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Any matrix product state |�〉 has a set of associated kept and discarded spaces, needed for the description
of |�〉, and changes thereof, respectively. These induce a partition of the full Hilbert space of the system into
mutually orthogonal spaces of irreducible n-site variations of |�〉. Here, we introduce a convenient projector
formalism and diagrammatic notation to characterize these n-site spaces explicitly. This greatly facilitates the
formulation of MPS algorithms that explicitly or implicitly employ discarded spaces. As an illustration, we derive
an explicit expression for the n-site energy variance and evaluate it numerically for a model with long-range
hopping. We also describe an efficient algorithm for computing low-lying n-site excitations above a finite MPS
ground state.
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I. INTRODUCTION

Matrix product states (MPS) are widely used for the nu-
merical description of quantum systems defined on one- or
two-dimensional lattices. Well-known MPS-based algorithms
include ground-state searches and time evolution using the
density matrix renormalization group (DMRG and tDMRG)
[1–6], time-evolving block decimation (TEBD) methods
[7–9], or the time-dependent variational principle (TDVP)
[10–14]; and the computation of spectral information us-
ing the numerical renormalization group (NRG) [15–17],
DMRG [18–21], or so-called post-MPS approaches [14,22];
see Refs. [23–25] for reviews.

All such algorithms involve update steps: a quantum state
of interest, |�〉, is represented in MPS form, and its con-
stituent tensors are updated, e.g., during optimization or time
evolution. During an update, highly relevant information is
kept (K) and less relevant information discarded (D). A se-
quence of updates thereby endows the full Hilbert space of
the system V with a structure of intricately nested K or D sub-
spaces, changing with each update, containing states from V,
which either do (K) or do not (D) contribute to the description
of |�〉.

The nested structure of V is rarely made explicit in the
formulation of MPS algorithms. A notable exception is NRG,
where D states are used to construct a complete basis [26] of
approximate energy eigenstates for V, facilitating the com-
putation of time evolution or spectral information [16,17].
For the computation of local multipoint correlators [27] using
NRG, it has proven useful to elucidate the structure of K and
D subspaces by introducing projectors having these subspaces
as their images. The orthogonality properties of K and D pro-
jectors bring structure and clarity to the description of rather
complex algorithmic strategies.

Inspired by the convenience of K and D projectors in the
context of NRG, we here introduce an analogous but more

general K, D projector formalism and diagrammatic conven-
tions suitable for the description of arbitrary MPS algorithms.
In particular, our K, D projectors offer a natural language for
the formulation of algorithms that explicitly or implicitly em-
ploy discarded spaces; this includes algorithms evoking the
notion of tangent spaces [10,12–14,22] and generalizations
thereof, as will be described later.

To formulate the goals of this paper, we here briefly indi-
cate how the nested subspaces mentioned above come about.
Concrete constructions follow in later sections.

An MPS |�〉 written in canonical form is defined by a set
of isometric tensors [23]. The image space of an isometric
tensor, its kept space, is needed for the description of |�〉. The
orthogonal complement of the kept space, its discarded space,
is not needed for |�〉 itself, but for the description of changes
of |�〉 due to an update step, e.g., during variational optimiza-
tion, time evolution, or the computation of excitations above
the ground state. Any such change can be assigned to one of
the subspaces Vns in the nested hierarchy

V0s ⊂ V1s ⊂ V2s ⊂ · · · ⊂ VL s = V, (1)

where V is the full Hilbert space of a system of L sites, Vns

the subspace spanned by all n-site (ns) variations of |�〉, and
V0s = span{|�〉} the one-dimensional space spanned by the
reference MPS itself. The orthogonality of kept and discarded
spaces induces a partition of each Vns into nested orthogonal
subspaces [6,28], such that

Vns = ⊕n
n′=0V

n′⊥, (2)

where Vn⊥ is the subspace of Vns spanned by all irreducible
ns variations not expressible through n′s variations with n′ <

n, and V0⊥ = V0s. In particular, the full Hilbert space can be
represented as V = ⊕L

n=0V
n⊥.

The subspaces defined above underlie, implicitly or explic-
itly, all MPS algorithms. V1s is the so-called tangent space
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of |�〉, i.e., the space of all one-site (1s) variations of |�〉.
It plays an explicit role in numerous recent MPS algorithms,
such as TDVP time-evolution, or the description of transla-
tionally invariant MPS and their excitations [13,14,28]. It also
features implicitly in MPS algorithms formulated using 1s
update schemes, such as the 1s formulation of DMRG [23],
because 1s updates explore states from V1s. Likewise, the
space V2s implicitly underlies all 2s MPS algorithms such
as 2s DMRG ground-state search, 2s time-dependent DMRG
(tDMRG), or 2s TDVP, in that 2s updates explore states from
V2s. Moreover, V1⊥ and V2⊥ are invoked explicitly when
computing the 2s energy variance, an error measure for MPS
ground-state searches introduced in Ref. [6]. Finally, Vns is
implicitly invoked in MPS algorithms defining excited states
of translationally invariant MPS through linear combinations
of local excitations defined on n sites [22].

The construction of a basis for Vns and Vn⊥ is well known
for n = 1 [12], and for n = 2 it is outlined in Ref. [6]. How-
ever, we are not aware of a general, explicit construction for
n>2, as needed, e.g., to compute the ns energy variance.
Here, we explicitly construct projectors, Pns and Pn⊥, having
Vns and Vn⊥ as images, respectively. For n = 1, this amounts
to a construction of a basis for the tangent space V1s. More
generally, our K,D projector formalism used to construct Pns

and Pn⊥ greatly facilitates the formulation of MPS algorithms
that explicitly or implicitly employ discarded spaces. As an
illustration, we derive an explicit expression for the n-site
energy variance, generalizing the error measure proposed in
Ref. [6], and evaluate it numerically for a model with long-
range hopping, the Haldane-Shastry model. We also show
how the multiparticle ns excitations proposed in Ref. [22]
are formulated in our scheme, and propose a strategy for
computing them explicitly, for any n.

We expect that the K, D projector formalism developed here
will be particularly useful for improving the efficiency of MPS
algorithms by incorporating information from Vn⊥ into suit-
ably expanded versions of V(n′<n)s without fully computing
Vn⊥. For example, we have recently developed a scheme,
called controlled bond expansion, which incorporates 2s in-
formation into 1s updates for DMRG ground-state search [29]
and TDVP time evolution [30], in a manner requiring only 1s
costs.

This paper is structured as follows. In Sec. II we col-
lect some well-known facts about MPSs, and formally define
the associated kept and discarded spaces and corresponding
projectors. Section III, the heart of this paper, describes the
construction of the Pns and Pn⊥ projectors for general n. As
applications of our projector formalism, we compute the ns
energy variance of the Haldane-Shastry model in Sec. IV, and
describe the construction and computation of ns excitations in
Sec. V. We end with a brief outlook in Sec. VI.

