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The Verwey transition in magnetite (Fe3O4) is the prototypical metal-insulator transition and has eluded a
comprehensive explanation for decades. A major element of the challenge is the complex interplay between
charge order and lattice distortions. Here we use ultrafast electron diffraction (UED) to disentangle the roles of
charge order and lattice distortions by tracking the transient structural evolution after charge order is melted via
ultrafast photoexcitation. A dual-stage response is observed in which X3, X1, and �5-type structural distortions
occur on markedly different timescales of 0.7–3.2 ps and longer than 3.2 ps. We propose that these distinct
timescales arise because X3-type distortions strongly couple to the trimeron charge order, whereas the �5-
distortions are more strongly associated with monoclinic to cubic distortions of the overall lattice. Our work aids
in clarifying the charge-lattice interplay using UED method and illustrates the disentanglement of the complex
phases in magnetite.
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I. INTRODUCTION

Studying the mechanism of the metal-insulator transi-
tion in magnetite (Fe3O4), termed the Verwey transition,
is one of the classic topics in condensed matter physics
[1,2]. A key element of the transition was identified previ-
ously in structural studies as three-site small polarons named
“trimerons” in which Fe sites experience a charge modula-
tion of Fe2.5+δ-Fe2.5−δ-Fe2.5+δ , where δ quantifies the degree
of charge modulation [3–6]. In addition to the charge order
and metal-insulator transition [7–10], further changes in mag-
netization [11,12], orbital order [13–15], and overall crystal
structure occur [16–19], which makes determining the Verwey
transition mechanism in Fe3O4 challenging and fascinating.

Hitherto, experimental and theoretical studies have sug-
gested that cooperative electron-phonon behavior is crucial
for the Verwey transition [13,20–24]: the intimate coupling
between electrons in Fe t2g orbitals and the phonon modes
is thought to enhance electron localization in trimerons and
effectively reduce the total energy of the system [25,26]. On
the other hand, the stabilized charge ordered state modifies the
interatomic interactions and may contribute to a concomitant
structural instability [27,28].

Using conventional equilibrium methods, it is hard
to explore the electron and lattice degrees of freedom
separately due to the bidirectional interactions between them
[29,30]. X-ray and optical pump-probe measurements have
demonstrated photoinduced destruction of charge order and
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phase separation yielding metallic and insulating regions
in the monoclinic-phase of Fe3O4 [31,32]. Compared with
the pervious ultrafast studies on magnetite, we are more
interested in the detailed lattice deformations related to the
phonon modes in different and longer timescales. In this
study, we use ultrashort laser pulses to decouple the electrons
and lattice in the far-from-equilibrium state and employ
MeV electron pulses to probe the charge ordered state and
lattice deformation in the time domain [33,34]. Due to the
energy redistribution between electrons and lattice in the
photoexcited system, we observed energy flow from the
electrons to the lattice. Taking advantage of MeV electron
pulses with access to large regions of momentum space, we
propose a pathway for the energy flow: the degree of charge
order in the trimerons is first weakened in a short time delay
(0–0.7 ps), which is consistent to the characteristic timescale
of metallic and insulating phase separation mentioned in
[31]. Then we found a two-stage lattice response: due to
electron-phonon interactions, the lattice distorts via dominant
X3- and X1-type displacements from 0.7 ps to 3.2 ps, and
finally �5-type structural deformation emerges in the second
stage after 3.2 ps in the phonon-phonon decay process. Our
ultrafast electron diffraction (UED) experiment provides a
picture of how the electron and lattice subsystems interact
with each other induced by incident photons, which advances
the fundamental understanding of the Verwey transition.

II. METHODS

A. Sample preparation

Single-crystal Fe3O4 was purchased from SurfaceNet
GmbH, Germany. The resistance measurement result shows
a first-order phase transition at 115 K; see Supplemental Ma-
terial at [35] for the electronic resistance measurement result
(see also Ref. [36] therein). The structure transition from
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FIG. 1. UED experiment schematic diagram and SL reflections variation upon photoexcitation. (a) Fe3O4 single crystal is photoexcited
with ultrashort laser pulses with 1.55 eV and is probed by ultrashort electron pulses with 4.2 MeV. The UED pattern of the monoclinic phase
with trimeron order at 34 K along the [100]cubic orientation is shown on the right. (b) Representative integrated intensity variation as a function
of delay time, averaged over six SL reflections, (0, 2̄, 2 + 1

2 ), (0, 2̄, 3), (0, 2̄, 3 + 1
2 ), (0, 2̄, 4 + 1

2 ), (0, 2̄, 5), (0, 2̄, 5 + 1
2 ), between (0, 2̄, 2)

and (0, 2̄, 6) Bragg peaks in the insert. The solid line is a guide to the eye. Error bars represent the standard deviation in the mean of intensity
before time zero. The insert shows four Bragg peaks (0, 2̄, 2), (0, 4̄, 4), (0, 2̄, 6), (0, 0, 4) with surrounding SL reflections. (c) Line profile
of (0, 2̄, 3) SL reflection at early time delays. The SL position is labeled by a red circle in (b). The experiment data are shown as squares
symbols and the solid lines are the fitted results. (d) Peak width (FWHM) measurements from one SL reflection at short time delays.

FIG. 2. Intensity variation measurement at 5 mJ cm−2. (a) Intensity difference map �I (q, t ) = I (q, t )–I (q, t0) for a few representative time
delays at pump fluence 5 mJ cm−2, where t0 represents the time before the pump arrives and q is the scattering vector in the reciprocal space
The negative change (in blue) indicates the intensity decreases after time zero, the positive change (in red) indicates the intensity increases
after time zero. The dashed box in the pattern at 19.2 ps highlights the main changes, compared with the pattern at 9.2 ps. (b)–(e) Intensity
as a function of time measured from four Bragg peaks. The time delays values, 0.7 ps, 3.2 ps, and 9.2 ps, are labeled in each plot. Error bars
represent the standard deviation in the mean of intensity before time zero. The peak positions of (b) (040), (c) (080), (d) (004), and (e) (008)
are labeled in (a).
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FIG. 3. Schematic diagram of dynamic behaviors of the lattice following photoexcitation and the corresponding diffraction simulation
results at 5 mJ cm−2. (a) In the first 0.7 ps, the charge discrepancy between Fe ions in the trimerons is reduced due to the excitation of charge
transfer between Fe ions. A projected unit cell in the low-temperature monoclinic phase along [110] direction is shown. The trimerons are
highlighted by translucent ellipsoids. Fe ions on the tetrahedral sites are omitted for clarity. Then the X3 phonon modes are excited after 0.7 ps
via the energy flow from electrons to lattice. The blue arrows indicate the displacement of Fe ions in the sample layer, along the −x + y and
x−y directions. The circles marked “·” and “×” show the displacement of Fe ions is along the x + y and −x−y directions. After ∼3.2 ps, �5

phonon modes are excited via phonon-phonon interactions. Between 3.2 and 9.2 ps, the atomic displacements mainly happen in the x−y plane
as shown in the red arrows. After 9.2 ps, the atomic displacement along the z direction dominates based on the x−y plane distortion. The red
arrow on the right side indicates the x−y displacement of all the Fe ions in each layer, and the length indicates the displacement amplitude.
The green arrows at the bottom show the displacement along z direction of Fe in each Fe-O layer. The atomic displacement pattern after
9.2 ps is the combination of three-dimensional (x, y, z) displacement. Simulated intensity difference patterns at the corresponding time delays,
1.3 ps, 9.2 ps, and 19.2 ps are shown in (b–d). Simulation parameter in (b) includes the reduced charge discrepancy and lattice displacement
with the X3 mode; simulation in (c) is the atomic displacement corresponding to the �5 mode x, y, based on the reduced charge ordering state
and the X3-type displacements in (b); simulated model in (d) is the atomic displacement along z direction based on the distorted structure in
(c), i.e., �5 mode x, y, z. The simulation results are qualitatively consistent with experimental observations.

high-temperature cubic phase to low-temperature monoclinic
phase has been confirmed using the electron diffraction
method, and the corresponding electron diffraction patterns
captured from monoclinic phase and cubic phase along
[100]cubic orientation are shown in Figs. S1(b) and 1(c) [35].
The 115 K phase transition temperature suggests the possi-
ble presence of oxygen vacancies [9]. The UED sample was
prepared by mechanical polishing, focused ion beam (FIB)
milling and is thinned until electron transparent. The sample
orientation is along the [100]cubic orientation. The sample size
is about 100 μm × 80 μm × 100 nm. Besides the FIB
sample preparation, we also prepared the sample using two
other methods: (1) mechanical polishing with Ar ion milling
and (2) crushed sample suspended on the TEM Cu grid. The
samples prepared using these three methods were tested in the
in situ cooling TEM experiment. The structural phase transi-
tion was observed at ∼115 K in all the samples, indicating
that the FIB preparation method does not change the sample
quality.

