Equivalently, it is the only
2-regular graph on N vertices.

(5) A tree on N vertices is a graph that contains no cycle
or loop. If it is connected, then it is called a spanning tree.

A. Discrete harmonic functions and Smith decomposition of L

Consider a function on the vertices of the graph, f : � →
X , where X is an Abelian group. We denote the set of all such
functions as F (�, X ). Define the discrete Laplacian operator
�L : F (�, X ) → F (�, X ) as

�L f (i) :=
∑

j

Li j f ( j) = di f (i) −
∑

j:〈i, j〉∈�

f ( j)

=
∑

j:〈i, j〉∈�

[ f (i) − f ( j)]. (2.1)

The additions and subtractions here are with respect to the
group multiplication of X . This is one of the most natural
and universal difference operators that can be defined on any
such graph �. The image of F (�, X ) under �L is denoted
as imX �L. A function f ∈ F (�, X ) is said to be discrete
harmonic if it satisfies

�L f (i) = 0, (2.2)
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where 0 is the identity element in X . We denote the set
of all X -valued discrete harmonic functions as H(�, X ), or
kerX �L, the kernel of �L.5

Given a g ∈ F (�, X ), consider the discrete Poisson equa-
tion

�L f (i) = g(i). (2.3)

If g = 0, then (2.3) is called a discrete Laplace equation. We
define the cokernel of �L as the quotient

cokerX �L := F (�, X )

imX �L
, (2.4)

Trivially, a solution to the discrete Poisson equation (2.3)
exists if and only if g is in the same equivalence class as 0
in this quotient.

Solutions to the discrete Poisson equation (2.3), if any, can
be found using the Smith decomposition [70] of the Laplacian
matrix L [71]. The Smith normal form of L is given by

R = PLQ or Rab =
∑
i, j

PaiLi jQ jb, (2.5)

where P, Q ∈ GLN(Z), and R = diag(r1, . . . , rN) is an N × N
diagonal integer matrix with nonnegative diagonal entries,
known as the invariant factors of L, such that ra|ra+1 (i.e.,
ra divides ra+1) for a = 1, . . . , N − 1. While R is uniquely
determined by L, the matrices P and Q are not. More details
on the structure of P and Q, and how to solve (2.3) using the
Smith decomposition of L can be found in Appendix.

One important result that we will repeatedly use is the
general solution to the U(1)-valued discrete Laplace equa-
tion. In Appendix [see in particular (A12)], we show that
the most general U(1)-valued discrete harmonic function f ∈
H(�, U(1)) on a graph � is given by

f (i) = 2π
∑
a<N

Qia pa

ra
+ c ∈ R/2πZ, (2.6)

parametrized by a circle-valued constant c, i.e., c ∼ c + 2π ,
and N − 1 integers pa = 0, 1, . . . , ra − 1. If we lift this solu-
tion to R, then it obeys

�L f (i) = 2π
∑
a<N

(P−1)ia pa ∈ 2πZ. (2.7)

B. Theory of divisors and the Abel-Jacobi map on a graph

There is an interesting analogy between the theory of
integer-valued functions on a finite graph and the theory of
divisors on a Riemann surface [52,72,73]. In this context, an
element of F (�,Z) is known as a divisor, and an element of
imZ �L is known as a principal divisor. Given a divisor q, its
degree is defined as deg q := ∑

i q(i). Let F k (�,Z) denote
the set of all degree-k divisors. Note that any principal divisor
has degree zero, so we can define the quotients:

Pic(�) := F (�,Z)

imZ �L
= cokerZ(�L ), Jac(�) := F0(�,Z)

imZ �L
,

(2.8)

5The space kerX �L is also known as the group of balanced vertex
weightings [69].

known as the Picard group and the Jacobian group, respec-
tively. As the names suggest, they are groups; in fact, they are
Abelian groups. They are related by the split-exact sequence

0 −→ Jac(�) −→ Pic(�)
deg−−→ Z −→ 0. (2.9)

The characteristic function of a vertex i is defined as
χi( j) := δi j . Given two vertices i, i′ ∈ �, we define the func-
tion si,i′ ( j) := χi( j) − χi′ ( j). For a fixed vertex i0 ∈ �, the
Abel-Jacobi map, Si0 : � → Jac(�), is defined as

Si0 (i) := [si,i0 ]. (2.10)

It is well-defined because si,i0 ∈ F0(�,Z). Even though i and
i0 play similar roles in the right-hand side of this equation,
they will play different roles below. This is the reason for the
asymmetry between them in the left-hand side of (2.10).

The Abel-Jacobi map enjoys several nice properties.
(1) It is a Jac(�)-valued discrete harmonic function that

vanishes at i0.
(2) For any Abelian group X , given a group homomor-

phism ψ : Jac(�) → X , the composition ψ ◦ Si0 : � → X is
an X -valued discrete harmonic function that vanishes at i0.
Conversely, for any X -valued discrete harmonic function f
that vanishes at i0, there is a unique group homomorphism
ψ f : Jac(�) → X such that f = ψ f ◦ Si0 . This is known as the
universal property of the Abel-Jacobi map.

(3) It is injective if and only if � is two-edge connected.
More generally, for any two vertices i, i′ ∈ �, Si0 (i) = Si0 (i′)
if and only if there is a unique path from i to i′ in �.

These properties of the Abel-Jacobi map turn the study of
discrete harmonic functions on a graph to a problem in group
theory.

C. Jacobian group and complexity of a graph

The Jacobian group Jac(�) defined in the previous subsec-
tion is a natural finite Abelian group that is associated with a
general graph �.6 It is closely related to the Smith normal
form of the Laplacian matrix L [see Appendix, especially,
around (A23)]. In particular, we have

Jac(�) ∼=
∏
a<N

Zra . (2.11)

The order of Jac(�) can be expressed in terms of the
nonzero eigenvalues of L:

| Jac(�)| =
∏
a<N

ra = λ2 · · · λN

N
, (2.12)

where 0 = λ1 < λ2 � · · · � λN are the eigenvalues of L.7

By Kirchhoff’s matrix-tree theorem [78], this is equal to the

6It has several different names in the graph theory literature, includ-
ing the sandpile group [74,75], the group of components [76], or the
critical group [77] of �, and it is related to the group of bicycles
[69] of �. In particular, it would be interesting to understand the
connection between our models and the Abelian sandpile model.

7The eigenvalues of L are real because L is symmetric. The zero
eigenvalue of L corresponds to the zero mode of the Laplacian
operator �L . The other eigenvalues are all positive because � is
connected.
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number of spanning trees of �. Here, a spanning tree of � is
a subgraph that is a spanning tree on the vertices of �. See
Fig. 1(b) for an example.

The number of spanning trees is the most fundamental and
well-studied notion of complexity in graph theory. Intuitively,
it is a measure of how “connected” � is. For example, it
is easy to see that the number of spanning trees of CN, the
cycle graph on N vertices, is N. In contrast, an old result of
Cayley states that the number of spanning trees of KN, the
complete graph on N vertices, is NN−2 [79].8 More generally,
when � is k-regular, the number of spanning trees of � grows
exponentially in N whenever k � 3 [50].

III. LAPLACIAN φ-THEORY ON A GRAPH

In this section, we study the modified Villain version [37]
of the Laplacian φ-theory on a graph �. It can be viewed as an
extension of the 1 + 1d dipole φ-theory of [48] with �2

x on the
1d spatial lattice replaced by the discrete Laplacian operator
�L on the graph �. The Euclidean space-time is ZLτ

× �, i.e.,
each spatial slice is �, and any two adjacent spatial slices are
connected by τ -links at each vertex [see Fig. 1(a)].

The modified Villain version of the Laplacian φ-theory is
described by the action9

S = β0

2

∑
τ̂ ,i

[�τφ(τ̂ , i) − 2πnτ (τ̂ , i)]2

+ β

2

∑
τ̂ ,i

[�Lφ(τ̂ , i) − 2πn(τ̂ , i)]2

+ i
∑
τ̂ ,i

φ̃(τ̂ , i)[�τ n(τ̂ , i) − �Lnτ (τ̂ , i)], (3.2)

where φ is a real-valued field at each site, n is an integer gauge
field at each site, nτ is an integer gauge field on each τ -link,
and φ̃ is a real-valued Lagrange multiplier on each τ -link.10

Recall that
∑

i stands for the sum over all the sites i of the
graph �. There is a gauge symmetry

φ(τ̂ , i) ∼ φ(τ̂ , i) + 2πk(τ̂ , i),

nτ (τ̂ , i) ∼ nτ (τ̂ , i) + �τ k(τ̂ , i),

n(τ̂ , i) ∼ n(τ̂ , i) + �Lk(τ̂ , i),

φ̃(τ̂ , i) ∼ φ̃(τ̂ , i) + 2π k̃(τ̂ , i), (3.3)

where k and k̃ are integer gauge parameters on the sites and
τ -links, respectively. This integer gauge symmetry makes the

8It is not too difficult to prove this using (2.12).
9One can also study the Laplacian XY model, which is described by

the following action:

S = −β0

∑
τ̂ ,i

cos [�τϕ(τ̂ , i)] − β
∑
τ̂ ,i

cos [�Lϕ(τ̂ , i)], (3.1)

where ϕ(τ̂ , i) is a circle-valued field on each site of the space-time
lattice. The momentum symmetry of this cosine model is the same
as that of the modified Villain model (3.2).