II. MPS BASICS

This section offers a concise, tutorial-style summary of
MPS notation and the associated diagrammatics. Moreover,
we formalize the notion of kept spaces, needed to describe an
MPS |�〉, and discarded spaces, needed to describe changes
to it at specified sites. We also recapitulate the definition of

local bond, 1s and 2s projectors routinely used in 1s and 2s
MPS algorithms.

A. Basic MPS notation

Consider a quantum chain with sites labeled � = 1, ...,L .
Let each site be represented by a d-dimensional Hilbert space
v� with local basis states |σ�〉, σ� = 1,..., d . The full Hilbert
space is V =∏

⊗� v� = span{|σ〉}, with basis states |σ〉 =
|σ1〉|σ2〉···|σL 〉. Any state |�〉 = |σ〉�σ ∈ V can be written
as an open boundary MPS, with wavefunction of the form

(3)

(This diagram depicts both the wavefunction � and the corre-
sponding state |�〉.) For clarity, we do not use ellipses in our
MPS diagrams, but instead draw them for some small choice
of L , e.g., L = 7 above. Sums over repeated indices are
implied throughout, and depicted diagrammatically by bonds.
Each M� is a three-leg tensor with elements [M�]σ�

α�−1α�
. Its

physical and virtual bond indices, σ� and α�−1, α�, have di-
mensions d and D�−1, D�, respectively. The outermost bonds,
to dummy sites represented by crosses, have D0 = DL = 1.
The bond dimensions D� are adjustable parameters, control-
ling the amount of entanglement an MPS can encode. (In
the literature, it is common practice to drop the subscript on
D� for brevity, understanding that D can nevertheless vary
from bond to bond.) Likewise, a Hamiltonian acting within
V, H = |σ〉Hσσ′〈σ′|, can be expressed as an MPO, with

(4)

where the four-leg tensors W� have elements [W�]
σ�σ

′
�

ν�−1ν�
, and

the virtual bond indices ν� have dimensions w�.
Any MPS wavefunction can be brought into canonical

form with respect to an “orthogonality center” at site � ∈
[1,L ], or with respect to bond � connecting sites � and � + 1,

(5)

where we indicated some of the bond dimensions. Here, A�̃

and B�̃′ (with 1� �̃<�<�̃′ �L ) satisfy the relations

(6)

or A†
�̃
A

�̃
= 1K

�̃
, B

�̃′B
†
�̃′ = 1K

�̃−1
for short, where 1K

�̃
denotes a

D�̃ ×D�̃ unit matrix. (The superscript K stands for “kept”, for
reasons explained below.) The open triangles representing A�̃

and B�̃′ are oriented such that their diagonals face left or right,
respectively. The orthogonality center can be shifted left or
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right by using singular value decomposition (SVD) to express
it as C� = U�−1S�−1B� or C� = A�S�V

†
� ,

(7)

Here U�−1, V †
� , S�−1, S� are square matrices, the former two

unitary, the latter two diagonal and containing SVD singular
values. (Shifting can be combined with truncation, if desired,
by discarding some small singular values and correspondingly
reducing the bond dimension.) By renaming V †

� B�+1 as B�+1

and defining �� = S�, we can also express �σ in “bond-
canonical” form with respect to bond �,

(8)

The fact that the same MPS can be written in many different
but equivalent ways reflects the gauge freedom of MPS repre-
sentations.

B. Kept spaces

Given an MPS |�〉 in canonical form, its constituent ten-
sors can be used to define a set of state spaces defined on parts
of the chain, and a sequence of isometric maps between these
state spaces. Let us make this explicit to reveal the underlying
structures.

The A�̃ tensors for sites 1 to �̃ can be used to define a set of
left kept (K) states |�K

�̃α
〉, and the B�̃′ tensors for sites �̃′ to L

can be used to define right K states |�K

�̃′α′ 〉, with wavefunctions
of the form

(9)

These states are called kept, since they are building blocks of
|�〉. Their spans define left and right K spaces,

VK

�̃
= span

{∣∣�K

�̃α

〉} ⊂ v1 ⊗ ... ⊗ v�̃, (10)

WK

�̃′ = span
{∣∣�K

�̃′α′
〉} ⊂ v�̃′ ⊗ ... ⊗ vL , (11)

of dimension D�̃ and D�̃′−1, respectively. The dummy sites 0
and L + 1 are represented by one-dimensional spaces, VK

0
and WK

L+1.
Each A�̃ and B�̃′ tensor defines an isometric map, from a

parent (P) space involving a direct product of a K space and a
local space, to an adjacent K space,

A�̃ :VK

�̃−1⊗v�̃ → VK

�̃
,

∣∣�K

�̃−1,α

〉|σ�̃〉[A�̃]σ�̃

αα′ = ∣∣�K

�̃α′
〉
,

B�̃′ :v�̃′ ⊗WK

�̃′+1 → WK

�̃′ , [B�̃′]
σ�̃′
αα′ |σ�̃′ 〉|�K

�̃′+1,α′ 〉 = |�K

�̃′α〉.
(To connect sites 1 and L to their neighboring dummy sites,
we define �K

0,1 = 1, �K
L+1,1 = 1.) We orient the triangles de-

picting A�̃ and B�̃′ such that equal-length legs point to parent
spaces and 90-degree angles to kept spaces. The dimensions
of left or right kept and parent spaces satisfy D�̃ � D�̃−1d
or D�̃′−1 � dD�̃′ , respectively. If a kept space is smaller than
its parent space, it has an orthogonal complement, called

discarded (D) space, discussed in Sec. II D below. The fact
that the maps A�̃ and B�̃′ are isometries follows from Eqs. (6).
These ensure that the left and right K basis states form or-
thonormal sets,

(12)

The basis states can be used to build projectors onto the left or
right K spaces VK

�̃
or WK

�̃′ , depicted as

(13a)

(13b)

with PK
0 = 1, QK

L+1 = 1, and (PK

�̃
)2 = PK

�̃
, (QK

�̃′ )
2 = QK

�̃′ ,

(14)

C. Bond, 1s and 2s projectors

The above projectors can, in turn, be used to construct
bond, 1s and 2s projectors acting on the full chain,

(15a)

(15b)

(15c)

defined for �∈ [0,L ], �∈ [1,L ] and �∈ [1,L −1], respec-
tively. They mutually commute and satisfy (PX