B. MeV ultrafast electron diffraction

The ultrafast electron diffraction experiments were per-
formed at the MeV UED beamline at SLAC National
Accelerator Laboratory [37]. The 4.2 MeV electron pulses of
< 150 fs (FWHM) duration transmitted through the sample
at the normal incidence. The sample was excited using a
1.55 eV laser pulse with a duration of 75 fs (FWHM) at a
repetition rate of 180 Hz. The pump fluences were 1, 2, 3,
5, 7.5 mJ cm−2 in the experiment. The sample was cooled to
34 K using a conducting sample holder during the experiment.

C. Electron diffraction simulation

To understand the intensity variation of the experimentally
measured superlattice (SL) reflections and Bragg peaks we
carried out dynamic electron diffraction simulations consid-
ering charge distribution and lattice distortion in the system.
The simulation is based on the Bloch wave method using
the computer codes developed in house. The dynamic and
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TABLE I. X3-type atomic displacement. The Fe atomic coordinates are listed. δ is the magnitude of atomic displacement. δmax = 0.005,
and the corresponding displacement is 0.060 Å.

Fe X y z Fe x y z

1 0.75057 − δ 0.99788 0.00227 33 0.87694 0.87945 − δ 0.37981
2 0.25057 − δ 0.00212 0.50227 34 0.37694 0.12055 − δ 0.87981
3 0.25057 − δ 0.49788 0.00227 35 0.37694 0.37945 − δ 0.37981
4 0.75057 − δ 0.50212 0.50212 36 0.87694 0.62055 − δ 0.87981
5 0.75116 − δ 0.49865 0.00111 37 0.87644 0.38747 − δ 0.38075
6 0.25116 − δ 0.50135 0.50111 38 0.37644 0.61253 − δ 0.88075
7 0.25116 − δ 0.99865 0.00111 39 0.37644 0.88747 − δ 0.38075
8 0.75116 − δ 0.00135 0.50111 40 0.87644 0.11253 − δ 0.88075
9 0.00187 − δ 0.5005 0.5017 41 0.62663 0.88662 + δ 0.12178
10 0.50187 − δ 0.4995 0.0017 42 0.12663 0.11338 + δ 0.62178
11 0.50187 − δ 5E-4 0.5017 43 0.12663 0.38662 + δ 0.12178
12 0.00187 − δ 0.9995 0.0017 44 0.62663 0.61338 + δ 0.62178
13 0.99743 − δ 7.6E-4 0.49693 45 0.62878 0.37462 + δ 0.12311
14 0.49743 − δ 0.99924 0.99693 46 0.12878 0.62538 + δ 0.62311
15 0.49743 − δ 0.50076 0.49693 47 0.12878 0.87462 + δ 0.12311
16 0.99743 − δ 0.49924 0.99693 48 0.62878 0.12538 + δ 0.62311
17 0.74758 + δ 0.75639 0.2526 49 0.87599 0.62482 – δ 0.37671
18 0.24758 + δ 0.24361 0.7526 50 0.37599 0.37518 – δ 0.87671
19 0.24758 + δ 0.25639 0.2526 51 0.37599 0.12482 – δ 0.37671
20 0.74758 + δ 0.74361 0.7526 52 0.87599 0.87518 – δ 0.87671
21 0.75929 + δ 0.2522 0.25367 53 0.87543 0.13087 – δ 0.37437
22 0.25929 + δ 0.7478 0.75367 54 0.37543 0.86913 – δ 0.87437
23 0.25929 + δ 0.7522 0.25367 55 0.37543 0.63087 – δ 0.37437
24 0.75929 + δ 0.2478 0.75367 56 0.87543 0.36913 – δ 0.87437
25 0.00255 + δ 0.74372 0.75188 57 0.62566 0.62776 + δ 0.12584
26 0.50255 + δ 0.25628 0.25188 58 0.12566 0.37224 + δ 0.62584
27 0.50255 + δ 0.24372 0.75188 59 0.12566 0.12776 + δ 0.12584
28 0.00255 + δ 0.75628 0.25188 60 0.62566 0.87224 + δ 0.62584
29 0.00214 + δ 0.24588 0.75191 61 0.62788 0.12601 + δ 0.12652
30 0.50214 + δ 0.75412 0.25191 62 0.12788 0.87399 + δ 0.62652
31 0.50214 + δ 0.74588 0.75191 63 0.12788 0.62601 + δ 0.12652
32 0.00214 + δ 0.25412 0.25191 64 0.62788 0.37399 + δ 0.62652

multiple scattering effect of the electrons has been considered
in the simulation. The simulation results are consistent with
the experimental observations, which cannot be explained
using kinematic scattering theory. At 34 K experimental
temperature, there are multiple twin variants appearing in the
monoclinic phase, i.e., along [110]monoclinic, [11̄0]monoclinic,
and [001]monoclinic directions, which are equivalent in the
high-temperature cubic phase. In the electron diffraction
simulation, all the twin variants were considered, i.e., the
diffraction pattern along each orientation was simulated and
then averaged all the patterns. Additionally, we considered
other factors in the simulation, i.e., sample thickness and
sample bending effect. In our diffraction simulation codes, we
calculate the diffraction pattern for a specific sample thickness
or a series of thickness. In this study, considering the large
sample area, the sample thickness slightly changes from area
to area. We simulated the diffraction pattern at a series of
thickness (t ), i.e., t = 60–79 nm, �t = 1 nm. Namely, the
diffraction pattern was simulated using 20 different thickness,
e.g., 60, 61, …, 79 nm, and the 20 diffraction patterns were
averaged to form one diffraction pattern. When the sample
is thinned down for electron beam transparent, the bending
effect is not evitable. To simulate the sample bending effect,

we tilt the electron beam in the simulation as a precession
electron beam. The simulated electron diffraction patterns
with and without considering the precession angles are shown
in Fig. S2 [35]. Without considering the precession angles in
the simulation, the intensity of the higher-order Bragg peaks
decreases fast, which is not consistent with the experimental
pattern. With the precession angles, the intensities of the
Bragg peaks and SL reflections are close to the experimental
data.

III. EXPERIMENT AND RESULTS

Figure 1(a) shows the MeV UED setup for the study. The
pump-probe electron diffraction experiment was performed
using a 4.2 MeV electron probe with 1.55 eV laser pump
pulses [37]. Above the Verwey transition at ∼115 K, Fe3O4

has a cubic unit cell with Fd 3̄m space group No. 227 and
lattice constant a ≈ 8.4 Å [16]. Unless otherwise stated, we
index diffraction patterns using this unit cell. In Fig. 1(a), we
show the diffraction pattern at 34 K well below the Verwey
transition, with the incident beam along the [100]cubic direc-
tion. The extinction rules for the cubic unit cell mean that
this phase has Bragg peaks of the type (0, k, l )cubic where
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TABLE II. X1-type atomic displacement. δmax = 0.002, and the corresponding displacement is 0.023 Å.

