
PHYSICAL REVIEW B 106, 195132 (2022)

Real-time dynamics of a critical resonating valence bond spin liquid
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Implementation of the hard-core-dimer Hilbert space in cold-Rydberg-atom simulators opens a route of
investigating real-time dynamics of dimer liquids under Hamiltonian quench. Here, we consider an initial
resonating valence bond state on the square lattice realizing a critical Coulomb phase with algebraic and dipolar
correlations. Using its representation as a special point of a broad manifold of SU(2)-symmetric, translationally
invariant, projected entangled pair states (PEPS), we compute its nonequilibrium dynamics upon turning on
intersite Heisenberg interactions. We show that projecting the time evolution onto the PEPS manifold remains
accurate at small timescales. We also find that the state evolves within a PEPS submanifold characterized by a
U(1) gauge symmetry, suggesting that the Coulomb phase is stable under such unitary evolution.
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I. INTRODUCTION

The search for spin liquids in condensed matter materials
is a very rapidly developing area of quantum magnetism [1].
Spin liquids, such as the resonating valence bond (RVB) state
proposed by Anderson [2], are prototypical states of matter
showing no symmetry breaking, even down to zero tempera-
ture, due to enhanced zero-point quantum fluctuations. Their
highly entangled nature leads to unique physical aspects [3,4],
such as emerging nonlocal excitations and topological
properties.

Interestingly, spin liquids have also become accessible to
other experimental setups based on ultracold atoms loaded
into a two-dimensional optical lattice [5,6] or in two-
dimensional Rydberg arrays [7,8] offering an alternative route
to emulate quantum simulators [9,10], in addition to con-
densed matter superconducting circuits [11].

The rapid progress in cold-atom-experiment setups calls
for new efficient theoretical tools to investigate nonequilib-
rium dynamics of isolated pure quantum systems. Apart from
one dimension for which efficient techniques exist [12,13],
computing the nonequilibrium dynamics that follows a quan-
tum quench [14] is a tedious task in two-dimensional quantum
spin systems [15,16]. Here we shall investigate the nonequi-
librium dynamics of the RVB state, the most paradigmatic
example of a spin liquid. For simplicity, we shall consider
the case of the square lattice. A pictorial representation of
the nearest-neighbor RVB state is shown on Fig. 1(a), consist-
ing only of resonating nearest-neighbor (NN) valence bond
configurations [2]. Interestingly, it has been shown that the
NN RVB state exhibits critical dimer-dimer correlations con-
nected to a local U(1) gauge symmetry and characteristic of a
Coulomb phase [17,18]. One of the main goals of this work is
to investigate the stability of the Coulomb phase following a
quantum quench as well as the dynamics of its entanglement.

For such a purpose, throughout this paper, we shall use
the tensor network formalism using a variational projected

entangled pair state (PEPS) Ansatz of the time-evolving many-
body wave function [19]. This procedure is, in spirit, similar
to Ref. [9], where the preparation dynamics of a Rydberg
quantum simulator is approximated by projecting it on a ten-
sor network manifold. In our case, the PEPS is defined by a
unique time-dependent tensor A(t ) placed on all the sites of
a two-dimensional square lattice. Using the Penrose graphical
representation [20], the on-site tensor and its corresponding
tensor network are shown in Figs. 2(a) and 2(b). Hence A(t )
encodes locally, at all times, the coefficients of the many-
body wave function |�(t )〉 in the exponentially large Sz basis
{σ1, σ2, . . . , σN }, σi = ±1/2, as shown in Fig. 2(b). Note that
the entanglement (which grows with time) is controlled by the
(virtual) bond dimension D of the tensor A(t ). For simplicity
we shall also take the limit of an infinite system, N → ∞,
using the infinite-PEPS (iPEPS) framework [21].

The paper is organized as follows. First, we describe the
setup of the global quench in Sec. II: A description of the
physical nature of the initial spin liquid state and a summary of
the standard Trotter-Suzuki procedure used to obtain the time
evolution are given in Secs. II A and II B, respectively. We de-
tail the implementation of the simple update (SU) framework
keeping track of the space-group and spin-SU(2) symmetries
of the initial state and of the Hamiltonian in Sec. III. This pro-
cedure involves the determination of the optimal virtual space
described in Sec. III B and a careful gauge fixing implemen-
tation described in Sec. III C. Details on the recovery of the
exact point group and SU(2) symmetries at each Trotter step
are left to Appendix A. Results are provided and discussed in
Sec. IV: First, the SU singular value spectrum is analyzed as a
function of propagating time in Sec. IV A. Then, we propose
the reversal probability (Loschmidt echo) as an interesting
tool to measure truncation errors in Sec. IV B. The relevance
of the finite-D Ansatz is controlled by investigating the energy
conservation in Sec. IV C. Finally, the critical property of the
time-evolved state is investigated via the scalings of the cor-
relation length and the entanglement entropy of the boundary
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FIG. 1. (a) A typical valence bond configuration of the NN RVB
state. (b) A valence bond configuration including longer-range sin-
glets. (c) A typical configuration under time evolution of the NN
RVB state. Blue (red) dimers are singlet bonds built from two NN
virtual spin-1/2 (spin-1) of the PEPS. The characteristic U(1) gauge
symmetry of the Coulomb phase is broken in state (b).

state in Sec. IV D. A summary is given and possible further
developments are discussed in Sec. V. Additional material
is provided in two other appendices. The new algorithms
specific to the factorization of complex symmetric tensors
appearing in this work are described in Appendix B. Other
specificities of the tensor contraction algorithm are provided
in Appendix C.