� )2 = PX
� , as

follows from Eqs. (12) and (14). For example,

The projectors Pb, P1s, and P2s map the full V into the
subspaces VK

� ⊗ WK
�+1, VK

�−1 ⊗ v� ⊗ WK
�+1, and VK

�−1 ⊗ v� ⊗
v�+1 ⊗ WK

�+2. These spaces offer three equivalent representa-
tions of the same state |�〉, in bond-, 1s- or 2s-canonical form,

|�〉 = ∣∣�K
�α

〉∣∣�K
�+1,α′

〉[
ψb

�

]
αα′ (16a)

= ∣∣�K
�−1,α

〉|σ�〉
∣∣�K

�+1,α′
〉[
ψ1s

�

]σ�

αα′ (16b)

= ∣∣�K
�−1,α

〉|σ�〉|σ�+1〉
∣∣�K

�+2,α′
〉[
ψ2s

�

]σ�σ�+1

αα′ , (16c)

ψb
� = ��, ψ1s

� = C�, ψ2s
� = A���B�+1. (16d)
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These forms emphasize the tensors describing bond �, site �

or sites (�, �+1) and the bond in between, respectively. For
example, Eqs. (16a) and (16b) are depicted as

The projections of the Hamiltonian into these spaces, Hx
� =

Px
�HPx

� , have matrix elements of the form

(17)

with left and right environments for sites � ± 1 given by

(18a)

(18b)

Here the first equalities define L� and R�, the second equalities
show how they can be computed recursively, starting from
L0 = 1, RL+1 = 1. The open triangles on L� and R� signify
that they are computed using left- or right-normalized A or B
tensors.

The above matrix elements are standard ingredients in
numerous MPS algorithms. To give a specific example, we
briefly recall their role in DMRG ground-state searches. These
seek approximate ground-state solutions to H|�〉 = E |�〉
through a sequence of local optimization steps. Focusing on
bond �, or site �, or sites (�, �+1), one updates ��, or C�,
or A���B�+1, by finding the ground-state solution of, respec-
tively,

(19a)

(19b)

(19c)

One then uses Eq. (7) to shift the orthogonality center to
the neighboring bond or site, optimizes it, and sweeps back
and forth through the chain until the ground-state energy has
converged. These three schemes are known as 0s or bond
DMRG, 1s and 2s DMRG, respectively. They differ regard-
ing their flexibility for increasing (“expanding”) virtual bond
dimensions, which increases the size of the variational space
and hence the accuracy of the converged ground-state energy.
0s and 1s DMRG offer no way of doing this, because the
tensors �� or C� have the same dimensions after the update as
before. By contrast, 2s DMRG does offer a way of expanding

bond dimensions: the bonds connecting the updated tensors
A�, ��, and B�+1 have dimensions d min(D�−1, D�+1), which
is � D�; one may thus expand bond � by retaining more than
D� singular values in ��. However, this comes at a price. The
numerical cost is O(D3d2w) for applying H2s to ψ2s during
the iterative solution of the eigenvalue problem Eq. (19c), and
O(D3d3) for SVDing the resulting eigenstate to identify the
updated A, �, and B. By contrast, for 1s DMRG the costs
are lower: O(D3dw) for applying H1s to C, and O(D3d ) for
SVDing C to shift to the next site. Various schemes have
been proposed for achieving 2s accuracy at 1s costs; see
Refs. [4,5,29].

D. Discarded spaces

In this section, we define discarded spaces as the or-
thogonal complements of kept spaces, and introduce their
corresponding isometries and discarded space projectors.

As mentioned above, the kept spaces VK

�̃
and WK

�̃′ have
dimensions smaller than the parent spaces VK

�̃−1
⊗v�̃ and

v�̃′ ⊗WK

�̃′+1
from which they are constructed. Their or-

thogonal complements are the above-mentioned discarded
spaces, to be denoted VD

�̃
and WD

�̃′ , respectively, of dimen-

sion DA
�̃

=D�̃−1d − D�̃ and DB
�̃′ =D�̃′d − D�̃′−1. By definition,

span{VK

�̃
,VD

�̃
} and span{WK

�̃′ ,W
D

�̃′ } yield the full parent

spaces, respectively. Let A�̃ and B�̃′ be isometries from the
parent to the discarded spaces,

A�̃ :VK

�̃−1⊗v�̃ → VD

�̃
,

∣∣�K

�̃−1,α

〉|σ�̃〉[A�̃]σ�̃

αα′ = ∣∣�D

�̃α′
〉
,

B�̃′ :v�̃′ ⊗WK

�̃′+1 → WD

�̃′ , [B�̃′]
σ�̃′
αα′ |σ�̃′ 〉

∣∣�K

�̃′+1,α′
〉 = ∣∣�D

�̃′α

〉
.

Then A�̃ ⊕ A�̃ and B�̃′ ⊕ B�̃′ are unitary maps on the parent
spaces, and Eq. (6) is complemented by relations expressing
orthonormality and completeness,

(20)

(21)

Here, left- or right-oriented grey triangles denote the com-
plements A�̃ and B�̃′ associated with discarded spaces. The
orthogonality relations (6) and (20) state that K meeting K

or D meeting D yield unity, whereas K meeting D yields zero.
We will use them often below. For the completeness relations
(21), 1P

�̃
= 1K

�̃−1
⊗1d and 1P

�̃′−1
= 1d ⊗1K

�̃′ are identity matrices
on the parent spaces, with 1d a d×d unit matrix. In numerical

practice, it desirable to avoid the explicit computation of A
�̃
A

†
�̃

or B
†
�̃′B�̃′ , since these are huge objects. Instead, one can always

use Eq. (21) to express them as 1P

�̃
−A

�̃
A†

�̃
or 1P

�̃′−1
−B†

�̃′B�̃′ .
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Equations (21) imply additional identities that will likewise
be useful below:

(22a)

(22b)

(22c)

The first two lines can be used to express 1s or 2s projectors
through bond projectors, as elaborated below. The third line
follows from the first two. The two equivalent forms on the
right of Eq. (22a) arise from combining the physical state
space of site � with virtual state spaces on either the left or the
right, yielding either left- or right-normalized parent spaces.

In complete analogy to Eqs. (9)–(13), the complement
isometries can be used to define orthonormal bases states for
the left and right discarded spaces VD

�̃
and WD

�̃′ ,

(23)

satisfying the orthonormality relations

(24a)

(24b)

The corresponding projectors are defined as

(25)

(26)

with PD
0 = QD

L+1 = 0. They obey orthonormality relations,

PX

�̃
PX

�̃
= δXXPX

�̃
, QX

�̃′QX

�̃′ = δXXQX

�̃′, (27)

where here and henceforth, X, X ∈ {K, D}. Moreover, Eq. (21)
implies the completeness relations

PK

�̃
+ PD

�̃
= PK

�̃−1 ⊗ 1d , QK

�̃′ + QD

�̃′ = 1d ⊗ QK

�̃′+1, (28)

stating that the kept and discarded projectors of a given site
together form a projector for their parent space. These will
play a crucial role in subsequent sections.