10We associate the τ -link between (τ̂ , i) and (τ̂ + 1, i) to the site
(τ̂ , i).

scalar fields φ and φ̃ compact. The lattice action (3.2) is a
particular lattice regularization of a compact Lifshitz scalar
field theory that can be defined on a general graph �. See
Ref. [37] for similar modified Villain formulations of various
standard and exotic theories of compact scalar fields.

A. Self-duality

Since L is symmetric, the modified Villain model (3.2)
is self-dual with φ ↔ φ̃ and β0 ↔ 1

(2π )2β
. Indeed, using the

Poisson resummation formula for the integers nτ , n, the dual
action is

S = 1

2(2π )2β

∑
τ̂ ,i

[�τ φ̃(τ̂ , i) − 2π ñτ (τ̂ , i)]2

+ 1

2(2π )2β0

∑
τ̂ ,i

[�Lφ̃(τ̂ , i) − 2π ñ(τ̂ , i)]2

− i
∑
τ̂ ,i

φ(τ̂ , i)[�τ ñ(τ̂ , i) − �Lñτ (τ̂ , i)], (3.4)

where (ñτ , ñ) are integer gauge fields that make φ̃ compact.
Under the gauge symmetry (3.3), they transform as

ñτ (τ̂ , i) ∼ ñτ (τ̂ , i) + �τ k̃(τ̂ , i),

ñ(τ̂ , i) ∼ ñ(τ̂ , i) + �Lk̃(τ̂ , i). (3.5)

When the graph is a two-dimensional torus graph, this is re-
lated to the self-duality of the 2 + 1d compact Lifshitz scalar
field theory discussed in Ref. [56].

B. Global symmetry and the Jacobian group

The momentum global symmetry of the action (3.2) corre-
sponds to shifting the fields φ, n by

φ(τ̂ , i) → φ(τ̂ , i) + f (i),

n(τ̂ , i) → n(τ̂ , i) + 1

2π
�L f (i), (3.6)

where the function f (i) obeys �L f (i) ∈ 2πZ. In other words,
f (i) is a solution to the U(1)-valued discrete Laplace equation,
i.e., f ∈ H(�, U(1)). The simplest example of such an f (i) is
a constant, i.e., f (i) = c with c ∼ c + 2π . This corresponds
to a U(1) momentum symmetry.

The most general solution to the U(1)-valued discrete
Laplace equation is given in (2.6), which leads to the follow-
ing momentum symmetry

φ(τ̂ , i) → φ(τ̂ , i) + 2π
∑
a<N

Qia pa

ra
+ c,

n(τ̂ , i) → n(τ̂ , i) +
∑
a<N

(P−1)ia pa. (3.7)

The momentum symmetry is parametrized by a circle-valued
constant c and N − 1 integers pa = 0, . . . , ra − 1. Here P, Q
and ra are associated with the Smith decomposition of L. Note
that the shift in n is given by (2.7). The parameter pa generates
a Zra discrete momentum symmetry for each a < N. The total
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momentum symmetry is therefore U(1) × Jac(�), where

Jac(�) =
∏
a<N

Zra , (3.8)

is the Jacobian group of the graph �. (See Ref. [69] for an
alternative interpretation of the momentum symmetry group
U(1) × Jac(�).) As we will see in Sec. III F 2, when � is a
2d torus lattice CL × CL, the minimal number of generators of
Jac(�) grows only linearly in L.

In addition to the U(1) × Jac(�) momentum symmetry,
there is also a U(1) × Jac(�) winding symmetry. This is to
be expected given the self-duality of the theory. The U(1)
winding charge is

Q̃ =
∑

i

PNin(τ̂ , i) =
∑

i

n(τ̂ , i), (3.9)

while the Zra discrete winding charge is

Q̃a =
∑

i

Pain(τ̂ , i) mod ra, (3.10)

for each a < N. They are conserved due to the flatness of
(nτ , n) imposed by the Lagrange multiplier φ̃.

C. GSD = Complexity

In this section, we compute the ground state degeneracy of
the Laplacian φ-theory. To facilitate this computation, we find
it convenient to first gauge fix the integer gauge fields. First,
we gauge fix nτ = 0 everywhere except at τ̂ = 0. The re-
maining integer gauge freedom is the set of time-independent
gauge transformations k(i). By the flatness condition, we also
have �τ n = 0, so n(τ̂ , i) = n(i). By the analysis in Appendix
around (A23), the honolomies of n(i) with gauge parameter
k(i) are precisely the winding charges (3.9) and (3.10).

In this gauge, a discrete winding configuration with dis-
crete winding charges Q̃a = pa mod ra for a < N and zero
U(1) winding charge, Q̃ = 0, is given by11

φ(τ̂ , i) = 2π
∑
a<N

Qia pa

ra
, n(τ̂ , i) =

∑
a<N

(P−1)ia pa. (3.11)

This is the configuration in (2.6) with c = 0. There are
| Jac(�)| = ∏

a<N ra such discrete winding configurations la-
beled by the p′

as. All these configurations have zero energy.
Therefore the ground state degeneracy is

GSD = | Jac(�)| =
∏
a<N

ra. (3.12)

As mentioned in Sec. II, this is equal to the number of span-
ning trees of the graph �, which measures how complex a
graph is. It follows that, when � is k-regular with k � 3, the
ground state degeneracy grows exponentially in the number of
vertices N [50].

Let us compare the Laplacian φ-theory with a decoupled
spin system: A finite dimensional spin at every site with trivial
Hamiltonian. In both systems, the GSD grows exponentially

11This configuration has Q̃ = 0 because
∑

i(P
−1)ia = 0 for a < N

as shown in (A3).

in the number of vertices N. How do we differentiate these
systems? For simplicity, let us place both systems on a torus
graph, � = CL × CL. Then, in the Laplacian φ-theory, the
minimal number of generators of the discrete momentum
symmetry group (3.8) grows linearly in L (see Sec. III F 2),
and some of these generators have very large orders. On the
other hand, in the decoupled spin system, there is a generator
at each site, so the symmetry group has L2 generators each
with the same fixed order. In other words, the large GSD of
Laplacian φ-theory comes from the large orders of some of
the generators of Jac(�) rather than the number of generators.

There is another way to derive the above ground state
degeneracy. The discrete momentum and winding symmetries
do not commute with each other: The shift (3.7) of n changes
the discrete winding charge Q̃a in (3.10) by pa mod ra. This
can be interpreted as a mixed ’t Hooft anomaly between the
discrete momentum and winding symmetries, and it leads to
the ground state degeneracy (3.12). In fact, the entire Hilbert
space is in a projective representation of Jac(�) × Jac(�), so
every state is | Jac(�)|-fold degenerate.

D. Spectrum

Let us now determine the spectrum of the Laplacian φ-
theory (3.2) by working with a continuous Lorentzian time
while keeping the space discrete. To do this, we first take
Lτ → ∞, and gauge fix nτ (τ̂ , i) = 0, so that n(τ̂ , i) = n(i)
and k(τ̂ , i) = k(i) are both time-independent. We then intro-
duce the lattice spacing aτ in the τ direction, and take the
limit aτ → 0 while keeping β ′

0 = β0aτ and β ′ = β/aτ fixed.
Finally, we Wick rotate from Euclidean time τ to Lorentzian
time t .

The equation of motion of φ is

β ′
0∂

2
0 φ(t, i) + β ′�L[�Lφ(t, i) − 2πn(i)] = 0. (3.13)

The general solution to this equation is

φ(t, i) = f (i) + φp(i) +
∑
λ �=0

φλ(i)eiωλt ,

n(i) = 1

2π
�L f (i) + pδiN, (3.14)

where f (i) = 2π
∑

a<N
Qia pa

ra
+ c is a U(1)-valued discrete

harmonic function given by (2.6), φp(i) is a real-valued so-
lution to the equation

�Lφp(i) = 2π p

(
δiN − 1

N

)
, p ∈ Z, (3.15)

φλ(i) is a real-valued eigenfunction of the Laplacian operator
with eigenvalue λ, i.e., �Lφλ(i) = λφλ(i), and the dispersion
relation for the “plane wave modes” is12

ωλ =
√

β ′

β ′
0

λ. (3.16)

12We refer to them as the “plane wave modes” because when � is
a torus lattice in any dimension, the eigenvalues are related to the
spatial momenta and the eigenfunctions form the usual Fourier basis.
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In other words, the plane wave spectrum is exactly the set of
nonzero eigenvalues of the Laplacian operator. The smallest
nonzero eigenvalue λ2 of the Laplacian operator is known as
the spectral gap [51], or the algebraic connectivity [80] of the
graph. When � is a torus lattice in any dimension, λ2 goes to
zero with increasing number of sites. However, on a general
graph, λ2 could be finite even for large N [81]. So the plane
wave spectrum could be gapped on a general graph, while it
is gapless on a torus lattice.