II. QUENCH PROTOCOL

A. Resonating valence bond states and PEPS representations

Let us first start by describing the simple system setup we
have considered. Our initial quantum state |�0〉 is a resonating
valence bond (RVB) spin liquid on an infinite square lattice
and a global Hamiltonian quench is assumed, at time t = 0,
by turning on the antiferromagnetic nearest-neighbor (NN)
Heisenberg Hamiltonian,

H(t ) =
{

0, for t � 0,

H = ∑
〈x,y〉 Hxy, for t > 0,

(1)

where

Hxy = JSx · Sy. (2)

The NN RVB state, consisting of resonating NN singlets
as shown on Fig. 1(a), is in fact a special point of an extended
one-dimensional RVB family [4] including longer-range va-
lence (singlet) bonds [see Fig. 1(b)]. This RVB family is
conveniently represented by a simple PEPS manifold spanned
by two single-site tensors with full lattice (C4v) and spin-
rotation [SU(2)] symmetries; the four virtual legs have virtual
space V0 = 0 ⊕ 1

2 and are contracted, whereas the physical
legs correspond to the spins in the lattice [3,22] (see Fig. 2).
Hence, one can tune the initial state by simply varying the
ratio λ2/λ1 of the coefficients of the on-site tensor,

A(0) = λ1A1 + λ2A2, (3)

where the tensor A1 defines the NN RVB state and the tensor
A2 induces longer-range singlets by “teleportation.” These

FIG. 2. (a) The (time-dependent) site tensor (blue dot) contains
4 virtual bonds (in black) of dimension D and a physical leg (in red)
of dimension d = 2 (spin-1/2 or “qubit”). (b) The iPEPS is obtained
from an infinite square-lattice array of site tensors contracted over all
virtual indices.

tensors simply differ by the occupation of the spin-0 and
spin-1/2 states on the four virtual bonds, nocc = {3, 1} and
nocc = {1, 3}, respectively. Recent work [4,23] suggested that
topological order appears whenever longer-range bonds are
present [pictorially shown in Fig. 1(b)], i.e., λ2 �= 0, breaking
the U(1) gauge symmetry to Z2. Here, we shall take advantage
of the small bond dimension D0 = 3, and of the full symme-
tries of our initial state and of the Hamiltonian to study the
time evolution over a small time interval.

B. Time evolution

During its time evolution the RVB state is expected to pre-
serve its global singlet character [SU(2) rotation symmetry]
and the full lattice symmetry (C4v). In order to compute, for
t > 0,

|�(t )〉 = exp (−iHt )|�0〉, (4)

we have used a simple update (SU) method [24] which can
be implemented in a way that preserves all the symmetries
under consideration. Hereafter time t will be measured in units
of 1/J . Here the time-evolved state is defined by a unique
on-site complex PEPS tensor of bond dimension D > D0 [see
Fig. 2(a)] expanded in a fully lattice-C4v/spin-SU(2) symmet-
ric (real) tensor basis {Ta},

A(t ) =
M∑

a=1

μa(t ) Ta, (5)

with μa(t ) ∈ C. This is a simple generalization [19] of the
symmetric PEPS construction of the initial RVB state. Since
entanglement grows with time, it is necessary to include new
virtual states, hence increasing the bond dimension and the
number of elementary tensors. Later, we will show that, for
the NN RVB λ2 = 0 (or λ2 small enough), it is sufficient
to consider a virtual space V = 0 ⊕ 1

2 ⊕ 1, i.e., a bond di-
mension D = 6, to describe the time evolution for t � 1 (see
Table I). Once the virtual space is defined, in order to obtain
the time evolution of the coefficients {μa(t )} we used a stan-
dard Trotter-Suzuki (TS) decomposition [27] of the unitary
time-evolution operator

exp (−iHt ) =
Nτ∏
1

exp (−iHτ ),
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TABLE I. Number of SU(2)-symmetric local tensors of bond
dimension D = 3 or D = 6, virtual space V , Cs or C4v point group
symmetry, and with/without U(1) gauge symmetry (see text). The
number of Cs-symmetric tensors gives the number of degrees of
freedom available at every time substep. We explicitly find that the
non-U(1)-symmetric tensors keep a vanishing weight under time
evolution.

D V Cs Cs/U(1) C4v C4v/U(1)

3 0 ⊕ 1
2 7 4 2 1

6 0 ⊕ 1
2 ⊕ 1 41 30 11 8

where τ = t/Nτ is a small time step (such that τ 	 1). The
Heisenberg Hamiltonian is then split into four parts,

H = HA + HB + HC + HD, (6)

each acting on one of the four staggered configurations
Cα of disconnected horizontal or vertical bonds labeled by
α = A, B,C, D. The action of the elementary time-evolution
operator exp (−iHτ ) can then be approximated by the succes-
sive actions of four unitary gates,

Gα (τ ) = exp (−iHατ ) =
∏

〈x,y〉∈Cα

exp (−iHα
xyτ ), (7)

involving the standard systematic TS error vanishing in the
limit τ → 0. Depending on the method, the update of the
coefficients μa(t + τ ) under the action of all disconnected
gates

Gα
xy(τ ) = exp (−iHα

xyτ ) (8)

may be obtained locally (SU method) or take into account the
environment around each of the disconnected (x, y) bonds. We
shall here focus on the simple update method, which we de-
scribe below, and will report on a time-dependent variational
optimization method (involving the environment) elsewhere.
Note that, at every substep defined by the action of all discon-
nected gates α, the lattice C4v point group symmetry is broken
down to Cs involving only the reflection with respect to the
direction of the bonds (x, y). Therefore, the updated one-site
tensor has a basis decomposition (5) involving a larger set of
Cs-symmetric tensors (see Table I). Only after a full step of
four substeps α = A, B,C, D is the point group C4v symmetry
(approximately) restored.

III. SIMPLE UPDATE NUMERICAL ALGORITHM

A. Algorithmic steps

The main lines of the simple update (SU) scheme we use
can be summarized in the following steps:

(1) The tensors at sites x and y are first split by singular
value decomposition (SVD) to isolate the active bond on
which the complex symmetric gate Gα

xy(τ ) is applied [see
Fig. 3(a)].

(2) The resulting two-site symmetric complex matrix
[“SU matrix” of Fig. 3(b)] is decomposed using an Autonne-
Takagi factorization [25,26]; see Appendix B for details.

(3) The two sides are used to reconstruct the first update
of the tensors at sites x and y shown in Fig. 3(c).

FIG. 3. Simple update scheme. (a) The site tensor (blue sphere)
is split by SVD to isolate the active bond (black leg on the red
sphere). (b) The complex symmetric gate Gα

xy(τ ) applied to the two-
site bond (referred to in the text as the “SU matrix”) is split using
a Autonne-Takagi factorization [25,26] (further details are given in
Appendix B). (c) The two sides are used to reconstruct the new
site tensors (blue sphere with updated blue leg). Note that for step
(a) the SVD spectrum S (diagonal matrix) is absorbed entirely in the
active bond tensor (depicted in red), i.e., USV † = U (SV †) while for
step (b) the Autonne-Takagi spectrum S is symmetrically absorbed
on both sides to fulfill the reflection symmetry (depicted as a gray
plane), i.e., USU T = (U

√
S)(U

√
S)T .

(4) This procedure is then repeated for the other three
bonds connected to site x.