Fe x y z Fe x y z

1 0.75057 − δ 0.99788 0.00227 33 0.87694 0.87945 – δ 0.37981
2 0.25057 − δ 0.00212 0.50227 34 0.37694 0.12055 + δ 0.87981
3 0.25057 − δ 0.49788 0.00227 35 0.37694 0.37945 – δ 0.37981
4 0.75057 − δ 0.50212 0.50212 36 0.87694 0.62055 + δ 0.87981
5 0.75116 − δ 0.49865 0.00111 37 0.87644 0.38747 – δ 0.38075
6 0.25116 − δ 0.50135 0.50111 38 0.37644 0.61253 + δ 0.88075
7 0.25116 − δ 0.99865 0.00111 39 0.37644 0.88747 – δ 0.38075
8 0.75116 − δ 0.00135 0.50111 40 0.87644 0.11253 + δ 0.88075
9 0.00187 + δ 0.5005 0.5017 41 0.62663 0.88662 – δ 0.12178
10 0.50187 + δ 0.4995 0.0017 42 0.12663 0.11338 + δ 0.62178
11 0.50187 + δ 5E-4 0.5017 43 0.12663 0.38662 – δ 0.12178
12 0.00187 + δ 0.9995 0.0017 44 0.62663 0.61338 + δ 0.62178
13 0.99743 + δ 7.6E-4 0.49693 45 0.62878 0.37462 – δ 0.12311
14 0.49743 + δ 0.99924 0.99693 46 0.12878 0.62538 + δ 0.62311
15 0.49743 + δ 0.50076 0.49693 47 0.12878 0.87462 – δ 0.12311
16 0.99743 + δ 0.49924 0.99693 48 0.62878 0.12538 + δ 0.62311
17 0.74758 – δ 0.75639 0.2526 49 0.87599 0.62482 + δ 0.37671
18 0.24758 – δ 0.24361 0.7526 50 0.37599 0.37518 – δ 0.87671
19 0.24758 – δ 0.25639 0.2526 51 0.37599 0.12482 + δ 0.37671
20 0.74758 – δ 0.74361 0.7526 52 0.87599 0.87518 – δ 0.87671
21 0.75929 – δ 0.2522 0.25367 53 0.87543 0.13087 + δ 0.37437
22 0.25929 – δ 0.7478 0.75367 54 0.37543 0.86913 – δ 0.87437
23 0.25929 – δ 0.7522 0.25367 55 0.37543 0.63087 + δ 0.37437
24 0.75929 – δ 0.2478 0.75367 56 0.87543 0.36913 – δ 0.87437
25 0.00255 + δ 0.74372 0.75188 57 0.62566 0.62776 + δ 0.12584
26 0.50255 + δ 0.25628 0.25188 58 0.12566 0.37224 – δ 0.62584
27 0.50255 + δ 0.24372 0.75188 59 0.12566 0.12776 + δ 0.12584
28 0.00255 + δ 0.75628 0.25188 60 0.62566 0.87224 – δ 0.62584
29 0.00214 + δ 0.24588 0.75191 61 0.62788 0.12601 + δ 0.12652
30 0.50214 + δ 0.75412 0.25191 62 0.12788 0.87399 – δ 0.62652
31 0.50214 + δ 0.74588 0.75191 63 0.12788 0.62601 + δ 0.12652
32 0.00214 + δ 0.25412 0.25191 64 0.62788 0.37399 – δ 0.62652

k + l = 4n and n is an integer [38]. These Bragg peaks
are present above and below the Verwey transition. Be-
low the transition, the sample undergoes an approximate√

2 × √
2 × 2 type reconstruction into a monoclinic struc-

ture with Cc space group No. 9 with a = 11.88 Å, b =
11.85 Å, and c = 16.78 Å and α = γ = 90◦, β = 90.236◦
[39]. During this transition, each of the principle cubic axes
can transform into either the [001]monoclinic, [110]monoclinic,
or [11̄0]monoclinic directions. This means that each of the
Bragg peaks generates additional crystallographically equiv-
alent spots due to the six twining-related monoclinic domains
[40]. Additionally, (h, k, l )cubic SL peak satellites appear at
positions, e.g., (h, 0, 0)cubic, h = 2, 6, etc. Furthermore, if the
[110]monoclinic and [11̄0]monoclinic direction lies in the diffrac-
tion plane, additional half-integer SL peaks become visible,
such as (h, 0, l + 1/2)cubic, and (0, k, l + 1/2)cubic. All these
SL peaks have been previously assigned to trimeron order
effects, where each trimeron consists of a linear unit of three
Fe ions with a displacement of the two outer Fe3+ ions to-
wards the central Fe2+ ion in the monoclinic phase [41,42]. A
detailed illustration of how the monoclinic phase and twinning
structure affect the pattern is provided in Appendix A.

A. Intensity variation of SL reflections

An enlarged view of four Bragg peaks [(0, 2̄, 2),
(0, 4̄, 4), (0, 2̄, 6), (0, 0, 4) ] with surrounding SL reflec-
tions is shown as the inset to Fig. 1(b). The time dependence
of each SL peak has been measured. The average inten-
sity variation of six SL reflections [(0, 2̄, 2 + 1

2 ), (0, 2̄, 3),
(0, 2̄, 3 + 1

2 ), (0, 2̄, 4 + 1
2 ), (0, 2̄, 5), (0, 2̄, 5 + 1

2 )] as a func-
tion of time delay after the laser pump with 5 mJ cm−2 fluence
is shown in Fig. 1(b). A fast drop is seen within the first 0.7 ps
followed by slower decays at longer timescales. Each SL re-
flection intensity variation was measured individually, and the
intensities from SL reflections with (h, k, l = half−integers)
and (h, k, l = integers) were analyzed separately, which are
related to charge orders with different periodicities [43]. We
found that the SL intensity variations are similar for different
sets of SL peaks in the reciprocal space. To increase the
signal-to-noise ratio, an averaged intensity measurement re-
sult from 32 SL reflections is shown in Fig. S3. Apart from its
intensity variation, the SL peak profile also changes, as shown
in Fig. 1(c), indicating that the SL peaks become broader
with time [Fig. 1(d)]. The measurements from the SL reflec-
tions illustrate that the peak intensities get weaker and the
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TABLE III. X4-type atomic displacement.

Fe x y z Fe x y z

1 0.75057 + δ 0.99788 0.00227 33 0.87694 0.87945 + 0.3* δ 0.37981
2 0.25057 + δ 0.00212 0.50227 34 0.37694 0.12055 + 0.3* δ 0.87981
3 0.25057 + δ 0.49788 0.00227 35 0.37694 0.37945 + 0.3* δ 0.37981
4 0.75057 + δ 0.50212 0.50212 36 0.87694 0.62055 + 0.3* δ 0.87981
5 0.75116 + δ 0.49865 0.00111 37 0.87644 0.38747 + 0.3* δ 0.38075
6 0.25116 + δ 0.50135 0.50111 38 0.37644 0.61253 + 0.3* δ 0.88075
7 0.25116 + δ 0.99865 0.00111 39 0.37644 0.88747 + 0.3* δ 0.38075
8 0.75116 + δ 0.00135 0.50111 40 0.87644 0.11253 + 0.3* δ 0.88075
9 0.00187 + δ 0.5005 0.5017 41 0.62663 0.88662 − δ 0.12178
10 0.50187 + δ 0.4995 0.0017 42 0.12663 0.11338 − δ 0.62178
11 0.50187 + δ 5E-4 0.5017 43 0.12663 0.38662 − δ 0.12178
12 0.00187 + δ 0.9995 0.0017 44 0.62663 0.61338 − δ 0.62178
13 0.99743 + δ 7.6E-4 0.49693 45 0.62878 0.37462 − δ 0.12311
14 0.49743 + δ 0.99924 0.99693 46 0.12878 0.62538 − δ 0.62311
15 0.49743 + δ 0.50076 0.49693 47 0.12878 0.87462 − δ 0.12311
16 0.99743 + δ 0.49924 0.99693 48 0.62878 0.12538 − δ 0.62311
17 0.74758 − 0.3* δ 0.75639 0.2526 49 0.87599 0.62482 + 0.3* δ 0.37671
18 0.24758 − 0.3* δ 0.24361 0.7526 50 0.37599 0.37518 + 0.3* δ 0.87671
19 0.24758 − 0.3* δ 0.25639 0.2526 51 0.37599 0.12482 + 0.3* δ 0.37671
20 0.74758 − 0.3* δ 0.74361 0.7526 52 0.87599 0.87518 + 0.3* δ 0.87671
21 0.75929 − 0.3* δ 0.2522 0.25367 53 0.87543 0.13087 + 0.3* δ 0.37437
22 0.25929 − 0.3* δ 0.7478 0.75367 54 0.37543 0.86913 + 0.3* δ 0.87437
23 0.25929 − 0.3* δ 0.7522 0.25367 55 0.37543 0.63087 + 0.3* δ 0.37437
24 0.75929 − 0.3* δ 0.2478 0.75367 56 0.87543 0.36913 + 0.3* δ 0.87437
25 0.00255 − 0.3* δ 0.74372 0.75188 57 0.62566 0.62776 − δ 0.12584
26 0.50255 − 0.3* δ 0.25628 0.25188 58 0.12566 0.37224 − δ 0.62584
27 0.50255 − 0.3* δ 0.24372 0.75188 59 0.12566 0.12776 − δ 0.12584
28 0.00255 − 0.3* δ 0.75628 0.25188 60 0.62566 0.87224 − δ 0.62584
29 0.00214 − 0.3* δ 0.24588 0.75191 61 0.62788 0.12601 − δ 0.12652
30 0.50214 − 0.3* δ 0.75412 0.25191 62 0.12788 0.87399 − δ 0.62652
31 0.50214 − 0.3* δ 0.74588 0.75191 63 0.12788 0.62601 − δ 0.12652
32 0.00214 − 0.3* δ 0.25412 0.25191 64 0.62788 0.37399 − δ 0.62652

correlation length of the trimeron order in real space becomes
shorter after photoexcitation.