The zero mode c of f (i) in (3.14) is charged under the U(1)
momentum symmetry. After giving it a time dependence, its
energy is lifted quantum mechanically to

Emom = n2

2β ′
0N

, (3.17)

where n ∈ Z is the U(1) momentum charge. See Ref. [38] for
a similar phenomenon, where a classical zero mode is lifted
quantum mechanically, in another exotic model.

The rest of f (i) in (3.14) is charged under the discrete
winding symmetry Jac(�) with charges Q̃a = pa mod ra for
a < N. As we saw before, the discrete winding configurations
have zero energy.

Finally, φp(i) in (3.14) is charged under the U(1) winding
symmetry with charge Q̃ = p. The energy of the winding
configuration φp(i) is

Ewind = β ′

2

∑
i

[�Lφp(i) − 2π pδiN]2 = (2π )2β ′ p2

2N
. (3.18)

E. Robustness of GSD

The action (3.2) is said to be natural with respect to the
global symmetry if all the relevant terms that are invariant
under this symmetry are included in the action [82]. (See [38]
for a recent discussion of naturalness and robustness). For
example, a term that one can write on any graph is

−
∑
τ̂ ,i

cos[φ(τ̂ , i)]. (3.19)

However, this term is not invariant under the U(1) momentum
symmetry. So if we impose the U(1) momentum symmetry, it
is forbidden.

A more interesting term that one can write on any graph is
the usual nearest-neighbor interaction13

−
∑

τ̂ ,〈i, j〉
cos[φ(τ̂ , i) − φ(τ̂ , j)]. (3.20)

This term is clearly invariant under the U(1) momentum sym-
metry, i.e., shifts by constants. What happens if we impose the

13This is what one would write if one were studying the standard
XY model on the graph �. In fact, let M denote the number of edges
in �. Let us choose an orientation for each edge in � arbitrarily so
that we can talk about head and tail vertices of an edge. With respect
to this orientation, the (oriented) incidence matrix B of � is an N × M
matrix given by Bi,e = 1 if i is the head of e, Bi,e = −1 if i is the
tail of e, and Bi,e = 0 otherwise. One can easily check that BBT = L
independent of the choice of orientation. Therefore (3.20) is a “lower
order” term with respect to the Laplacian term.

full momentum symmetry U(1) × Jac(�)? When � is a tree,
the Jacobian group Jac(�) is trivial because | Jac(�)| = 1.
In this case, (3.20) is invariant, and so we should add this
term to the action (3.2). This does not affect the ground state
degeneracy because the latter is trivial anyway. On the other
hand, when � is not a tree, Jac(�) is nontrivial, which means
the momentum symmetry includes non-constant shifts. So,
(3.20) is forbidden.

Now, consider the winding operator

−
∑
τ̂ ,i

cos[φ̃(τ̂ , i)]. (3.21)

This term is invariant under the U(1) × Jac(�) momentum
symmetry, so if we impose only the momentum symmetry,
we should add it to the action (3.2). Indeed, (3.21) is relevant
because it breaks the U(1) winding symmetry and lifts the
ground state degeneracy. In other words, if we impose only the
momentum symmetry, the winding symmetry is not robust.

It is also natural to impose both momentum and winding
symmetries. In this case, (3.21) is forbidden and the ground
state degeneracy cannot be lifted.

F. Examples

In this section, we discuss the Laplacian φ-theory on 1d
and 2d spatial tori.

1. 1 + 1d dipole φ-theory

Let � be a cycle graph CLx (see Fig. 2), i.e., � = CLx =
ZLx , where Lx is the number of sites in the cycle. The operator
�L associated with the Laplacian matrix of � is the same as
the standard Laplacian operator �2

x in the x direction.14 The
action (3.2) becomes

S = β0

2

∑
τ -link

(�τφ − 2πnτ )2 + β

2

∑
site

(
�2

xφ − 2πnxx
)2

+ i
∑
τ -link

φ̃
(
�τ nxx − �2

xnτ

)
,

(3.22)
after replacing n with nxx. This is the modified Villain action
of the 1 + 1d dipole φ-theory [48], which is the lattice regu-
larization of the 1 + 1d compact Lifshitz scalar field theory.

The invariant factors of L are

ra =
⎧⎨
⎩

1, 1 � a < Lx − 1,

Lx, a = Lx − 1,

0, a = Lx.

(3.23)

It follows that the Jacobian group for a cycle graph CLx is

Jac(CLx ) = ZLx . (3.24)

14Actually, it is common to define �2
x f (x̂) = f (x̂ + 1) − 2 f (x̂) +

f (x̂ − 1), so �L = −�2
x . We will ignore this discrepancy in sign

since it does not affect the rest of the discussion.
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(a) (b)

FIG. 2. (a) The cycle graph C6 on Lx = 6 vertices. (b) The six spanning trees of C6 obtained by removing one of the six edges.

(3.24) is a demonstration of the fact that the large GSD comes
from the large orders of some of the genrators of Jac(�) rather
than the number of generators. Physically, (3.24) means that
the discrete momentum and winding symmetries of the 1 + 1d
dipole φ-theory are ZLx .

A spanning tree of a cycle graph CLx is obtained by re-
moving any one of the Lx edges. See Fig. 2. Therefore there
are exactly Lx spanning trees of a cycle graph CLx . In other
words, the complexity of CLx is simply Lx, which equals
the ground state degeneracy of the 1 + 1d dipole φ-theory.
This is in agreement with the analysis of Ref. [48]. As both
the discrete global symmetry [which is Jac(CLx )] and the
ground state degeneracy (which is | Jac(CLx )|) grow as we
increase the number of lattice sites Lx, it is clear that this
1 + 1d model does not have an unambiguous continuum limit
Lx → ∞.

Incidentally, using (2.12) to compute the ground state
degeneracy in terms of the eigenvalues of �2

x leads to the
following identity:

Lx = 1

Lx

Lx−1∏
kx=1

4 sin2

(
πkx

Lx

)
. (3.25)

2. 2 + 1d Laplacian φ-theory

Let � be a torus graph, i.e., � = CLx × CLy = ZLx × ZLy ,
where Li is the number of sites in the i direction. The operator
�L associated with the Laplacian matrix of � is the same as
the standard Laplacian operator �2

x + �2
y in the xy plane. The

action (3.2) becomes

S = β0

2

∑
τ -link

(�τφ − 2πnτ )2 + β

2

∑
site

[(
�2

x + �2
y

)
φ − 2πn

]2

+ i
∑
τ -link

φ̃
[
�τ n − (

�2
x + �2

y

)
nτ

]
.

(3.26)
We refer to this as the 2 + 1d Laplacian φ-theory. This is a
natural lattice regularization of the 2 + 1d compact Lifshitz
scalar field theory that can be defined on a general spatial
graph �.

The discrete momentum and winding symmetries are de-
termined by the Jacobian group of the torus graph. The latter
is quite complicated and not known in closed form in general
as a function of Lx, Ly. Below we record a few examples for

small values of Lx = Ly:

Jac(C2 × C2) = Z2 × Z2 × Z8,

Jac(C3 × C3) = Z6 × Z6 × Z18 × Z18,

Jac(C4 × C4) = Z2 × Z2 × Z8 × Z24 × Z24 × Z24 × Z96.

(3.27)
The minimal number of generators of Jac(CLx × CLy ) is at

most the number of nontrivial spatial integer gauge fields,
n′s, after gauge fixing. One can gauge fix the n′s to be
zero everywhere except along x̂ = 0, 1, or along ŷ = 0, 1.
Therefore, after gauge fixing, the number of nontrivial n′s
is min(2Lx, 2Ly). In other words, on a square torus graph
CL × CL, the minimal number of generators of Jac(CL × CL )
grows at most linearly in L. Once again, this shows that the
large GSD is due to the large orders of some of the generators
of Jac(�) rather than the number of generators.

The ground state degeneracy is given by the order of the
Jacobian group, GSD = | Jac(CLx × CLy )|. While there is no
closed form formula for the Jacobian group itself, the order
of this group can be expressed in terms of the eigenvalues
of the discrete Laplacian on the torus graph [see (2.12)]. We
therefore obtain

GSD = 1

LxLy

∏
0�ki<Li

(kx ,ky )�=(0,0)

[
4 sin2

(
πkx

Lx

)
+ 4 sin2

(
πky

Ly

)]

= LxLy

Li−1∏
ki=1

[
4 sin2

(
πkx

Lx

)
+ 4 sin2

(
πky

Ly

)]
,

(3.28)
where we used the identity (3.25) in the second line. Since
the discrete global symmetry Jac(CLx × CLy ) and the GSD
depend sensitively on the number theoretic properties of the
lattice sites Lx, Ly, this regularization of the 2 + 1d compact
Lifshitz theory does not have an unambiguous continuum
limit Lx, Ly → ∞.