(5) At last, gauge fixing and projection of A(t + τ ) onto
the symmetric basis {Ta} enables us to obtain the new set of
coefficients μa(t + τ ).

However, the actual implementation of this method (and
especially point 5) deserves particular attention in the context
of SU(2)-invariant tensors. More specifically, we stress two
important issues in the course of SU: (i) redefining an identical
gauge convention between the four bonds after the sequence
of independent factorizations and (ii) enforcing a fully C4v and
SU(2) evolution at each time step. These points are discussed
in detail in Sec. III C.

B. Determination of the relevant virtual space

It is particularly interesting to first have a close look
at the first application of the GA

xy(τ ) gate onto the initial
(general) RVB state. The result of this action will guide us
to select the relevant choice of the virtual space needed to
approximate the time evolution. Figure 4 shows the 12 singu-
lar values of the Autonne-Takagi factorization of the matrix
in Fig. 3(b), grouped in SU(2) multiplets, as a function of
θ = tan−1 (|λ2|/λ1). Remarkably, at λ2 = 0 only 6 singular
values are nonzero corresponding to spin-0, spin-1/2, and
spin-1 multiplets. This provides support for using the virtual
space V = 0 ⊕ 1

2 ⊕ 1 to describe time evolution at finite time
t . Such a PEPS can be pictorially represented in the RVB
language as in Fig. 1(c). The range of validity in time of this
approximation will be discussed later on. Note that, when
turning on λ2, the additional spin- 1

2 and spin- 3
2 multiplets

acquire some weights which increase with increasing λ2 and,
hence, could not be neglected anymore.

C. Gauge fixing

In this subsection we describe the implementation of the
tensor symmetrisation at every time step (algorithmic step
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FIG. 4. Singular values of the Autonne-Takagi factorization of
the gate of Fig. 3(b) computed for τ = 0.025 as a function of θ with
λ1 = cos(θ ) and λ2 = sin(θ ).

5 mentioned in Sec. III A). Readers interested mostly in the
physical problem may jump directly to Sec. IV.

According to Trotter-Suzuki decomposition [see Eqs. (6),
(7), and (8) and Fig. 3], starting from a fully symmetric
tensor [Fig. 5(a)], four Autonne-Takagi transformations are
required at every time step. Since tensors are SU(2) invari-
ant, the singular value spectra split into degenerate sectors
corresponding to the various multiplets (see, e.g., Fig. 4).
As a direct consequence, the unitary transformation involved
in the factorization is not unique. More precisely, any block
SU(2) rotation acting on each multiplet subspace (S = 0, S =
1/2, . . .) leads to an equally valid decomposition. This results
in a continuous gauge freedom and generically a mismatch of

the basis used on the four virtual legs [see Fig. 5(b)], which
prevents any further computation.

If the gauge is uniformly fixed on the four virtual legs, the
updated tensor remains symmetric under C4v transformations
up to τ 2 corrections, which corresponds to the lowest order
where noncommutativity effects occur in the Trotter-Suzuki
decomposition. This fact leads to a natural criterion to fix a
uniform gauge on all four virtual legs, optimizing the tensor
point group symmetry. However, minimizing the tensor dis-
symmetry under a continuous set of unitary transformations is
found to be intractable in practice.

A way to circumvent this problem is to apply to the tensor
a multiplicative random noise (controlled by its amplitude
ε) before performing the 4-step update. This kind of noise
breaks SU(2) symmetry but preserves the U(1) symmetry
related to charge conservation [Sz in the context of SU(2)].
Hence the singular values spectra appearing in the various
decompositions get the structure of slightly split SU(2) mul-
tiplets. Interestingly, in this scheme, ε determines the relative
splitting of the noise-free multiplet singular value. This makes
it possible to clearly identify the multiplets in the spec-
tra, regardless of the amplitude of the considered singular
value.

But, even more importantly, disorder reduces drastically
the gauge freedom to a discrete set of transformations.
Keeping in mind the properties of Autonne-Takagi transfor-
mation detailed in Appendix B 1 [in particular Eq. (B5)],
the gauge transformation relating two equivalent Autonne-
Takagi factorizations in the case of a nondegenerate
spectrum is just a diagonal matrix with ±1 entries. On
top of this, the multiplicative noise can cause a reorder-
ing of states inside each multiplet in a way that does
not match the canonical order (e.g., Sz = +1, 0,−1 for
S = 1). Hence the most general gauge transformation is

FIG. 5. Gauge fixing and symmetries in SU. Starting from a fully SU(2)- and C4v-symmetric site tensor (a) the four legs are updated using
the SU method (see Fig. 3) using Gα (τ ) gate. (b) Due to gauge freedom the basis used is generically different on the four virtual legs (depicted
as distinct colors). (c)–(e) A uniform fixed gauge is obtained in a 3-step process in which the norm of the 2 reflection dissymmetries [(c), (d)]
and rotation dissymmetry (e) are minimized by a complete enumeration of all possible bases [see Eq. (9)]. The resulting tensor (f) is expressed
in a uniform gauge and is approximately C4v symmetric (up to τ 2 corrections). (h) The exact C4v symmetry is explicitly restored. (i) Projection
into the SU(2)-symmetric tensor basis leads to a SU(2)- and C4v-symmetric tensor suitable for the next τ -step evolution.
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summarized as

U =
⎛
⎝±1

. . .

±1

⎞
⎠

⎛
⎝Pv1

. . .

Pvn

⎞
⎠, (9)

where V = ⊕n
i=1vi and Pvi is a permutation matrix in the

vi subspace (n stands here for the total number of species).
Hence the maximal number of distinct transformations is
2D

∏n
i=1 Dim(vi )! which is small enough in practical appli-

cations to allow direct enumeration in the course of tensor
dissymmetry minimization. The dissymmetry over the two
reflections and π/2 rotation is described in Figs. 5(c)–5(e).

Once a uniform consistent gauge is fixed for the four virtual
legs, the next task is to project the evolved tensor into the sym-
metric basis {Ta}. In this process the resulting tensor becomes
fully symmetric under C4v and SU(2) [see Figs. 5(h), 5(i)].
We demonstrate in Appendix A that, for small enough τ ,
the modification caused to the tensor by the symmetrization
is small compared to the increment of the tensor due to the
time evolution itself. Figure 6 summarizes the time evolution
of the complex components μa(t ) of A(t ) expressed in the
symmetric basis, for t ∈ [0, 2], starting from the NN RVB
state.