To more fully understand the nature of the photo-induced
sample changes, we also examined the time-dependent re-
sponse from the Bragg peaks. Fig. 2(a) shows the intensity
difference maps for a selection of time delays, which dis-
play the overall temporal evolution of the Bragg peaks (After
∼20 ps, only small changes in the distribution of the intensity
variations were observed). Here the intensity difference map
is �I (q, t ) = I (q, t )–I (q, t0), where t0 represents the time
before the pump arrives and q is the scattering vector in
reciprocal space. During the early timescale (0–0.7 ps), the
intensities of Bragg peaks increase slightly, which is the oppo-
site behavior compared to the SL reflections. The SL intensity
is reduced by ∼80%, while the Bragg peak intensity increases
by only ∼2% in the first 0.7 ps. As is known from equilibrium
studies [6], the SL reflections in Fe3O4 are more sensitive to
the change of charge ordering than the Bragg peaks. This is
confirmed by our electron diffraction simulations in which we
predict how the diffraction pattern changes with and without
charge order. A reduced charge discrepancy of the Fe ions was
shown to reduce the intensity of SL reflections and increases
the Bragg peak intensity in the first 0.7 ps (see Appendix B).

The result demonstrates that charge order in trimerons gets
quenched in the first 0.7 ps.

B. Intensity variations of Bragg peaks

Figures 2(b)–2(e) plot representative intensity evolutions
measured from four Bragg peaks, which clearly demon-
strate different dynamic behaviors in different time regimes.
After 0.7 ps, all the intensities start to decrease. Then, the
intensity change becomes q-dependent after ∼3.2 ps, which
results in the intensity difference distribution at 9.2 ps shown
in Fig. 2(a). The intensity from the Bragg peaks with low-
index q, e.g., (0, 4, 0), is lower than that at time zero t0,
and the intensity with high-index q, e.g., (0, 8, 0), is higher
than that at t0. After 9.2 ps, the intensity of the reflections
near the central horizontal direction, e.g., (0, 0, 8), starts to
decrease, leading to a negative intensity as shown at 19.2
ps. Since the experimental temperature is 34 K, the sample
is in the monoclinic phase, which breaks the cubic sym-
metry, leading to the different temporal behavior between
(0, 4n, 0) and (0, 0, 4n) reflections. Additionally, in the
low-temperature phase, the SL formation originates from the
charge order and lattice distortion, hence the change from
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TABLE IV. �5 x, y, z-type atomic displacement. δ1, δ2 are the atom deviations. δ1: δ2 = 1

Fe x y z Fe x Y z

1 0.75057 0.99788 + 0.6 ∗ δ1 0.00227 33 0.87694 0.87945 − δ1 0.37981 + δ2

2 0.25057 0.00212−0.6 ∗ δ1 0.50227 34 0.37694 0.12055 + δ1 0.87981 + δ2

3 0.25057 0.49788 + 0.6 ∗ δ1 0.00227 35 0.37694 0.37945 − δ1 0.37981 − δ2

4 0.75057 0.50212−0.6 ∗ δ1 0.50212 36 0.87694 0.62055 + δ1 0.87981 − δ2

5 0.75116 0.49865 + 0.6 ∗ δ1 0.00111 37 0.87644 0.38747 − δ1 0.38075 − δ2

6 0.25116 0.50135−0.6 ∗ δ1 0.50111 38 0.37644 0.61253 + δ1 0.88075 − δ2

7 0.25116 0.99865 + 0.6 ∗ δ1 0.00111 39 0.37644 0.88747 − δ1 0.38075 + δ2

8 0.75116 0.00135−0.6 ∗ δ1 0.50111 40 0.87644 0.11253 + δ1 0.88075 + δ2

9 0.00187 0.5005−0.6 ∗ δ1 0.5017 41 0.62663 0.88662−0.6 ∗ δ1 0.12178 + δ2

10 0.50187 0.4995 + 0.6 ∗ δ1 0.0017 42 0.12663 0.11338 + 0.6 ∗ δ1 0.62178 + δ2

11 0.50187 5E−4 − 0.6 ∗ δ1 0.5017 43 0.12663 0.38662−0.6 ∗ δ1 0.12178 − δ2

12 0.00187 0.9995 + 0.6 ∗ δ1 0.0017 44 0.62663 0.61338 + 0.6 ∗ δ1 0.62178 − δ2

13 0.99743 7.6E − 4−0.6 ∗ δ1 0.49693 45 0.62878 0.37462−0.6 ∗ δ1 0.12311 − δ2

14 0.49743 0.99924 + 0.6 ∗ δ1 0.99693 46 0.12878 0.62538 + 0.6 ∗ δ1 0.62311 − δ2

15 0.49743 0.50076−0.6 ∗ δ1 0.49693 47 0.12878 0.87462−0.6 ∗ δ1 0.12311 + δ2

16 0.99743 0.49924 + 0.6 ∗ δ1 0.99693 48 0.62878 0.12538 + 0.6 ∗ δ1 0.62311 + δ2

17 0.74758 0.75639 − δ1 0.2526 49 0.87599 0.62482 − δ1 0.37671 − δ2

18 0.24758 0.24361 + δ1 0.7526 50 0.37599 0.37518 + δ1 0.87671 − δ2

19 0.24758 0.25639 − δ1 0.2526 51 0.37599 0.12482 − δ1 0.37671 + δ2

20 0.74758 0.74361 + δ1 0.7526 52 0.87599 0.87518 + δ1 0.87671 + δ2

21 0.75929 0.2522 − δ1 0.25367 53 0.87543 0.13087 − δ1 0.37437 + δ2

22 0.25929 0.7478 + δ1 0.75367 54 0.37543 0.86913 + δ1 0.87437 + δ2

23 0.25929 0.7522 − δ1 0.25367 55 0.37543 0.63087 − δ1 0.37437 − δ2

24 0.75929 0.2478 + δ1 0.75367 56 0.87543 0.36913 + δ1 0.87437 − δ2

25 0.00255 0.74372 + δ1 0.75188 57 0.62566 0.62776−0.6 ∗ δ1 0.12584 − δ2

26 0.50255 0.25628 − δ1 0.25188 58 0.12566 0.37224 + 0.6 ∗ δ1 0.62584 − δ2

27 0.50255 0.24372 + δ1 0.75188 59 0.12566 0.12776−0.6 ∗ δ1 0.12584 + δ2

28 0.00255 0.75628 − δ1 0.25188 60 0.62566 0.87224 + 0.6 ∗ δ1 0.62584 + δ2

29 0.00214 0.24588 + δ1 0.75191 61 0.62788 0.12601−0.6 ∗ δ1 0.12652 + δ2

30 0.50214 0.75412 − δ1 0.25191 62 0.12788 0.87399 + 0.6 ∗ δ1 0.62652 + δ2

31 0.50214 0.74588 + δ1 0.75191 63 0.12788 0.62601−0.6 ∗ δ1 0.12652 − δ2

32 0.00214 0.25412 − δ1 0.25191 64 0.62788 0.37399 + 0.6 ∗ δ1 0.62652 − δ2

both of them affects the SL intensity. After the fast intensity
drop induced by the charge order quenching, the SL intensity
change becomes slow after 0.7 ps, the intensity of Bragg peaks
starts to exhibit obvious changes at the same time, indicating
lattice distortions are triggered following the charge or-
der quenching, through electron-phonon and phonon-phonon
interactions in the strongly correlated materials [44–46]. Since
the Bragg peaks captured from large range of the momentum
space are more sensitive to the lattice structure, comparing to
the SL reflections, we are going to figure out the lattice dy-
namic behavior using the intensity variations of Bragg peaks.