To conclude this section, we apply the projector identity
(22b) to the open legs of the state H2s

� ψ2s
� appearing in the 2s

Schrödinger (19c). We obtain

(29)

If only the first term is retained, the 2s Schrödinger Eq. (19c)
reduces to the bond Schrödinger Eq. (19a), sandwiched be-
tween A� and B�+1,

A�(Hb
� −E )��B�+1 = 0. (30a)

The first term together with the second or third term reduces
to the 1s Schrödinger Eq. (19b) for sites �+ 1 or �, left or right
contracted with A� and B�+1, respectively,

A�

(
H1s

�+1−E
)
C�+1 = 0, (30b)(

H1s
� −E

)
C�B�+1 = 0. (30c)

All four terms together of course give the full 2s Schrödinger
Eq. (19c), (

H2s
� −E

)
A���B�+1 = 0. (30d)

Evidently, the fourth term in Eq. (29), involving a DD pro-
jector pair, is beyond the reach of 1s schemes. A strategy for
nevertheless computing its most important contributions with
1s costs, called controlled bond expansion, has recently been
formulated by us in Ref. [29].

III. CONSTRUCTION OF Pns AND Pn⊥

As discussed in the introduction, each site of an MPS |�〉
induces a splitting of the local Hilbert space into K and D

sectors. This induces a partition of the full vector space V
into intricately nested orthogonal subspaces [6]. It is useful
to identify orthogonal projectors for these subspaces. Gauge
invariance—the existence of many equivalent representations
of |�〉—makes this a nontrivial task. It can be accomplished
systematically by Gram-Schmidt orthogonalization, formu-
lated in projector language. The following three sections are
devoted to this endeavor.

In the present section, we define a set of projectors, PXX

��̄
,

X, X ∈ {K, D}, involving kept and/or discarded sectors at sites
�, �̄. These serve as building blocks for all projectors intro-
duced thereafter. Then, in Sec. III B, we define generalized
local n-site (ns) projectors Pns

� describing variations of |�〉
involving up to n contiguous sites. In Sec. III C, we add them
up to obtain global ns projectors Pns; and in Sec. III D we
orthogonalize these to obtain irreducible global ns projectors
Pn⊥ not expressible through combinations of variations on
subsets of n′ < n sites. They are useful for various purposes,
including the computation of the energy variance [6], and the
formulation of MPS algorithms based on the notion of tangent
spaces [11–14,30] and generalizations thereof. Throughout,
we concisely summarize the properties of the various projec-
tors encountered along the way.
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A. Projectors for kept and discarded sectors PXX
��̄

We start by introducing kept and discarded space projectors
defined on the full Hilbert space V. To this end, we supple-
ment PX

� and QX
� by right or left environments (E) comprising

the entire rest of the chain, and define

(31)

with � ∈ [0,L ] for PXE
� and � ∈ [1,L + 1] for PEX

� . Equa-
tions (12) and (24) imply orthogonality relations for projectors
with E on the same side (both right or both left),

PXE
� PXE

�̄
= δ�<�̄δXKPXE

�̄
+δ��̄δXXPXE

� +δ�>�̄PXE
� δKX, (32a)

PEX
� PEX

�̄
= δ�<�̄PEX

� δKX+δ��̄δXXPEX
� +δ�>�̄δXKPEX

�̄
. (32b)

The δ symbols indicate that the first, second, and third terms
contribute only for � < �̄, � = �̄, and � > �̄, respectively.
Thus, same-site projectors are orthonormal; different-site
products with Es on the same side, of the type PXE

� PXE

�̄
(or

PEX
� PEX

�̄
), vanish if the earlier (later) site hosts a D; if it hosts a

K, they yield the projector from the other site. We depict two
cases of Eq. (32a) below:

Equation (32a) was first written down in that form in
Ref. [27], Eq. (29), in the context of NRG. There, one
deals exclusively with left-normalized states, and sites to the
right of the orthogonality center are treated purely as envi-
ronmental degrees of freedom, described by product states.
Equation (32b) is the counterpart of (32a) for right-normalized
states.

Projector products with Es in the middle, PXE
� PEX

�̄
, and

� < �̄, again yield projectors. We denote them by

(33)

They have local unit operators on n = �̄ − (� + 1) contigu-
ous sites, sandwiched between any combination of K and D

projectors to the left and right. In this sense, they generalize
Eqs. (15) and will be called generalized local ns projectors.

They fulfill numerous orthogonality relations following di-
rectly from Eqs. (32). For example,

PXX

��̄
PX′X′

��̄
= δXX′

δX X′PXX

��̄
, (34a)

∀�<�′ : PDX

��̄
PX′ X′

�′ �̄′ = 0, ∀�̄<�̄′: PXX

��̄
PX′D

�′ �̄′ = 0, (34b)

PDX

��̄
PDX′

�′ �̄′ ∼ δ��′, PXD

��̄
PX′D

�′ �̄′ ∼ δ�̄�̄′ . (34c)

Thus, two projectors having the same site indices are or-
thonormal; projector products involving a D on a site earlier
or later than all other indexed sites vanish; those involving
two Ds on the same side but different sites vanish, too. Some
of these relations are illustrated below:

Equation (28) implies another useful property (for �̄−�>1),

PKX

��̄
= PKX

�+1,�̄
+ PDX

�+1�̄
, PXK

��̄
= PXK

�,�̄−1 + PXD

�,�̄−1, (35)

reflecting Eq. (22b). Thus, a K on a given site � (or �̄) can
be decomposed into K and D on the inner neighboring site
� + 1 (or �̄ − 1), thereby expressing one projector through two
that both target one less site. This decomposition will be used
repeatedly below.

B. Local n-site projectors Pns
�

The KK projectors merit special attention. For �̄ − � = 1,
2 or 3, they correspond to the bond, 1s and 2s projectors
introduced in Eqs. (15). These can be expressed as

Pb
� = PKK

�,�+1, P1s
� = PKK

�−1,�+1, P2s
� = PKK

�−1,�+2. (36)

Generalizing the notation of (36), we define a set of local ns
projectors (for n � 0 and � ∈ [1,L +1−n]) as

(37)

Then P0s
� = Pb

�−1, and for n � 1, these projectors span the
spaces of variations of |�〉 on n contiguous sites from � to
� + n − 1. However, projectors Pns

� and Pns
�′ with � 
= �′ are

not orthogonal. Instead, the following relations hold for all
� < �′,

Pns
� Pns

�′ = P (n−1)s
�+1 Pns

�′ = Pns
� P (n−1)s

�′ = P (n−1)s
�+1 P (n−1)s

�′ ,

(38)
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as can be verified using Eqs. (32). For example, for

we obtain the same result in both cases. In particular, for n �
1, two ns projectors mismatched by one site yield an (n−1)-
site projector,