IV. RESULTS

In this section we shall focus on the NN RVB (λ2 = 0) as
an initial state for which short-time evolution with the D = 6
PEPS Ansatz has been justified above.

A. Singular value spectrum

Since entanglement quickly grows with time, we expect
that more virtual states (i.e., larger D) may become necessary
as time goes on. To control the validity of our fixed D = 6
approximation, we have examined, at each step after applying
the first gate GA

xy(τ ) on |�(t )〉, the singular value spectrum of
the Autonne-Takagi factorization of the SU matrix [defined in
Fig. 3(b)], as a function of time t . We see in Fig. 7(a) that the 3
multiplets of largest weights always stay well separated from
the rest of the spectrum. As expected, their weights tend to
become equal, in order to saturate the maximum available en-
tanglement entropy ln D = ln 6 per site, as shown in Fig. 7(b).
This is obviously an artifact of the truncation into the D = 6
virtual space which, although it involves only a small error at
every step, leads to a significant cumulative error when t ∼ 1.
Hence further tests are needed to establish the maximum range
of validity of our approximation.

B. Fidelities and Loschmidt echo

In order to establish the ultimate maximum time above
which our procedure breaks down, we have performed the
following “time reversal” procedure: (i) time evolution is
performed with exp (−iHt ) from t = 0+ to t = tR; (ii) then,
at t = tR, time is “reversed,” t → −t ; i.e., time evolution is
performed with exp (iHt ). In the case of an exact unitary
evolution, one should recover exactly the initial NN RVB
state at time t = tR. In other words (the modulus of the
overlap) |〈A(t )|A(0)〉| of the time-dependent tensor with the
initial tensor (defining the λ2 = 0 NN RVB state) should

come back to 1 at t = 2tR; see Fig. 8(a). Upon increasing
tR, due to various cumulative errors, the evolution will stop
being perfectly unitary after some time t < tR. If this happens
then the Loschmidt echo |〈A(2tR)|A(0)〉| will start deviating
from 1. This is exactly what is observed in Fig. 8(b) sug-
gesting that our procedure breaks down above some “upper
bound” timescale tmax � 1. Several sources of error, at dif-
ferent degrees, are responsible for this breakdown, including
the Trotter-Suzuki decomposition, the SU scheme instead of
a full update scheme, the symmetrization procedure, and the
restriction of a limited virtual space (D = 6 here).

C. Energy conservation

Under unitary time evolution, the energy—defined as the
expectation value of H in the time-evolving state—should be
conserved. However, even if the simple update (symmetric)
scheme succeeds (up to tmax) to optimize properly the local
tensor, the D = 6 PEPS may stop accounting properly for
the increase of entanglement above some intermediate time
tD=6
max < tmax. We believe a good criterion to estimate this in-

termediate timescale is to examine the possible deviation of
the energy with respect to its t = 0 value. The latter is then
computed using the SU tensors via a corner transfer matrix
renormalization group (CTMRG) iPEPS algorithm [28–31].
Note that the energy of the NN RVB converges slowly with
the CTMRG environment dimension χ (due to its critical
nature) so that several values of χ will be considered here.
Figure 9 shows the energy per site as a function of time t for
χ ranging from D2 to 3D2. At the smallest χ = D2 value, one
clearly sees a plateau at small time t � 0.25 and, then, a clear
deviation from the initial t = 0 energy. Upon increasing χ the
deviation seems to occur a bit sooner. We believe this is a
sign that the restriction to D = 6 is no longer accurate when
t > tD=6

max � 0.25 and/or a full update scheme would become
necessary. Notice however the energy scale used in Fig. 9(b),
showing that the energy deviation still remains relatively small
up to intermediate time, e.g., 0.6% at t = 0.2.

D. Critical behavior, maximum correlation length,
and central charge

U(1) gauge symmetry. The basis tensors (see Table I) in-
volved in the construction of our local tensor in Eq. (5) can
be grouped according to their occupation number of each
of the virtual states on the four bonds nocc = {n0, n1/2, n1}
(with

∑
α nα = 4). For example, the initial NN RVB state

has nocc = {3, 1, 0}. The integer n1/2 defines a U(1) quantum
number characterizing a U(1) gauge symmetry. Because of
the SU(2) fusion rules, n1/2 can be either 1 or 3 defining two
separate classes of U(1)-symmetric PEPS. We argue here that
time evolution preserves the n1/2 = 1 U(1) quantum number
because the action of a two-site gate can only change the spin
quantum number of the virtual state by 1 on the bond it is ap-
plied to. We have checked numerically that this conjecture is
correct, more precisely the coefficients of all the tensors with
n1/2 = 3 remain identically zero, at all times. The preserved
U(1) symmetry suggests that the time evolved state remains
critical, as a mapping to a height representation [17,18]
would imply.
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FIG. 6. Time evolution of A(t ) complex components μi [see Eq. (5)] using τ = 0.025 in the time range t ∈ [0, 2], starting from the initial
tensor A(0) = A1 (NN RVB state). In each panel μ is displayed in the complex plane (black dots) as well as its real part (blue spheres) and
imaginary part (red spheres). The components μ2, μ3, and μ4 of the non-U(1)-symmetric tensors are found to be identically zero and, hence,
are not displayed.
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FIG. 7. (a) Singular values λi of the Autonne-Takagi factoriza-
tion of the SU gate matrix represented in Fig. 3(b) and computed for
τ = 0.025, as a function of time. (b) Entropy per bond as a function
of time captured by the representations 0 ⊕ 1/2 ⊕ 1 used in the SU
procedure.

We believe the U(1) symmetry of the time-evolving spin
liquid is not fine-tuned in the sense that it is not restricted
to the D = 6 Ansatz we are using. Indeed, for any fam-
ily of (singlet) SU(2)-symmetric PEPS with bond dimension
D one can always isolate a large subset of PEPS with
U(1)-gauge symmetry (which should exhibit algebraic cor-
relations). The (simple) argument is as follows: each local
tensor is a projection from V⊗4 into the spin-1/2 subspace.
From the SU(2) conservation rules, one can only have an
odd number, one or three, of virtual states carrying half-
integer spins (which could be different like 1/2 and 3/2).
Hence the SU(2) tensor basis can be split into two sets,
and from each of them one can build two separate fami-
lies of U(1)-symmetric tensors. However, combining basis
tensors of the two sets, i.e., with different numbers of half-
integer virtual spins, will break the U(1)-gauge symmetry
into Z2.