Due to the complex structural transformation from the
high-temperature cubic phase to low-temperature monoclinic
phase, several phonon modes have been proposed to be major
factors in the phase transition. The phonon modes of the
cubic structure at the � point and X point are most pop-
ular and highly debated [25–27,42,47]. Neutron scattering
experiments observed a strong reflection at (h, 0, l + 1/2)
reciprocal points, which indicates that the phonon modes
with the wave vector k = (0, 0, 1/2) at the � point become
unstable at the phase transition and lead to a doubled lat-
tice parameter along the c axis. �4 and �5 phonon modes
are mainly discussed in [48], and it was found that both of
these contribute to the SL reflections with half-integers in the

low-temperature phase. However, the atomic displacements
with �4 and �5 modes cannot fully explain the weak critical
scattering at the X points of the Brillouin zone at reflec-
tions (0, k, l )cubic, k + l = 4n + 2 (n is an integer). Moreover,
x-ray and neutron studies claimed that X1 and X3 phonon
modes with k = (0, 0, 1) contribute to the phase transition as
well [31,39,49,50]. The W modes with k = (1/2, 1, 0) play
an important role in the formation of modulated structures in
the low-temperature phase, and the contribution of X4 modes
improves the structural refinement [51].

Based on the above considerations, we construct atomic
models with atomic displacements based on the W1, W2,
�4, �5, X1, X3, X4-type phonon modes [26,39,51]. The
displacement direction in each atomic layer and the relative
displacement amplitudes and phases in each phonon mode
are based on [26,39,48,50,52,53], where the patterns of lattice
distortion in the primitive unit cell for these seven phonon
modes are listed. The atoms in Fe3O4 can be categorized into
three types: Fe atoms on the tetrahedral site, Fe atoms on the
octahedral site and oxygen atoms. To figure out the intensity
changes induced by these atomic species, we simulated
the diffraction patterns considering the displacements of
Fe atoms in the tetrahedra, Fe atoms in the octahedra and
the oxygens, separately. We found that the intensity change
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TABLE V. �4-type atomic displacement. δ1, δ2 are the atom deviations.

Fe X y z Fe x y z

1 0.75057 − δ1 0.99788 0.00227 − δ2 33 0.87694 0.87945 + δ1 0.37981 + δ2

2 0.25057 + δ1 0.00212 0.50227 − δ2 34 0.37694 0.12055 + δ1 0.87981 + δ2

3 0.25057 − δ1 0.49788 0.00227 − δ2 35 0.37694 0.37945 + δ1 0.37981 + δ2

4 0.75057 + δ1 0.50212 0.50212 − δ2 36 0.87694 0.62055 + δ1 0.87981 + δ2

5 0.75116 − δ1 0.49865 0.00111 − δ2 37 0.87644 0.38747 + δ1 0.38075 + δ2

6 0.25116 + δ1 0.50135 0.50111 − δ2 38 0.37644 0.61253 + δ1 0.88075 + δ2

7 0.25116 − δ1 0.99865 0.00111 − δ2 39 0.37644 0.88747 + δ1 0.38075 + δ2

8 0.75116 + δ1 0.00135 0.50111 − δ2 40 0.87644 0.11253 + δ1 0.88075 + δ2

9 0.00187 − δ1 0.5005 0.5017 − δ2 41 0.62663 0.88662 + δ1 0.12178 + δ2

10 0.50187 + δ1 0.4995 0.0017 − δ2 42 0.12663 0.11338 + δ1 0.62178 + δ2

11 0.50187 − δ1 5E-4 0.5017 − δ2 43 0.12663 0.38662 + δ1 0.12178 + δ2

12 0.00187 + δ1 0.9995 0.0017 − δ2 44 0.62663 0.61338 + δ1 0.62178 + δ2

13 0.99743 − δ1 7.6E-4 0.49693 − δ2 45 0.62878 0.37462 + δ1 0.12311 + δ2

14 0.49743 + δ1 0.99924 0.99693 − δ2 46 0.12878 0.62538 + δ1 0.62311 + δ2

15 0.49743 − δ1 0.50076 0.49693 − δ2 47 0.12878 0.87462 + δ1 0.12311 + δ2

16 0.99743 + δ1 0.49924 0.99693 − δ2 48 0.62878 0.12538 + δ1 0.62311 + δ2

17 0.74758 − δ1 0.75639 0.2526 − δ2 49 0.87599 0.62482 − δ1 0.37671 + δ2

18 0.24758 + δ1 0.24361 0.7526 − δ2 50 0.37599 0.37518 − δ1 0.87671 + δ2

19 0.24758 − δ1 0.25639 0.2526 − δ2 51 0.37599 0.12482 − δ1 0.37671 + δ2

20 0.74758 + δ1 0.74361 0.7526 − δ2 52 0.87599 0.87518 − δ1 0.87671 + δ2

21 0.75929 − δ1 0.2522 0.25367 − δ2 53 0.87543 0.13087 − δ1 0.37437 + δ2

22 0.25929 + δ1 0.7478 0.75367 − δ2 54 0.37543 0.86913 − δ1 0.87437 + δ2

23 0.25929 − δ1 0.7522 0.25367 − δ2 55 0.37543 0.63087 − δ1 0.37437 + δ2

24 0.75929 + δ1 0.2478 0.75367 − δ2 56 0.87543 0.36913 − δ1 0.87437 + δ2

25 0.00255 − δ1 0.74372 0.75188 − δ2 57 0.62566 0.62776 − δ1 0.12584 + δ2

26 0.50255 + δ1 0.25628 0.25188 − δ2 58 0.12566 0.37224 − δ1 0.62584 + δ2

27 0.50255 − δ1 0.24372 0.75188 − δ2 59 0.12566 0.12776 − δ1 0.12584 + δ2

28 0.00255 + δ1 0.75628 0.25188 − δ2 60 0.62566 0.87224 − δ1 0.62584 + δ2

29 0.00214 − δ1 0.24588 0.75191 − δ2 61 0.62788 0.12601 − δ1 0.12652 + δ2

30 0.50214 + δ1 0.75412 0.25191 − δ2 62 0.12788 0.87399 − δ1 0.62652 + δ2

31 0.50214 − δ1 0.74588 0.75191 − δ2 63 0.12788 0.62601 − δ1 0.12652 + δ2

32 0.00214 + δ1 0.25412 0.25191 − δ2 64 0.62788 0.37399 − δ1 0.62652 + δ2

induced by the displacement of the Fe atoms in the octahedra
is about four times larger than that induced by the Fe
atoms in the tetrahedra and the oxygen atoms using the
same displacement amplitude in the same type of lattice
distortion. Additionally, the Fe atoms on the octahedral sites
are directly related to the electronic order, i.e., trimeron
lattice, in magnetite. Therefore, the change of the charge
order induced by the incident photon mainly affects the
octahedral Fe atoms through the electron-lattice interaction
[31]. To study the electron-lattice interplay in magnetite,
we made a crude approximation and mainly focused on
the atomic displacements of Fe atoms on the octahedral
sites, i.e., atoms in trimerons, which is the same way as
shown in [31]. Furthermore, since the UED sample is in the
low-temperature monoclinic phase before time zero, in the
atomic displacement models, we transformed and expanded
the atomic displacements into the monoclinic system as
illustrated in Fig. 3(a). In the monoclinic phase, the principal
axes x and y are rotated by ∼45◦, the lattice parameter along
z is doubled. The detailed coordinates of Fe atoms with the
atomic displacements used in the diffraction simulation are
listed in Tables I–VII in Appendix B.

We calculated how the electron diffraction pattern varies
as a function of amplitude of the W1, W2, �4, �5, X1, X3,

X4-type lattice distortions, finding that each type of distortion
produces a distinct modification of the reflection intensities
in the pattern. To make the diffraction simulation close to
the experimental conditions, we considered multiple factors.
According to the SL reflections distributed in the UED
pattern, we infer that the experimental monoclinic crystal
consists of [001]monoclinic domain and its 90◦ rotation domain
and [110]monoclinic and [11̄0]monoclinic domain, i.e., a total of
four domain structures. The simulated diffraction patterns
from the multiple domains are averaged. Additionally, the
sample thickness variation and sample bending are considered
in the simulations by averaging a series of diffraction patterns
with thicknesses and crystal orientations in certain ranges,
60–79 nm in thickness and 0.5◦, 0.8◦, 1.5◦, 1.8◦ precession
angles in crystal orientation, obtained by fitting the experi-
mental diffraction pattern taken before photoexcitation.

By comparing the calculated results for the predicted mod-
els with the data in Fig. 2(a), it was possible to elucidate the
lattice distortion trajectories as illustrated in Fig. 3(a). The
quenched charge-ordered state drives the atomic displacement
following the X3 phonon modes after 0.7 ps. The intensity
variation (�I ) caused by the changes from electronic struc-
ture and lattice structure is shown in the simulated result in
Fig. 3(b). As we mentioned in Sec. III A, the quenched charge
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TABLE VI. W1-type atomic displacement. δ is the atom deviation.