(39)

Orthogonalized versions of the Pns
� projectors will be

constructed in the next subsection. Here, we collect some
properties, following from Eq. (32), that will be needed for
that purpose,

∀� < �′: PDX

��̄
Pns

�′ = 0, (40a)

∀(�+n)� �̄′: Pns
� PX′D

�′ �̄′ = 0. (40b)

Thus, Pns
� is annihilated by a left D on its left or a right D on

its right. For example,

Using Eq. (35), Pns
� can be expressed through two (n−1)s

projectors,

(41)

The existence of two different decompositions of Pns
� , mim-

icking Eq. (22a), reflects the gauge freedom of MPSs. This
can be exploited to write PDK

�,�+n as P (n−1)s
� + PKD

�−1,�−1+n −
P (n−1)s

�+1 , converting DK to KD, or vice versa. Repeated use

yields an identity that will be useful below,

�′∑
�=�̄

PDK
�,�+n = P (n−1)s

�̄
+

�′∑
�=�̄

PKD
�−1,�−1+n−P (n−1)s

�′+1 . (42)

C. Global ns projectors, Pns

We now are ready to define the ns spaces Vns. For n = 0,
we define V0s = span{|�〉}. For n � 1, we define Vns as the
span of |�〉 and all states |� ′〉 differing from it on at most n
contiguous sites,

(43)

For n = 1, V1s is the tangent space of |�〉. More concretely,
Vns is defined as the image of all local ns projectors,

Vns = span
{
im

(
Pns

1

)
, im

(
Pns

2

)
, . . . , im

(
Pns

L+1−n

)}
. (44)

For any n′ � n, the image im(Pn′s
� ) is by construction fully

contained in the image im(Pns
� ), hence Vn′s is a subspace of

Vns, implying the nested hierarchy (1).
Let Pns be the projector having Vns as image; then,

im(Pns) contains im(Pns
� ) for all � ∈ [1,L + 1 − n]. For-

mally, Pns has the defining properties(
Pns

)2 = Pns, PnsPns
� = Pns

� , (45a)

Pns
� |�〉 = 0 ∀� ⇒ Pns|�〉 = 0. (45b)

Moreover, the nested structure of the Vnss implies

∀n′ < n : PnsPn′s = Pn′s. (46)

Let us construct Pns explicitly. Simply summing up the
local projectors Pns

� does not yield a projector because the
images of Pns

� and Pns
�′ are not orthogonal. A set of mutually

orthogonal local projectors can be obtained by projecting out
the overlap between Pns

� and Pns
�±1. We thus define

Pns
�≶ = Pns

�

(
1V − Pns

�±1

)
, (47)

so that Pns
�≶Pns

�′ = 0 holds for neighboring �, �′ with � ≶ �′.
It suffices to orthogonalize ns projectors mismatched by one
site, since from these we can select a set of projectors mutually
orthogonal on all sites. Indeed, Eqs. (39) and (41) yield (n−
1)-site projectors containing Ds,

Pns
�< = Pns

� − P (n−1)s
�+1 = PDK

�,�+n, (48a)

Pns
�> = Pns

� − P (n−1)s
� = PKD

�−1,�−1+n, (48b)

and the Ds ensure the orthonormality relations [cf. (34)]

Pns
�≶Pns

�′≶ = δ��′Pns
�≶, (49a)

∀� < �′: Pns
�<Pns

�′> = 0, (49b)

∀� ≶ �′: Pns
�≶Pns

�′ = 0. (49c)

These equations have a remarkable implication: for any choice
of �′ ∈ [1,L −n+1], the projectors Pns

�< for � ∈ [1, �′ − 1],
Pns

�′ , and Pns
�> for � ∈ [�′ + 1,L + 1 − n] form an orthonor-

mal set, and this set contains a Pns
� (in projected form) for
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every � ∈ [1,L + 1 − n]. We define the global ns projector
as their sum,

(50)

Here, �′ may be chosen freely as convenience dictates; dif-
ferent choices are equivalent, being related by Eqs. (41). The
orthogonality relations (49) ensure the properties (45a). For
example,

PnsPns
�′ = 0 + Pns

�′ Pns
�′ + 0 = Pns

�′ . (51)

The property (45b) is ensured by orthogonalizing Pns
� with

respect to each other and thus never including states with
Pns

� |�〉 = 0 ∀�. This confirms that im(Pns) contains im(Pns
� )

for all � ∈ [1,L + 1 − n]; thus, Pns indeed is the desired
projector having Vns as image. Evaluating Eq. (50) using the
middle expressions from (48), we obtain

(52a)

expressing Pns through local ns and (n − 1)s projectors in a
manner manifestly independent of �′, and not involving an D

sectors. The occurrence of the first term, a sum over all Pns
� , is

no surprise; the nontrivial part of the above construction was
establishing the form of the second term, needed to ensure that
Pns is a projector. Note that Eq. (45a) directly implies property
(45b). Alternatively, we can use the rightmost forms of (48) in
(50) to obtain

Pns =
�′∑

�=1

PDK
�,�+n + PKK

�′,�′+n +
L −n∑
�=�′

PKD
�,�+n, (52b)

now expressed purely through (n−1)s projectors, with all but
one involving D sectors.

For n = 1, Eqs. (52) reproduce the well-known tangent
space projector,

(53a)

(53b)

These expressions are widely used in MPS algorithms based
on tangent space concepts, such as time evolution using the
time-dependent variational principle (TDVP) [11–14,30]. The
form (53a), or (53b) with the choice �′ = L − 1, was first
given Lubich, Oseledts, and Vandereycken [11] (Theorem
3.1), and transcribed into MPS notation in Ref. [12]. In these
papers, it was derived in a different manner than here, using
arguments invoking gauge invariance. Our derivation has the
advantage that it generalizes directly to ns projectors. For
n = 2, our expression (52a) for P2s reproduces the projector
proposed in Ref. [12] for 2s TDVP:

(54)

D. Irreducible global ns projectors Pn⊥

Our final step is to orthogonalize the global Pns projectors
to obtain mutually orthogonal global ns projectors Pn⊥. This
step is inspired by the observation, made in Ref. [6], that a
given MPS |�〉 induces a decomposition of the full Hilbert
space into mutually orthogonal subspaces,

V = ⊕L

n=0V
n⊥, (55)

where V0⊥ is spanned by |�〉, and for n � 1 each Vn⊥ is the
complement of V(n−1)s in Vns = V(n−1)s⊕Vn⊥. Each Vn⊥ is
irreducible, comprising variations of |�〉 defined on n con-
tiguous sites that are not expressible through variations on
subsets of n′ < n sites.