There is however some sort of fine-tuning (or “protection”)
in the setup itself: this is in fact the form of the quench
Hamiltonian which (i) is SU(2) symmetric and (ii) involves
only NN bonds. In the special case (ii) one can use the simple
TS decomposition in terms of 2-site gates. From (i) each gate
acting on a bond can only change the virtual spin S into S + 1
or S − 1 and, hence, will not change the U(1)-gauge symmetry
of the state. Such a property will no longer be true if either (i)
or (ii) is broken. In particular, the gauge U(1) symmetry will

FIG. 8. (a) Overlap |〈A(t )|A(0)〉| of the time-dependent tensor
with the initial tensor defining the NN RVB state (λ2 = 0) as a
function of time (blue dots). Red dots are used after time reversal
at t = tR, going backward in time. (b) Loschmidt echo L(tR ) =
|〈A(t = 2tR − τ )|A(τ )〉| vs tR. Note that for convenience L(tR ) is not
evaluated between times 0 and 2tR but between times τ and 2tR − τ

to avoid dimensional jump from D = 3 at time 0 to D = 6 at time
t > 0. In (a) and (b) the SU method is used with τ = 0.025.

be spoiled by a small amount of disorder introducing (small)
violations of (i) or (ii).

Transfer matrix. To investigate further the expected crit-
ical nature of the state we have computed the spectrum of
the transfer matrix (TM) built from two T environment ten-
sors [4]. The (modulus of the) leading eigenvalues are shown
in Fig. 10 for t = 0.15 (a) and t = 0.5 (b) (but similar results
are also found for other values of t), normalizing the spectrum
such that the largest eigenvalue is λ1 = 1. The behavior of the
spectra with increasing χ suggests a vanishing gap λ1 − λ2

between the largest eigenvalue and the subleading one λ2. The
maximum correlation length ξmax = −1/ ln (λ2/λ1) is then
expected to diverge with χ , as confirmed in Fig. 11 showing
a linear behavior of ξmax with χ and no sign of saturation. In
contrast to the gapless singlet (g = 1) spectrum a gap is seen
in the doublet (spin-1/2) and triplet (g = 3, spin-1) sectors.
Note that the doublet spectrum exhibits an extra twofold de-
generacy (g = 4). Such results are consistent with short-range
spin-spin correlations, as discussed later.

Central charge. From the CTMRG environment one can
build the boundary matrix product state (MPS) of bond dimen-
sion χ and “physical” dimension D2. The critical nature of the
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FIG. 9. Energy per site—ideally a constant of motion (horizontal
dashed lines)—versus time t , using a D = 6 SU(2)-symmetric iPEPS
Ansatz for χ varying from D2 to 3D2. The local tensor A(t ) is
obtained via a SU procedure and τ = 0.005. (a) Full time range.
(b) Zoom of the small time region.

bulk PEPS is reflected in the critical nature of the boundary
chain characterized by a central charge c = 1 for all time t . We
have confirmed this feature by computing the von Neumann
entanglement entropy SvN of the MPS. The latter is shown in
Fig. 12 as a function of ln (ξmax) for small t values. Fitting the
data as SvN ∼ c

6 ln (ξmax) [32,33] one obtains c � 1 consistent
with the expected result.

E. Spin-spin correlations

The previous results suggest that the time-evolving state
bears similar properties to the initial NN RVB state, although
with rapidly growing entanglement. First, the diverging corre-
lation length corresponds to power-law decaying dimer-dimer
correlations. Second, spin-spin correlations are expected
to be short-range. This is indeed seen in Fig. 13(a) for
t = 0.15. The corresponding spin-spin correlation length ξS

is shown in Fig. 13(b) as a function of time t . Interestingly,
the values extracted from fits of the spin-spin correlations
match the values ξT obtained from the TM spectra [see, e.g.,
Figs. 10(a) and 10(b) for t = 0.15 and t = 0.5]: consider-
ing the leading spin-1 (g = 3) eigenvalue λT , one gets ξT =
−1/ ln (λT /λ1) � ξS . Figure 13(b) also shows the behavior
of the spinon correlation length ξspinon = −1/ ln (λspinon/λ1)
where λspinon is the leading eigenvalue with g = 4 correspond-
ing to two degenerate spin doublets (S = 1/2). Remarkably,
we observe that all these correlation lengths vary moderately
as a function of time.

FIG. 10. TM spectrum at a fixed value of t = 0.15 (a) and
t = 0.5 (b), computed for several values of χ . Different symbols are
used to highlight particular levels, the subleading g = 1 eigenvalue
(red dot) and the largest eigenvalues λspinon and λT with degeneracy
g = 4 (green dot) and g = 3 (black dot), respectively. A gapless
continuous singlet spectrum is expected in the χ → ∞ limit.

V. CONCLUSIONS

In this work we have considered a simple quench setup to
investigate the nonequilibrium time dynamics of a genuine
critical spin liquid, i.e., realizing a Coulomb phase. Our de-
scription uses the iPEPS algorithm to approximate the time

FIG. 11. Maximum correlation length ξmax for several values of
time t showing absence of saturation as a function of χ .
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FIG. 12. Entanglement entropy of the boundary MPS versus
ln (ξmax) for different time t = 0, 0.05, 0.1, 0.15, 0.3. The dotted line
correspond to the behavior expected for c = 1.

evolution under the application of a NN Heisenberg inter-
action, allowing for the preservation of all symmetries, both
the lattice symmetry (by considering a unique C4v-symmetric
site tensor) and the spin-rotation SU(2) symmetry directly

FIG. 13. (a) Spin-spin correlation versus distance for t = 0.15 in
semilog scale for several values of χ . The linear fit corresponds to
an exponential decay. (b) Correlation lengths at χ = 108 versus time
t : ξS extracted from fits of the spin-spin correlations; ξT and ξspinon

extracted from the TM spectra shown in Fig. 10 (using same colors
of dots).

encoded at the level of the site tensor. At every time step,
the inerrant breaking of the point group C4v symmetry due
to the successive application of four (noncommuting) two-site
gates followed by SVD truncations is repaired by subtle gauge
transformations on the four tensor virtual legs.

Although our procedure is accurate only at small time due
to the limited tractable bond dimension D, we argue that the
observed stability of the critical nature of the evolving state is
valid at all times in the case of nearest-neighbor interactions.
The robustness of the U(1) gauge symmetry, the intrinsic
origin of the criticality, then suggests the absence of “ther-
malization.” Extension of this work to an initial Z2 topological
spin liquid and/or a longer-range (spin symmetric) interaction
is left for future studies.
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APPENDIX A: IMPLEMENTATION OF C4v

AND SU(2) SYMMETRIES

Here we provide details on the steps represented in
Figs. 5(h) and 5(i). Once a uniform consistent gauge is fixed
for the four virtual legs (see text), the evolved tensor is
projected onto the symmetric basis {Ta}. In this process the re-
sulting tensor becomes fully symmetric under C4v and SU(2);
in particular the noise ε introduced during the gauge fixing
process is removed.