Let us discuss the asymptotic behavior of the GSD on a
torus. The GSD grows asymptotically as[83]

ln GSD ≈ LxLy

π2

∫ π

0

∫ π

0
d pxd py ln[4 sin2(px ) + 4 sin2(py)]

= 4G

π
LxLy, (3.29)

where G ≈ 0.916 is the Catalan constant. This is consistent
with the intuition that the number of spanning trees of the
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torus graph CLx × CLy , which is also equal to GSD, grows
with Lx and Ly. Indeed, the result of Ref. [50] implies the
ground state degeneracy of the 2 + 1d Laplacian φ-theory
grows exponentially in LxLy.15

A closely related matter theory is the 2 + 1d dipole φ-
theory, which is another possible regularization of the 2 + 1d
compact Lifshitz field theory. While the 1 + 1d dipole φ-
theory is the same as the 1 + 1d Laplacian φ-theory, their
2 + 1d versions are very different. In an upcoming paper [53],
we compare the 2 + 1d Laplacian and dipole φ-theories, and
discuss their relation to the 2 + 1d compact Lifshitz theory.

IV. U(1) LAPLACIAN GAUGE THEORY AND FRACTONS
ON A GRAPH

We can gauge the momentum symmetry of the Laplacian
φ-theory by coupling it to the gauge fields (Aτ ,A; mτ ). Here
Aτ and A are real-valued fields living on the τ -links and the
sites, respectively, and mτ is an integer-valued gauge field
living on the τ -link. Their gauge transformations are

Aτ ∼ Aτ + �τα + 2πqτ ,

A ∼ A + �Lα + 2πq,

mτ ∼ mτ + �τ q − �Lqτ , (4.1)

where α is a real-valued gauge parameter and qτ , q are
integer-valued gauge parameters.

We can leave out the matter fields and study the pure gauge
theory of (Aτ ,A; mτ ). It is described by the following Villain
action

S = γ

2

∑
τ̂ ,i

E2 + iθ

2π

∑
τ̂ ,i

E, (4.2)

where E = �τA − �LAτ − 2πmτ is the gauge-invariant
electric field of (Aτ ,A; mτ ). The θ -angle is 2π -periodic,
i.e., θ ∼ θ + 2π , because

∑
τ̂ ,i E = −2π

∑
τ̂ ,i mτ ∈ 2πZ.

See Ref. [37] for similar Villain formulation of various stan-
dard and exotic U(1) gauge theories.

The theory (4.2) can be viewed as an extension of the 1 +
1d rank-2 U(1) gauge theory of [48] with �2

x on the 1d spatial
lattice replaced by the discrete Laplacian operator �L on the
graph �.

A. Global symmetry

Here we discuss the global symmetry of the U(1) Laplacian
gauge theory. There are two kinds of global symmetries that
we should distinguish in gauge theory. The first kind is the
spacelike global symmetry, which acts on operators and states
in the Hilbert space. The second kind is the timelike global
symmetry, which acts on defects extended in the (Euclidean)
time direction. In an ordinary, relativistic gauge theory, both
the spacelike and timelike global symmetries are parts of the
one-form global symmetry [16]. In contrast, the two global

15Here we have used the fact that the torus graph � = CLx × CLy is
4-regular in applying the result of [50]. In contrast, a cycle graph is
only 2-regular, and indeed the GSD of the 1 + 1d dipole φ-theory
grows linearly in the number of vertices.

symmetries can be drastically different in nonrelativistic sys-
tems. For example, even the groups for them can be different.
We refer the readers to Ref. [48] for comprehensive analyses
of time-like global symmetries in various standard and exotic
models.

This theory has an electric symmetry that shifts

(Aτ ,A; mτ ) → (Aτ ,A; mτ ) + (λτ , λ; pτ ), (4.3)

where (λτ , λ; pτ ) is a flat U(1) gauge field, i.e.,

�τλ − �Lλτ = 2π pτ . (4.4)

The shift (λτ , λ; pτ ) is subject to the gauge transformation
in (4.1). Below we will use this freedom of gauge transfor-
mation to gauge-fix the shift in a particular form. Using the
integer gauge parameter q, we can set pτ = 0 everywhere
except at τ̂ = 0. Similarly, we can use α to set λτ = 0 ev-
erywhere except at τ̂ = 0. Since

∑
i pτ (τ̂ , i) = 0 by flatness,

by the analysis in Appendix around (A23), we can use qτ to
set

pτ (τ̂ , i) = −δτ̂ ,0

∑
a<N

(P−1)ia pτa, (4.5)

where pτa = 0, . . . , ra − 1. Now, the remaining gauge sym-
metry is time-independent α(i) and q(i), and qτ (τ̂ , i) =
δτ̂ ,0q̄τ , where q̄τ is an integer. By flatness, we have �τλ = 0.
By the analysis in Appendix around (A22), using α(i) and
q(i), we can set

λ(τ̂ , i) = c

N
, (4.6)

where c ∼ c + 2π .
Since �τλ = 0, we have �Lλτ + 2π pτ = 0 at τ̂ = 0. Us-

ing (2.6), the solution for λτ is

λτ (τ̂ , i) = δτ̂ ,0

[
cτ + 2π

∑
a<N

Qia pτa

ra

]
, (4.7)

where cτ ∼ cτ + 2π .
The parameter c generates a U(1) electric global space-

like symmetry that shifts A → A + c
N . The operator charged

under this symmetry is

exp

[
i
∑

j

A(τ̂ , j)

]
. (4.8)

There are no other gauge invariant operators other than those
mentioned so far. Relatedly, there is no discrete electric global
symmetry.

The parameters cτ and p′
τas generate the electric global

time-like symmetry that shifts

Aτ (τ̂ , i) → Aτ (τ̂ , i) + δτ̂ ,0

[
cτ + 2π

∑
a<N

Qia pτa

ra

]
,

mτ (τ̂ , i) → mτ (τ̂ , i) − δτ̂ ,0

∑
a<N

(P−1)ia pτa. (4.9)

Comparing with (2.6), we see that a general time-like global
symmetry transformation is labeled by a U(1)-valued discrete
harmonic function, which forms the group U (1) × Jac(�).
This shift does not act on operators. Rather, it acts on defects
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that extend in the time direction. More specifically, a charged
defect at site i is

exp

[
i
∑

τ̂

Aτ (τ̂ , i)

]
. (4.10)

B. Spectrum

Let us now determine the spectrum of the U(1) Laplacian
gauge theory (4.2) by working with continuous Lorentzian
time while keeping the space discrete. To do this, we first
take Lτ → ∞, and gauge fix mτ (τ̂ , i) = 0. We then introduce
the lattice spacing aτ in the τ -direction, and take the limit
aτ → 0 while keeping γ ′ = γ aτ fixed. We also define a scaled
temporal gauge field Aτ = 1

aτ
Aτ and a scaled electric field

E = ∂τA − �LAτ while taking this limit. Finally, we Wick
rotate from Euclidean time τ to Lorentzian time t .

The Gauss law (i.e., the equation of motion of A0) gives

�LE (t, i) = 0 ⇒ E (t, i) = E (t ). (4.11)

In the temporal gauge A0(t, i) = 0, up to a time-independent
gauge transformation, this equation is solved by

A(t, i) = c(t )

N
, (4.12)

where c(t ) is circle-valued, i.e., c(t ) ∼ c(t ) + 2π . The effec-
tive action for c(t ) is

S =
∫

dt

[
γ ′

2N
ċ(t )2 − θ

2π
ċ(t )

]
. (4.13)

The Hamiltonian is

H = N
2γ ′

(
� + θ

2π

)2

, (4.14)

where � is the conjugate momentum of c(t ), and � ∈ Z
because of the periodicity of c(t ). For θ �= π , the ground state
is non-degenerate, while for θ = π there are two degenerate
ground states.

We now discuss the robustness of the theory. All the local
operators in the theory are made of the gauge-invariant electric
field E . Adding them to the Lagrangian does not change the
qualitative behavior of the theory. Hence, we conclude that the
theory is robust.

C. Mobility of defects: Fractons

The pure U(1) gauge theory has defects (4.10) describing
the world lines of infinitely massive particles. The U(1) time-
like symmetry charges of these defects can be interpreted as
the gauge charges of the massive particles. More generally, a
static configuration of particles carrying gauge charge q(i) at
site i is represented by the following defect:

exp

[
i
∑

τ̂

∑
i

q(i)Aτ (τ̂ , i)

]
, q(i) ∈ Z. (4.15)

A “move” at time τ̂0 on a configuration is implemented by ap-
plying products of operators exp[iA(τ̂0, i)] at different sites. A
configuration of particles can “move” to another configuration
if and only if there is a gauge-invariant defect that connects the
two.