Fe x y z Fe x y z

1 0.75057 + δ 0.99788 0.00227 + 0.5* δ 33 0.87694 0.87945 0.37981
2 0.25057 − δ 0.00212 0.50227 − 0.5* δ 34 0.37694 0.12055 0.87981
3 0.25057 − δ 0.49788 0.00227 − 0.5* δ 35 0.37694 0.37945 0.37981
4 0.75057 + δ 0.50212 0.50212 + 0.5* δ 36 0.87694 0.62055 0.87981
5 0.75116 − δ 0.49865 0.00111 − 0.5* δ 37 0.87644 0.38747 0.38075
6 0.25116 + δ 0.50135 0.50111 + 0.5* δ 38 0.37644 0.61253 0.88075
7 0.25116 + δ 0.99865 0.00111 + 0.5* δ 39 0.37644 0.88747 0.38075
8 0.75116 − δ 0.00135 0.50111 − 0.5* δ 40 0.87644 0.11253 0.88075
9 0.00187 + δ 0.5005 0.5017 − 0.5* δ 41 0.62663 0.88662 + δ 0.12178 − 0.5* δ

10 0.50187 − δ 0.4995 0.0017 + 0.5* δ 42 0.12663 0.11338 − δ 0.62178 − 0.5* δ

11 0.50187 − δ 5E-4 0.5017 + 0.5* δ 43 0.12663 0.38662 + δ 0.12178 − 0.5* δ

12 0.00187 + δ 0.9995 0.0017 − 0.5* δ 44 0.62663 0.61338 − δ 0.62178 − 0.5* δ

13 0.99743 − δ 7.6E-4 0.49693 + 0.5* δ 45 0.62878 0.37462 − δ 0.12311 + 0.5* δ

14 0.49743 + δ 0.99924 0.99693 − 0.5* δ 46 0.12878 0.62538 + δ 0.62311 + 0.5* δ

15 0.49743 + δ 0.50076 0.49693 − 0.5* δ 47 0.12878 0.87462 − δ 0.12311 + 0.5* δ

16 0.99743 − δ 0.49924 0.99693 + 0.5* δ 48 0.62878 0.12538 + δ 0.62311 + 0.5* δ

17 0.74758 0.75639 0.2526 49 0.87599 0.62482 0.37671
18 0.24758 0.24361 0.7526 50 0.37599 0.37518 0.87671
19 0.24758 0.25639 0.2526 51 0.37599 0.12482 0.37671
20 0.74758 0.74361 0.7526 52 0.87599 0.87518 0.87671
21 0.75929 0.2522 0.25367 53 0.87543 0.13087 0.37437
22 0.25929 0.7478 0.75367 54 0.37543 0.86913 0.87437
23 0.25929 0.7522 0.25367 55 0.37543 0.63087 0.37437
24 0.75929 0.2478 0.75367 56 0.87543 0.36913 0.87437
25 0.00255 0.74372 0.75188 57 0.62566 0.62776 + δ 0.12584 + 0.5* δ

26 0.50255 0.25628 0.25188 58 0.12566 0.37224 − δ 0.62584 + 0.5* δ

27 0.50255 0.24372 0.75188 59 0.12566 0.12776 + δ 0.12584 + 0.5* δ

28 0.00255 0.75628 0.25188 60 0.62566 0.87224 − δ 0.62584 + 0.5* δ

29 0.00214 0.24588 0.75191 61 0.62788 0.12601 − δ 0.12652 − 0.5* δ

30 0.50214 0.75412 0.25191 62 0.12788 0.87399 + δ 0.62652 − 0.5* δ

31 0.50214 0.74588 0.75191 63 0.12788 0.62601 − δ 0.12652 − 0.5* δ

32 0.00214 0.25412 0.25191 64 0.62788 0.37399 + δ 0.62652 − 0.5* δ

order decreases the SL intensity and increases the Bragg peak
intensity. Due to the lattice distortion following X3 phonon
modes, the intensity of Bragg peaks starts to decrease at
0.7 ps, as shown in Figs. 2(b)–2(e). After ∼3.2 ps, the atomic
displacement follows a transverse acoustic (TA) �5 phonon,
which we term �5 mode x, y, indicating the atomic displace-
ment is predominantly in the x−y plane. The displacement of
the octahedral-site Fe atoms in one x−y plane layer moves
in the same direction with a constant deviation, however, the
relative displacement amplitude among the layers follows a
sinusoidal variation along the z direction [see Fig. 3(a)]. Since
the wave vector k of the �5 phonon mode is (0, 0, 1/2),
the displacement direction in the first four layers is along the
−x + y axis and is along the x−y axis in the next four layers,
as shown in Fig. 3(a). Since �5 is a two-dimensional repre-
sentation, another set of symmetry-related displacements are
present along −x−y and x + y directions. These two models
provide similar results in the diffraction simulation shown in
Fig. 3(c). After 3.2 ps, the intensities of (0, 4, 0) and (0, 0, 4)
reflections continue to decrease, and the intensities of (0, 8,
0) and (0, 0, 8) reflections start to increase due to the lattice
deformation following �5 mode x, y, which is consistent with
the experimental observations shown in Figs. 2(b)–2(e). After
9.2 ps, the atomic displacements along the z direction increase

following the �5 phonon mode pattern, i.e., a �5 mode x,
y, z, emerges, leading to the intensity decrease at (0, 0, l ),
l = 4n, n is an integer. For Bragg peaks at (0, k, 0), k = 4n, the
displacement along z direction slightly increases the intensity
at (0, 4, 0) and decreases the intensity at (0, 8, 0) from 9.2 to
19.2 ps. The corresponding simulation result is in Fig. 3(d).
Compared with the lattice distortion in �5 modes, the atomic
displacement amplitudes are the same in each layer in �4

modes as shown in Table V. The simulated results based on
�4 modes shown in Fig. S4(a) are not consistent with the
experimental data shown in Fig. 2(a).

According to the electron diffraction simulation for X1,
X3, and X4-type displacements, we found that the atomic
displacements following X1 and X3 phonon modes give sim-
ilar impacts on the intensity of Bragg peaks, i.e., both modes
reduce the intensity. X1 and X3 phonon modes have the same
wave vector k = (0, 0, 1) in reciprocal space, but the atomic
displacement in the Fe-O layer is different. In the pattern of
atomic displacements with X1 mode, the two neighboring Fe
atoms in the same Fe-O plane move in opposite directions,
e.g., along x + y axis and −x−y axis, respectively. In the case
of the X3 mode, the atomic displacement of the Fe atoms in
one layer is along the same direction as shown in Fig. 3(a).
The displacement amplitude in each layer is the same, and
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TABLE VII. W2-type atomic displacement. δ is the atom deviation.

Fe x y z Fe x y z

1 0.75057 − δ 0.99788 0.00227 − 0.5* δ 33 0.87694 0.87945 0.37981
2 0.25057 + δ 0.00212 0.50227 + 0.5* δ 34 0.37694 0.12055 0.87981
3 0.25057 + δ 0.49788 0.00227 + 0.5* δ 35 0.37694 0.37945 0.37981
4 0.75057 − δ 0.50212 0.50212 − 0.5* δ 36 0.87694 0.62055 0.87981
5 0.75116 + δ 0.49865 0.00111 + 0.5* δ 37 0.87644 0.38747 0.38075
6 0.25116 − δ 0.50135 0.50111 − 0.5* δ 38 0.37644 0.61253 0.88075
7 0.25116 − δ 0.99865 0.00111 − 0.5* δ 39 0.37644 0.88747 0.38075
8 0.75116 + δ 0.00135 0.50111 + 0.5* δ 40 0.87644 0.11253 0.88075
9 0.00187 − δ 0.5005 0.5017 + 0.5* δ 41 0.62663 0.88662 + δ 0.12178 − 0.5* δ