In order to test the accuracy of this procedure, let us define
two d × d matrices according to Fig. 14:

(i) The tensor increment Ti evaluates the variation of site
tensor under time evolution. From its definition as a bilayer,
it is obviously gauge independent. Since A(t + τ ) − A(t ) =
ατ + O(τ 2), the norm ||Ti|| is expected to scale like τ .

(ii) Tensor dissymmetry Td measures the effect of explicit
C4v symmetrization. It is evaluated using the gauge fixed ten-
sor, as C4v symmetrization would be meaningless otherwise.
Corrections induced by symmetrization on A(t + τ ) are due
to the noncommutativity of the 4 substeps and thus expected
to occur at most at order τ 2. Hence ||Td || should scale as τ 2.

We checked these scalings using V = 0 ⊕ 1
2 ⊕ 1 (the jus-

tification for using this Ansatz was given in Sec. III B).
Figure 15 shows that indeed ||Ti|| ∼ τ and ||Td || ∼ τ 2. Hence
it is always possible to choose τ small enough such that
||Td || 	 ||Ti||. It is typically the case for τ = 0.025 used in
the following.

In a final stage [see Fig. 5(i)], the tensor is projected in the
SU(2)-symmetric basis {Ta}. This basis being orthogonal and
normalized, the error of this projection is simply evaluated
as 1 − ∑

a |〈A(t )|Ta〉|2 and we checked that it never exceeds
10−10 for τ = 0.025.
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FIG. 14. (a) Tensor increment Ti and (b) Tensor dissymmetry Td

using the same definitions as in Fig. 5.

APPENDIX B: FACTORIZATIONS OF SYMMETRIC PEPS

In this section, we briefly describe the matrix factorizations
that are frequently used in the current work. In particular, we
are interested in factorizing a complex symmetric matrix into
a diagonal form, i.e.,

A = V DV T , (B1)

where D is a diagonal matrix and V is an invertible matrix.
We also explain how these matrices can be used to truncate
the matrix A.

1. Autonne-Takagi decomposition

The Autonne-Takagi factorization of a complex symmetric
matrix A is defined as

A = USU T , (B2)

where S is a diagonal matrix with positive real entries called
the singular values of the matrix A and U is a complex uni-
tary. In order to find the unitary U , we follow the procedure
described in Ref. [34].

For any complex matrix, we define the singular value
decomposition as

A = USV †, (B3)

FIG. 15. Small τ dependence of ||Ti|| ∼ 1.6287τ (upper panel)
and ||Td || ∼ 0.817375τ 2 (lower panel).

where S is the diagonal with singular values and U and V
are unitary matrices with corresponding singular vectors and
† denotes Hermitian conjugate.

We define the unitary matrix Z = U †V ∗ where V ∗ denotes
the complex conjugate of V . Since A is complex symmetric,
we can rewrite the SVD as

USV † = A = AT = V ∗SU T ⇒ SV †U ∗ = U †V ∗S

⇒ ZS = SZT ⇒ ZSZ∗ = S.

Since the above equation preserves the spectrum of S, it
is a similarity transformation. Hence, Z and Z∗ should be the
multiplicative inverse of each other, i.e., Z† = Z∗ ⇒ Z = ZT .
This implies that Z and S commute with each other:

(ZS)i j = zi jS j j and (SZ )i j = Siizi j ⇒ (zi jS j j − Siizi j ) = 0

⇒ zi j (si − s j ) = 0 ⇒ zi j = 0 ∀si �= s j .

Hence, we note that any such matrix Z that commutes
with a diagonal matrix S should be diagonal if all the entries
in S are distinct. If S has repeated singular values, Z has a
block-diagonal structure with the size of the blocks equal to
the degeneracy of the singular values, i.e., Z = ⊕

k Bnk×nk ,
where nk is the multiplicity of the kth distinct singular value
and Bnk×nk is the corresponding block-diagonal part of Z . Sim-
ilarly, we can rewrite S = ⊕

k sk · 1nk×nk . Since every block
Bnk×nk commutes with the identity matrix, the overall matrix
too commutes with the diagonal matrix S. Since any power
of Z can also be written in similar block-diagonal form, they
too commute with the diagonal matrix S. Hence, we can write
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Z
1
2 S = SZ

1
2 :

A = USV † = USV †U ∗U T = USZT U T

= U (Z
1
2 )T S(Z

1
2 )T U T = UZSU T

Z . (B4)

We therefore get A = UZ SU T
Z with UZ = U (Z

1
2 )T . Note

that the resultant unitary UZ is not unique, since the singular
matrices U and V themselves are not unique. Let two such
unitaries UZ1 and UZ2 be related by UZ1 = UZ2φ, where φ is a
unitary matrix; then,

A = UZ1 S(UZ1 )T = UZ2 (φSφT )(UZ2 )T = UZ2 S(UZ2 )T , (B5)

i.e., (φSφT ) = S. Since this transformation preserves the
spectrum of S, it has to be a similarity transformation, i.e.,
φφT = I . This also implies that the matrix φ has to commute
with S. Hence, if the singular values S are all distinct, the
matrix φ is an orthogonal diagonal matrix; i.e., it is a diagonal
matrix with only ±1 as its diagonal entries. If S has multiplic-
ities, the matrix φ can take a block-diagonal structure with
nk × nk orthogonal blocks where nk is the multiplicity of the
corresponding singular value Sk .