Since the discrete Jac(�) time-like global symmetries de-
pend on the sites, they constrain the possible shapes of defects,
and therefore the mobility of the particles. Moreover, they lead
to superselection sectors of defects distinguished by the time-
like symmetry charges. See Ref. [48] for more discussions on
time-like global symmetries.

From (4.9), we see that the discrete time-like symmetry
charges of a static defect (4.10) at site i are given by Qia mod
ra with a = 1, 2, · · · , N − 1. The defect (4.10) can hop from
site i to site i′ if and only if the time-like charges of the defects
at these two positions are the same, i.e.,

Qi′a = Qia mod ra, a = 1, . . . , N − 1. (4.16)

Then, the defect that “hops” a particle from i to i′ at time τ̂ =
τ̂0 is

exp

[
i
∑
τ̂<τ̂0

Aτ (τ̂ , i)

]
exp

⎡
⎣i

∑
a<N, j

(
Qi′a − Qia

ra

)
Pa jA(τ̂0, j)

⎤
⎦

× exp

[
i
∑
τ̂�τ̂0

Aτ (τ̂ , i′)

]
. (4.17)

We are now ready to phrase the mobility of the probe
particles in terms of a graph-theoretic statement. The condi-
tion for mobility (4.16) is equivalent to the property that all
U(1)-valued discrete harmonic functions (2.6) take the same
value at i and i′. If the condition (4.16) is not satisfied, i.e.,
if there is a U(1)-valued discrete harmonic function that takes
different values at i and i′, then the particle cannot move from
i to i′. If this is the case for all i, i′ ∈ �, then the particle is a
fracton.

Using the Abel-Jacobi map Si0 , we can completely char-
acterize the mobility of a particle by general properties of
the graph �. (See Sec. II for the definition and properties of
the Abel-Jacobi map Si0 , where i0 is some fixed vertex of the
graph.)

(1) If there is a unique path from i to i′, then Si0 (i) =
Si0 (i′). By the universal property of Si0 , for any U(1)-valued
discrete harmonic function f that vanishes at i0, there is a
unique group homomorphism ψ f : Jac(�) → U (1) such that
f = ψ f ◦ Si0 . In particular, f (i) = f (i′) for any U(1)-valued
discrete harmonic function f ∈ H(�,U (1)), so there is no se-
lection rule imposed by the time-like symmetry for a particle
to move from i to i′. Indeed, Fig. 3 illustrates how a particle
can move from i to i′ in this case.

We can also write down the defect that describes this mo-
tion. Let i = i0 → i1 → · · · → iK−1 → iK = i′ be the unique
path from i to i′.16 The following defect describes the motion
of a particle from i to i′ at time τ̂ = τ̂0:

exp

[
i
∑
τ̂<τ̂0

Aτ (τ̂ , i)

]
exp

⎡
⎣i

K∑
k=1

∑
j∈�(k)

A(τ̂0, j)

⎤
⎦

× exp

[
i
∑
τ̂�τ̂0

Aτ (τ̂ , i′)

]
, (4.18)

16Note that the arrows do not imply that the edges are directed; they
only indicate that the path is from i to i′.
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FIG. 3. Motion of a particle between the vertices 2 and 3 that are connected by a unique path. In the graph, the numbers in black label
the vertices, and the integers in red denote the charges of the particles (a zero charge is omitted). The operator exp[iA(τ̂0, i)] creates a particle
of charge di at vertex i (where di is the degree of the vertex i) and particles of charge −1 at the neighbors of i at a fixed time τ̂0. The above
sequence of operators moves the particle from vertex 2 to vertex 3. In the correspondence between fractons and divisors, the integers in red
represent values of the divisor (a zero value is omitted), and the operator exp[iA(τ̂0, i)] changes the divisor by a principal divisor.

where �(k) is the connected component of ik in � \ 〈ik−1, ik〉
for 1 � k � K .

(2) On the other hand, if there are at least two paths
from i to i′, then Si0 (i) �= Si0 (i′). Moreover, there is a group
homomorphism ψ : Jac(�) → U (1) such that ψ (Si0 (i)) �=
ψ (Si0 (i′)).17 So, ψ ◦ Si0 is a U(1)-valued discrete harmonic
function that takes different values at i and i′. It follows that a
particle cannot move from i to i′.

In particular, if � is two-edge connected (such as a torus
graph), any particle on � is a fracton. More generally, any �

has the structure shown in Fig. 4, where each �k is a two-edge

17Let g, h be two distinct elements in Jac(�) = ∏
a<N Zra .

Any element of Jac(�) can be represented as an (N − 1)-tuple:
(s1, . . . , sN−1) where 0 � sa < ra. Say a < N is the first component
at which g and h differ. Consider the group homomorphism ψ :
Jac(�) → U (1) given by ψ : (s1, . . . , sN−1) �→ e2π isa/ra . It is clear
that ψ (g) �= ψ (h).

connected graph, and the “lines” represent paths/bridges con-
necting two vertices from adjacent �′

ks—for example, when
each �k is a single vertex, then � is a tree. By the last two
paragraphs, a particle on a bridge can move along that bridge
or any other bridge that shares a vertex with that bridge but
nowhere else, whereas a particle “inside” a �k cannot move
anywhere.

D. Correspondence between divisors and fractons

In this section, we unveil an intriguing correspondence
between the theory of divisors in graph theory and the U(1)
Laplacian gauge theory of fractons. A divisor q ∈ F (�,Z)
can be interpreted as a configuration of particles with the U(1)
time-like charge of the particle at a site i equal to q(i) ∈ Z.
More specifically, a static configuration of particles associ-
ated with a divisor q is represented by the defect (4.15). A
configuration can “move” to another configuration if and only
if their corresponding divisors differ by a principal divisor. In
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Γ7

Γ6

Γ5

Γ4

Γ3

Γ1

Γ2

FIG. 4. The structure of any graph �, where each �k is a
two-edge connected graph, and each line represents a path/bridge
between two vertices from adjacent �′

ks. As explained in the main
text, a particle on a bridge can move along that bridge or any other
bridge that shares a vertex with that bridge but nowhere else, whereas
a particle “inside” a �k cannot move anywhere. In the figure, this
means, particles on colored parts of � can move within the parts of
same color.

particular, a configuration associated with a principal divisor
can “trivially move” by first being annihilated and then being
created elsewhere.

These statements can be understood by the selection
rules imposed by the time-like symmetry. A time-like su-
perselection sector is labeled by the time-like charges of a
configuration. Since the time-like symmetry group is U(1) ×
Jac(�), the time-like charges are valued in the Pontryagin
dual, i.e., Z × Jac(�).18 The latter is precisely the Picard
group Pic(�). In other words, the superselection sector of
a configuration is associated with the equivalence class of
a divisor in Pic(�). In particular, the “trivial” superselec-
tion sector (with trivial time-like charges) corresponds to the
equivalence class of Pic(�) that consists of all the principal
divisors. Therefore a configuration can “move” to another
configuration if and only if they are in the same superselection
sector, i.e., if and only if their divisors differ by a principal
divisor (see Fig. 3 for an illustration). This correspondence is
summarized in Table I.

E. Examples

In this section, we discuss the U(1) Laplacian gauge theory
on 1d and 2d spatial tori.

1. 1 + 1d rank-2 U(1) tensor gauge theory

Let � be a cycle graph, i.e., � = CLx = ZLx , where Lx is
the number of sites in the cycle. The operator �L associated
with the Laplacian matrix of � is the same as the standard
Laplacian operator �2

x in the x direction. The action (4.2)
becomes

S = γ

2

∑
τ -link

E2
xx + iθ

2π

∑
τ -link

Exx, (4.19)

18Here, the Z factor is the U(1) time-like charge, which is associ-
ated with the degree of the divisor.

after replacing A with Axx. This is the modified Villain action
of the 1 + 1d U(1) dipole gauge theory or the rank-2 U(1)
tensor gauge theory [48].

The Smith decomposition of L is discussed in Sec. III F 1.
It follows that the discrete electric time-like symmetry is ZLx .
Since � is two-edge connected, a single particle cannot move,
i.e., it is a fracton. On the other hand, dipoles can move (this
is similar to the dipole motion shown in Fig. 3). This is in
agreement with the analysis of Ref. [48].

2. 2 + 1d U(1) Laplacian gauge theory

Let � be a torus graph, i.e., � = CLx × CLy = ZLx × ZLy ,
where Li is the number of sites in the i direction. The operator
�L associated with the Laplacian matrix of � is the same as
the standard Laplacian operator �2

x + �2
y in the xy plane. The

action (4.2) becomes

S = γ

2

∑
τ -link

E2 + iθ

2π

∑
τ -link

E, (4.20)

where E = �τA − (�2
x + �2

y )Aτ − 2πmτ . We refer to this as
the 2 + 1d U(1) Laplacian gauge theory. It is one of the natural
higher dimensional versions of the 1 + 1d rank-2 U(1) tensor
gauge theory of Sec. IV E 1.