10 0.50187 + δ 0.4995 0.0017 − 0.5* δ 42 0.12663 0.11338 – δ 0.62178 − 0.5* δ

11 0.50187 + δ 5E-4 0.5017 − 0.5* δ 43 0.12663 0.38662 + δ 0.12178 − 0.5* δ

12 0.00187 − δ 0.9995 0.0017 + 0.5* δ 44 0.62663 0.61338 − δ 0.62178 − 0.5* δ

13 0.99743 + δ 7.6E-4 0.49693 − 0.5* δ 45 0.62878 0.37462 − δ 0.12311 + 0.5* δ

14 0.49743 − δ 0.99924 0.99693 + 0.5* δ 46 0.12878 0.62538 + δ 0.62311 + 0.5* δ

15 0.49743 − δ 0.50076 0.49693 + 0.5* δ 47 0.12878 0.87462 − δ 0.12311 + 0.5* δ

16 0.99743 + δ 0.49924 0.99693 − 0.5* δ 48 0.62878 0.12538 + δ 0.62311 + 0.5* δ

17 0.74758 0.75639 0.2526 49 0.87599 0.62482 0.37671
18 0.24758 0.24361 0.7526 50 0.37599 0.37518 0.87671
19 0.24758 0.25639 0.2526 51 0.37599 0.12482 0.37671
20 0.74758 0.74361 0.7526 52 0.87599 0.87518 0.87671
21 0.75929 0.2522 0.25367 53 0.87543 0.13087 0.37437
22 0.25929 0.7478 0.75367 54 0.37543 0.86913 0.87437
23 0.25929 0.7522 0.25367 55 0.37543 0.63087 0.37437
24 0.75929 0.2478 0.75367 56 0.87543 0.36913 0.87437
25 0.00255 0.74372 0.75188 57 0.62566 0.62776 + δ 0.12584 + 0.5* δ

26 0.50255 0.25628 0.25188 58 0.12566 0.37224 − δ 0.62584 + 0.5* δ

27 0.50255 0.24372 0.75188 59 0.12566 0.12776 + δ 0.12584 + 0.5* δ

28 0.00255 0.75628 0.25188 60 0.62566 0.87224 − δ 0.62584 + 0.5* δ

29 0.00214 0.24588 0.75191 61 0.62788 0.12601 − δ 0.12652 − 0.5* δ

30 0.50214 0.75412 0.25191 62 0.12788 0.87399 + δ 0.62652 − 0.5* δ

31 0.50214 0.74588 0.75191 63 0.12788 0.62601 − δ 0.12652 − 0.5* δ

32 0.00214 0.25412 0.25191 64 0.62788 0.37399 + δ 0.62652 − 0.5* δ

the displacement periodicity along the z direction coincides
with the lattice constant in the cubic phase, i.e., half the
lattice constant in the monoclinic phase. In the simulation
model with the X3 mode in Fig. 3(a), the displacement di-
rection from the first layer to the fourth layer is along −x + y,
−x−y, x−y, and x + y axis, respectively, and repeats in the
next four Fe-O layers. The lattice distortions following X1

and X3 phonon modes display similar results to the intensity
variation of the Bragg peaks. In X4 phonon modes, the lattice
distortion is similar to X3 modes, but the atomic displacement
amplitude changes from layer to layer along z direction shown
in Table III. The simulated diffraction result [in Fig. S4(b)]
with X4-type displacements is not fully consistent with the
experimental result as shown in Fig. 2(a). According to the
simulation, the lattice distortion with the X1 phonon mode
cannot be larger than 0.023 Å, since a further displacement
makes the intensity variation inconsistent with the experi-
mental result. However, comparing with the X1 mode, the
displacement along the X3 mode works well with relatively
larger deviations δ up to 0.060 Å. Therefore, we conclude that
the lattice distortions following the phonon modes with X1

and X3 symmetries dominate from 0.7 to 3.2 ps.
Moreover, the intensity variation induced by the lat-

tice distortions following W1 and W2 phonon modes were

calculated shown in Fig. S4(c), which are incompatible with
the experimental intensity variations. According to the series
simulation result, we conclude that X1, X3 and �5 phonon
modes is a solution that is physically reasonable and con-
sistent with the data, which are a most likely scenario. We
cannot systematically exclude every conceivable motion of all
the atoms in the charge-ordered unit cell.

IV. DISCUSSIONS

A. Intensity vs pump fluence

The pump fluence dependence of the effects were studied
at 1, 2, 3, 5, 7.5 mJ cm−2. The SL reflections [Fig. 4(a)] all
show a similar response: the intensity drops over a short time
delay then becomes relatively flat at low pump fluences, 1 and
2 mJ cm−2. With higher pump fluences, the intensity slowly
changes after 0.7 ps, and the intensity becomes flat until ∼50
ps at 5 and 7.5 mJ cm−2. The intensity variation value |�I| at
9.2 ps at different fluences is extracted and shown in Fig. 4(b).
The plot manifests that at low fluences, the intensity varia-
tion is proportional to the fluence. When the fluence reaches
7.5 mJ cm−2, the SL intensity change is slightly larger than
that at 5 mJ cm−2, which suggests the charge ordering phase
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FIG. 4. Pump-fluence dependent dynamic behaviors. (a) SL reflection intensity variation with time delays at different pump fluences. (b)
Maximum intensity variation (|�I|) at 9.2 ps extracted from different pump fluences in (a). The curve is the fitted result for a guide to the
eye. The open box in the plot shows the (0, 0) point. (c), (d) Intensity difference map at ∼60 ps with the pump fluence of 3 mJ cm−2 and
5 mJ cm−2, respectively. At 3 mJ cm−2, the intensity variation is smaller than that at 5 mJ cm−2. The significant difference between (c) and
(d) is the intensities of the reflections in the frames, which exhibit a different tendency at ∼60 ps, indicating the different lattice displacement
on the long timescale at 3 and 5 mJ cm−2.

get less sensitive to the incident photon and starts to saturate
above a pump fluence value of about 5 mJ cm−2.

The Bragg peaks respond differently. Our measurement
results shows that the Bragg peak intensity exhibits minor
changes at 1 mJ cm−2 and 2 mJ cm−2 pump fluences. Above
3 mJ cm−2, we start to observe the intensity changes of
Bragg peaks. The intensity variation |�I| at 3 mJ cm−2 is
∼1/2 of that at 5 mJ cm−2, and the �I at both 3 and 5
mJ cm−2 show a similar tendency in first 9.2 ps, which
implies the X1, X3, and �5 phonon modes are involved
in the dynamic process at 3 mJ cm−2 as well. The inten-
sity difference maps at 3 mJ cm−2 fluence are shown in
Fig. S5. However, the intensity from the Bragg reflections,
highlighted by the frame in Fig. 4(c), does not decrease
at long-time delays, which is different from the intensity
change at 5 mJ cm−2. Figures 4(c) and 4(d) show the inten-
sity difference map taken at ∼60 ps with the pump fluence
of 3 mJ cm−2 and 5 mJ cm−2, respectively. According to

the intensity variation and lattice distortion after 9.2 ps at
5 mJ cm−2, we infer that there is no obvious atomic move-
ment along the z direction in the case with the pump fluence
of 3 mJ cm−2. The simulation for the long-time delay is
shown in Fig. S5(h). We note that the intensity variation at
7.5 mJ cm−2 is similar to that at 5 mJ cm−2 (Fig. S6), and
the SL intensity shows a subtle difference between these two
pump fluences. We thus can conclude that the dynamic path-
way at 7.5 mJ cm−2 is similar to that at 5 mJ cm−2, i.e., X1,
X3, and �5 modes appear at distinctive timescales.

The pump fluence-dependent observation reveals that
at relatively low pump fluence, the excited electrons are
not sufficient to drive the lattice distortion corresponding
to the phonon modes. Above the threshold pump fluence
(∼3 mJ cm−2), the atom movement follows different phonon
modes at different timescales. At relatively high pump flu-
ences, approaching 7.5 mJ cm−2, the structural distortion
becomes almost independent of fluence, since the charge
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FIG. 5. Photoinduced dynamic processes as a function of time delay and laser pump fluence in Fe3O4. After photoexcitation with 1.55 eV
laser pulses, the electronic state is excited and charge discrepancy in trimerons has been reduced at early time delays (0–0.7 ps). The Fe-O
cubes present a partial crystal structure. Above 3 mJ cm−2, the lattice distortion is triggered and follow different types of phonon modes on
two timescales after 0.7 ps. In Stage I (0.7–3.2 ps), the electrons drive the lattice distortions with X3- and X1-type phonon modes, which are
the primary and secondary order parameter (OP) for the Verwey transition, respectively. The blue arrows indicate the x−y plane displacements
along the diagonal directions in the cube. After ∼3.2 ps, the x−y plane lattice distortions with �5-type modes (�5−x, y) become dominant,
leading the system to Stage II. �

(1)
5 −x, y and �

(2)
5 −x, y modes are two degenerate phonon modes. The red arrows indicate the x−y plane

displacements. Above 5 mJ cm−2, an additional atomic displacement along z in �5 modes (�5 x, y, z) is observed after 9.2 ps, as shown by
green arrows.

ordering state is almost completely quenched. In addition,
the atomic displacement with �5 phonon modes along the z
direction occurs later than the occurrence of the displacement
in the x and y directions, indicating an anisotropic phonon
dispersion along 〈001〉 in the monoclinic phase. Moreover,
inelastic neutron scattering studies reported that the disper-
sion of the �-�-X TA modes with polarization along the
[001] is slightly harder than for the displacement vector
aligned to [100]; this is associated with the differences of
the averaged charge density modulation in the x−y plane
and along the z direction [47]. These findings imply that
the atomic displacement along the z direction require more
energy than the displacement in the x and y directions in
the monoclinic phase, which could be a reason for the ab-

sence of the z displacement at the low pump fluence of
3 mJ cm−2.