2. Orthogonal decomposition

If the complex symmetric matrix A is diagonalizable, one
can diagonalize it by using a set of eigenvectors, i.e.,

AE = ED ⇒ A = EDE−1, (B6)

where D is a diagonal matrix whose entries are the eigenvalues
of A and E is the matrix with the corresponding eigenvec-
tors [35]. Now, we use the symmetry argument A = AT ,

A = EDE−1 = AT = (E−1)T DET

⇒ ED = (E−1)T DET E ⇒ ZD = DZ,

where we have defined Z = ET E . Note that eigenvectors of
different eigenvalues of any complex symmetric matrix are
always orthogonal (not orthonormal). Indeed, let u and v be
two eigenvectors corresponding to two different eigenvalues
λ and μ; then,

uT · Av − (u)T AT · v = (μ − λ)(uT · v). (B7)

If the matrix A is symmetric, the left-hand side of the equa-
tion should be zero, and since λ and μ are distinct, the dot
product uT · v should be zero which can only happen when
u and v are orthogonal. Hence the matrix Z = ET E is a
diagonal matrix if the A has nonrepeating distinct eigenval-
ues. However, in the presence of multiplicities, the matrix
exhibits a block-diagonal form. Unlike Takagi decomposition,
this block-diagonal form has to do with the absolute values
of the diagonal entries D. Eigenvalues which have the same
absolute value but are a complex phase away (like the complex
conjugate) can still have the same eigenvectors because if
u is an eigenvector, the vector eiφu is also an eigenvector.
Following the same arguments as in the previous section, we
get Z

1
2 D = DZ

1
2 . Notice that the square root of Z should also

have the same block-diagonal form as Z. Then, we get

A = EDE−1 = EDE−1(ET )−1ET = EDZ−1ET

= EZ−1/2DZ−1/2ET = (EZ−1/2)D(EZ−1/2)T = ODOT .

(B8)

Thus the matrix O = EZ−1/2 = E (ET E )−1/2 is a set of or-
thogonal (complex) eigenvectors of A. Note that in practice,
eigenvectors of eigenvalues which are distinct but whose
absolute values are quite close can generate very similar
eigenvectors.

The major difference between the Autonne-Takagi decom-
position and the orthogonal decomposition is that, since the
orthogonal decomposition results in orthogonal projectors, the
operation OT BO is a similarity transformation on the matrix
B whereas U T BU is not. Both methods can be used to a fac-
torize any symmetric matrix into a product of a matrix and its
transpose, i.e., A = MMT , where M = OD1/2 or M = US1/2.

3. Relation between singular values and eigenvalues

Since both methods would give us a decomposition of
the matrix into a product of a matrix and its transpose, we
can try to establish a relation between them by comparing
the resultant matrices. Since the number of nonzero ele-
ments of S and D is equal to the rank of the matrix, the
size of nonzero elements of S and D should be the same.
Let us write A = USU T = U

√
S
√

SU T = (U
√

S)(U
√

S)T

or, similarly, A = ODOT = O
√

D
√

DOT = (O
√

D)(O
√

D)T .
The identification of the two forms,

(U
√

S)(U
√

S)T = (O
√

D)(O
√

D)T ,

implies that

(U
√

S)φ = (O
√

D),

where φ is a complex orthogonal matrix. Hence,

O = U
√

Sφ
√

D
−1

.

Making use of OT O = I , we then obtain

(U
√

Sφ
√

D
−1

)T (U
√

Sφ
√

D
−1

) = I

⇒
√

SU T U
√

S = φDφT . (B9)

Comparing the diagonal elements on the left-hand and right-
hand sides of Eq. (B9), we get

Cii =
∑

k

√
siU

T
ik Uki

√
si =

∑
k

dkφik · φT
ki

⇒
k∑

i=1

di =
k∑

i=1

si(U
T
i · Ui ). (B10)

Hence, it is clear that the eigenvalues and singular values are
equal if and only if the unitary U is purely real. Additionally,
if the singular values are degenerate, the prefactor term U T

i Ui

need not be the same. Hence, D might not always have the
exact same multiplet structure of S. This is particularly im-
portant while truncating the matrix. Since we do not want to
cut through the multiplets, we should be more lenient with
cutting through multiplets of D, often grouping values that are
slightly off as degenerate. Additionally, we have∑

i

|di| =
∑

i

|si||(U T
i Ui )| �

∑
i

si||Ui|| �
∑

i

si.

Thus, since sum total of magnitude of the first n eigenvalues is
lower than the sum of the first n singular values, we can infer
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that the eigenvalue spectrum decays quickly when compared
to the singular values.

4. Truncation

Matrix truncation or dimensionality reduction is a trans-
formation in which a matrix is projected from a higher-
dimensional space to a lower-dimensional space such that
the resultant matrix retains the maximum information and
properties. In other words, for a given square matrix Mp×p we
find a matrix that is lower-order Nq×q for a given q < p such
that the matrix Nq×q can replace Mp×p with as little change as
possible.

In order to truncate a matrix, we have to find an appropri-
ate projector Up×q which projects the linear vector space of
dimension p to the vector space of dimension q, i.e.,

U T Mp×pV = Nq×q. (B11)

Since we are dealing with complex symmetric matrices, we
can assume without the loss of generality that if the resultant
matrix is a complex symmetric, the projectors U and V are
identical. As we project the matrix to a lower-dimensional
space, there is a loss of information due to the truncation. We
quantify this by bringing the matrix Nq×q back to the vector
space of Mp×p and take the norm of the difference of the
resultant matrix from the original. This reconstructed matrix
ŨNq×qŨ is called a low-rank approximation of the original
matrix M [36],

Loss = ||M − ŨNŨ T ||, (B12)

where Ũ is the pseudoinverse of matrix U . Note that from here
on, the word norm shall be used to refer to the Frobenius norm
of a matrix. Ideally, in a tensor contraction, we apply ŨU
on every bond and by absorbing them to the corresponding
tensors, we reduce the dimension of the bond.

5. Loss in Autonne-Takagi truncation

In Autone-Takagi factorization, we use the complex con-
jugate of the unitary U † obtained by the factorization to
diagonalize the matrix, i.e., M = USU T . We then truncate the
resultant matrix by keeping the q of the diagonal matrices and
setting the rest to zero. Let us denote the truncated diagonal
matrix by S̃(q).

In this case, the loss due to truncation is given by

Loss = ||M − US̃(q)U T || = ||U (S − S̃(q))U T ||

= ||(S − S̃(q))|| =
√√√√ p∑

k=q+1

s2
k . (B13)

Hence, to minimize this loss, we retain the singular values
that are largest in magnitude. Once the appropriate values of
S which have to be deleted are determined, we remove the
corresponding columns in the matrix U to get the required
projector.

6. Loss in orthogonal truncation

In case of orthogonal decomposition, we use the or-
thogonal matrices obtained by eigenvalue decomposition in

Eq. (B9). Since the resultant diagonal entries can be complex,
we truncate by retaining the q values that have the largest
magnitude.