While the Jacobian group of a 2d torus graph is not gener-
ally known, since � is two-edge connected, a single particle
is a fracton. In fact, in an upcoming paper [53], we show that
any finite set of particles with arbitrary charges is completely
immobile (modulo sets of particles that can trivially move) on
the infinite square lattice.

A closely related gauge theory is the 2 + 1d rank-2 U(1)
tensor gauge theory. While the 1 + 1d rank-2 U(1) tensor
gauge theory is the same as the 1 + 1d U(1) Laplacian gauge
theory, their 2 + 1d versions are very different. In an upcom-
ing paper [53], we analyze both of them in detail, and compare
their global properties.
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APPENDIX: DISCRETE POISSON EQUATION

In this Appendix, we solve the discrete Poisson equa-
tion (2.3) using the Smith decomposition (2.5) of the
Laplacian matrix.
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Consider a function on the vertices of the graph, f : � →
X , where X is an Abelian group. We are interested in the
case where X is R, U(1), Z, or ZN . Recall that the Laplacian
operator �L is defined as

�L f (i) =
∑

j

Li j f ( j) = di f (i) −
∑

j:〈i, j〉∈�

f ( j)

=
∑

j:〈i, j〉∈�

[ f (i) − f ( j)]. (A1)

One is usually interested in the following questions: given
a function g, is there a function f that satisfies the discrete
Poisson equation on the graph,

�L f (i) = g(i)? (A2)

If yes, how many solutions are there, and what are they?
One way to answer these questions is to use the Smith

normal form of L [71]. The Smith normal form of L is given by
R = PLQ, where P, Q ∈ GLN(Z), and R = diag(r1, . . . , rN)
is an N × N diagonal integer matrix with nonnegative di-
agonal entries such that ra|ra+1 (i.e., ra divides ra+1) for
a = 1, . . . , N − 1. While R is uniquely determined by L, the
matrices P and Q are not.

Using the index notation, we can write the Smith normal
form as Rab = ∑

i, j PaiLi jQ jb, where Rab = raδab. While all
the indices run from 1 to N, the indices i, j have natural
interpretation as vertices of the graph �, whereas the indices
a, b do not have an immediately obvious interpretation.

For a connected graph �, we have ra > 0 for a =
1, . . . , N − 1, and rN = 0. This implies∑

i

(P−1)ia = 0,
∑

i

(Q−1)ai = 0, (A3)

for all a < N. In fact, a convenient choice of P and Q is given
by the block matrices:

P =
(

P̃ 0
1T 1

)
, Q =

(
Q̃ 1
0T 1

)
, (A4)

where P̃, Q̃ ∈ GLN−1(Z). It follows that

P−1 =
(

P̃−1 0
−1T P̃−1 1

)
, Q−1 =

(
Q̃−1 −Q̃−11
0T 1

)
,

(A5)
where (A3) is manifest.

The discrete Poisson equation (A2) simplifies in a new
basis. Defining

f ′
a =

∑
i

(Q−1)ai f (i),

g′
a =

∑
i

Paig(i), (A6)

we can write (A2) as

ra f ′
a = g′

a, a = 1, . . . , N. (A7)

Each a gives an independent equation, so we can solve for
each f ′

a independently. If a solution exists for all a, then a
solution exists for (A2) and vice versa.

Let us first focus on a = N. Since rN = 0, a solution exists
if and only if g′

N = ∑
i PNig(i) = ∑

i g(i) = 0. This condition

is the same for any choice of X . If it is satisfied, then f ′
N can

take any value in X .19 This corresponds to the zero mode (or
constant mode because QiN = 1 for all i) of the Laplacian.

Now, consider a < N so that ra > 0. Let us analyze each X
separately.

(1) When X = R, there is always a unique solution

f ′
a = 1

ra
g′

a, (A8)

Assuming g′
N = 0, the solution in the original basis is

f (i) =
∑
a<N

∑
j

QiaPa j

ra
g( j) + c, (A9)

where c is a real constant (it is the zero mode mentioned
above).

(2) When X = U (1), the equation (A7) can be written as

ra f ′
a = g′

a mod 2π. (A10)

A general solution takes the form

f ′
a = 1

ra
g′

a + 2π pa

ra
, (A11)

where pa is an integer. Since X = U (1), the integers pa

and pa + ra correspond to the same solution, so there are
ra inequivalent solutions associated with pa = 0, . . . , ra − 1.
Hence, assuming g′

N = 0 mod 2π , the general solution in the
original basis is

f (i) =
∑
a<N

∑
j

QiaPa j

ra
g( j) + 2π

∑
a<N

Qia pa

ra
+ c, (A12)

where c ∼ c + 2π is a circle-valued constant. If we lift f and
g from U(1) to R, we have

�L f (i) = g(i) + 2π
∑
a<N

(P−1)ia pa. (A13)

(3) When X = Z, a unique solution

f ′
a = 1

ra
g′

a, (A14)

exists if and only if ra divides g′
a. So, assuming g′

N = 0, and
g′

a = 0 mod ra for a < N, the solution is

f (i) =
∑
a<N

∑
j

QiaPa j

ra
g( j) + p, (A15)

where p is an integer.
(4) When X = ZN , the equation (A7) can be written as

ra f ′
a = g′

a mod N. (A16)

A solution of the form

f ′
a = r̃a

gcd(N, ra)
g′

a + N pa

gcd(N, ra)
, (A17)

exists if and only if gcd(N, ra) divides g′
a due to Bézout’s

identity. Here, r̃a is a fixed integer given by r̃ara = gcd(N, ra)

19Note that since Q ∈ GLN(Z), if f takes values in X , then f ′ also
takes values in X .
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mod N (which exists by Bézout’s identity), and pa is an
integer.20 Note that pa ∼ pa + gcd(N, ra) because X = ZN ,
so there are gcd(N, ra) inequivalent solutions associated with
pa = 0, . . . , gcd(N, ra) − 1. So, assuming g′

N = 0 mod N ,
and g′

a = 0 mod gcd(N, ra) for a < N, the general solution
is

f (i) =
∑
a<N

∑
j

Qiar̃aPa j

gcd(N, ra)
g( j) +

∑
a<N

NQia pa

gcd(N, ra)
+ p,

(A18)
where p is an integer modulo N . Since gcd(N, rN) =
gcd(N, 0) = N , and QiN = 1, defining pN = p mod N , we
can write the above solution as

f (i) =
∑
a<N

∑
j

Qiar̃aPa j

gcd(N, ra)
g( j) +

∑
a

NQia pa

gcd(N, ra)
, (A19)

which exists if and only if g′
a = 0 mod gcd(N, ra) for all a.

There is another useful perspective to the above analysis.
Say g is a gauge field on �, and f is its gauge parameter with
gauge symmetry

g(i) ∼ g(i) − �L f (i). (A20)

In other words, g represents an equivalence class in
cokerX �L. We are interested in the gauge invariant informa-
tion in g, i.e., the holonomies of g. Alternatively, we can ask
what part of g can be gauge-fixed to zero, i.e., if there is an
f satisfying (A2). From the above analysis, the answer is the
following:

(1) When X = R, the only holonomy of g is g′
N = ∑

i g(i).
If g′

N = c, then we can use the gauge freedom to gauge-fix g
to be of the form

g(i) = (P−1)iNg′
N = δiNc, or g(i) = c

N
. (A21)

Here, c is a real constant.
(2) When X = U (1), the only holonomy of g is g′

N =∑
i g(i) mod 2π . If g′

N = c, then we can use the gauge free-
dom to gauge-fix g to be of the form

g(i) = (P−1)iNg′
N = δiNc, or g(i) = c

N
. (A22)

Here, c ∼ c + 2π is a circle-valued constant.
(3) When X = Z, the holonomies of g are g′

N = ∑
i g(i),

and g′
a = ∑

i Paig(i) mod ra for a < N. If g′
N = pN and g′

a =
pa mod ra, then we can use the gauge freedom to gauge-fix
g to be of the form

g(i) =
∑

a

(P−1)ia pa. (A23)

Here, pN is an integer, and pa = 0, . . . , ra − 1 for a < N.
When pN = 0, each function in (A23) represents a unique
equivalence class of Jac(�). Therefore

Jac(�) ∼=
∏
a<N

Zra . (A24)

(4) When X = ZN , the holonomies of g are g′
N = ∑

i g(i)
mod N , and g′

a = ∑
i Paig(i) mod gcd(N, ra) for a < N.

Since rN = 0, we can combine them into g′
a = ∑

i Paig(i)
mod gcd(N, ra) for all a. If g′

a = pa mod gcd(N, ra), then
we can use the gauge freedom to gauge-fix g to be of the form

g(i) =
∑

a

(P−1)ia pa. (A25)

Here, pa = 0, . . . , gcd(N, ra) − 1 for all a.

20There are infinitely many choices of r̃a but they can be absorbed
into pa.

[1] C. Chamon, Quantum Glassiness in Strongly Correlated Clean
Systems: An Example of Topological Overprotection, Phys.
Rev. Lett. 94, 040402 (2005).