B. Two timescales for the lattice distortions related to the
phonon modes

The photoinduced dynamic process has been summarized
in Fig. 5, including electron excitation and lattice distor-
tions. In the structural deformation following the charge-order
quenched state, we have identified two distinctive timescales:
(1) The atomic displacements following the X3 and X1 optical
phonon modes get excited right after the melting of the charge
ordering state at 0.7 ps, which demonstrates an energy flow
from electrons to phonons. The lattice distortions with the
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FIG. 6. Electron diffraction pattern simulation results for high-temperature phase and low-temperature phase. (a) Simulated diffraction
pattern along [100] direction for the high-temperature cubic structure. (b) Left panel: simulated diffraction pattern along [110]monoclinic and
[11̄0]monoclinic directions for the low-temperature monoclinic structure; right panel: simulated diffraction pattern along [001]monoclinic. (c) Part of
Bragg peaks and SL reflections shown in (b), showing (0, k, l + 1/2)cubic and (0, k, l )cubic types of SL reflections. If the [100] direction in the
cubic structure is transferred into [110] and/or [11̄0] in the monoclinic phase, the (0, k, l + 1/2)cubic will be observed. If the [100] direction in
the cubic structure is transferred into [001] in the monoclinic phase, only the (0, k, l )cubic will be observed in the diffraction pattern.

corresponding X symmetry are preeminent from 0.7 to 3.2 ps
in Stage I. (2) After 3.2 ps, the lattice distortion with the �5

TA phonon modes enters Stage II, which could be stimulated
via phonon-phonon interactions in the relaxation process.

In group theory studies, phonon modes with X3 and �5

symmetry have been identified as primary order parameters
(OPs) for the structural transition from the high-temperature
cubic structure to low-temperature monoclinic structure
[25,26]. Furthermore, the X1 phonon mode is a secondary
OP, which couples to the first OP [54]. Thus, the excited
X3 phonon mode induced by the incident photons prompts
the excitation of X1 phonon mode. The timescales in Stage
I for the excitations of X1 and X3 phonon modes are not
distinguishable in the current data. As another primary
OP for the phase transition, the �5 phonon mode with
k = (0, 0, 1/2), is crucial for the doubling of the unit
cell, which contributes more to the structure symmetry
breaking compared with the X3 phonon mode; its coupling
strength to the electronic structure is relatively weak. The
lattice distortion with �5 phonon modes is initiated by
phonon-phonon coupling. Hence, the �5 phonon mode is
observed at the second stage in the long timescale.

V. CONCLUSION

In summary, we have isolated the electronic structure
and lattice structure response of Fe3O4 in the time do-
main following ultrashort laser pulses of 800 nm wavelength
and characterized their interactions by pump-probe electron

diffraction. We observed the amplitude of the electronic or-
dering in the trimerons is significantly reduced within 0.7 ps
after photoexcitation, demonstrating a quenching process of
the charge order in the low-symmetry phase. Subsequently, a
two-stage lattice response related to the phonon modes with
different symmetries was observed. The emergence of the
X3 and X1 phonon modes and the �5 TA phonon modes on
different timescales substantiates their specific roles in the
Verwey transition. The temporal evolution in the photoin-
duced system demonstrates the complex interplay between
the charge and lattice degrees of freedom in magnetite and
provides a deeper understanding of Verwey transition. The ob-
servations of femtosecond-timescale electronic structural ex-
citation and picosecond-timescale lattice structural response
to the induced photon are consistent with the x-ray-based
observations in [31]. Additionally, the resonant x-ray scatter-
ing method has the capability to detect 2p−3d core valence
resonance of Fe atoms, which is more sensitive to the elec-
tronic dynamic behaviors. The electron scattering method is
able to access large range of momentum space, capturing
more information about the crystal structure. The combina-
tion of these two methods allows us to reach a deeper and
complete understanding of the interplay among these degrees
of freedom in magnetite.
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(a) and (d), i.e., I (e) = I (d )–I (a), indicating the intensity change induced by lattice distortion following the X3 phonon mode.
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APPENDIX A: DIFFRACTION PATTERNS IN THE
HIGH-TEMPERATURE AND LOW-TEMPERATURE

PHASES

During the structural phase transition in Fe3O4, the
〈001〉cubic direction becomes six monoclinic domains in the
low-temperature phase, along [001]monoclinic, [110]monoclinic,
and [11̄0]monoclinic directions. Three of them are shown in
Fig. 6(b), another three domains are rotated 90◦ along
[001]monoclinic, [110]monoclinic and [11̄0]monoclinic directions. The

different types of SL reflections in these domain structures are
illustrated in Fig. 6(c).

APPENDIX B: ELECTRON DIFFRACTION SIMULATION

Figure 7(a) is the simulated result for the quenching of
the charge ordering phase by reducing the charge discrepancy
between the Fe ions in the trimerons. The intensity of SL
reflections is highly reduced, and the intensity of the Bragg
peaks is increased, which is consistent with the experimental
observation at 0.7 ps. In the simulation, the charge ordering
arrangement is based on the trimeron model in [6]. The va-
lence charge states of Fe ions on the octahedral site are divided
into Fe(2.5−δ)+ and Fe(2.5+δ)+, which is shown in Table S7 in
[6]. Since there are 16 Wyckoff positions for the octahedral
Fe ions, eight Fe ions’ charge state is Fe(2.5−δ)+, and another
eight Fe ions’ charge state is Fe(2.5+δ)+. Using the in-house
developed code, the charge state of Fe ions can be changed
into fractional value, e.g., Fe2.3+ and Fe2.7+. Then the corre-
sponding form factors will be recalculated. For example, the
electron configuration of Fe0+ is 3d6, and we change it into
3d3.7 for Fe2.3+. To reduce the charge discrepancy, e.g., we
changed the valence states in Fe ion from Fe2.3+ and Fe2.7+ to
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Fe2.4+ and Fe2.6+, and the atom form factors are recalculated
for the new valence state.

We simulated one electron diffraction pattern for the charge
ordering states Fe2.3+ and Fe2.7+ as an initial pattern (P0) at
time zero and simulated another diffraction pattern (P1) for
the charge ordering states Fe2.4+ and Fe2.6+ using the same
simulation parameters. This pattern is the same simplified
charge distribution model as that used by [6]. Then we did
subtraction of the initial pattern (P0) from pattern (P1), and
we got the different map, which is shown in Fig. 7(a). The SL
reflection intensity is reduced, and the Bragg peak intensity
is increased, which is qualitatively consistent with the experi-
ment data shown in Fig. 2(a).

Based on the charge order quenching, we moved the atoms
off the original positions. The displacement corresponds to X3

and X1 phonon modes in Fe3O4 presents a similar result. The
atomic displacement pathway following X1 and X3 phonon
modes are shown in Figs. 7(b) and 7(c), respectively. The
simulated intensity difference pattern based on the X3 phonon
mode is in Fig. 7(d). The intensity distribution is similar to the
result shown in Fig. 7(a), but the difference of the Bragg peak
intensity between Figs. 7(a) and 7(d) is shown in Fig. 7(e),
indicating the Bragg peak intensity is reduced as a result of
the atomic displacement following the X3 phonon mode.

The atomic displacement parameters of Fe atoms on the
octahedral sites in X3, X1, �5, and �4-type lattice distortions
are summarized in Tables I−VII. There are 64 Fe atoms on
the octahedral sites in the monoclinic phase. The original
atom coordinates in the monoclinic phase are listed in the
tables.
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Verwey transition in magnetite: Group theory, electronic struc-
ture, and lattice dynamics study, Phys. Rev. B 76, 165124
(2007).

[27] M. Hoesch, P. Piekarz, A. Bosak, M. Le Tacon, M. Krisch, A.
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