Estimation of loss due to truncation is tricky in the case of
complex matrices that are not Hermitian. Even in the complex
symmetric case, we can never get an exact rule estimating
the loss. Hence, we try to find an upper bound for the error.
By proving that the upper bound reduces with increase in the
final dimension q, we comment that the quality of truncation,
in general, increases with the dimension. In order to get an
upper bound, we make use of the inequality that the Frobenius
norm of the product of two matrices is less than or equal
to the product of the norms of the individual matrices, i.e.,
||AB|| � ||A||||B||, and the fact that a matrix and its transpose
have the same entries and, by extension, the same Frobenius
norm. From Eq. (B9), we denote the truncated diagonal matrix
by D̃(q) and the matrix with discarded values by 
(D). Thus
the loss due to truncation is given by

Loss = ||M − OD̃(q)OT || = ||O
(D)OT ||
= ||O

√

(D)(O

√

(D))T || = ||PPT || � ||P||2

⇒ Loss � ||O
√


(D)||2 � ||O||2||
(D)||. (B14)

Now, using the fact that 
(D) has only the (p − q) smallest
eigenvalues, and the rest set to zero, the O in the above
equation can be replaced by only the corresponding (p − q)
orthogonal eigenvectors, i.e.,

O

√

D(q) = Op×(p−q)

√

D(q)(p−q)×(p−q).

Let us call this truncated O with (p − q) eigenvectors as
Oreduced. Now since, O comprises orthogonal vectors,

p − q = ||I(p−q)×(p−q)||
= ||OreducedOT

reduced|| � ||Oreduced||2

⇒ ||Oreduced|| �
√

(p − q). (B15)

Hence, we get

Loss � (p − q)||
(D)|| = (p − q)

√√√√ p∑
k=q+1

|dk|2. (B16)

For a given matrix of size p, the upper limit of the loss
due to truncation will go down with increase in the size of the
truncated matrix q.

Notice that this upper limit does not necessarily imply that
the error will always keep decreasing with increase in q, as
shown in Figs. 16 and 17, where we plot the eigenvalues of 25
random 729 × 729 matrices obtained from initial corners of
the CTMRG process. We can observe that the general trend of
truncation error goes down with the decrease in the magnitude
of truncation, though it is not always strictly decreasing.

7. Preferences

We shall now comment on the usability of the above-
mentioned decompositions in a given problem. It is clear from
the truncation error that for any given case, the singular value
decomposition will have a much accurate low-rank approx-
imation. Hence, in any dimension reduction problems that
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FIG. 16. Normalized eigenvalues (in log scale) of 720 × 720 cor-
ner matrices obtained from random PEPS Ansätze given by Eq. (5)
with bond dimension D = 6.

involve a single isolated matrix (or tensor), one has to always
use singular value decomposition. Examples include dimen-
sion reduction in the simple-update procedure of Sec. III.

Orthogonal decomposition is preferred in cases where one
has to reduce the bond of a tensor that is part of closed loops
or in cases where the overall trace has to be minimized. In
cases where the tensor contraction can be reduced to the trace
of the product of two matrices, the truncation has to be done
by inserting an isometry on the legs of the bonds that are to
be truncated. Since we are dealing with complex symmetric
matrices, for the resultant isometries to preserve the complex
symmetric nature of the matrices, the projectors forming the
isometry have to be complex symmetric, for which one has to
resort to the orthogonal decomposition. In this work, we use
orthogonal decomposition to renormalize the corner matrix
and the edge tensor in the CTMRG procedure.

FIG. 17. Relative truncation error (in log scale) of 720 × 720
corner matrices obtained from random PEPS Ansätze given by
Eq. (5) with bond dimension D = 6. The dotted lines indicate the
upper bound calculated by Eq. (B16) while the corresponding solid
lines indicate the actual errors. Notice that the general trend of error
decreasing with decrease in truncation size.

FIG. 18. Single-site symmetric environment obtained from the
CTMRG procedure.

APPENDIX C: CTMRG

In this section, we provide a description of the CTMRG
procedure used to contract the iPEPS states used in this work
(in order to compute observables such as energy and corre-
lation functions). The details of the CTMRG are similar to
the ones described in Ref. [31], more specifically, its transla-
tionally invariant single-site C4v-symmetric version [19]. In
this scheme, when we contract all the active bonds of the
bilayer tensors in the thermodynamic limit, this leads to a
C4v-symmetric SU(2) environment with adjustable bond di-
mension χ as shown in Fig. 18. The environment consists of
a corner matrix C of dimension χ × χ and a rank-3 transfer
tensor T of dimension χ × χ × D2. However, the major dif-
ference is that the corner in this work is no longer Hermitian
but complex symmetric. The edge tensor T too is complex and
exhibits reflection symmetry along the axis through its D2 leg.
To reach the fixed point tensors, first C and T are initialized
by contracting the corresponding legs of ket and bra tensor
A†A. We then proceed to apply the renormalization procedure
which is continued till the environment converges to a fixed
point.

Each renormalization step consists of three parts:
(1) Absorption. At each step, the C and T tensors absorb

a single-site bilayer tensor as shown in Fig. 19. This raises
the bond dimensions of C and T to χD2 × χD2 and χD2 ×
χD2 × D2.

(2) Corner renormalization. Once absorbed, we can repre-
sent the enlarged contraction of the bilayer network of tensors
by just contracting the four identical enlarged corners. By
leaving out one bond untraced, we can equate the resultant
matrix to the reduced density matrix (RDM) of the system.
Since this matrix is complex symmetric by construction, we
can use the orthogonal decomposition as described in Ap-
pendix A to obtain the orthogonal projectors. For stability,
we just perform the orthogonal decomposition on the corner
since it has the same eigenvectors as that of the RDM. We
diagonalize the corner and retain the largest χ values. In order
to preserve the SU(2) symmetry of the environment, we make
sure that the truncation is done between values that are not
part of a multiplet.
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FIG. 19. Single iteration of CTMRG. (a), (b) It involves absorption of the single-site tensor E into the C (corner) and T (edge) tensors
increasing the bond dimension from χ to χD2 and leading to C′ and E ′ tensors. (c) Isometries (in red) obtained by orthogonal decomposition
of the enlarged corner are placed on the enlarged bonds. Their absorption into the T ′ tensor defines the renormalized T̃ tensor, diagonalizes
the corner C′ to C̃, and reduces the dimension back to χ .

(3) Edge renormalization. We use the isometries obtained
from the orthogonal decomposition of the corner to renormal-
ize the edge tensor T .

The procedure is repeated until convergence, which is iden-
tified by the measuring the change in absolute values of the
corner matrix.
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