[2] J. Haah, Local stabilizer codes in three dimensions without
string logical operators, Phys. Rev. A 83, 042330 (2011).

[3] S. Vijay, J. Haah, and L. Fu, Fracton topological order, general-
ized lattice gauge theory and duality, Phys. Rev. B 94, 235157
(2016).

[4] R. M. Nandkishore and M. Hermele, Fractons, Annu. Rev.
Condens. Matter Phys. 10, 295 (2019).

[5] M. Pretko, X. Chen, and Y. You, Fracton phases of matter, Int.
J. Mod. Phys. A 35, 2030003 (2020).

[6] K. T. Grosvenor, C. Hoyos, F. Peña Benitez, and P. Surówka,
Space-dependent symmetries and fractons, Front. Phys. 9,
792621 (2022).

[7] M. Y. Khlopov, Fractionally charged particles and quark con-
finement, JETP Lett. 33, 162 (1981).

[8] S. Alexander and R. Orbach, Density of states on fractals:
“Fractons”, J. Phys. Lett. 43, 625 (1982).

[9] A. Paramekanti, L. Balents, and M. P. A. Fisher, Ring exchange,
the exciton bose liquid, and bosonization in two dimensions,
Phys. Rev. B 66, 054526 (2002).

[10] M. Pretko, Subdimensional particle structure of higher rank
U(1) spin liquids, Phys. Rev. B 95, 115139 (2017).

[11] M. Pretko, Generalized electromagnetism of subdimensional
particles: A spin liquid story, Phys. Rev. B 96, 035119 (2017).

[12] M. Pretko, The fracton gauge principle, Phys. Rev. B 98,
115134 (2018).

[13] A. Gromov, Towards Classification of Fracton Phases: The
Multipole Algebra, Phys. Rev. X 9, 031035 (2019).

[14] J. McGreevy, Generalized symmetries in condensed matter,
arXiv:2204.03045.

[15] C. Cordova, T. T. Dumitrescu, K. Intriligator, and S.-H. Shao,
Snowmass White Paper: Generalized Symmetries in Quantum
Field Theory and Beyond, in 2022 Snowmass Summer Study, 5,
2022.

[16] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, Generalized
global symmetries, J. High Energy Phys. 02 (2015) 172.

[17] J. Haah, A degeneracy bound for homogeneous topological
order, SciPost Phys. 10, 011 (2021).

[18] T. Brauner, S. A. Hartnoll, P. Kovtun, H. Liu, M. Mezei, A.
Nicolis, R. Penco, S.-H. Shao, and D. T. Son, Snowmass white
Paper: Effective field theories for condensed matter systems, in
2022 Snowmass Summer Study, 3, 2022, arXiv:2203.10110.

195139-14

https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1146/annurev-conmatphys-031218-013604
https://doi.org/10.1142/S0217751X20300033
https://doi.org/10.3389/fphy.2021.792621
https://doi.org/10.1051/jphyslet:019820043017062500
https://doi.org/10.1103/PhysRevB.66.054526
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.96.035119
https://doi.org/10.1103/PhysRevB.98.115134
https://doi.org/10.1103/PhysRevX.9.031035
http://arxiv.org/abs/arXiv:2204.03045
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.21468/SciPostPhys.10.1.011
http://arxiv.org/abs/arXiv:2203.10110


FRACTONS ON GRAPHS AND COMPLEXITY PHYSICAL REVIEW B 106, 195139 (2022)

[19] A. Gromov, Chiral Topological Elasticity and Fracton Order,
Phys. Rev. Lett. 122, 076403 (2019).

[20] K. Slagle, A. Prem, and M. Pretko, Symmetric tensor
gauge theories on curved spaces, Ann. Phys. 410, 167910
(2019).

[21] A. Jain and K. Jensen, Fractons in curved space, SciPost Phys.
12, 142 (2022).

[22] K. Slagle and Y. B. Kim, X-cube model on generic lattices:
Fracton phases and geometric order, Phys. Rev. B 97, 165106
(2018).

[23] W. Shirley, K. Slagle, Z. Wang, and X. Chen, Fracton Mod-
els on General Three-Dimensional Manifolds, Phys. Rev. X 8,
031051 (2018).

[24] W. Shirley, K. Slagle, and X. Chen, Fractional excitations in
foliated fracton phases, Ann. Phys. 410, 167922 (2019).

[25] W. Shirley, K. Slagle, and X. Chen, Foliated fracton order in the
checkerboard model, Phys. Rev. B 99, 115123 (2019).

[26] W. Shirley, K. Slagle, and X. Chen, Foliated fracton order from
gauging subsystem symmetries, SciPost Phys. 6, 041 (2019).

[27] K. Slagle, D. Aasen, and D. Williamson, Foliated field theory
and string-membrane-net condensation picture of fracton order,
SciPost Phys. 6, 043 (2019).

[28] W. Shirley, K. Slagle, and X. Chen, Twisted foliated fracton
phases, Phys. Rev. B 102, 115103 (2020).

[29] K. Slagle, Foliated Quantum Field Theory of Fracton Order,
Phys. Rev. Lett. 126, 101603 (2021).

[30] P.-S. Hsin and K. Slagle, Comments on foliated gauge theories
and dualities in 3+1d, SciPost Phys. 11, 032 (2021).

[31] H. Geng, S. Kachru, A. Karch, R. Nally, and B. C. Rayhaun,
Fractons and exotic symmetries from branes, Fortschr. Phys. 69,
2100133 (2021).

[32] G. Bentsen, I.-D. Potirniche, V. B. Bulchandani, T. Scaffidi, X.
Cao, X.-L. Qi, M. Schleier-Smith, and E. Altman, Integrable
and Chaotic Dynamics of Spins Coupled to an Optical Cavity,
Phys. Rev. X 9, 041011 (2019).

[33] G. Bentsen, T. Hashizume, A. S. Buyskikh, E. J. Davis, A. J.
Daley, S. S. Gubser, and M. Schleier-Smith, Treelike Interac-
tions and Fast Scrambling with Cold Atoms, Phys. Rev. Lett.
123, 130601 (2019).

[34] A. Periwal, E. S. Cooper, P. Kunkel, J. F. Wienand, E. J. Davis,
and M. Schleier-Smith, Programmable interactions and emer-
gent geometry in an array of atom clouds, Nature (London) 600,
630 (2021); 603, E29 (2022).

[35] N. Manoj and V. B. Shenoy, Arboreal topological and fracton
phases, arXiv:2109.04259.

[36] T. Sulejmanpasic and C. Gattringer, Abelian gauge theories
on the lattice: θ -Terms and compact gauge theory with(out)
monopoles, Nucl. Phys. B 943, 114616 (2019).

[37] P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, A modi-
fied Villain formulation of fractons and other exotic theories,
J. Math. Phys. 62, 102301 (2021).

[38] N. Seiberg and S.-H. Shao, Exotic symmetries, duality, and
fractons in 2+1-dimensional quantum field theory, SciPost
Phys. 10, 027 (2021).

[39] P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, Gapped
lineon and fracton models on graphs, arXiv:2210.03727.

[40] N. Seiberg, Field theories with a vector global symmetry,
SciPost Phys. 8, 050 (2020).

[41] N. Seiberg and S.-H. Shao, Exotic U(1) symmetries, duality,

and fractons in 3+1-dimensional quantum field theory, SciPost
Phys. 9, 046 (2020).

[42] N. Seiberg and S.-H. Shao, Exotic ZN symmetries, duality,
and fractons in 3+1-dimensional quantum field theory, SciPost
Phys. 10, 003 (2021).

[43] P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, More
exotic field theories in 3+1 dimensions, SciPost Phys. 9, 073
(2020).

[44] P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, fcc lattice,
checkerboards, fractons, and quantum field theory, Phys. Rev.
B 103, 205116 (2021).

[45] T. Rudelius, N. Seiberg, and S.-H. Shao, Fractons with twisted
boundary conditions and their symmetries, Phys. Rev. B 103,
195113 (2021).

[46] P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, Low-energy
limit of some exotic lattice theories and UV/IR mixing, Phys.
Rev. B 104, 235116 (2021).

[47] F. J. Burnell, T. Devakul, P. Gorantla, H. T. Lam, and S.-H.
Shao, Anomaly inflow for subsystem symmetries, Phys. Rev.
B 106, 085113 (2022).

[48] P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, Global
dipole symmetry, compact lifshitz theory, tensor gauge theory,
and fractons, arXiv:2201.10589.

[49] R. Grone and R. Merris, A bound for the complexity of a simple
graph, Discrete Mathematics 69, 97 (1988).

[50] N. Alon, The number of spanning trees in regular graphs,
Random Struct. Alg. 1, 175 (1990).

[51] F. Chung, Spectral Graph Theory, CBMS Regional Confer-
ence Series in Mathematics Vol. 92 (American Mathematical
Society, 1997).