The decomposition (55) induces a decomposition of the
identity on V into a sum of irreducible, mutually orthogonal
projectors Pn⊥, each with a Vn⊥ as image,

1V = 1⊗L
d =

L∑
n=0

Pn⊥, Pn⊥Pn′⊥ = δnn′Pn⊥. (56)

We now construct the Pn⊥ projectors through a Gram-
Schmidt procedure. For n � 1, we define Pn⊥ by projecting
out P (n−1)s from Pns, using Eq. (46),

Pn⊥ = Pns(1V − P (n−1)s) = Pns − P (n−1)s. (57)
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This scheme is initialized by the definition

P0⊥ = P0s = |�〉〈�| (58a)

(58b)

(58c)

The two equivalent forms for P0⊥, (58b) and (58c), reflect
MPS gauge invariance.

For n = 1, Eqs. (57) and (52a), with P0s = P0s
1 , yield

(59a)

More compact forms are obtained by evaluating Eq. (57)
using Eq. (52b), choosing either �′ = L or 0 for P0s,

(59b)

(59c)

Diagrammatically, the latter expressions also follow di-
rectly from (59a), using (22a). That two equivalent forms exist
again reflects MPS gauge invariance.

For n � 2, Eqs. (57) and (52a) yield

(60a)

A more compact form is obtained by evaluating Eq. (57) using
Eq. (52b), choosing �′ = L + 1 − n for both terms,

(60b)

We used the first and second relations in Eq. (35) to
combine the

∑
� sums and cancel the remaining terms. Di-

agrammatically, Eq. (60b) also follows directly from (60a),
using a relation analogous to (22c) (with n − 2 additional unit
operator lines in the middle). Its form is very natural: n − 2
unit operators are sandwiched between two Ds, which project
out contributions contained in n′-site projectors with n′ < n.
For future reference we also display the n = 2 projector

(61)

This projector is implicitly used in Ref. [6] to compute the 2s
variance, as will be recapitulated below. It also plays a key role
in controlled bond expansion algorithms recently developed
by us for performing DMRG ground-state searches [29] and
TDVP time evolution [30] with 2s accuracy at 1s costs.

Equations (58) to (61), giving explicit formulas for Pn⊥ for
all n, are the main results of the last three sections.

The orthonormality of the Pn⊥, guaranteed by construc-
tion, relies on gauge invariance. This is seen when verifying
orthonormality explicitly. For example, P1⊥P0⊥ = 0 can
be shown in two ways, using either PDK

�,�+1PKK
L ,L+1 = 0 or

PKD
�−1,�PKK

0,1 = 0 (both relations hold ∀� ∈ [1,L ]).
We continue with some remarks providing intuition about

the structure of states in the image of Pn⊥. The basis states
for the spaces Vn⊥ can be chosen such that they involve
wavefunctions of the following forms:

(62a)

(62b)

(62c)

(62d)

(62e)

Due to MPS gauge invariance, any choice of � in Eq. (62a)
for V0⊥ yields the same wavefunction �. Gauge invariance
also implies that the wavefunctions in Eqs. (62b) and (62c)
for V1⊥ are not all independent; nevertheless, both forms are
useful.

To explicitly construct a complete basis on V1⊥, we can for
instance use the form Eq. (62b) and construct a complete set
of mutually orthonormal bond matrices of dimension DA

� × D�

for every bond �. (DA,B
� are defined near the beginning of

Sec. II D.) Note that we could have as well used the form
Eq. (62c). Using this construction, we can also explicitly
determine the dimension of V1⊥, dim V1⊥ = ∑L

�=1 DA
� D�.

In the same way, a complete basis with states of the form
Eq. (62d) for V2⊥ can be constructed by constructing a com-
plete set of mutually orthonormal DA

� × DB
�+1 bond matrices

for every bond �. Thus, we find dim V2⊥ = ∑L −1
�=1 DA

� DB
�+1.

A complete basis for V(n>2)⊥ may be characterized by find-
ing, for every � < L − n + 1, a complete set of mutually
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orthogonal (n − 2)-site MPS, which connect A� and B�+n−1

in Eq. (62e). There are DA
� dn−2DB

�+n−1 such MPSs for every �,

i.e., dim V(n>2)⊥ = ∑L −n+1
�=1 DA

� dn−2DB
�+n−1.

The basis states for V(n>0)⊥ differ from the reference state
|�〉 in V0⊥ through the replacement of a kept by a dis-
carded space involving precisely one site for n = 1, and two
adjacent sites for n = 2. For n > 2, they differ by two dis-
carded spaces and n−2 contiguous sites sandwiched between
them, involving virtual bond spaces orthogonal to those from
|�〉. Therefore, states from Vn⊥ and Vn′⊥ are manifestly mu-
tually orthogonal if n 
= n′. This can be checked via Eqs. (24),
e.g., for V0⊥ and V1⊥:

(63)

States of the form (62) yield a complete basis for V. This
is ensured by our Gram-Schmidt construction; but for P1⊥,
the completeness is not self-evident. For example, consider a
state |� ′〉 of the following form:

(64)

It differs from |�〉 only in the K space of bond of �′, having
a bond matrix �′

�′ orthogonal to the ��′ of |�〉. Since |� ′〉
is orthogonal to |�〉 it does not lie in V0⊥, but it is not
immediately apparent that it lies in im(P1⊥). To see that it
does, we rewrite Eq. (59b) such that it contains DKs to the left
of site � and KDs to its right, using Eq. (42) (with �̄, �′ there
replaced by �′ + 1, L ),

P1⊥ =
�′−1∑
�=1

PDK
�,�+1 + P1s

�′ +
L∑

�=�′+1

PKD
�−1,� − PKK

L ,L+1. (65)

When evaluating P1⊥|� ′〉 using this form, and recalling that
PKK

L ,L+1 = |�〉〈�|, we find that all terms but the second yield
zero, and the second yields |� ′〉, as claimed above. In this
manner, one sees that the image of P1⊥ indeed contains all
single-site and single-bond variations of |�〉 that are orthogo-
nal to |�〉.

To conclude this section, we remark that the nested
structure of V is an integral part for (thermo)dynamical
computations using the NRG [16,17,24], although a slightly
different structure from Pn⊥ is used to systematically span
the full Hilbert space. While the chain considered in NRG is
in principle semi-infinite, this chain is in practice cut off nat-
urally by thermal weights [17,24]. The resulting chain length
L increases logarithmically with decreasing temperature. In
NRG, the so-called Anders-Schiller basis [26] is routinely
used, which decomposes the full identity as follows:

(66)

Here, all states of the parent space associated with the last
site L are considered discarded, i.e., the kept space of site
L has dimension 0. The projectors occurring in Eq. (66) are
constructed from approximate eigenstates of the Hamiltonian,

so that this decomposition of unity can be used, e.g., to ex-
plicitly construct time-evolution operators [26], full thermal
density matrices [17,24], or evaluate Lehmann representations
for two-point [17] or recently even multipoint [27,31] spectral
functions.