[52] S. Corry and D. Perkinson, Divisors and Sandpiles: An Introduc-
tion to Chip-firing, AMS Non-Series Monographs (American
Mathematical Society, 2018).

[53] P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, 2+1d
compact lifshitz theory, tensor gauge theory, and fractons,
arXiv:2209.10030.

[54] C. L. Henley, Relaxation time for a dimer covering with height
representation, J. Stat. Phys. 89, 483 (1997).

[55] R. Moessner, S. L. Sondhi, and E. Fradkin, Short-ranged res-
onating valence bond physics, quantum dimer models, and ising
gauge theories, Phys. Rev. B 65, 024504 (2001).

[56] A. Vishwanath, L. Balents, and T. Senthil, Quantum criticality
and deconfinement in phase transitions between valence bond
solids, Phys. Rev. B 69, 224416 (2004).

[57] E. Fradkin, D. A. Huse, R. Moessner, V. Oganesyan, and S. L.
Sondhi, Bipartite rokhsar–kivelson points and cantor deconfine-
ment, Phys. Rev. B 69, 224415 (2004).

[58] E. Ardonne, P. Fendley, and E. Fradkin, Topological order
and conformal quantum critical points, Ann. Phys. 310, 493
(2004).

[59] P. Ghaemi, A. Vishwanath, and T. Senthil, Finite-temperature
properties of quantum lifshitz transitions between valence-bond
solid phases: An example of local quantum criticality, Phys.
Rev. B 72, 024420 (2005).

[60] B. Chen and Q.-G. Huang, Field theory at a lifshitz point, Phys.
Lett. B 683, 108 (2010).

[61] H. Ma and M. Pretko, Higher-rank deconfined quantum criti-
cality at the Lifshitz transition and the exciton Bose condensate,
Phys. Rev. B 98, 125105 (2018).

195139-15

https://doi.org/10.1103/PhysRevLett.122.076403
https://doi.org/10.1016/j.aop.2019.167910
https://doi.org/10.21468/SciPostPhys.12.4.142
https://doi.org/10.1103/PhysRevB.97.165106
https://doi.org/10.1103/PhysRevX.8.031051
https://doi.org/10.1016/j.aop.2019.167922
https://doi.org/10.1103/PhysRevB.99.115123
https://doi.org/10.21468/SciPostPhys.6.4.041
https://doi.org/10.21468/SciPostPhys.6.4.043
https://doi.org/10.1103/PhysRevB.102.115103
https://doi.org/10.1103/PhysRevLett.126.101603
https://doi.org/10.21468/SciPostPhys.11.2.032
https://doi.org/10.1002/prop.202100133
https://doi.org/10.1103/PhysRevX.9.041011
https://doi.org/10.1103/PhysRevLett.123.130601
https://doi.org/10.1038/s41586-021-04156-0
https://doi.org/10.1038/s41586-022-04610-7
http://arxiv.org/abs/arXiv:2109.04259
https://doi.org/10.1016/j.nuclphysb.2019.114616
https://doi.org/10.1063/5.0060808
https://doi.org/10.21468/SciPostPhys.10.2.027
http://arxiv.org/abs/arXiv:2210.03727
https://doi.org/10.21468/SciPostPhys.8.4.050
https://doi.org/10.21468/SciPostPhys.9.4.046
https://doi.org/10.21468/SciPostPhys.10.1.003
https://doi.org/10.21468/SciPostPhys.9.5.073
https://doi.org/10.1103/PhysRevB.103.205116
https://doi.org/10.1103/PhysRevB.103.195113
https://doi.org/10.1103/PhysRevB.104.235116
https://doi.org/10.1103/PhysRevB.106.085113
http://arxiv.org/abs/arXiv:2201.10589
https://doi.org/10.1016/0012-365X(88)90182-3
https://doi.org/10.1002/rsa.3240010204
http://arxiv.org/abs/arXiv:2209.10030
https://doi.org/10.1007/BF02765532
https://doi.org/10.1103/PhysRevB.65.024504
https://doi.org/10.1103/PhysRevB.69.224416
https://doi.org/10.1103/PhysRevB.69.224415
https://doi.org/10.1016/j.aop.2004.01.004
https://doi.org/10.1103/PhysRevB.72.024420
https://doi.org/10.1016/j.physletb.2009.12.028
https://doi.org/10.1103/PhysRevB.98.125105


GORANTLA, LAM, AND SHAO PHYSICAL REVIEW B 106, 195139 (2022)

[62] J.-K. Yuan, S. A. Chen, and P. Ye, Fractonic Superfluids, Phys.
Rev. Res. 2, 023267 (2020).

[63] E. Lake, M. Hermele, and T. Senthil, The dipolar Bose-Hubbard
model, arXiv:2201.04132.

[64] D. Bulmash and M. Barkeshli, The higgs mechanism in higher-
rank symmetric U(1) gauge theories, Phys. Rev. B 97, 235112
(2018).

[65] H. Ma, M. Hermele, and X. Chen, Fracton topological order
from the Higgs and partial-confinement mechanisms of rank-
two gauge theory, Phys. Rev. B 98, 035111 (2018).

[66] Y.-T. Oh, J. Kim, E.-G. Moon, and J. H. Han, Rank-2 toric code
in two dimensions, Phys. Rev. B 105, 045128 (2022).

[67] Y.-T. Oh, J. Kim, and J. H. Han, Effective field theory of dipolar
braiding statistics in two dimensions, arXiv:2204.01279.

[68] S. D. Pace and X.-G. Wen, Position-dependent excitations and
UV/IR mixing in the ZN rank-2 toric code and its low-energy
effective field theory, Phys. Rev. B 106, 045145 (2022).

[69] K. A. Berman, Bicycles and spanning trees, SIAM Journal on
Algebraic Discrete Methods 7, 1 (1986).

[70] H. J. S. Smith, Xv. on systems of linear indeterminate equa-
tions and congruences, Philos. Trans. R. Soc. London 151, 293
(1861).

[71] D. Lorenzini, Smith normal form and laplacians, J. Comb.
Theory, Ser. B 98, 1271 (2008).

[72] R. Bacher, P. d. La Harpe, and T. Nagnibeda, The lattice of
integral flows and the lattice of integral cuts on a finite graph,
Bul. Soc. Math. France 125, 167 (1997).

[73] M. Baker and S. Norine, Riemann–roch and abel–jacobi the-
ory on a finite graph, Advances in Mathematics 215, 766
(2007).

[74] D. Dhar, Self-organized critical state of sandpile automaton
models, Phys. Rev. Lett. 64, 1613 (1990).

[75] D. Dhar, P. Ruelle, S. Sen, and D. N. Verma, Algebraic aspects
of Abelian sandpile models, J. Phys. A: Math. Gen. 28, 805
(1995).

[76] D. J. Lorenzini, A finite group attached to the laplacian of a
graph, Discrete Mathematics 91, 277 (1991).

[77] N. L. Biggs, Chip-firing and the critical group of a graph,
Journal of Algebraic Combinatorics 9, 25 (1999).

[78] G. R. Kirchhoff, Uber die auflosung der gleichungen, auf
welche man bei der untersuchung der linearen verteilung gal-
vanischer strome gefuhrt wird, Ann. Phys. Chem. 148, 497
(1847).

[79] A. Cayley, A theorem on trees, The Quarterly Journal of
Mathematics 23, 376 (1889).

[80] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak
Mathematical Journal 23, 298 (1973).

[81] A. Nilli, On the second eigenvalue of a graph, Discrete
Mathematics 91, 207 (1991).

[82] G.’t Hooft, Naturalness, chiral symmetry, and spontaneous
chiral symmetry breaking, NATO Sci. Ser. B 59, 135
(1980).

[83] F. Y. Wu, Number of spanning trees on a lattice, J. Phys. A:
Math. Gen. 10, L113 (1977).

195139-16

https://doi.org/10.1103/PhysRevResearch.2.023267
http://arxiv.org/abs/arXiv:2201.04132
https://doi.org/10.1103/PhysRevB.97.235112
https://doi.org/10.1103/PhysRevB.98.035111
https://doi.org/10.1103/PhysRevB.105.045128
http://arxiv.org/abs/arXiv:2204.01279
https://doi.org/10.1103/PhysRevB.106.045145
https://doi.org/10.1137/0607001
https://doi.org/10.1098/rstl.1861.0016
https://doi.org/10.1016/j.jctb.2008.02.002
https://doi.org/10.24033/bsmf.2303
https://doi.org/10.1016/j.aim.2007.04.012
https://doi.org/10.1103/PhysRevLett.64.1613
https://doi.org/10.1088/0305-4470/28/4/009
https://doi.org/10.1016/0012-365X(90)90236-B
https://doi.org/10.1023/A:1018611014097
https://doi.org/10.1002/andp.18471481202
https://doi.org/10.21136/CMJ.1973.101168
https://doi.org/10.1016/0012-365X(91)90112-F
https://doi.org/10.1007/978-1-4684-7571-5_9
https://doi.org/10.1088/0305-4470/10/6/004