IV. ENERGY VARIANCE

The decomposition of the identity 1V into mutually or-
thogonal n-site projections can be used to similarly split the
energy variance, �E = ‖(H −E )�‖2, of a state with average
energy E = 〈�|H |�〉 into n-site contributions. For n = 1 and
2, these were given in Ref. [6]. Here, we extend their analysis
to general n,

�E =
L∑
n=0

〈�|(H −E )Pn⊥(H −E )|�〉 =
L∑
n=1

�n⊥
E , (67a)

�n⊥
E = ‖Pn⊥H�‖2 (67b)

=
{∑L

�=1 ‖PDK
�,�+1H�‖2 (n = 1),∑L +1−n

�=1 ‖PDD
�,�+n−1H�‖2 (n � 2).

(67c)

In the first line, we used (56), 1V = ∑
L

n=0 Pn⊥; since P0⊥ =
|�〉〈�| and P (n>0)⊥|�〉 = 0, the potentially large contribu-
tions linear and quadratic in E drop out. This convenient
feature, emphasized in Ref. [6], significantly improves the
accuracy of the determination of �E . The cumulative ns vari-
ance is defined as �ns

E = ∑n
n′=1 �n′⊥

E .
Expressed diagrammatically, the 1s and ns variance are

(68a)

.

(68b)

The second equality in Eq. (68a) follows from Eq. (20). To
compute these expressions in practice, the D projectors are
expressed through K projectors using Eq. (21), e.g.,

(69)

If the Hamiltonian contains only local and nearest-
neighbor terms, all contributions with n>2 are zero [6], i.e.,
�E = �2s

E . However, it has been argued in Ref. [6] that even if
long-range terms are present, �2s

E is a reliable error measure.
Here, we confirm this for the case of the spin- 1

2 Haldane-
Shastry model on a ring of length L = 40, with Hamiltonian

HHS =
∑

�<�′�L

π2S� · S�′

L 2sin2 π
L

(� − �′)
. (70)

Figure 1 shows �n⊥
E for n ∈ {1, 2, . . . , 10} and four choices

of D∗. In all cases, �n⊥
E is largest for n = 2, and smaller by an

order magnitude or more for n > 2, with the decrease being
stronger the larger D∗. For this model, therefore, �2⊥

E by itself
suffices to reliably estimate the energy error.
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FIG. 1. The n-site variance �n⊥
E of the L = 40 Haldane-Shastry

model for different D∗. �1⊥
E can in principle always be converged to

numerically zero (i.e., �1⊥
E � 10−16) by extensive DMRG sweeping;

this being the case here, we plot it symbolically at �1⊥
E = 10−16. In

practice it suffices to sweep until �1⊥
E � �2⊥

E , since the variance is
dominated by �2⊥

E .

V. n-SITE EXCITATIONS

The ns projectors can be used as an Ansatz to compute
low energy excitations. This so-called excitation Ansatz has
been very successful in infinite systems [14,22,28,32,33] and
lately also shown to be reliable on finite lattices [34]. Using
our diagrammatic notation, we generalize the 1s Ansatz for
finite systems used in Ref. [34] to n sites, similar to the ns
Ansatz for infinite systems [22,28].

We seek an ns excitation Ansatz satisfying the con-
dition Pns|�ns

ex〉 = |�ns
ex〉. Let us choose �′ = L −n+1 in

Eq. (50), such that Pns = ∑L −n
�=1 Pns

�< + Pns
�′ . Then, the follow-

ing Ansatz has the desired property:

(71)

Here, T �
i>1 are generic tensors of rank 3 and

(72)

The two forms of T �
1 reflect the presence or absence of a D

projection associated with Pns
�< or Pns

�′ , respectively.
It seems that |�ns

ex〉 cannot be efficiently computed, since
it involves a sum over L − n + 1 (i.e., many!) terms, and
performing MPS sums explicitly leads to increased bond di-
mensions. However, that can be avoided here. The isometries
A� and B� flanking the modified sites reappear in
every summand and only need to be saved once; hence, only
the tensors T �

i need to be saved. In the case of n = 1 for ex-
ample, we have to save L tensors of dimensions D × d × D,
i.e., the same memory requirement as for an MPS with bond
dimension D.

Moreover, Eq. (72) ensures that all summands are by con-
struction mutually orthogonal, facilitating the computation of
overlaps. Consider |�ns

ex〉 and |� ′ns
ex 〉, characterized by T �

i and
T ′�

i , respectively. Due to Eq. (72), their overlap involves only
L − n+1 terms (not that number squared), namely

(73)

while the computation of sums or differences can be done on
the level of the T �

i , i.e.,

(74)

If
∏n

i=1 T �
i and

∏n
i=1 T ′�

i are represented as MPSs, Eq. (74) in
effect involves a sum of two ns MPS; this is manageable if n
is not too large. In the case n = 1, there is only T �

1 and T ′�
1 ,

i.e. in this case, no MPS sums are required.
A further benefit of Eq. (72) is that it serves to fix the MPS

gauge degree of freedom on the site hosting T 1
� , improving

numerical stability.
To determine the tensors T �

i for |�ns
ex〉 explicitly, one

projects the Hamiltonian onto the space Vns and solves for
low-energy states of

PnsHPns
∣∣�ns

ex

〉 = Ens
ex

∣∣�ns
ex

〉
(75)

that are orthogonal to the ground state. This can be done using
some iterative eigensolver like the Lanczos method, initialized
by some appropriate initial wavefunction. Explicit orthogo-
nalization with respect to to the ground state is required, since
our Ansatz space Pns contains the ground state, whose kept
and discarded spaces span the image of Pns.

To run an iterative eigensolver, a scheme is needed for
efficiently applying the projected Hamiltonian PnsHPns to the
state |�ns

ex〉. The resulting state, say |�ns
ex〉 = PnsHPns|�ns

ex〉,
will again be of the form (71), but described by tensors T �

i . To
find these, we compute the tensors

(76)

and project T̃ �
1 to the discarded space to obtain T �

1 ,

(77)

such that Eq. (72) is fulfilled.
To evaluate Eq. (76), we split the sum

∑
�′ into terms with

�′ < � and �′ � �, and express these as follows:

(78)
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Next to the left and right environments L� and R� defined in
Eq. (18), these expressions contain another set of environ-
ments, denoted by Lm

� and Rm
� , each involving those m of the

T �′
i tensors in Eq. (76) that do not face open physical legs. For

m = 0, m∈{1, . . . , n−1} or m = n, they are defined by the
left equalities below; the right equalities show how for each m,
Lm

�+1 and Rm
�−1 can be computed recursively from Lm

� and Rm
� ,

initialized with L0
0 = 1, Lm>0

0 = 0, R0
L +1 = 1, Rm>0

L +1 = 0:

(79a)

(79b)

The solution of Eq. (75) using an iterative eigensolver has
costs scaling with O(D3dnw), the same as ns DMRG. How-
ever, because the Ansatz Eq. (71) is built from a sum over
L − n + 1 MPSs, states can be captured, which would need
significantly larger bond dimensions if represented in standard
fashion as an MPS. Because there are n summands in Eq. (71),
which differ from the ground state at site � (with correspond-
ing tensors T �

1 , . . . , T �−n+1
n at site �), an MPS representation

would need bond dimension D(1 + n), assuming A�, B�, and
T �

i are tensors of dimension D × d × D. Optimizing such an
MPS with ns DMRG comes with O(D3(n + 1)3dnw) costs,
larger by (n + 1)3 than the costs for optimizing the Ansatz
Eq. (71). Of course, the latter Ansatz is much more restrictive
than a generic MPS of bond dimension D(1 + n). However,
that should not be a limitation if the physics of interest in-
volves single- or few-particle excitations, as is the case, e.g.,
when computing correlations functions of single- or few-
particle operators.

We test the ns excitation Ansatz on a Haldane-Shastry
model on a ring of length L = 40 [see Eq. (70) for the
Hamiltonian], for which we seek to compute the lowest energy
excitation with total spin S = 1 above the total spin S = 0
ground state. For comparison, we have also computed this
state by performing a DMRG ground-state search in the S = 1
sector.

FIG. 2. Relative error in energy of the lowest-lying S = 1 excited
state of the Haldane-Shastry model, computed using the n-site ex-
citation Ansatz (circles), or using DMRG (blue diamonds). Black
diamonds show DMRG results for the S = 0 ground state. The
dashed-blue lines are guides to the eye.

Figure 2 shows the corresponding relative errors in energy
versus the bond dimension D∗. As reference values, we use
the exact energies ES=0

exact = −π2(L + 5/L )/24 and ES=1
exact =

−π2(L − 7/L )/24 for the ground state and excited state
[35–37], respectively. Remarkably, we find that for the same
D∗, the n = 1 site excitation Ansatz yields an S = 1 excitation
energy that is more accurate than that obtained from DMRG
by one to two orders of magnitude, even though the computa-
tional cost of both approaches at the same D∗ is comparable.
In fact, the relative error obtained by the excitation Ansatz for
the S = 1 state is comparable to (even slightly lower than) that
obtained by DMRG for the S = 0 ground state.

The reason for the high accuracy of the excitation Ansatz
is that the first excited state of the Haldane-Shastry model is
essentially a superposition of local spin excitations, i.e., it fits
Ansatz (71). The excitation Ansatz avoids representing this
superposition as a single MPS, which would require about
twice the bond dimension. Instead, it exploits the fact that each
local excitation differs from the ground state only locally. This
leads to a more economic Ansatz compared to DMRG, which
needs about twice the bond dimension. This can also be seen
in Fig. 2, where the relative error in energy of the 1s excitation
Ansatz at some D∗ almost coincides with the corresponding
error of DMRG at 2D∗. The latter error is slightly smaller
than the former, because the 2D∗ MPS Ansatz used by DMRG
is less restrictive than the D∗ excitation Ansatz, though this
improvement is rather marginal.

The capability of the excitation Ansatz can be further im-
proved by considering n > 1, leading to a reduction of the
relative error in energy compared to n = 1, see Fig. 2. This
reduction is rather small and further improvements seem to
become ever smaller for ever larger n. However, with in-
creasing n the costs for this Ansatz increase exponentially,
as ∼dn. Therefore, including information beyond n = 1 by
brute force, i.e., by just going to n>1, is not advisable. Never-
theless, we believe that valuable improvements of the Ansatz
may be achievable, while circumventing the exponential dn

scaling, by including only those parts of the n > 1 sectors
that contribute to the excited state with significant weight.
It should be possible to identify these parts by generalizing
the strategy proposed in our recent work on controlled bond
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expansion in both DMRG ground-state search [29] and TDVP
time evolution [30]. We leave this as a topic for future study.

More generally, we believe that the diagrammatics for the
n-site excitation Ansatz and the projector formalism devel-
oped in this work will provide a solid foundation to construct
systematic improvements to the 1-site excitation Ansatz with-
out a significant increase in computational costs.

We conclude this section by noting that the above construc-
tion will not be able to find states that differ from a given
ground state on an extensive number of sites. In particular,
if the ground-state sector has a degeneracy, e.g., due to sym-
metry breaking or topological order, the excitation Ansatz on
top of one of the ground states is not expected to reliably
find the other ground states. Further, while the excitation
Ansatz Eq. (71) can in principle be used for excitations at any
energy, it is expected to perform less reliable the higher the
energy of the excitation. Examples, where the Ansatz Eq. (71)
should have problems, are excitations of multiple independent
particles (i.e., the particles may be located far apart from
each other) or excited states with a volume-law entanglement
entropy.

VI. SUMMARY AND OUTLOOK

We have developed a projector formalism for kept and
discarded spaces of MPS, together with a convenient diagram-
matic notation. We use it to derive explicit expressions for
global n-site projectors Pns and irreducible n-site projectors
Pn⊥. We then use our results to derive explicit formulas for
the n-site variance and evaluate it for the Haldane-Shastry
model, showing that indeed the 2-site contribution is the most
dominant one. Further, we derive explicit diagrammatic for-
mulas to perform excited state computations based on the
n-site excitation Ansatz for finite, nontranslation invariant
MPS.

The K, D projector formalism and diagrammatic notation
developed here proved very convenient for the applications
considered in this paper. More generally, we expect them to
provide a convenient tool for the development of new MPS
algorithms that explicitly or implicitly utilize the properties
of discarded spaces. The information contained in these is a
resource, useful for describing changes or variations of a given
MPS, and for algorithms exploiting this resource, the K, D pro-
jector formalism facilitates book-keeping thereof. Indeed, we
have developed the formalism presented here while working
out a controlled bond expansion algorithm to perform both
DMRG ground-state searches [29] and time evolutions using
the time-dependent variational principle [30] with 2-site ac-
curacy at 1-site computational cost. Moreover, our formalism
provides the tools needed to efficiently implement the per-
spectives outlined in Refs. [14,22] for post-MPS applications,
that build on a given MPS to compute low-energy excitation
spectra.

As a final remark, we note that though we focused on MPSs
in this paper, our formalism should be generalizable to any
tensor network for which canonical forms are available, such
as tensor networks without loops.
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